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Abstract

The formalization of concrete, non-idealized hash function properties su�cient to prove the
security of Bitcoin and related protocols has been elusive, as all previous security analyses of
blockchain protocols have been performed in the random oracle model. In this paper we identify
three such properties, and then construct a blockchain protocol whose security can be reduced to
them in the standard model assuming a common reference string (CRS).

The three properties are: collision resistance, computational randomness extraction and iterated
hardness. While the �rst two properties have been extensively studied, iterated hardness has been
empirically stress-tested since the rise of Bitcoin; in fact, as we demonstrate in this paper, any
attack against it (assuming the other two properties hold) results in an attack against Bitcoin.

In addition, iterated hardness puts forth a new class of search problems which we term iterated
search problems (ISP). ISPs enable the concise and modular speci�cation of blockchain protocols,
and may be of independent interest.

*Research partly supported by H2020 project PRIVILEDGE #780477.
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1 Introduction

Blockchain protocols, introduced by Nakamoto [46], are seen as a prominent application of the �proof
of work� (PoW) concept to the area of consensus protocol design. PoWs were initially introduced in the
work of Dwork and Naor [27] as a spam protection mechanism, and subsequently found applications
in other domains such as Sybil attack resilience [26] and denial of service protection [40, 4], prior to
their application to the domain of distributed consensus hinted at early on by Aspnes et al. [3].

A PoW scheme is typi�ed by a proving algorithm, that produces a solution given an input instance,
as well as a veri�cation algorithm that veri�es the correctness of the witness with respect to the input.
The fundamental property of a PoW scheme is that the proving algorithm allows for no signi�cant
shortcuts, i.e., it is hard to signi�cantly make it more expedient, and hence any veri�ed solution
implies an investment of computational e�ort on behalf of the prover. Nevertheless, this �moderate
hardness� property alone has been found to be insu�cient for the utilization of PoWs in the context
of various applications and other properties have been put forth to complement it. These include: (i)
amortization resistance, which guarantees that the adversary cannot speed up the computation when
solving multiple PoW instances together, and (ii) fast veri�cation, which suggests a signi�cant gap
between the complexities of the proving and veri�cation algorithms.

Despite the evolution of our understanding of the PoW primitive, as exempli�ed in recent works
(e.g., [1, 6, 13, 35]), there has been no de�nitive analysis of the primitive in the context of blockchain
protocol security in the standard model. Intuitively, PoWs are useful in the consensus setting because
they make message passing (moderately) hard and hence generate stochastic opportunities for the
parties running the protocol to unify their view of the current state of the system. This fundamentally
relies on an assumption about the aggregate computational power of the honest parties, but not on
their actual number, in relation to the computational power of the parties that may deviate from
the protocol (the �Byzantine� parties)�a hallmark of the peer-to-peer setting Bitcoin is designed for.
Despite the fact that the Bitcoin blockchain has been analyzed formally [31, 49, 33, 5], the required
PoW properties have not been fully identi�ed and most of the existing analysis has been carried out
in the random oracle (RO) model [10]. The same is true for a wide variety of other protocols in the
space, including [2, 41, 34].

We stress that despite the fact that the RO model has been widely used in the security analysis
of practical protocols and primitives, it has also received signi�cant criticism. For example, Canetti et
al. [20] showed that there exist implementations of signatures and encryption schemes that are secure
in the RO model but insecure for any implementation of the RO in the standard model; Nielsen [47]
proved that e�cient non-committing encryption has no instantiation in the standard model but a
straightforward implementation in the RO model, while Goldwasser and Kalai [39] showed that the
Fiat-Shamir heuristic [29] does not necessarily imply a secure digital signature, which is in contrast
with the result by Pointcheval and Stern [50] in the RO model.

It follows that it is critical to discover security arguments for blockchain protocols that do not
rely on the RO model. Note that we are looking for arguments as opposed to proofs since it is easy
to observe that some computational assumption would still be needed for deriving the security of a
blockchain protocol (recall that blockchain security cannot be inferred information theoretically as it
fundamentally requires at minimum the collision resistance of the underlying hash function). In fact,
the formalization of non-idealized, concrete hash function assumptions su�cient to prove security of
Bitcoin and related protocols has been identi�ed as a �fascinating open question� [18].

Following the above, the main question that motivates the present work is the following:

Is it possible to prove the security of blockchain protocols in the standard model under non-
idealized assumptions about the underlying hash function?
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Our results. In this paper we answer the above question in the positive, by identifying three properties
of a hash function family {Hk(·)}k and then constructing a blockchain protocol whose security can be
reduced to these properties (together with NIZKs; see below) in the standard model.

The �rst property is collision resistance. Speci�cally, it should be hard for an adversary given a
random key k, to �nd two distinct messages m,m′ for which it holds Hk(m) = Hk(m

′). This property
is useful in the blockchain context, since intuitively collision resistance ensures that the hash-chain
maintained by the parties ensures the chronologically correct encoding of information.

The second property of the underlying hash function family is that it should be computational
randomness extracting (CRE). Speci�cally, there is a way to isolate a �nite subset of the domain of the
hash function family so that for any given key k, the function Hk is a (weak) computational randomness
extractor. This property is useful in a few di�erent ways in blockchain security. Firstly, it will help
for symmetry breaking, making sure that parties work concurrently on independent instances of the
underlying problem. Secondly, it will ensure that the problem instances generated by honest parties
(in the form of new blocks), will be su�ciently unpredictable in the eyes of the adversary. Regarding
the plausibility of a CRE hash function, note that pseudorandom functions (PRFs) are known to imply
weak computational randomness extractors [22], and assuming that a hash function implies a PRF is
a fairly standard assumption [7, 25, 43].

The third property asks for the iterative hardness of the underlying hash function as multiple pre-
images with near-zero hashes are stringed together in the form of a chain. This assumption is implicit
in the context of the Bitcoin protocol. In fact, as we show, an attack against iterative hardness would
result in an attack against the protocol (assuming a CRE hash function). This implies that there is
(monetary) incentive to break this assumption, which coupled with the fact that no signi�cant attacks
have been demonstrated in the context of the Bitcoin protocol, establishes iterated hardness of the
underlying hash (in this case SHA-256) as a plausible assumption.1

Armed with the above, we show a novel blockchain protocol whose security can be reduced to the
collision resistance, computational randomness extraction and iterative hardness of the underlying hash
function. Our design adopts Bitcoin's hash-based blockchain structure, as well as the longest-chain
selection rule. However, contrary to previous analyses of this type of protocols [31, 49, 5] in the RO
model, iterative hardness provides no guarantee that blocks are �non-malleable,� in the sense that it
may be easy to mine multiple blocks on the same height of the chain once you have mined the �rst one.
Our solution is to instead construct a PoW that is malleable, and leverage it to show a reduction that
breaks the underlying iterated hardness assumption given a common-pre�x attack to the blockchain
protocol. In order to achieve this, we also have to hide the block witnesses by taking advantage of NIZK
proofs with e�cient simulation, thus managing to e�ciently extract a sequence of iterated witnesses
despite the fact that the attacker may not produce consecutive blocks.

In order to describe and analyze the protocol modularly, we put forth a new class of search prob-
lems, which we call iterated search problems (ISP). Taking advantage of ISPs one can produce concise
and modular speci�cations of blockchain protocols, as evidenced by the description of our protocol
(Section 4.3); as such, ISPs can be of independent interest.

In a nutshell, an ISP instance is de�ned by a problem statement set X, a witness set W and a
relation R that determines when a witness satis�es the problem statement. The ISP is also equipped
with a successor algorithm S that given a statement x and a witness w, can produce a successor
problem statement x′; a solving algorithm M which given an initial problem statement x can �nd a
sequence of witnesses; and a veri�cation algorithm V that takes a problem statement x and witness w
and outpus 1 if (x,w) ∈ R, and 0 otherwise. Each witness corresponds to the next statement de�ned
by algorithm S on input the previous statement and witness, starting from x. The iterated hardness

1Refer to Section 3 for further discussion on this assumption.
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property of the ISP asks that if the solving algorithm takes t steps to solve k instances iteratively, no
alternative algorithm can substantially speed this process up and produce k iterative solutions with
non-negligible probability.

We perform our analysis in the static-adversary setting with synchronous rounds as in [31], and
prove that our protocol can thwart adversaries and environments that roughly take less than half the
computational steps the honest parties collectively are allowed per round. To our knowledge this is
the �rst work that achieves such a result in the permissionless setting without idealized assumptions
and no PKI.2. In principle we can extend our results to the ∆-synchronous setting of [49], following
the techniques found in Section 7 of [32]; we leave the details to the full version of the paper. Further,
we leave as an open question the extension of our results to the dynamic setting of [33], as well as
matching the (less than) 50% threshold on adversarial computational power of the Bitcoin blockchain
which can be shown in the RO model.

Related work. A related but distinct notion of hardness is sequential (i.e., non-parallelizable) iterated
hardness. This notion has been considered as early as [51], mainly in the domains of timed-release
cryptography [15] and protocol fairness [36], and recently formalized in [14] under the term iterated
sequential functions (ISF) in the context of Veri�able Delay Functions (VDFs). In addition, a number
of candidate hard problems have been proposed, including squaring a group element of composite-
modulus groups [51], hashing, and computing the modular square root of an element on a prime order
group [44]. Nevertheless, we observe that if we base the Bitcoin protocol on an ISF (or VDF for that
matter) it will be insecure. The fundamental issue is that it does not allow for parallelization, which
is crucial for proving the security of any (Bitcoin-like) blockchain protocol. Indeed, an attacker with a
single processor whose sequential speed is slightly faster than that of honest parties, can outperform
potentially hundreds of them and mine longer chains �rst.

Another notion related to iterative hardness is the notion of �correlation intractability� (CI) [18].
The di�erence is that while CI only bounds the success probability in solving a single challenge, ISP
fundamentally requires multiple instances. Further, while CI talks about any sparse relation, the
iterative hardness de�nition is concerned with a speci�c non-sparse relation.

Finally, another related work focusing on su�cient conditions for the consensus problem in the
permissionless setting (and no PKI, while matching the less than 50% threshold on adversarial com-
putational power) is [35], which introduced the concept of signatures of work (SoW) as the basic
underlying assumption. The only known implementation of SoWs however is in the RO model, hence
it is unknown (and an interesting open question) whether SoWs can be realized under non-idealized
hash function assumptions like the ones we consider here.

Organization of the paper. The basic computational model, de�nitions and cryptographic building
blocks used by our constructions are presented in Section 2. The three hash-function properties that
the security of our blockchain protocol is going to be based on are presented in Section 3. Section 4 is
dedicated to the new blockchain protocol realizing a transaction ledger. The presentation of the protocol
is modularized by �rst presenting ISP (Section 4.1) and then a high-level technical summary of the rest
of the paper (Section 4.2). Details follow, namely, an ISP-based blockchain protocol (Section 4.3) and
a security notion for ISPs and showing it su�cient to prove our protocol secure (Sections 4.4 and 4.5,
resp.). The construction of a secure ISP based on the hash-function properties presented in Section 3
is given in Section 4.6. Finally, the necessity of iterated hardness to prove the Bitcoin protocol secure
is presented in Section 5.

2See [30] for an extensive discussion on known results in the peer-to-peer/di�usion setting.
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2 Preliminaries

In this section we present basic notation and de�nitions that we will use in the rest of the paper.
For k ∈ N+, [k] denotes the set {1, . . . , k}. For strings x, z, x||z is the concatenation of x and z, and

|x| denotes the length of x. We denote sequences by (ai)i∈I , where I is the index set which will always
be countable. For a set X, x ← X denotes sampling a uniform element from X. For a distribution
U over a set X, x ← U denotes sampling an element of X according to U . By Um we denote the
uniform distribution over {0, 1}m. For random variable X, we denote by H∞(X) the min-entropy of
X. We denote the statistical distance between two random variables X,Z with range U by ∆[X,Z],
i.e., ∆[X,Z] = 1

2

∑
v∈U |Pr[X = v]−Pr[Z = v]|. A random variable ensemble (Xi)i∈I , is a sequence of

random variables indexed by I. By (Xi)i ≈ (Zi)i (resp.
c≈) we denote that two ensembles are statistical

(resp. computational) indistinguishable. We let λ denote the security parameter.

Protocol execution and security model. In this paper we will follow a more concrete approach [8,
11, 36, 12] to security evaluation. We will use functions t, ε, whose range is N,R, respectively, and have
possibly many di�erent arguments, to denote concrete bounds on the running time (number of steps)
and probability of adversarial success of an algorithm in some given computational model, respectively.
When we speak about running time this will include the execution time plus the length of the code
(cf. [12]; note also that we will be considering uniform machines). We will always assume that t is a
polynomial in the security parameter λ, although we will sometimes omit this dependency for brevity.

Instead of using interactive Turing machines (ITMs) as the underlying model of distributed com-
putation, we will use (interactive) RAMs. The reason is that we need a model where subroutine access
and simulation do not incur a signi�cant overhead. ITMs are not suitable for this purpose, since one
needs to account for the additional steps to go back-and-forth all the way to the place where the
subroutine is stored. A similar choice was made by Garay et al. [36]; refer to [36] for details on using
interactive RAMs in a UC-like framework. Given a RAM M , we will denote by StepsM (1λ, x) the
random variable that corresponds to the number of steps taken by M given input 1λ and x. We will
say that M is t-bounded if it holds that Pr[StepsM (1λ, x) ≤ t(λ)] = 1.

