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Abstract

We put forth a new class of search problems, iterated search problems (ISP), and study their
relation to the design of secure blockchain protocols. We prove that (i) any blockchain protocol
implies a hard ISP problem, i.e., ISP hardness is necessary for secure blockchain protocols�
but not su�cient by itself, and (ii) a suitably enhanced class of ISPs is su�cient to imply, via
construction, a secure blockchain protocol in the common reference string (CRS) model. We
then put forth a speci�c proposal for an enhanced ISP based on an underlying cryptographic
hash function. The resulting blockchain protocol's security reduces to the ISP hardness of the
hash-based scheme and to a randomness extraction property of the hash function. As a corollary,
we obtain a blockchain protocol secure in the standard model under falsi�able assumptions; in
contrast, all previous blockchain protocols were shown secure in the random oracle model.

*Research partly supported by Horizon 2020 project PANORAMIX, No. 653497.
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1 Introduction

Blockchain protocols, introduced by Nakamoto [33], are seen as a prominent application of the
�proof of work� (PoW) concept to the area of consensus protocol design. PoWs were introduced in
the work of Dwork and Naor [19] initially as a spam protection mechanism, and subsequently found
applications in other domains such as Sybil attack resilience [18] and denial of service protection [29,
4], prior to their application to the domain of distributed consensus hinted at early on by Aspnes
et al. [3].

A PoW scheme is typi�ed by a �proving� algorithm, that produces a solution given an input
instance, as well as a �veri�cation� algorithm that veri�es the correctness of the witness with respect
to the input. The fundamental property of a PoW scheme is that the proving algorithm allows for no
signi�cant shortcuts, i.e., it is hard to signi�cantly make it more expedient, and hence any veri�ed
solution implies an investment of computational e�ort on behalf of the prover. Nevertheless, this
�moderate hardness� property alone has been found to be insu�cient for the utilization of PoW in the
context of an application and other properties have been put forth to complement it. These include:
(i) amortization resistance, which guarantees that the adversary cannot speed up the computation
when solving multiple PoW instances together, and (ii) fast veri�cation, which suggests a signi�cant
gap between the complexities of the proving and veri�cation algorithms.

Despite the evolution of our understanding of the PoW primitive, as exempli�ed in recent works
(e.g., [1, 6, 11]), there has been no de�nitive analysis of the primitive in the context of blockchain
protocol security. Intuitively, PoWs are useful in the consensus setting because they make message
passing (moderately) hard and hence generate stochastic opportunities for the parties running the
protocol to unify their view of the current state of the system. This fundamentally relies on an
assumption about the aggregate computational power of the honest parties, but not on their actual
number in relation to the parties that may deviate from the protocol (�Byzantine�)�a hallmark of
the peer-to-peer setting where Bitcoin is designed for. Despite the fact that the Bitcoin blockchain
has been analyzed formally [22, 37, 23, 5], the required PoW properties have not been identi�ed
and the analysis has been carried out in the random oracle (RO) model [8]. The same is true for a
wide variety of other protocols in the space, including [2, 30, 24].

We stress that despite the fact that the RO model has been widely used in the security analysis
of practical protocols and primitives, it has also received signi�cant criticism. For instance, Canetti
et al. [15] prove that there exist implementations of signatures and encryption schemes that are
secure in the RO model but insecure for any implementation of the RO in the standard model;
Nielsen [35] proves that e�cient non-committing encryption has no instantiation in the standard
model but a straightforward implementation in the RO model, while Goldwasser and Kalai [28]
show that the Fiat-Shamir heuristic [21] does not necessarily imply a secure digital signature which
is in contrast to the result by Pointcheval and Stern [38] in the RO model. It follows that it is
critical to discover security arguments for blockchain protocols that do not rely on the RO model.
Note that we are looking for arguments as opposed to proofs since it is easy to observe that some
computational assumption would still be needed for deriving the security of a blockchain protocol
(recall that blockchain security cannot be inferred information theoretically as it fundamentally
requires at minimum the collision resistance of the underlying hash function).