Finally, we remark that in our analyses there will be asymptotic terms of the form negl(λ) and
concrete terms; throughout the paper, we will assume that λ is large enough to render the asymptotic
terms insigni�cant compared to the concrete terms.

The Bitcoin backbone model. In this section, we give an overview of the security model that we
are going to use throughout this work, introduced in [35]. This model is a variant of the synchronous
model presented in [31] for the analysis of the Bitcoin backbone protocol, extended to accommodate
a standard-model analysis of PoW-based blockchain protocols. In turn the model of [31] is based on
Canetti's formulation of �real world� execution for multi-party cryptographic protocols [16, 17].

An execution of some protocol Π is de�ned with respect to an �environment� program Z, a �control�
program C, and an �adversary� program A. At a high level, Z is responsible for providing inputs to
and obtaining outputs from di�erent instances of Π, C is responsible for supervising the spawning
and communication of all these programs, and A aims to disrupt the goals set by the protocol. The
programs in question can be thought of as �interactive RAMs� communicating through registers in a
well-de�ned manner.

We consider executions where the set of of parties {P1, ..., Pn} running Π is �xed and hardcoded to
C. Moreover, we consider a �hybrid� model of computation [19], where the adversary A as well as all
parties in the execution can access a number of �ideal� functionalities as subroutines; the functionalities
are also modeled as RAMs and are presented later in detail. Initially Z is activated. Z can make special
requests that result in the spawning of di�erent parties and A. In turn, A can corrupt di�erent parties
by sending messages of the form (Corrupt, Pi) to C, with the limitation that the total number of
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parties corrupted should be at most t; t is a parameter of the execution. We assume an active static
adversary.

We are working in the synchronous model of computation, where the current round is known to all
parties, and messages sent at one round are received at the beginning of the next one. The in�uence
of the adversary in the network is going to be actively malicious following standard cryptographic
practice. While we assume the adversary to be rushing and communication not to be authenticated,
messages sent by honest parties are guaranteed to reach their destination.

All the above concerns are captured by the di�usion functionality Fdiff . The functionality maintains
a Receive string de�ned for each party Pi. A party is allowed at any moment to fetch the messages
sent to it at the previous round that are contained in its personal Receive string. Moreover, when
the functionality receives an instruction to di�use a message m from party Pi, it marks the party as
complete for the current round, and forwards the message to the adversary; note that m is allowed to
be empty. At any moment, the adversary A is allowed to specify the contents of the Receive string for
each party Pi. The adversary has to specify when it is complete for the current round. When all parties
are complete for the current round, the functionality inspects the contents of all Receive tapes and
includes any messages that were di�used by the parties in the current round but not contributed by the
adversary to the Receive tapes. The variable round is then incremented. In the protocol description,
we will use Diffuse as the message transmission command.

In addition, we assume the existence of a common reference string (CRS) functionality that samples
the CRS in a trusted manner from a known e�ciently samplable distribution, and is available for all
parties to fetch at the start of the execution. Note, that from our modeling it is implicit that the
adversary and the honest parties get access to the CRS at the same round.

Based on the above, we denote by {viewP,t,n
Π,A,Z(z)}z∈{0,1}∗ the random variable ensemble that

corresponds to the view of party P at the end of an execution where Z takes z as input. We will consider
stand-alone executions, hence z will always be of the form 1λ, for λ ∈ N. For simplicity, to denote this
random variable ensemble we will use viewP,t,n

Π,A,Z . By view
t,n
Π,A,Z we denote the concatenation of the

views of all parties. The probability space where these variables are de�ned depends on the coins of
all honest parties, A, Z and the CRS generation procedure.

Furthermore, we are going to de�ne a predicate on executions and prove our properties in disjunction
with this predicate, i.e., either the property holds or the execution is not good.

De�nition 1. Let (tA, θ)-good be a predicate de�ned on executions in the hybrid setting described
above. Then E is (tA, θ)-good, where E is one such execution, if

the total number of steps taken by A and Z per round is no more than tA;
3

the adversary sends at most θ messages per round.

De�nition 2. Given a predicate Q and bounds tA, θ, t, n ∈ N, with t < n, we say that protocol Π
satis�es property Q for n parties assuming the number of corruptions is bounded by t, provided that for
all PPT Z,A, the probability that Q(viewt,n

Π,A,Z) is false and the execution is (tA, θ)-good is negligible
in λ.

Cryptographic primitives and building blocks. We will make use of the following cryptographic
primitives: Cryptographic hash functions, (computational) randomness extractors [48, 22] and robust
non-interactive zero-knowledge (NIZK) [52].

Randomness extractors. We make use of the notion of weak computational randomness extractors,
as formalized in [22].

3The adversary cannot use the running time of honest parties that it has corrupted; it is activated instead of them
during their turn.
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De�nition 3. An extractor is a family of functions Ext = {Extλ : {0, 1}n(λ)×{0, 1}d(λ) → {0, 1}m(λ)}λ∈N,
where n(·), d(·) and m(·) are polynomials. The extractor is called weak k(·)-computational if Extλ is
PPT, and for all e�ciently samplable probability ensembles {Xλ}λ with min-entropy k(λ):

(Extλ(Xλ, Ud(λ)))λ∈N
c≈ (Um(λ))λ∈N

where computational indistinguishability is de�ned w.r.t. a non-uniform distinguisher.

Robust non-interactive zero-knowledge. We make use of the following composable notion of
non-interactive zero-knowledge, introduced in [52].

De�nition 4. Given an NP relation R, let L = {x : ∃w s.t. R(x,w) = 1}. Π = (q,P,V,S = (S1,S2),E)
is a robust NIZK argument for L, if P,V,S,E ∈ PPT and q(·) is a polynomial such that the following
conditions hold:

1. Completeness. For all x ∈ L of length λ, all w such that R(x,w) = 1, and all Ω ∈ {0, 1}q(λ),
V(Ω, x,P(Ω, w, x))] = 1.

2. Multi-theorem zero-knowledge. For all PPT adversaries A, we have that Real(λ) ≈ Sim(λ),
where

Real(λ) = {Ω← {0, 1}q(λ); out← AP(Ω,·,·)(Ω);Output out},
Sim(λ) = {(Ω, tk)← S1(1λ); out← AS′2(Ω,·,·,tk)(Ω);Output out},

and S′2(Ω, x, w, tk)
def
= S2(Ω, x, tk) if (x,w) ∈ R, and outputs failure if (x,w) 6∈ R.

3. Extractability. There exists a PPT algorithm E such that, for all PPT A,

Pr

[
(Ω, tk)← S1(1λ); (x, π)← AS2(Ω,·,tk)(Ω);w ← E(Ω, (x, π), tk) :

R(x,w) 6= 1 ∧ (x, π) 6∈ Q ∧ V(Ω, x, π) = 1

]
≤ negl(λ)

where Q contains the successful pairs (xi, πi) that A has queried to S2.

As in [28], we also require that the proof system supports labels. That is, algorithms P,V,S,E take
as input a label φ, and the completeness, zero-knowledge and extractability properties are updated
accordingly. This can be achieved by adding the label φ to the statement x. In particular, we write
Pφ(Ω, x, w) and Vφ(Ω, x, π) for the prover and the veri�er, and Sφ2 (Ω, x, tk) and Eφ(Ω, (x, π), tk) for the
simulator and the extractor.

Theorem 5 ([52]). Assuming trapdoor permutations and a dense cryptosystem exist, robust NIZK
arguments exist for all languages in NP.

Robust public transaction ledgers. Our work is concerned with necessary and su�cient conditions
to implement a public transaction ledger. Next, we give the transaction ledger de�nition introduced
in [31], with the liveness property slightly strengthened, as in [49].

A public transaction ledger is de�ned with respect to a set of valid ledgers L and a set of valid
transactions T , each one possessing an e�cient membership test. A ledger x ∈ L is a vector of
sequences of transactions tx ∈ T . Ledgers correspond to chains of blocks in the Bitcoin protocol. It is
possible for the adversary to create two transactions that are con�icting; valid ledgers must not contain
con�icting transactions. Moreover, it is assumed that in the protocol execution there also exists an
oracle Txgen that generates valid transactions, and is unambiguous, i.e., the adversary cannot create
transactions that come in `con�ict' with the transactions generated by the oracle. A transaction is
called neutral if there does not exist any transactions that come in con�ict with it. Any ledger that
contains neutral or non-con�icting transactions is considered to be valid.
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De�nition 6. A protocol Π implements a robust public transaction ledger if it organizes the ledger as
a chain of blocks of transactions and it satis�es the following two properties:

Consistency (parameterized by the �depth� parameter k ∈ N): If in a certain round an honest
player reports a ledger that contains a transaction tx in a block more than k blocks away from the
end of the ledger, where k ∈ N is the �depth� parameter (such transactions are called stable), then
tx will be reported as stable and in the same position in the ledger by any honest player from this
round on.

Liveness (parameterized by k, u ∈ N�the �depth� and �wait time� parameters, resp.): For every u
consecutive rounds, there exists a round and an honest party, such that the transactions given as
input to that party at this round that are either (i) issued by Txgen or (ii) neutral, will be reported
by all honest parties as stable at the end of this round interval.

3 Hash Functions Properties for Blockchain Security

In this section we describe the three falsi�able assumptions about hash functions which the security
of our protocol is going to be based on. Two of these properties, namely, collision resistance [23] and
weak computational randomness extraction [22], have been extensively studied in the hash function
literature. The third one is new, and has to do with the moderate hardness of computing sequences of
small hashes. We proceed to discuss each of the properties in detail.

We start with collision resistance. Most known blockchain protocols make use of a collision-resistant
hash function in order to establish basic structural properties, e.g., that the adversary cannot create a
blockchain that contains a cycle. That is exactly the way we are going to use this property here. We
will use the following security de�nition [38].4

De�nition 7. Let H = {{Hk : {0, 1}∗ → {0, 1}λ}k∈K(λ)}λ∈N be a hash-function family, and A be
a PPT adversary. Then H is collision resistant if and only if for any λ ∈ N and corresponding
{Hk}k∈K in H,

Pr
k←K

[(m,m′)← A(1λ, k) : (m 6= m′) ∧ (Hk(m) = Hk(m
′))] ≤ negl(λ).

Our second security assumption has to do with the existence of a �xed-length-input hash function
family that is a weak computational randomness extractor. As explained in [22], this assumption
is weaker than assuming a �xed-length-input pseudorandom function family (FI-PRF), a common
assumption in the hash function literature [7, 25, 43]. We adapt the de�nition of a weak computational
randomness extractor to the context of a hash function family.

De�nition 8. Let H = {{Hk : {0, 1}dλ → {0, 1}λ}k∈K(λ)}λ∈N, for some d ∈ N, d > 1, be a �xed-length
input hash-function family. H is a computational randomness extracting (CRE) hash function
family if for some c ∈ N+, c < d, the function family E = {Eλ : {0, 1}(c+1)λ×{0, 1}(d−c−1)λ → {0, 1}λ}λ,
where Eλ(x, i)

def
= Hk(x||i), is a weak (cλ)-computational extractor, for any k ∈ K(λ).

This property will be useful in our protocol for two reasons. First, to ensure that the distributions of
blocks generated by honest parties are identical and independent. Second, to establish that the blocks
generated by honest parties, and which the adversary has the choice to mine on, look su�ciently
random and hence the moderate hardness of the underlying problem is preserved.

Our third assumption about hash functions has to do with the hardness of �nding sequences of small
hashes in the hash-based (SHA-256) PoW construction proposed for Bitcoin. In more detail, given the

4Throughout our exposition for simplicity we will assume that H takes one step to be evaluated. We note that our
results can be generalized to the case where H takes more time.
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hash x of some block, computing a valid PoW for this construction consists of �nding witnesses w1, w2

such that Hk(Hk(x||w1)||w2) < T . In turn, our hardness property requires that any adversary should
take a number of steps proportional to the number of PoWs computed, when these PoWs form a
sequence starting from a uniformly random string x. The property is parameterized by t, the number
of steps the adversary takes to generate each PoW on average.

De�nition 9. Let H = {{Hk : {0, 1}dλ → {0, 1}λ}k∈K(λ)}λ∈N, for some d ∈ N, d > 1, be a �xed-length
input hash-function family, and let T be some hardness parameter. H is t-iteratively hard i� there
exists a polynomial k0(·), such that for any PPT RAM (A1,A2), λ ∈ N, and k ≥ k0(λ), it holds that:

Pr
σ←K(λ);
x0←[0,T ]

st← A1(1λ, σ); (wi, w
′
i)i∈[k] ← A2(1λ, st, x0) :

∀i ∈ [k] : xi := Hσ(Hσ(xi−1||wi)||w′i) < T

∧ StepsA2
(st, x0) < k · t

 ≤ negl(λ)

Our choice to base the security of our protocol on the iterated hardness of Bitcoin's PoW construc-
tion is not accidental. The fact that any attack on iterated hardness implies an attack on Bitcoin,
as we show in Section 5, as well as the fact that no attacks have been publicly disclosed in the last
ten years that this construction has been actively used in Bitcoin, constitute empirical evidence in its
favor. Note that this would not necessarily be the case if we based security on a stronger hardness
property that was not necessary to prove Bitcoin secure, as it would then be possible that an attack
against the property is known and the adversary does not have any incentive to reveal/deploy it, as it
does not a�ect the security of the protocol in any way.5

We note that to prove the security of our protocol both properties in De�nitions 8 and 9 should
hold for the same hash function and for suitable parameters 6, which we discuss in the next section;
collision resistance may hold for a di�erent hash function. As argued above, SHA-256 is a natural
candidate for these assumptions. Finally, in our protocol analysis we will also make use of a number of
other standard assumptions, such as the existence of a NIZK-PoK scheme and that the honest parties
control the majority of the computational power. The theorem we prove is as follows:

Theorem 41 (Informal) Assume the existence of collision-resistant hash functions, a hash function
family that is CRE and iteratively hard for appropriate parameters, a one-way trapdoor permutation
and a dense cryptosystem (for the NIZK), and that tA is (roughly) less than half the total running time
of honest parties per round. Then there exists a protocol that implements a robust public transaction
ledger.

Finally, Gentry and Wichs [37] de�ne as falsi�able the cryptographic assumptions that can be
expressed as a game between an e�cient challenger and an adversary. All cryptographic assumptions
of Theorem 41 are falsi�able in this sense, with two caveats: First, due to the concrete security approach
our work takes, the challenger should take as input the number of steps of the adversary. Second, in the
computational randomness extraction property we quantify over all keys of the hash and all e�ciently
samplable distributions with su�cient min-entropy, which is not immediate to express in the framework
of [37]. Instead, we could choose the key randomly, and expresses the extraction property w.r.t. a single
family of source distributions that the adversary can in�uence. To simplify our presentation we adopt
the former version of the de�nition. However, we note that the proof techniques we use can be adapted
to handle the latter.

5The pro�tability of an attack may also work as a counterincentive to revealing it. Nevertheless, there is merit in our
argument if we take into consideration �white hat� actors who have tried breaking Bitcoin.

6Intuitively, the adversary should not be able to compute small hashes much faster than the rate at which honest
parties generate blocks that is guaranteed by the computational extractor property.
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4 Blockchains from Non-Idealized Hash Functions

In this section we present and prove secure a protocol that implements a transaction ledger and is based
on a hash function that satis�es the properties described in Section 3. We modularize our presentation
and analysis by �rst introducing the concept of iterated search problems (ISP) in Section 4.1, and
then presenting a technical overview in Section 4.2, followed by an ISP-based blockchain protocol in
Section 4.3. Then, in Section 4.4, we introduce a �blockchain friendly� ISP security de�nition, that we
show in Section 4.5 to be su�cient to prove our protocol secure. Finally, in Section 4.6 we construct a
secure ISP based on the hash properties de�ned in Section 3, which in combination with our protocol
can be shown to satisfy Theorem 41.

The choice of modularizing the protocol analysis has multiple bene�ts. In particular, it �rst allows
us to formally capture all required properties that the moderately hard problem our protocol is built
on should satisfy for the analysis to go through. We hope that this will motivate building other
constructions in the future. Secondly, it makes it easier to take advantage of previous e�orts to analyze
relevant protocols [31, 49, 35]. While we adapt some of the proof techniques presented there, an
important contribution of our work is that the ISP notion which we built on is considerably weaker
and can be instantiated in the standard model from fairly simple assumptions.

4.1 Iterated Search Problems

In this section we introduce a class of problems inspired by Bitcoin's underlying computational problem.
The straightforward properties that this class should have, are the ability to �nd a witness for a
problem statement and to verify that the witness is correct, matching Bitcoin's block mining and
block veri�cation procedures, respectively. In addition, the notion models the ability to generate a
new problem statement from a valid statement/witness pair. This captures the fact that in Bitcoin
the problem that a miner solves depends on a previous block (i.e., a statement/witness pair). This
concept has appeared before in the study of iterated sequential functions [14], whose name we draw
from. Syntactically, the key di�erence here is that in each iteration we are not evaluating a function,
but instead we are solving a search problem with possibly many witnesses. Moreover, as we already
commented in Section 1 iterated sequential functions are not the correct abstractions for Bitcoin's
underlying computational problem, as they allow for an attack against the protocol. We proceed to
give a formal de�nition of ISPs.

De�nition 10 (Iterated Search Problem). An iterated search problem (ISP) I speci�es a collection
(Iλ)λ∈N of distributions.7 For every value of the security parameter λ ≥ 0, Iλ is a probability distribu-
tion of instance descriptions. An instance description Λ speci�es

1. �nite, non-empty sets X,W , and

2. a binary relation R ⊂ X ×W .
We write Λ[X,W,R] to indicate that the instance Λ speci�es X,W and R as above.

An ISP also provides several algorithms. For this purpose, we require that the instance descriptions,
as well as the elements of the setsX andW , can be uniquely encoded as bit strings of length polynomial
in λ, and that both X and (Iλ)λ∈N have polynomial-time samplers. The ISP algorithms are as follows,
all parameterized by Λ[X,W,R]:

Veri�cation algorithm VΛ(x,w): A deterministic algorithm that takes as input a problem statement
x and a witness w and outputs 1 if (x,w) ∈ R and 0 otherwise.

7Here we follow the notation used in [21] to de�ne subset membership problems. We remark that no other connection
exists between the two papers.
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Successor algorithm SΛ(x,w): A deterministic algorithm that takes as input a problem statement8

x and a valid witness w and outputs a new instance x′ ∈ X.

Solving algorithm MΛ(x, k): A probabilistic algorithm that takes as input a problem statement x
and a number k ∈ N+ and outputs a sequence of k witnesses (wi)i∈[k].

In the sequel, we will omit writing Λ as a parameter of V, S,M when it is clear from the context.
In order to ease the presentation, we recursively extend the de�nitions of S and R to sequences of
witnesses as follows: Let S(x, ∅) := x and for any k > 1, S(x, (wi)i∈[k]) := S(S(x, (wi)i∈[k−1]), wk) and

(x, (wi)i∈[k]) ∈ R i�
∧k
i=1(S(x, (wj)j∈[i−1]), wi) ∈ R. Further, we assume that M is correct, i.e., for

(wi)i∈[k] ←M(x, k), it holds that (x, (wi)i∈[k]) ∈ R.
Example. Next, we present as an example Bitcoin's underlying computational problem captured as
an ISP.

Construction 1. Let T be a protocol parameter representing how hard it is to solve a problem instance.9

Then:

Iλ is the uniform distribution over functions H : {0, 1}∗ → {0, 1}λ in some family of hash functions
H, i.e., Λ = {H};
X = {x|x < T ∧ x ∈ {0, 1}λ} and W = {0, 1}∗ × {0, 1}λ;
R = {(x,w)|H(H(x||m)||ctr) < T, for w = m||ctr};
V (x,w) checks whether H(H(x||m)||ctr) < T , for w = m||ctr;
S(x,w) = H(H(x||m)||ctr), and
M(x, 1) tests whether V (x, (m, ctr)) is true, for di�erent (m, ctr) pairs, until it �nds a solu-
tion. M(x, k) is de�ned inductively, by running successively M(x, k − 1) and M(x′, 1), for x′ :=
S(x,M(x, k − 1)). The output consists of the witnesses output by the two programs.

4.2 Technical Overview

Next, we give a complete overview of the technical results of this section regarding the implementation
of a transaction ledger based on non-idealized hash functions.

First, we describe our ISP-based protocol in Section 4.3. The main challenge to overcome is that
while the protocol's security is going to be based on iterated hardness (De�nition 9), it operates in a
setting where the adversary can also take advantage of the work of honest parties. This includes the
adversary being able to see the information leaked by the honestly produced blocks, as well as honest
parties directly working on the chain it is extending. In contrast, the iterated hardness experiment
does not provide any guarantees about these cases, as the adversary does not receive any externally
computed witnesses.

Towards this end, blocks in our protocol, instead of exposing the relevant computed witness, contain
a proof of knowledge (PoK) of such a valid witness through a non-interactive zero-knowledge (NIZK)
proof. At �rst, the fact that we use NIZK proofs for a language that is moderately hard may seem
counterintuitive, due to the fact that a trivial simulator and extractor would exist for the zero-knowledge
and soundness properties, since computing a new witness for a given statement takes polynomial time.
Instead, following our general approach, we make concrete assumptions regarding the e�ciency of both
the simulator and the extractor. Informally, we require that the time it takes to simulate a proof or
extract a witness is a lot smaller than the time it takes for honest parties to compute a witness (see

8We could formalize S more generally, to take as input a sequence of problem statements. However, for our exposition
the current formulation su�ces. Note, that a more general de�nition would be needed for the variable di�culty case [33],
which we do not study here, where the next block's di�culty depends on the whole chain.

9For simplicity, in our exposition the hardness parameter for each ISP is �xed, and we do not capture it explicitly.
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Assumption 2). Note that in practice this can be achieved by making the underlying problem hard
enough, which on the �ip side will a�ect the performance of the resulting ledger being implemented.

Regarding chain selection, we adopt the longest-chain rule of the Bitcoin protocol. As we will see
later, this will allow our protocol to operate even if the witnesses of the ISP are malleable. To make our
analysis cleaner, the hash-chain structure of blocks is decoupled from the underlying computational
problem.

As an intermediate step, in Section 4.4, we present a set of ISP properties su�cient to prove
our protocol secure. First, an ISP is iteratively hard i� the ISP solving algorithm takes t steps to
solve k instances iteratively, and no alternative algorithm can substantially speed up this process and
produce k iterative solutions with non-negligible probability. Next, an ISP is (t, α)-successful when
the number of steps of the solving algorithm is below t with probability at least α. The ISP is next-
problem simulatable if the output of the successor algorithm applied on a witness w corresponding to
an instance x can be simulated independently of x and the same is the case for the running time of
the solver. Finally, an ISP is witness-malleable if, given a witness w for a problem instance x, it is
possible to sample an alternative witness whose resulting distribution via the successor algorithm is
computationally indistinguishable with the output of the successor over a random witness produced
by the solving algorithm.

Armed with the above de�nitions we prove in Section 4.5 that our novel blockchain protocol im-
plements a transaction ledger. We note that the main technical di�culty of our blockchain security
proof is to construct a reduction that breaks the underlying iterated hardness assumption given a
common-pre�x attack to the blockchain protocol. The reduction takes advantage of the fact that the
ISP is witness malleable and next-problem simulatable to cheaply simulate honest parties' work, as
well as amenable to zero-knowledge proof simulation and extraction to extract a sequence of iterated
witnesses despite the fact that the attacker may not produce consecutive blocks. After some more
work, we are able to prove the following theorem:

Theorem 41 (Informal). Assume the existence of collision-resistant hash functions, a one-way trapdoor
permutation and a dense cryptosystem (for the NIZK) and a secure ISP problem with appropriate
parameters, and that tA is (roughly) less than half the total running time of honest parties per round.
Then there exists a protocol that implements a robust public transaction ledger.

Finally, in Section 4.6, we present a secure ISP problem assuming the existence of a hash func-
tion that satis�es both the computational extraction and iterated hardness properties presented in
Section 3. The main characteristic of this new ISP (Construction 2) is that, similarly to the Bitcoin
ISP (Construction 1), it uses a double hash, but, in contrast, it requires the inner hash value to be
below the target threshold, as opposed to the outer value. In more detail, given a problem statement
x and witnesses w1, w2, while the next problem is de�ned exactly as in Bitcoin, i.e., H(H(x||w1)||w2),
the witnesses are valid if H(x||w1) < T holds, compared to H(H(x||w1)||w2) < T . This swap allows
the randomness of the outer hash witness to be freely selected by a uniform distribution. In turn,
this gives us the ability to argue that (i) due to the randomness extraction property of the hash, the
inner hash value is computationally indistinguishable from uniform and hence the solving run-time of
the ISP can be simulated independently of the problem statement; (ii) again due to the randomness
extraction property, the outer hash value is computationally indistinguishable from uniform, and (iii)
witness malleability can be shown in a straightforward manner by choosing another witness for the
outer hash at random. Moreover, regarding the hard-ISP property, we can take advantage of the iter-
ative hardness of Bitcoin's ISP construction and the fact that Construction 2 is closely related to it.
The main idea is that if there exists an attacker against our construction, then we can use it to break
the iterative hardness property (De�nition 9) by using the inner hash witnesses in Construction 2 as
an outer hash witnesses in Construction 1. Putting everything together results in the following:
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Lemmas 39 and 40 (Informal). Assume the existence of a hash function family that is CRE and
iteratively hard for appropriate parameters. Then, there exists a secure ISP problem.

Finally, using the above results we are able to obtain Theorem 41.

4.3 Blockchain Protocol Description

Next, we are going to describe our new protocol. Our protocol, Πnew
PL , uses as building blocks three

cryptographic primitives: An ISP I = (M,V, S), a collision-resistant hash function family H, and a
robust NIZK protocol ΠNIZK = (q,P,V,S = (S1,S2),E) for the language10

L = {(Λ[X,W,R], x, x′)|∃w ∈W : (x,w) ∈ R ∧ S(x,w) == x′}

where Λ[X,W,R] is an ISP instance of I. ΠNIZK also supports labels, which we denote as a superscript
on P and V. The initialization of these primitives happens through the CRS all parties share at the start
of the execution, which contains: An instance description Λ[X,W,R], a statement xGen, the description
of a hash function H : {0, 1}∗ → {0, 1}λ and the NIZK reference string Ω, each randomly sampled
from Iλ, X,H, {0, 1}q(λ), respectively. Moreover, as in [31], our protocol is parameterized by the chain
validation predicate V(·), the chain reading function R(·), and the input contribution function I(·) to
capture higher-level applications, e.g., Bitcoin.