Naor [34] introduced a framework for classifying cryptographic hardness assumptions and iden-
ti�ed the concept of a falsi�able assumption which was further studied by Gentry and Wichs [27].
In the latter formulation, a falsi�able assumption is one that can be expressed as a game between an
adversary and a challenger, and where the challenger can e�ciently determine (and output) when
the adversary wins the game. As a main result they show that succinct non-interactive arguments
(SNARGs), which exist in the RO model, are impossible to construct in the standard model under
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any falsi�able assumption. The above highlights one of the main open questions that motivate our
work:

Is it possible to prove the security of blockchain protocols in the standard model under

falsi�able assumptions?

Our results. We answer the above question in the positive, as follows. First, we put forth a new
class of search problems, which we call iterated search problems (ISP). An instance description of
an iterated search problem is de�ned by a problem statement set X, a witness set W and a relation
R that determines when a witness satis�es the problem statement. Importantly, an ISP problem
is equipped with a successor algorithm that given a statement x and a witness w, can produce a
successor problem statement x′, and a solving algorithm that given an initial problem statement
x can �nd a sequence of witnesses, solving instances in an iterative fashion as produced by the
successor algorithm whenever a new witness is found. At the same time, if the solving algorithm
takes t steps to solve k instances iteratively, no alternative algorithm can substantially speed this
solving process up and produce k iterative solutions with non-negligible probability. This is the
iterated hardness property of the ISP. We observe that it is easy to describe candidates for an ISP
that are plausibly iteratively hard by employing a cryptographic hash function. Moreover, the
iterated hardness property of the hash-based ISP is a falsi�able assumption.

Next, we prove that iterated hardness is necessary in the blockchain setting. We achieve this
by considering the natural ISP problem implied by any implementation of a blockchain protocol.
The ISP problem is de�ned by the blockchain structure itself: The problem instance is the hash of
the previous block, the witness is the block content together with the nonce that determines that
the PoW has been solved, and the successor function is the hash operation that creates the hash-
chain from which the chain structure of the blockchain is inherited. We prove that any successful
attacker against the iterated hardness of this ISP, results in a successful attack against the blockchain
protocol. At the same time, we prove that iterated hardness of this ISP is by itself insu�cient to
prove the security of the blockchain protocol: Indeed, there could be ISP problems that are hard
but not parallelizable in a non-interactive fashion, something that we observe can lead to an attack
against the underlying blockchain protocol.

Motivated by the above, we list a set of additional properties1 that epitomize what we call an
enhanced ISP from which we can provably derive the security of a blockchain protocol. Then we
show how these additional properties can be instantiated via a suitable randomness extractor. The
enhanced properties are as follows. First, an ISP is (t, α)-successful when the number of steps of
the solving algorithm is below t with probability at least α. The ISP has an almost independent

run-time when the number of steps of the solving algorithm is almost independent across di�erent
problem statements. The ISP is next-problem simulatable if the output of the successor algorithm
applied on a witness w corresponding to an instance x can be simulated independently of x and the
same is the case for the running time of the solver. Finally, an ISP is witness-malleable if, given a
witness w for a problem instance x, it is possible to sample an alternative witness whose resulting
distribution via the successor algorithm is computationally indistinguishable to the output of the
successor over a random witness produced by the solving algorithm.

Armed with the above de�nitions we show: (i) A novel blockchain protocol whose security
can be reduced to the hardness of the underlying enhanced ISP, and (ii) that in the case of our
hash-based ISP, it is possible to derive all the extra properties of the enhanced ISP from a simple

1Some of the security properties, as well as the computational model de�ned in Section 3.1, were �rst introduced
in [25]. The current characterization of the underlying primitive in [25] is as a signature of work; refer to previous
versions for the PoW formulation.
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property relating to the randomness extraction capability of the underlying cryptographic hash
function. We note that the main technical di�culty of our blockchain security proof is to construct
a reduction that breaks the underlying iterated hardness assumption given a common-pre�x attack
to the blockchain protocol. This is achieved by taking advantage of zero-knowledge proof simulation
and the ability of the reduction to extract a sequence of iterated witnesses despite the fact that the
attacker may not produce consecutive blocks.