Next, we introduce some notation used in the description of our protocol. We use the terms block
and chain to refer to tuples of the form 〈s,m, x, π〉 ∈ {0, 1}λ×{0, 1}∗×X×{0, 1}poly(λ), and sequences
of such tuples, respectively. The rightmost (resp., leftmost) block of chain C is denoted by head(C)
(resp., tail(C)). Each block contains the hash of the previous block s, a message m, the next problem
x to be solved, and a NIZK proof π. We denote by BGen = 〈0λ, 0λ, xGen, 0λ〉 a special block called the
genesis block ; note that xGen is part of the CRS. A chain C = (〈si,mi, xi, πi〉)i∈[k] is valid if: (i) The
�rst block of C is equal to BGen; (ii) the contents of the chain mC = (m1, . . . ,mk) are valid according
to the chain validation predicate V, i.e., V(mC) is true; (iii) si+1 = H(si||mi||xi||i)11 for all i ∈ [k],
and (iv) Vsi+1((Λ, xi−1, xi), πi) is true for all i ∈ [k] \ {1}; see Algorithm 1. We call H(si||mi||xi||i) the
hash of block Bi and denote it by H(Bi), and de�ne H(C) ∆

= H(head(C)). We will consider two valid
blocks or chains as equal, if all their parts match, except possibly for the NIZK proofs.

We proceed to describe the main function of the protocol, presented in Algorithm 4. At each round,
each party chooses the longest valid chain among the ones it has received (Algorithm 2) and tries to
extend it by computing a new witness. If it succeeds, it di�uses the new block to the network. In more
detail, each party will run the solver M on the problem x de�ned in the last block 〈s,m, x, π〉 of the
chosen chain C. If it succeeds on �nding a witness w, it will then compute a NIZK proof that it knows
a witness w such that (x,w) ∈ R and S(x,w) = x′, for some x′ ∈ X. The proof should also have a
label H(H(head(C))||m′||x′||(|C|+ 1)), where m′ is the output of the input contribution function I(·),
i.e., the message encoded in the block; see Algorithm 3. Then, the party di�uses the extended chain
to the network. Finally, if the party is queried by the environment, it outputs R(C), where C is the
chain selected by the party; the chain reading function R(·) interprets C di�erently depending on the
higher-level application running on top of the Bitcoin backbone protocol. We assume that all honest
parties take the same number of steps tH per round.

In order to turn the above protocol into a protocol realizing a public transaction ledger, we de�ne
functions V(·),R(·), I(·) exactly as in [31]. For completeness we give these de�nitions in Table 1. We
denote the new public ledger protocol by Πnew

PL .

10We assume that both V and S are e�ciently computable. Hence, L ∈ NP.
11We include a �xed length (λ-bit) encoding of the height of the block in the hash on purpose. This way, the contents

of the hash chain form a su�x-free code [9], which in turn implies collision resistance. See Lemma 17.
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Algorithm 1 The validate procedure, parameterized by BGen, the hash function H(·), the chain
validation predicate V (·), and the veri�cation algorithm V of ΠNIZK. The input is C.

1: function validate(C)
2: b← V(mC) ∧ (tail(C) = BGen) . mC describes the contents of chain C.
3: if b = True then . The chain is non-empty and meaningful w.r.t. V (·)
4: s′ ← H(BGen) . Compute the hash of the genesis block.
5: x′ ← xGen
6: C ← C1e . Remove the genesis from C
7: while (C 6= ε ∧ b = True) do
8: 〈s,m, x, π〉 ← tail(C)
9: s′′ ← H(tail(C))
10: if (s = s′ ∧ Vs

′′
(Ω, (Λ, x′, x), π)) then

11: s′ ← s′′ . Retain hash value
12: x′ ← x
13: C ← C1e . Remove the tail from C
14: else

15: b← False
16: return (b)

Algorithm 2 The function that �nds the �best� chain, parameterized by function max(·). The input
is {C1, . . . , Ck}.

1: function maxvalid(C1, . . . , Ck)
2: temp← ε
3: for i = 1 to k do
4: if validate(Ci) then
5: temp← max(C, temp)
6: return temp

4.4 ISP Security Properties

Next, we present a set of ISP properties su�cient to prove our protocol secure. Later in Section 4.6
we show how to instantiate them.

In the same spirit as in Boneh et al. [14]'s de�nition of an iterated sequential function, we can
de�ne the notion of a hard iterated search problem. Our de�nition is parameterized by t, δ and k0, all
functions of λ which we omit for brevity. Unlike the former de�nition, we take in account the total
number of steps instead of only the sequential ones, and we require the error probability to be negligible
after at least k0 witnesses have been found instead of one. In that sense, our notion relaxes the strict
convergence criterion of [14]. Finally, note that the adversary is allowed some precomputation time.

De�nition 11. An ISP I = (V,M, S) is (t, δ, k0)-hard i� it holds that

For λ ∈ N and for all polynomially large k ≥ k0:

Pr
Λ[X,W,R]←Iλ;

x←X

[
(wi)i∈[k] ←M(x, k) : (x, (wi)i) ∈ R
∧ StepsM (x, k) ≤ k · t

]
≥ 1− negl(λ), and
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Algorithm 3 The proof of work function is parameterized by the hash function H(·), and the proving
algorithm P of ΠNIZK. The input is (m′, C).

1: function pow(m′, C)
2: 〈s,m, x, π〉 ← head(C)
3: w ←M(x) . Run the honest solving algorithm of the ISP.
4: if w 6= ⊥ then

5: x′ ← S(x,w) . Compute the next problem to be solved.
6: s′ ← H(s||m||x|||C|) . Compute the hash of the last block.
7: s′′ ← H(s′||m′||x′|||C|+ 1) . Compute the hash of the new block.
8: π′ ← Ps

′′
(Ω, (Λ, x, x′), w) . Compute the NIZK proof.

9: B ← 〈s′,m′, x′, π′〉
10: C ← CB . Extend chain
11: return C

Algorithm 4 The Bitcoin backbone protocol, parameterized by the input contribution function I(·)
and the chain reading function R(·).

1: C ← BGen . Initialize C to the genesis block.
2: st← ε
3: round← 0
4: while True do

5: C̃ ← maxvalid(C, any chain C′ found in Receive())
6: 〈st,m〉 ← I(st, C̃, round, Input(),Receive()) . Determine the m-value.
7: Cnew ← pow(m, C̃)
8: if C 6= Cnew then

9: C ← Cnew

10: Diffuse(C)
11: round← round+ 1
12: if Input() contains Read then

13: write R(mC) to Output()

for any PPT RAM A = (A1,A2), λ ∈ N, and all polynomially large k ≥ k0, it holds that

Pr
Λ[X,W,R]←Iλ;

x←X

[
st← A1(1λ,Λ); (wi)i∈[k] ← A2(1λ, st, x) :

(x, (wi)i) ∈ R ∧ StepsA2(st, x) < (1− δ)k · t

]
≤ negl(λ).

The next property, has to do with establishing an upper bound t on the the running time of the
veri�cation algorithm V . Intuitively, the product θ · t should be a lot smaller than the number of steps
tH per round available to honest parties, to avoid resource depletion attacks.

De�nition 12. An ISP I = (V,M, S) is t-veri�able i� algorithm V takes time at most t (on all inputs).

In general, attacking an honest solver amounts to �nding a certain set of inputs over which the
honest solving algorithm fails to produce witnesses su�ciently fast. In order to combat this attack, we
introduce the following property: We say that an ISP I is (t, α)-successful when the probability that
M12 computes a witness in t steps is at least α.

12For brevity, we use M(x) instead of M(x, 1) in this section.
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Content validation pre-
dicate V(·)

V(·) is true if its input 〈m1, . . . ,m`〉 is a valid ledger, i.e., it is in L.

Chain reading function R(·) R(·) returns the contents of the chain if they constitute a valid ledger,
otherwise it is unde�ned.

Input contribution function
I(·)

I(·) returns the largest subsequence of transactions in the input and
receive registers that constitute a valid ledger, with respect to the
contents of the chain C the party already has, preceded by a neutral
random transaction.

Table 1: The instantiation of functions V(·),R(·), I(·) for protocol Πnew
PL (I).

De�nition 13. An ISP I = (V,M, S) is (t, α)-successful i� for λ ∈ N, Λ[X,W,R] ∈ Iλ, and for all
x ∈ X it holds that: Pr[StepsM (x) < t] ≥ α.

The iterated hardness property (De�ntion 11) does not give any guarantees regarding composition.
For blockchain protocols, however, this is necessary as many parties concurrently try to solve the same
ISP. To address this issue, we introduce the next property that ensures that learning how long it took
for a witness to be computed or what the next problem de�ned by such witness is, does not leak any
information that could help the adversary �nd a witness himself. More formally, there exists an e�cient
simulator whose output is computationally indistinguishable from the distribution of the time it takes
to compute a witness w for some statement x and the next statement S(x,w). Note that, crucially,
the simulator does not depend on the instance description Λ or the problem statement x, and that we
consider a non-uniform distinguisher.

De�nition 14. An ISP I = (V,M, S) is t-next-problem simulatable i� there exists a t-bounded RAM
Ψ such that for any PPT RAM D, any λ ∈ N, any z ∈ {0, 1}poly(λ), any Λ[X,W,R] ∈ Iλ, and any
x ∈ X, it holds that

|Pr[D(1λ, z,Λ, x, (S(x,M(x)),StepsM (x))) = 1]− Pr[D(1λ, z,Λ, x,Ψ(1λ)) = 1]| ≤ negl(λ).

The next property has to do with a party's ability to �cheaply� compute witnesses for a statement,
if it already knows one. This will be important to ensure that even if the adversary has external help
to produce some of the witnesses needed by the hard ISP experiment, as is the case for blockchain
protocols, still the overall process remains hard with respect to the number of consecutive blocks the
adversary actually produced. We call this ISP property witness malleability.

De�nition 15. An ISP I = (V,M, S) is t-witness malleable i� there exists a t-bounded RAM Φ such
that for any PPT RAM D, any λ ∈ N, any z ∈ {0, 1}poly(λ), any Λ[X,W,R] ∈ Iλ, and any (x,w) ∈ R,
it holds that (x,Φ(x,w)) ∈ R, and

|Pr[D(1λ, z,Λ, x, w, S(x,Φ(x,w))) = 1]− Pr[D(1λ, z,Λ, x, w, S(x,M(x))) = 1]| ≤ negl(λ).

Finally, we call an ISP that satis�es all the above properties secure.

De�nition 16. An ISP I = (V,M, S) is (tver, tsucc, α, tnps, tmal, thard, δhard, khard)-secure i� it is tver-
veri�able, (tsucc, α)-successful, tnps-next-problem simulatable, tmal-witness malleable, and (thard, δhard, khard)-
hard.

An ISP scheme with trivial parameters is of limited use in a distributed environment; for example,
if δhard � 1 or thard � tver. Hence, next we describe the parameters' ranges that make for a non-trivial
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secure ISP. First o�, and ignoring negligible terms, one can show that α ≤ tsucc
(1−δhard)thard

(see Lemma 23).
On the other hand, the successful property always holds for α = 0. Therefore, for a non-trivial ISP
scheme it should hold that α is close to tsucc

(1−δhard)thard
. To avoid denial of service attacks, θ · tver must

be su�ciently small compared to thard, the running time of the solving algorithm M . Furthermore,
tmal should be a lot smaller than thard, otherwise M can be used as a trivial simulator. We note, that
the security of the protocol that we presented earlier relies on the fact that a secure ISP scheme with
favorable parameters exists, mainly re�ected in Assumption 2 (Section 4.5).

4.5 Security of the ISP-based Blockchain Protocol

In this subsection we prove that Πnew
PL implements a robust public transaction ledger (cf. De�nition 6),

assuming the underlying ISP I is secure.

Security Proof of the ISP-based Protocol. We proceed to the main part of the protocol analysis.
The �rst assumption we are going to make is that the underlying ISP I is secure, and that the runtimes
of the procedures of the NIZK system are upper bounded.

Assumption 1 (ISP Assumption). For parameters tver, t
′
H, α, tnps, tmal, thard, δhard, khard, tP, tV, tS, and tE

we assume that:

ISP I is (tver, t
′
H, α, tnps, tmal, thard, δhard, khard)-secure;13

running the prover (resp., veri�er, simulator, extractor) of ΠNIZK takes tP (resp. tV, tS, tE) steps.

Next, we introduce some additional notation necessary to formalize our second assumption that
has to do with the computational power of the honest parties and the adversary. For brevity, and to
better connect our analysis to previous work [31, 49, 35], we denote by β = ((1 − δhard) · thard)−1, the
upper bound on the rate at which the adversary can compute witnesses in the iterated hardness game.
We introduce two variables, t′H and t′A, that have to do with the e�ectiveness of honest parties and
the adversary in producing witnesses for I. t′H is a lower bound on the number of steps each honest
party takes per round running M . It holds that in any round at least n− t parties will run M for at
least t′H steps. t′A denotes the maximum time needed by a RAM machine to simulate the adversary,
the environment and the honest parties in one round of the protocol execution, without taking into
account calls made to M by the latter, and with the addition of one invocation of the NIZK extractor.
They amount to:

t′A = tA + θ · tV + tE + n(tbb + tnps + tmal + tS) and t′H = tH − tbb − θtV − tP,

where tbb (bb for backbone) is an upper bound on the number of steps needed to run the code of an
honest party in one round besides the calls to M,P,V.

We are now ready to state our main computational assumption regarding the honest parties and the
adversary. Besides assuming that the total number of steps the honest parties take per round exceed
those of the adversary, and that the total block generation rate is bounded, we have to additionally
assume that the e�ciency of the solving algorithm M used by honest parties is comparable to that of
the adversary; i.e, as explained earlier, α should be comparable to βt′H, otherwise the adversary will
be able to compute long chains of blocks fast and break the security of the protocol. The observation
we just made, corresponds to the �rst condition in our formalization, which we present next. To avoid
confusion, we cast most of our analysis based on the δ parameter. Furthermore, note that under optimal
conditions � i.e., δISP close to 0 and tP, tV, tE, tS, tnps, tmal a lot smaller than tH � our assumption allows
for an adversary that controls up to 1/3 of the total computational power available (vs. 1/2 in the RO
model).

13t′H is related to our model and we formally de�ne it in the next paragraph.
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λ : security parameter
n : number of parties
t : number of parties corrupted
tH : number of steps per round per honest party
tA : total number of adversarial steps per round
t′H : lower bound on number of steps running M per round per honest party
t′A : round simulation cost, excluding honest calls to M
θ : upper bound on the number of messages sent by the adversary per round
β : upper bound on the rate at which the adversary computes witnesses per step
α : probability that M outputs a witness after t′H steps
f : probability that at least one party computes a block in a round
γ : probability that exactly one party computes a block in a round
δ : upper bound on the total block generation rate
δSteps : honest parties' advantage on number of steps
δISP : adversary's advantage on ISP witnesses computation rate
khard : convergence parameter of ISP hardness

Table 2: The parameters in our analysis: λ, n, t, tH, tA, t
′
H, t
′
A, θ, khard are in N, α, f, γ, β, δ, δSteps, δISP

are in R.

Assumption 2. There exist δISP, δSteps and δ ∈ (0, 1), such that for su�ciently large λ ∈ N:
α ≥ (1− δISP)βt′H > negl(λ) (ISP generation gap)

(n− t)t′H(1− δSteps) ≥ 2 · t′A (steps gap)
δSteps−δISP

2 ≥ δ > β(t′A + ntH) (bounded block generation rate)

Next, we focus on structural properties of blockchains in our protocol. We follow a similar approach
to [35] based on a collisions resistant hash function. Observe that the hash structure of any blockchain
in our protocol is similar to the Merkle-Damgard transform [24], de�ned as:

MD(IV, (xi)i∈[m]) : z = IV ; for i = 1 to m do z = H(z||xi); return z,

where H is the hash function described in the CRS, and IV is set to BGen. Based on this observation,
as in [35], we can show that no e�cient adversary can �nd distinct chains with the same hash value,
as this would result to �nding a collision on the underlying hash function.

Lemma 17. Let H be a collision-resistant hash function family. The probability that any PPT RAM
A, given BGen, can �nd two distinct valid chains C1, C2 such that H(C1) = H(C2), is negligible in λ.

Proof. To show that the adversary cannot �nd distinct chains with the same hash, we are going to
take advantage of the following property of the MD transform: For any non-empty valid chain C =
B1, . . . , Bk, whereBi = 〈si,mi, xi, πi〉, it holds that for any j ∈ [k],H(head(C)) = MD(H(Bj), ((mi||xi||i))i∈{j+1,...,k}).
Let C1 = BGen, B1, . . . , B|C1|, C2 = BGen, B

′
1, . . . , B

′
|C2|, z = ((mi||xi||i))i∈[|C1|] and z

′ = ((m′i||x′i||i))i∈[|C2|].
For the sake of contradiction, assume that the lemma does not hold and there exists an adversary A
that can �nd valid chains C1, C2 such that H(C1) = H(C2), with non-negligible probability. By our
observation above, this implies that MD(H(BGen), z) = MD(H(BGen), z

′).
We will construct an adversary A′ that breaks the collision resistance of H with non-negligible

probability. We have two cases. In the �rst case, |C1| 6= |C2|. Then, since the height of the chain
is part of the hash of blocks B|C1|, B

′
|C2|, and H(B|C1|) = H(head(C1)) = H(head(C2)) = H(B|C2|),

it follows that a collision in H has been found. In the second case, where |C1| = |C2|, following the
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classical inductive argument for the MD transform, it can be shown that either C1 and C2 are equal, or
there exists ` ∈ [|C1|], such that MD(H(BGen), ((mi||xi||i))i∈[`]) = MD(H(BGen), ((m

′
i||x′i||i))i∈[`]) and

(m`, x`) 6= (m′`, x
′
`), which implies again that a collision has been found for H. Since the probability

that a collision can be found for H is negligible, the lemma follows.
The corollary follows easily by observing that insertions and copies imply there exist distinct chains

that end on the same block. This in turn implies that the hash of the two chains is the same, which
violates Lemma 17. Hence, the corollary follows with overwhelming probability in λ.

Lemma 17 implies that insertion and copy properties14 of [31], that have to do with the way blocks
are connected, do not occur with overwhelming probability in λ.

De�nition 18. An insertion occurs when, given a chain C with two consecutive blocks B and B0, a
block B∗ created after B0 is such that B,B∗, B0 form three consecutive blocks of a valid chain. A
copy occurs if the same block exists in two di�erent positions.

Corollary 19. Let H be a collision-resistant hash function family. Then, for any PPT A,Z no
insertions or copies occur in view

t,n
Πnew

PL ,A,Z
with probability 1− negl(λ).

We proceed to the main part of the analysis. First, we introduce some useful notation. For each
round j, we de�ne the Boolean random variables Xj and Yj as follows. Let Xj = 1 if and only if j was
a successful round, i.e., at least one honest party computed a witness at round j, and let Yj = 1 if and
only if j was a uniquely successful round, i.e., exactly one honest party computed a witness at round j.
With respect to a set of rounds R, let X(R) =

∑
j∈RXj and de�ne Y (R) similarly.

Moreover, with respect to some block B computed by an honest party P at some round r, let
ZPr (R) denote the maximum number of distinct blocks di�used by the adversary during R that have
B as their ancestor and lie on the same chain; note that honest parties compute at most one block per
round. If P is corrupted or did not compute any block at r, let ZPr (R) = 0. We extend the de�nition
of random variable X(R) to XP

r (R) similarly.
An important part of our analysis will be to establish lower and upper bounds for these random

variables. First, in Lemma 21 we will show that the rate at which the adversary produces witnesses
is upper bounded by β · t′A. Then, in Lemma 23 we prove that the expected rate of successful and
uniquely successful rounds is lower bounded by f and γ, respectively, both de�ned below:

f = 1− (1− α)n−t and γ = (n− t) · α · (1− βtH)n−1

Finally, for our analysis to go through, γ should be twice as big as β · t′A. As we demonstrate next,
this follows from the fact that in Assumption 2 the honest parties take at least double the steps the
adversary takes per round.

Lemma 20. Assume an ISP that complies with Assumptions 1 and 2. It holds that γ ≥ 2(1 + δ)βt′A.

Proof. For γ it holds that:

γ =(n− t) · α · (1− βtH)n−1 ≥ (n− t) · α · (1− βtHn)

≥(n− t) · (1− δISP) · βt′H · (1− δ) ≥
(1− δISP)(1− δ)

(1− δSteps)
· 2 · βt′A ≥ 2(1 + δ)βt′A

where we have �rst used Bernouli's inequality, and then the three conditions from Assumption 2. The

last inequality follows from the fact that
δSteps−δISP

2 ≥ δ.
14A third property, called �prediction,� also introduced in [31], is not needed in our proof as it is captured by the fact

that the ISP is hard even in the presence of adversarial precomputation.

20



As promised, we prove next that the adversary cannot mine blocks extending a single chain, with
rate and probability better than that of breaking the iterative hardness property.

Lemma 21. For any set of consecutive rounds R, where |R| ≥ khard/βt
′
A, for any party P , and any

round i ∈ R, the probability that ZPi (R) ≥ βt′A|R| is negl(λ).

Proof. W.l.o.g., let i be the �rst round of R = {i′|i ≤ i′ < i + s}, and let E be the event where in
view

t,n
Πnew

PL ,A,Z
party P at round i mined a block B, and the adversary mined at least βt′As blocks until

round i + s that extend B and are part of a single chain. For the sake of contradiction, assume that
the lemma does not hold, and thus Pr[E] is non-negligible. Using A, we will construct an adversary
A′ = (A′1,A′2) that breaks the iterative hardness (De�nition 11) of I with non-negligible probability.
A′ is going to run internally A and Z, while at the same time simulating the work honest parties

do using the NIZK proof simulator. Moreover, A′ is also going to use the witness malleability property,
to trick A to produce blocks in a sequence, instead of interleaved adversarial and (simulated) honest
blocks. Finally, using the NIZK extractor, A′ is going to extract the witnesses from the adversarial
blocks, and win the iterative hardness game. By a hybrid argument, we show that the view of A,Z is
indistinguishable both in the real and the simulated run, and thus the probability that E happens will
be the same in both cases.

Next, we describe the behavior of A′ in more detail. We are going to describe the two stages of A′
separately, i.e. before and after obtaining x. First, A′1(Λ) sets (Λ, xGen, H,Ω) as the common input for
A and Z, where Ω has been generated using S1 and the rest of the inputs using the default samplers,
and stores the NIZK trapdoor tk. Then, it perfectly simulates honest parties up to round i − 1 and
at the same time runs A and Z in a black-box way. Finally, it outputs the contents of the registers of
A and Z and the NIZK trapdoor tk, as variable st. It can do all this, since in the iterated hardness
experiment it has polynomial time on λ on his disposal. Note, that up until this point in the eyes of
A and Z the simulated execution is perfectly indistinguishable compared to the real one.

For the second stage, A′2(st, x), is �rst going to use st to reset A and Z to the same state that they
were. We assume that this can be done e�ciently, e.g., by having A and Z read from the registers
where st is stored whenever they perform some operation on their registers. It will also continue to
simulate honest parties, this time in a more e�cient way.
A′2 takes as input a problem statement x sampled from X, as in De�nition 11. It should somehow

introduce x to the simulated protocol execution, without the adversary noticing any di�erence that
could help him distinguish from the real execution. Let B0 = 〈s0,m0, x0, π0〉 be the head of chain C
that party P is extending at round i, and m1 the block input it produced for this round using the input
contribution function I(·). A′2 is �rst going to run M on input x for the amount of steps available to
P . If it is successful and produces some witnesses w, it will di�use the following block:

B1 = 〈H(B0),m1, S(x,w), S
H(H(B0),m1,S(x,w),|C|+1)
2 (Ω, (Λ, x0, S(x,w)), tk)〉

where the last component is a simulated NIZK proof for the statement (x0, S(x,w)). Note, that A′2
does not know any witness for this statement, and it is possible that no such witness exists. Later, we
will argue that the output of the simulator on this input should be indistinguishable from the output
on the statement (x0, S(x0,M(x0))). Also, note that due to the next-problem simulatability property,
A2 will not be able to tell the di�erence of P running M on x0 or x at this round.
A′2 will follow a more complex strategy to simulate the rest of the honest parties invocations. For

each honest party, it will run the next-problem simulator Ψ(1λ) and check if the numbers of steps
output is less than the number of steps available on this invocation. If they are not, A′2 will proceed
by just updating the state of this party for the round. Otherwise, it will simulate its behavior when
being successful, as follows: Let block B∗ = 〈s∗,m∗, x∗, π∗〉 be the head for the chain C∗ the honest
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Figure 1: A possible scenario according to Lemma 21. The blocks have been generated in order

B0, B1, B2, B3, B4, with B3 being the only adversarial block. The cases where a valid witness is either

known or can be extracted, and a NIZK proof has either been computed or simulated for the depicted

transitions, correspond to the dotted and normal arrows, respectively.

party was trying to extend with message m′′ in this round. Let Bj = 〈sj ,mj , xj , πj〉 be the adversarial
block that descends B1 and maximizes the number of adversarial blocks between itself and B1. Let
B′ = 〈s′,m′, x′, π′〉 be the parent of Bj . If no such adversarial block exists, assume that Bj = B1 and
B′ = 〈∅, x, w, ∅〉. A′2 �rst runs the NIZK extractor EH(Bj)(Ω, ((Λ, x′, xj), πj), tk) to obtain a witness
w′ for x′. Then, it runs Φ(x′, w′) and obtains a new witness w′′ for x′; let x′′ = S(x′, w′′). Finally, it
is going to make A2 believe that the block it has computed extends B∗, instead of B′, by simulating a

NIZK proof as follows: π′′ = S
H(H(B∗),m′′,x′′,|C∗|+1)
2 (Ω, (Λ, x∗, S(x′, w′′)), tk). The new block that A′2 is

going to di�use is 〈H(B∗),m′′, x′′, π′′〉. We point to Figure 1 for an example of the procedure described
above. If A′2 was not successful when it run M(x) to extend B0, it is going to simulate honest parties
work as follows: to extend block B̂ = 〈ŝ, m̂, x̂, π̂〉, it will �rst use Ψ to see if it succeeds and if yes
generate the next problem statement x̂′, and then use S as above to generate a NIZK proof π̂′ for block
〈H(B̂), m̂′, x̂′, π̂′〉.

In the following claim we argue that the view Hsim of the adversary in the simulated run we just
described is computationally indistinguishable from its view H0 in viewt,n

Πnew
PL ,A,Z

.

Claim 1. Hsim
c≈ H0.

Proof. We start by describing a sequence of hybrids:

Hybrid H0: The view of the adversary in viewt,n
Πnew

PL ,A,Z
.

Hybrid H1: Same as H0, with the only di�erence being replacing honest parties' calls to P by calls
to S2, and Ω being generated by S1.

Hybrid H1,i to Hn,i+s: In hybrid Hu,v, we replace the next statement and the NIZK in the block
produced by party u at round v if successful, with a possibly wrong statement and proof computed
as described in the proof above.

By the zero knowledge property of the NIZK proof system it easily follows that H0 is indistinguishable
from H1; H0 corresponds to the real execution, while H1 to the simulated one.

Next, we will argue that Hu−1,v is indistinguishable from Hu,v, for some u ∈ [n], v ∈ R (let

H0,i = H1), by contradiction. Assume Hu−1,v

c
6≈ Hu,v. There are two cases.

In the �rst case, u = P , v = i. The di�erence between the two executions, is that in HP,i,
instead of running M(x0) and computing S(x0,M(x0)), M(X ) is run and the next problem com-
puted is S(X ,M(X )), where by X we denote the uniform distribution over X. Assuming that
the two hybrids are distinguishable, by an averaging argument there exists a PPT distinguisher
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D, some auxiliary register z, and Λ[X,W, R̂] ∈ Iλ, x0, x1 ∈ X, t0 ≤ tH such that D distinguishes
(Λ, x0, (S(x0,M(x0)),StepsM (x0) < t0)) from (Λ, x0, (S(x1,M(x1)), StepsM (x1) < t0)); z will be equal
to the state of an execution where P has t0 steps to extend problem x0. This is a contradiction, since
by the next-problem simulatability property it follows that:15

(Λ, x0, (S(x0,M(x0)), StepsM (x0)))
c≈ (Λ, x0,Ψ(1λ))

c≈ (Λ, x0, (S(x1,M(x1)),StepsM (x1)))

where the last part follows from the fact that Ψ0(1λ) and x1 do not depend x0.
For the second case, assume that either u 6= P or v 6= i. W.l.o.g., assume that u is successful.

Similarly, by an averaging argument we can show that there exists a PPT distinguisher D, some
auxiliary register z, and Λ[X,W, R̂] ∈ Iλ, x0, x1 ∈ X,w1 ∈ W, t0 ≤ tH such that D distinguishes
(Λ, x0, (S(x0,M(x0)), StepsM (x0) < t0)) from (Λ, x0, (S(x1,Φ(x1, w1)),Ψ1(1λ) < t0)) and (x1, w1) ∈
R̂, where Ψ1(1λ) is the steps component of Ψ(1λ). We arrive to a contradiction due to the witness
malleability property:

(Λ, x0,(S(x0,M(x0)),StepsM (x0)))
c≈ (Λ, x0,Ψ(1λ))

c≈ (Λ, x0, (S(x1,M(x1)), StepsM (x1)))
c≈ (Λ, x0, (S(x1,Φ(x1, w1)),Ψ1(1λ)))

If the second and third distributions are distinguishable, then we can construct a distinguisher for
the next-problem simulatable property as before, while if the third and the fourth distributions are
distinguishable, we can construct a distinguisher for the witness malleability property.

The claim follows by the fact that Hn,i+s is the same as Hsim. a

Since A and Z cannot distinguish between the real execution and the one we described above, E
will occur with non-negligible probability in Hsim, i.e. A will compute at least βt′As blocks starting
from round i and up to round i + s that descend B1 and lie on the same chain. By the way honest
blocks are constructed, A′2 knows the witnesses of the honest blocks in this chain, and using the NIZK
extractor it can extract the witnesses of the adversarial ones. Now, note that each adversarial block
includes a witness to the problem statement de�ned by the previous block, while at the same time
each subsequent honest block de�nes a problem statement that lies in a sequence starting from x and
followed by at least as many witnesses as on the previous block. It follows that A′2 can extract a
sequence of valid witnesses of length at least βt′As + 1, where the plus one comes from the witness
computed by P at round i, and win in the iterative hardness game with non-negligible probability,
since it takes at most

tH + s · (tA + θ · tV + tE) + s · n(tbb + tnps + tmal + tS) ≤ s · t′A + tH

steps. Hence, A′2 has computed βt′As+ 1 ≥ β(s · t′A+ tH) ≥ khard blocks in s · t′A+ tH = (1− δhard)thard ·
β(s · t′A + tH) steps with non-negligible probability. This is a contradiction to our initial assumption
that I is a (thard, δhard, khard)-hard ISP.

We can do exactly the same reduction without simulating honest parties' work. Then, the total
running time of the second stage of A′ is s · (t′A + nt′H)-bounded. Hence, we can derive the following
bound on the longest chain that can be produced by both honest and malicious parties during a certain
number of rounds.

Corollary 22. For any set of consecutive rounds R, where |R| ≥ khard/β(t′A + nt′H), for any party P ,
and any round i ∈ R, the probability that ZPi (R) +XP

i (R) ≥ β(t′A + nt′H) · |R| is negl(λ).

15For brevity, we abuse notation here and use the computational indistinguishability relation to random variables,
instead of random variable ensembles. The related random variable ensembles can be easily deduced.
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Next, we prove lower bounds on the rate of successful and uniquely successful rounds. In our proof
we are going to take advantage of the next-problem simulatable property of I and the zero-knowledge
property of the robust NIZK we are using. The main idea is to �rst use these two properties and
similar arguments as in Lemma 21 to construct an �ideal� execution where: (i) honest parties' behavior
is e�ciently simulated using Ψ, and (ii) is computationally indistinguishable from the �real� execution.
Then, since the outputs of di�erent invocations of the runtime simulator Ψ(1λ) are independent, it
will be much easier to establish lower bounds for X(·) and Y (·) in the ideal execution. Finally, due to
the fact that the two executions are computationally indistinguishable, and the execution properties
we examine can be e�ciently checked, it will follow that the same bounds should also hold for the real
execution with negligible di�erence in probability.

Lemma 23. For any set of consecutive rounds R, with |R| ≥ λ/γδ2, the following two events occur
with negligible probability in λ:

the number of uniquely successful rounds in R is less or equal to (1− δ
4)γ · |R|;

the number of successful rounds in R is less or equal to (1− δ
4)f · |R|.

Proof. W.l.o.g., let R = {1, . . . , s}. Our proof strategy will be to �rst prove the results of the lemma
in an �ideal� execution where honest parties behavior is simulated using the simulators Ψ and S of the
next-problem simulatable property and the NIZK proof system, similarly to Lemma 21; Ψ is used to
determine whether a party is successful and the next problem statement, and S is used to generate
the required NIZK. Then, using similar arguments as in Lemma 21, we can show that the view of the
adversary in the real execution and its view on the ideal one are computationally indistinguishable,
and thus the results should also hold for the real execution with negligible di�erence in probability.
We denote by Eideal(1

λ) (resp. Ereal(1
λ)) the ideal (resp. real) execution.

Next, we analyze the probability of successful and uniquely successful rounds occurring in the
ideal execution. We start by deriving lower and upper bounds for Ψ(1λ). First, from the Successful
property it follows that Pr[Ψ(1λ) ≤ t′H] ≥ α− negl(λ). Otherwise, we can construct a distinguisher for
(Λ, x,Ψ(1λ)) and (Λ, x,StepsM (x)), for any Λ, x, by checking whether the input to the distinguisher is
smaller than t′H. This violates the next-problem simulatable property. Similarly, we can upper bound
Pr[Ψ(1λ) ≤ tH].

Claim 2. Pr[Ψ(1λ) ≤ tH] ≤ tHβ + negl(λ).

Proof. For the sake of contradiction, assume that the di�erence Pr[Ψ(1λ) ≤ tH]−tHβ is non-negligible.
First, we will argue that there exists an x ∈ X, such that Pr[StepsM (x) ≤ tH]− tHβ is negligible. For
the sake of contradiction, assume that for all x ∈ X, Pr[StepsM (x) ≤ tH]− tHβ is non-negligible. By
the iterated hardness property, we have that for k ≥ khard, any k/β-bounded adversary will compute k
or more witnesses with negligible probability in λ (assume we pick a k that is a multiple of β). This
implies that the expected number of blocks any such adversary computes is at most k + negl(λ). Let
an adversary that is based on M work as follows: on some initial input x, it runs M for at most
tH steps. If, it succeeds on producing a witness, it computes the next problem, and runs M again
with the new input. If not, it runs M on the initial input. By our assumption and the linearity
of expectation, the expected number of blocks our adversary will mine on k/β steps, is greater than
(βtH + ε) k

βtH
≥ k(1 + ε

βtH
), where ε is a non-negligible function. This is a contradiction. Hence, there

exists an x0 ∈ X, such that Pr[StepsM (x0)] − tHβ is negligible. This in turn implies that we can
construct a distinguisher for Ψ(1λ) and StepsM (x0), by checking whether the input of the distinguisher
is less or equal to tH. This is a contradiction to the next-problem simulatable property. Therefore, the
claim follows. a
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We proceed to analyze the probability of successful and uniquely successful rounds occurring in
Eideal(1

λ). Let random variables X̂(·), Ŷ (·) for Eideal(1
λ) be de�ned similarly to X(·), Y (·) for

Ereal(1
λ). We de�ne an additional two random variablesX ′(·), Y ′(·) that will be helpful in our analysis.

Let Li,j be equal to the second output of Ψ(1λ) (number of steps) for its invocation in the simulation of
honest party Pj at round i. Then, X

′({i}) is equal to 1, where i is some round of the execution, if there
exists some party, among the �rst n−t honest parties that are activated at round i, such that Li,j ≤ t′H.
Note that X ′({i}) = 1 implies that X̂({i}) = 1. Further, if we de�ne X ′(R) =

∑
i∈S X

′({i}), it follows
that X̂(R) ≥ X ′(R). Next, let Y ′({i}) be equal to 1, if there exists a unique party, among the �rst
n− t honest parties that are activated at round i, such that Li,j ≤ t′H, and for all other n− 1 parties

it holds that Li,j > tH. Again, it holds that Ŷ (R) ≥ Y ′(R). Note that due to the way X ′(·), Y ′(·) are
de�ned, and the fact that di�erent invocations of Ψ(1λ) are independent and hence {Li,j}(i,j)∈[s]×[n]

are i.i.d random variables, these two random variables do not depend on the behavior of the adversary
and thus are easier to analyze. We proceed to analyze their expectations.

Claim 3. For any i ∈ R, it holds that E[Y ′({i})] ≥ γ and E[X ′({i})] ≥ f .

Proof of Claim.

E[Y ′({i})] = Pr[Y ′({i}) = 1]

= Pr[
∨

j∈[n−t]

(Li,j ≤ t′H ∧
∧

m∈[n]\{j}

Li,m > tH)]

=
∑

j∈[n−t]

Pr[Li,j ≤ t′H] ·
∏

m∈[n]\{j}

Pr[Li,m > tH]

≥(n− t) · α · (1− βtH)n−1 = γ

where the second equality follows from the fact that the events are mutually exclusive, and the last
inequality follows from the bounds established earlier about Li,j .

E[X ′({i})] = Pr[X ′({i}) = 1] = Pr[
∨

j∈[n−t]

Li,j ≤ t′H]

=1− Pr[
∧

j∈[n−t]

Li,j > t′H]

=1−
∏

j∈[n−t]

Pr[Li,j > t′H]

≥1− (1− α)n−t = f

where the last inequality follows as before. a

By the linearity of expectation we have that E[Y ′(R)] ≥ γ|R| and E[X ′(R)] ≥ f |R|. Moreover, it
easy to see that {Y ′({i})}i∈R are independent, and thus we can apply the Cherno� Bound:

Pr[Y ′(R) ≤ (1− δ

4
)γ|R|] ≤ Pr[Y ′(R) ≤ (1− δ

4
)E[Y ′(R)]] ≤ e−Ω(δ2γ|R|)

Similarly, we can show that Pr[X ′(R) ≤ (1− δ
4)f |R|] ≤ e−Ω(δ2f |R|). Since X̂(R) ≥ X ′(R) and Ŷ (R) ≥

Y ′(R), the same bounds hold for X̂(R), Ŷ (R).
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Since the conditions of the above two events of the ideal execution can be checked in polynomial
time, it follows that they should also hold for the real execution with negligible di�erence in proba-
bility. Otherwise, a distinguisher would be able to use them to e�ciently distinguish between the two
executions. The lemma follows.

Following the strategy of [31], we are now ready to de�ne the set of typical executions for this
setting.

De�nition 24 (Typical execution). An execution is typical if and only if λ ≥ 9/δ and for any set
R of consecutive rounds with |R| ≥ max{4khard, λ}/γδ2, the following hold:

1. Y (R) > (1− δ
4)γ|R| and X(R) > (1− δ

4)f |R|;
2. for any party P , any round i ∈ R: ZPi (R) < γ

2(1+δ) · |R| and ZPi (R) +XP
i (R) < β(t′A + nt′H) · |R|

; and

3. no insertions and no copies occurred.

Theorem 25. An execution is typical with probability 1− negl(λ).

Proof. In order for an execution to not be typical, one of the three items of De�nition 24 must not hold
with non-negligible probability for some big enough set of rounds. Point 3 is implied by Corollary 19.
For a speci�c set of rounds R, where |R| ≥ 2λ

γδ2
, item 1 is implied by Lemma 23 with overwhelming

probability in λ.
Regarding item 2, by an application of Lemma 21 for t′A = γ

2(1+δ)β , it follows that ZPi (R) <
γ

2(1+δ) · |R| with probability negl(β ·t′A · |R|), where khard
βt′A
≤ 4khard

γδ2
≤ |R|. Note, that due to Assumptions 1

and 2 and Lemma 20, necessarily t′A ≤ γ
2(1+δ)β . Similarly, Corollary 22 implies that ZPi (R)+XP

i (R) <

β(t′A + nt′H)|R| with overwhelming probability in λ, since khard
β(t′A+nt′H)

≤ 4khard
γ ≤ |R|. Hence, item 2 also

follows with overwhelming probability in λ.
Finally, we can bound the probability that an execution is not typical by applying the union bound

on the negation of these events over all sets of consecutive rounds of su�ciently large size, where the
probability of each event occurring is negligible in λ.

Having established that typical rounds happen with overwhelming probability, the rest of the proof
follows closely that of [31]. The only di�erence is that to prove the corresponding common-pre�x
lemma, although we can match blocks mined in uniquely successful rounds to adversarial blocks in one
of the two chains that constitute the fork, the typicality of the execution only provides a bound on the
maximum number of blocks in a single chain. Hence, only half of the blocks matched must outnumber
the uniquely successful rounds in this interval, which is also the reason why our proof only works with
an adversary controlling up to 1/3 of the parties. Next, we describe the changes one has to do after
proving the typical execution theorem with respect to the analysis of [31], in order to prove the security
of the protocol in our model. We only give brief proof sketches of lemmas and theorems from [31] that
are exactly the same for our own setting.

Security properties of the blockchain. First, we describe a number of desired basic properties for
the blockchain introduced in [31, 42, 49]. At a high level, the �rst property, called common pre�x, has
to do with the existence, as well as persistence in time, of a common pre�x of blocks among the chains
of honest players. Here we will consider a stronger variant of the property, presented in [49], which
allows for the black-box proof of application-level properties (such as the persistence of transactions
entered in a public transaction ledger built on top of the Bitcoin backbone ). We will use C � C′ to
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denote that some chain C is a pre�x of some other chain C′, and Cdk to denote the chain resulting from
removing the last k blocks of C. We will call a block honest, if it was di�used for the �rst time in the
execution by some honest party, and adversarial otherwise.

De�nition 26 ((Strong) Common Pre�x). The strong common pre�x property Qcp with parameter
k ∈ N states that the chains C1, C2 reported by two, not necessarily distinct honest parties P1, P2, at

rounds r1, r2 in viewt,n
Π,A,Z , with r1 ≤ r2, satisfy Cdk1 � C2.

The next property relates to the proportion of honest blocks in any portion of some honest player's
chain.

De�nition 27 (Chain Quality). The chain quality property Qcq with parameters µ ∈ R and k ∈ N
states that for any honest party P with chain C in view

t,n
Π,A,Z , it holds that for any k consecutive

blocks of C the ratio of adversarial blocks is at most µ.

Further, in the derivations in [31] an important lemma was established relating to the rate at
which the chains of honest players were increasing as the Bitcoin backbone protocol was run. This was
explicitly considered in [42] as a property under the name chain growth.

De�nition 28 (Chain Growth). The chain growth property Qcg with parameters τ ∈ R (the �chain
speed� coe�cient) and s, r0 ∈ N states that for any round r > r0, where honest party P has chain C1

at round r and chain C2 at round r + s in viewt,n
Π,A,Z , it holds that |C2| − |C1| ≥ τ · s.

Security Analysis. Next, we proceed to the security analysis. We �rst prove that the rate at which
the adversary generates blocks in any big enough round interval, is at most half the rate of uniquely
successful rounds. This relation is going to be at the center of the security proof we are going to
develop next.

Lemma 29. Assume a typical execution. For any set of consecutive rounds R = {i, . . . , j}, where
|R| ≥ max{4khard,λ}

γδ2
, and for any party P and round r ∈ R, it holds that (1− δ

4)Y (R\{i})
2 > ZPr (R).

Proof. It holds that:

(1− δ

4
)
Y (R \ {i})

2
> (1− δ

4
)2γ

2
(|R| − 1) ≥ γ|R|

2(1 + δ)
> ZPr (R)

where, the �rst and last inequalities follow from the assumption that the execution is typical, while
the middle one follows from the fact that |R| ≥ 9/δ ≥ (1− 1

(1−δ/4)2(1+δ)
)−1.

Lemma 30. (Chain-Growth Lemma). Suppose that at round r an honest party has a chain of length `.
Then, by round s ≥ r, every honest party has adopted a chain of length at least `+X({r, . . . , s− 1}).

Proof. The main idea of the proof of this lemma is that, after each successful round at least one honest
party will have received a chain that is at least one block longer than the chain it had, and all parties
pick only chains that are longer than the ones they had.

Theorem 31 (Chain Growth). In a typical execution the chain-growth property holds with parameters

τ = (1− δ
4)f and s ≥ max{4khard,λ}

γδ2
.

Proof. Let R be any set of at least s consecutive rounds. Then, since the execution is typical: X(R) ≥
(1− δ

4)f · |R| ≥ τ · |R|. By Lemma 30, each honest player's chain will have grown by that amount of
blocks at the end of this round interval. Hence, the chain growth property follows.
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Lemma 32. Assume a typical execution. Let B be some honest or the genesis block. Any sequence
of k ≥ max{4khard,λ}

γδ consecutive blocks in some chain C, where the �rst block in the sequence directly
descends B, have been computed in at least k/δ rounds, starting from the round that B was computed.

Proof. W.l.o.g, let B be an honest block computed by party P at round i. First, note that due
to Assumption 2, it holds that β(t′A + nt′H) < δ. For the sake of contradiction, assume that for

some k ≥ max{4khard,λ}
γδ , there is a set of rounds R′, such that |R′| < k/δ and at least k blocks that

descend block B have been computed during R′. This implies that there is a set of rounds R, where
|R| ≥ max{4khard,λ}

γδ2
, such that XP

i (R) + ZPi (R) ≥ k ≥ |R|δ > |R|β(t′A + nt′H). This contradicts the
typicality of the execution, and the lemma follows.

Lemma 33 (Common Pre�x Lemma). Assume a typical execution and consider two chains C1 and C2

such that len(C2) ≥ len(C1). If C1 is adopted by an honest party at round r, and C2 is either adopted

by an honest party or di�used at round r, then Cdk1 ≤ C2 and Cdk2 ≤ C1, for k ≥ max{4khard,λ}
γδ .

Proof. The proof in [31] shows that for every block mined at a uniquely successful round, there exists
an adversarial block in one of the two chains. This in turn implies that one of the two chain has a
number of adversarial blocks that is at least as big as half the number of uniquely successful rounds.
Using the previous lemma the proof proceeds as in [31], reaching a contradiction with Lemma 29. Note,
that all adversarial blocks in the matching between uniquely successful rounds and adversarial blocks
are descendants of the last honest block in the common pre�x of C1 and C2.

Theorem 34 (Common Pre�x). In a typical execution the common-pre�x property holds with param-

eter k ≥ max{4khard,λ}
γδ .

Proof. The main idea of the proof is that if there exists a deep enough fork between two chains, then
the previously proved lemma cannot hold. Hence, the theorem follows.

Theorem 35 (Chain Quality). In a typical execution the chain-quality property holds with parameter

µ < 1− δ/4 and ` ≥ max{4khard,λ}
γδ .

Proof. The main idea of the proof is the following: a large enough number of consecutive blocks will
have been mined in a set rounds that satis�es the properties of De�nition 24. Hence, the number of
blocks that belong to the adversary will be upper bounded, and all other blocks will have been mined
by honest parties.

Finally, the Consistency and Liveness properties follow from the three basic properties, albeit with
di�erent parameters than in [31].

Lemma 36 (Consistency). It holds that Πnew
PL with k = max{4khard,λ}

γδ satis�es Persistence with over-
whelming probability in λ.

Proof. The main idea is that if consistency is violated, then the common-pre�x property will also be
violated. Hence, if the execution is typical the lemma follows.

Lemma 37 (Liveness). It holds that Πnew
PL with k = max{4khard,λ}

γδ and u = 2k
(1− δ

4
)f

rounds satis�es

Liveness with overwhelming probability in λ.

Proof. The main idea here is that after u rounds at least 2k successful rounds will have occurred in a
typical execution. Thus, by the chain growth lemma the chain of each honest party will have grown
by 2k blocks, and by the chain quality property at least one of these blocks that is deep enough in the
chain is honest.
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Next, we state our theorem. Note that both Consistency and Liveness depend on the convergence
parameter khard of I.
Theorem 38. Assuming the existence of a collision-resistant hash function family, a one-way trapdoor
permutation and a dense cryptosystem (for the NIZK), and a secure ISP problem I that comply with
Assumptions 1 and 2, protocol Πnew

PL implements a robust public transaction ledger with parameters
k = max{4khard, λ}/γδ and u = 2k/(1− δ

4)f , except with negligible probability in λ.

4.6 Realizing ISPs from Non-Idealized Hash Functions

Next, we present a secure ISP problem assuming the existence of a hash function that satis�es both
the computational extraction and iterated hardness properties presented in Section 3.

Construction 2. Let H be a hash function family as in De�nitions 8 and 9. Let T ∈ {0, 1}λ be a
hardness parameter. An instance of a secure ISP is as follows:

Iλ is the uniform distribution over K(λ), i.e., Λ = {k};
X = {0, 1}λ,W = {0, 1}2(d−1)λ;

R = {(x,w)|Hk(x||w1) < T for w = w1||w2};
M(x, 1) iteratively samples w1 from U(d−1)λ, and tests whether Hk(x||w1) < T , until it �nds a
solution. It then samples a uniformly random w2 from U(d−1)λ, and outputs w1||w2.

S(x,w) = Hk(Hk(x||w1)||w2), for w = w1||w2.

Construction 2 is similar to Bitcoin's ISP construction (see Section 4.1, Construction 1), with the
following di�erences:

1. In our construction Hk(x||w1) is required to be smaller than the hardness parameter T , while in
Bitcoin Hk(Hk(x||w1)||w2) is expected to be small, where w1 is the hash of some message. This
change allows a party who already knows a witness (w1, w2) for some statement, to produce a new
one by changing w2 arbitrarily.

2. Each timeM tests a new possible witness, w1 is sampled randomly, instead of just being increased
by one, as in Bitcoin. This will help us later on to argue that each test succeeds with probability
proportional to T .

Obviously, if used in �native� Bitcoin this construction is totally insecure, as by the time an honest
party publishes a block, anyone can compute another valid block with minimal e�ort. However, it is
good enough for our new protocol, where the witnesses are not exposed, and thus only a party who
knows a witness can generate new witnesses for free. Next, we argue the security of the construction.

Assuming H is a computational randomness extractor is su�cient for the security properties that
make up a secure ISP, besides hardness, to be satis�ed. First, the fact thatHk(x||w1) is computationally
indistinguishable from uniform, for any x ∈ X, implies that the runtime and the output of M are
computationally indistinguishable from a process that sampled repeatedly a uniform value from {0, 1}λ
until it �nds one that is smaller than T . This in turn implies that the runtime distribution of M is
indistinguishable from the geometric distribution with parameter T/2λ, and thus the successful ISP
property is satis�ed. Further, since w2 is also chosen uniformly at random, we can show that a
simulator that samples a random value from Uλ and the geometric distribution, satis�es the next-
problem simulatability property. Finally, by resampling a new w2 uniformly at random, an admissible
witness is produced, and the witness malleability property follows. Thus, we are able to state the
following lemma.

Lemma 39. If H is a CRE hash family (De�nition 8), then Construction 2 is O(λ)-next-problem
simulatable, O(λ)-witness malleable, and (t, CT/2λ(O(t)))-successful for any t ∈ poly(λ), where CT/2λ
is the cumulative geometric distribution with parameter T/2λ.
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Proof. We start by showing that even if the adversary chooses the problem statement x maliciously,
hashing it once together with a uniformly random string, will result in a string that is computationally
indistinguishable from a uniformly sampled string. Fix some λ ∈ N, k ∈ K(λ) and x ∈ X. Let random

variable Z be equal to Hk(x||Ucλ||U(d−c−1)λ). By our assumption that E(x, i)
def
= Hk(x||i) is a (cλ)-

computational extractor, and since x||Ucλ has cλ bits of min-entropy, it follows that16 Z
c≈ Uλ. More-

over, x is �xed, hence (x, Z)
c≈ (x,Uλ). Assume instead that x is sampled from some e�ciently sam-

plable distribution X̂ , as it will be the case in an actual execution, and let Ẑ = Hk(X̂ ||Ucλ||U(d−c−1)λ).

For any PPT distinguisher D, su�ciently large λ ∈ N, all z ∈ {0, 1}poly(λ) it holds that:

|Pr[D(1λ, z, X̂ , Ẑ) = 1]− Pr[D(1λ, z, X̂ ,Uλ) = 1]|
= |

∑
x′∈X

Pr[x′ = X̂ ]
(

Pr[D(1λ, z, x′, Hk(x
′||U(d−1)λ)) = 1]− Pr[D(1λ, z, x′,Uλ) = 1]

)
|

≤
∑
x′∈X

Pr[x′ = X̂ ] · |Pr[D(1λ, z, x′, Hk(x
′||U(d−1)λ)) = 1]− Pr[D(1λ, z, x′,Uλ) = 1]|

≤
∑
x′∈X

Pr[x′ = X̂ ] · negl(λ) ≤ negl(λ)

where the last inequality follows from the fact that (x, Z)
c≈ (x,Uλ) for any x ∈ X. Hence, (X̂ , Ẑ)

c≈
(X̂ ,Uλ).

We next argue about the distribution of the running time ofM . AlgorithmM on input x iteratively
samples a uniformly random w1||w′1 from Ucλ ×U(d−c−1)λ, and tests whether Hk(x||w1||w′1) < T , until
it �nds a solution. For a moment, assume that M instead tested whether a value sampled from Uλ is
smaller than T . Then, its running time would be distributed according to the geometric distribution Gp
with parameter p = T/2λ. Since Z

c≈ Uλ, we can use a hybrid argument to show that the distribution
of StepsM (x) is computationally indistinguishable from c1 · GT/2λ + c2, where c1 is a constant related
to the cost of sampling a random value for each test and evaluating H, and c2 to the cost of sampling
w2. The hybrid argument proceeds by replacing a computation of Hk(x||U(d−1)λ) < T at some step
of M , with Uλ < T . If between any two hybrids the distributions of the runtime of the respective
modi�ed M is not computationally indistinguishable, then we can easily construct a distinguisher
for Hk(x||U(d−1)λ) and Uλ, which contradicts our previous analysis. Hence, StepsM (x) should be
computationally indistinguishable from c1 · GT/2λ + c2. It follows that M must be (t, CT/2λ(O(t)))-
successful, for any t ∈ poly(λ).

Next, note that M , after �nding a small hash, hashes again the result with a fresh randomly
sampled string w2. Using the same hybrid argument as in the previous paragraph we can show that

(x,M(x), StepsM (x))
c≈ (x,Hk(W||Uλ), c1 · GT/2λ + c2), where W is the uniform distribution over the

hash images that are smaller than T . By our previous analysis it follows that (x,Hk(W||Uλ), c1 ·
GT/2λ + c2)

c≈ (x,Uλ, c1 · GT/2λ + c2). By the transitivity of computational indistinguishability it follows
that the simulator Ψ that outputs a randomly sampled pair from Uλ and c1 · GT/2λ + c2 satis�es the
next-problem simulatability property. Note, that using the inverse transform technique, we can sample
from the geometric distribution (truncated to 2λ) in O(λ) steps.

Finally, the witness malleability property holds for Φ(x, (w1, w2)) that outputs the witness (w1, w
′
2),

where w′2 is sampled uniformly at random. Again, S(x,Φ(x, (w1, w2))) will be indistinguishable from
Uλ. The lemma follows.

16We abuse the notation and use the
c
≈ relation with random variables, instead of random variable ensembles. The

relevant ensembles can be easily deduced.
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Regarding the hard-ISP property, we are going to take advantage of the iterative hardness of
Bitcoin's ISP construction and the fact that Construction 2 is closely related to it. The main idea
is that if there exists an attacker against our construction, then we can use it to break the itera-
tive hardness property (De�nition 9). In more detail, given as input a statement x, the iterated
hardness attacker runs the attacker of our construction with input H(x||w), where w is sampled at
random. It is easy to see that if ((w1, w

′
1), . . . , (wm, w

′
m)) are the witnesses it is going to produce,

then ((w,w1), (w′1, w2), . . . , (w′m−1, wm)) are valid witnesses for Construction 1, and also against the
iterative hardness property. The following lemma highlights this relation.

Lemma 40. Assume Construction 2 is based on a hash family H that is CRE and t-iteratively hard.
Then, for some polynomial k0(·), any σ ∈ (0, 1) and t′ = 2λ

(1−σ)T , Construction 2 is (t′, 1−t′/t, k0)-hard.

Proof. Due to the fact that H is CRE, we can show that our construction satis�es the �rst item of
De�nition 11 by a simple application of the Cherno� bound as in Lemma 23. Each witness test succeeds
with probability T/2λ, and thus for any σ ∈ (0, 1) it holds that for any k ≥ λ, M(x, k) will �nish in
less than kt′ steps with probability negligible in λ.

Regarding the second item, as mentioned Construction 2 is a mirror image of Construction 1, in
the sense that the �rst hash, instead of the second, is required to be smaller than T , and the other one
can have an arbitrary value. Hence, we will reduce the hardness of our construction to the iterative
hardness property. Let k0 be equal to the maximum between the polynomial described in De�nition 9
and λ. For the sake of contradiction, assume that Construction 2 is not (t′, 1 − t′/t, k0)-hard. It has
to be the case that there exists an attacker A = (A1,A2) that for in�nitely many λ and some m ≥ k0

breaks the hardness of Construction 2. Using A, we are going to construct an attacker A′ that breaks
the iterative hardness property.

Let A′ work as follows: First, A′1 runs A1 and forwards variable st to A′2. Then, A′2 on in-
put st and a randomly sampled problem statement x, runs A2 on input H(x||w), where w is sam-
pled at random. If A2 succeeds, it outputs witnesses ((w1, w

′
1), . . . , (wm, w

′
m)). Then, A′2 outputs

((w,w1), . . . , (w′m−1, wm)). Note, that in that case (w,w1) is a witness for x, for the game A′ is play-
ing, since H(H(x||w)||w1) < T . Moreover, it should hold that H(H(H(H(x||w)||w1)||w′1)||w2) < T .
In turn, this implies that ((w,w1), (w′1, w2)) is a valid sequence of witnesses for A′. Similarly, it follows
that ((w,w1), . . . , (w′m−1, wm)) is a valid sequence of m witnesses for the game A′ is playing. Hence,
whenever A wins, A′ also wins.

We proceed to analyze the winning probability of A′. We have already argued that whenever
A wins, A′ also wins. Moreover, we have assumed that A succeeds in producing m ≥ k witnesses
with non-negligible probability. Due to the randomness extraction property of H, the distribution of
H(x,w) will be computationally indistinguishable from the uniform distribution over {0, 1}λ. Hence,
the probability that A wins is negligibly close to the probability that it wins on a uniformly random
input, and thus A′ wins also with non-negligible probability. This is a contradiction, and the lemma
follows.

Due to Theorem 38 and the previous two lemmas, we can implement a ledger assuming the existence
of a robust NIZK, a hash family that is collision-resistant, another hash function family that is both
CRE and iteratively hard for appropriate parameters, and that the adversary controls less than a third
of the total computational power. The following theorem holds.17

17For simplicity, we assume that the cost in computational steps of evaluating H, and the hidden constant in the
successful property of Lemma 39 are both 1. The theorem can be easily generalized for arbitrary costs.
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Theorem 41. Assuming the existence of collision-resistant hash functions, a hash function fam-
ily that is CRE and thard-iteratively hard, a one-way trapdoor permutation and a dense cryptosys-
tem (for the NIZK), and that for some δSteps ∈ (0, 1), su�ciently large λ ∈ N, and T equal to

b2λ ·min{ ln((1−δ2Steps/4)−1)

t′H
,

δSteps/4
(t′A+nt′H)(1+δSteps/2)

}c it holds that :
thard ≥ (1 + δSteps/2)−1 · 2λ

T ; and

2 · t′A ≤ (1− δSteps) · (n− t)t′H
protocol Πnew

PL based on Construction 2 implements a robust public transaction ledger, except with neg-
ligible probability in λ.

Proof. We have already proved in Lemmas 39 and 40 that Construction 2 satis�es all properties de-
scribed in Assumption 1. It remains to argue about Assumption 2.

Set δ = δSteps/4 and δISP = δSteps/2. It follows that
δSteps−δISP

2 ≥ δ. Let ph = T/2λ. It holds that:

α ≥ (1− δISP)βt′H ⇔ 1− (1− ph)t
′
H ≥ (1− δISP)t−1

hardt
′
H

⇐ (1− ph)t
′
H + (1− δISP)(1 + δSteps/2) · pht′H ≤ 1

⇐ e−pht
′
H + (1− δ2

Steps/4) · pht′H ≤ 1

Now, let f(u) = e−u + (1− δ2
Steps/4)u. It holds that f(0) = 1, df

du = −e−u + (1− δ2
Steps/4), df

du(ln((1−
δ2

Steps/4)−1) = 0, and df
du is strictly increasing as u grows. Since (1− δ2

Steps/4) ∈ (0, 1) , it follows that

ln((1−δ2
Steps/4)−1) > 0, which further implies that f is decreasing in (0, ln((1−δ2

Steps/4)−1)], and thus for

any positive u < ln((1− δ2
Steps/4)−1) it follows that f(u) < 1. Hence, for T/2λ = ph ≤

ln((1−δ2Steps/4)−1)

t′H
,

it follows that f(T/2λ · t′H) < 1, which implies that α(h) ≥ (1− δISP)βt′H, for any t
′
H.

Hence, if we set T less than 2λ ·min{ ln((1−δ2Steps/4)−1)

t′H
,

δSteps/4
(t′A+nt′H)(1+δSteps/2)

}, the preconditions of The-
orem 38 for Construction 2 are satis�ed. Note, that we assume that λ is large enough so that (i)
λ > 9/δ, (ii) there exists a T that satis�es the inequality above and T/2λ is non-negligible.

5 Iterated Hardness is Necessary

In this section, we demonstrate that an attack against iterated hardness implies an attack against the
Bitcoin protocol, assuming the underlying hash function is collision-resistant and CRE (De�nition 8).
We phrase our attack against an abstraction of the Bitcoin protocol which appeared in [31], from which
it is straightforward to extract a version of the protocol for our model. The main idea of the attack,
is that if the hash function is CRE and not iteratively hard for appropriate parameters, then while
honest parties' chains will grow at a �xed rate due to the CRE property, Bitcoin protocol's adversary
can use the iterated hardness adversary to quickly produce a longer chain and break consistency.

Theorem 42. Let n, t, tH, tA such that tA = c · (n − t)tH, for some c ∈ (0, 1). If H is collision-
resistant and CRE, and the Bitcoin protocol from [31] satis�es Consistency with parameter k, then H
is c

2 ·
(n−t)tH

(1−T/2λ)(n−t)tH
-iteratively hard, for any polynomial k.

Proof. Let t′ = c
2 ·

(n−t)tH
(1−T/2λ)(n−t)tH

. For the sake of contradiction, assume that the theorem does not

hold. Then, for any polynomially large k0, there exists an adversary A = (A1,A2) and some k′ ≥ k0,
such that A2 can compute k′ witnesses in less than k′t′ steps (see De�nition 9) with non-negligible
probability. For our case take k0 = k + 2. We are going to construct an adversary A′ that breaks the
Consistency of the Bitcoin protocol.
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We start by describing our attacker. A′ gets as input the CRS, and runs A1 with input the hash
key. When A1 �nishes with output st, A′ waits for a new honest block to be mined, say at height l of
some chain. When this happens, it invokes A2 with input the hash of this block. Upon A2 �nishing,
it waits until an honest party computes a block at height l + k′, sends the chain created by A2 to a
di�erent honest party, and halts.

We will argue that A′ breaks Consistency. We make two simplifying assumptions in our analysis.
First, we assume that in the PoW construction of the Bitcoin protocol (Construction 1), honest parties
sample every time a uniformly random counter, instead of increasing it. Otherwise we have to assume
that H is a PRF instead of a CRE for the analysis to go through. Secondly, we assume that the
witnesses output by A2 constitute valid blocks. Otherwise, we have to rephrase the iterative hardness
assumption to capture Bitcoin transaction semantics.

We proceed with the analysis. Similarly to Lemma 23, honest parties mine chains of length at most
(1 + δ)f · s in s rounds, for any large enough s, and δ ∈ (0, 1). Moreover, due to the CRE property,
the hash of the block provided as input to A2 is going to be computationally indistinguishable from a
uniformly sampled element from [0, T ]; the hash of the blocks of the protocol has to be less or equal to
T . Hence, A2 is going to compute k′ witnesses in less than k′t′ steps (less than k′t′/tA rounds), with
non-negligible probability. Putting everything together, at the round A2 �nishes, honest parties will
have computed at most:

(1 + δ)f · k′t′/tA ≤
(1 + δ)(1− T/2λ)(n−t)tH

tA
· c · (n− t)tH

2(1− T/2λ)(n−t)tH
k′ < k′

blocks, for δ ∈ (0, 1) and with overwhelming probability. Hence, an honest party will later compute
a block at height l + k′, at which point A′ will send its chain to another honest party, and break
Consistency, since their blocks at position l + 1 will di�er with overwhelming probability.

As expected, as the computational power of the adversary decreases, the iteratively hard hash
function needs to be less secure.
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