We perform our analysis in the static setting with synchronous rounds as in [22], and prove
that our protocol can thwart adversaries and environments that roughly take less than half the
computational steps the honest parties collectively are allowed per round. It is straightforward to
extend our results to the ∆-synchronous setting of [37]. Further, we leave as an open question the
extension of our results to the dynamic setting of [23] as well as matching the 50% threshold on
adversarial computational power of the Bitcoin blockchain which can be shown in the RO model.

We note that a related but distinct notion of hardness, sequential, i.e., non-parallelizable iterated
hardness, has been considered as early as [39], mainly in the domains of timed-release cryptogra-
phy [13] and protocol fairness [26], and recently formalized in [12]. In addition, a number of candidate
hard problems have been proposed, including squaring a group element of a composite moduli [39],
hashing, and computing the modular square root of an element on a prime order group [32]. How-
ever, as we prove, this type of hardness is incompatible with PoW-based blockchains, and this is
the reason we put forth the notion of hard ISPs. The distinction is that ISPs allow paralelization,
which is crucial for proving the security of a (Bitcoin-like) blockchain protocol.

Organization of the paper. The basic computational model, de�nitions and cryptographic build-
ing blocks used by our constructions are presented in Section 2. The formulation of iterated search
problems, as well as proofs of necessity and by-itself insu�ciency of the iterated hardness property
for proving the security of blockchain protocols are presented in Section 3. The conditions that
make an enhanced ISP and the provably secure blockchain protocol based on it, together with a
candidate enhanced ISP construction, are presented in Section 4.

2 Preliminaries

In this section we introduce basic notation and de�nitions that we use in the rest of the paper. For
k ∈ N+, [k] denotes the set {1, . . . , k}. For strings x, z, x||z is the concatenation of x and z, and
|x| denotes the length of x. We denote sequences by (ai)i∈I , where I is the index set. For a set X,

x
$← X denotes sampling a uniform element from X. For a distribution U over a set X, x ← U

denotes sampling an element of X according to U . We denote the statistical distance between two
random variables X,Z with range U by ∆[X,Y ], i.e., ∆[X,Z] = 1

2

∑
v∈U |Pr[X = v]− Pr[Z = v]|.

For ε > 0, we say that X,Y are ε-close when ∆(X,Y ) ≤ ε. ≈ and
c≈ denote statistical and

computational indistinguishability, respectively. We let λ denote the security parameter.

Protocol execution and security models. In this paper we will follow the concrete approach [7,
9, 26, 10] to security evaluation rather than the asymptotic one. We will use functions t, ε, whose
range is N,R, respectively, and have possibly many di�erent arguments, to denote concrete bounds
on the running time (number of steps) and probability of adversarial success of an algorithm in some
given computational model, respectively. When we speak about running time this will include the
execution time plus the length of the code (cf. [10]; note also that we will be considering uniform
machines). We will always assume that t is a polynomial in the security parameter λ, although we
will sometimes omit this dependency for brevity.
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Instead of using interactive Turing machines (ITMs) as the underlying model of distributed
computation, we will use (interactive) RAMs. The reason is that we need a model where subroutine
access and simulation do not incur a signi�cant overhead. ITMs are not suitable for this purpose,
since one needs to account for the additional steps to go back-and-forth all the way to the place
where the subroutine is stored. A similar choice was made by Garay et al. [26]; refer to [26] for
details on using interactive RAMs in a UC-like framework, as well as to Section 3.1. Given a RAM
M , we will denote by StepsM (x) the random variable that corresponds to the number of steps of M
given input x. We will say that M is t-bounded if it holds that Pr[StepsM (x) ≤ t(|x|)] = 1.

Finally, we remark that in our analyses there will be asymptotic terms of the form negl(λ)
and concrete terms; throughout the paper, we will assume that λ is large enough to render the
asymptotic terms insigni�cant compared to the concrete terms.

Cryptographic primitives and building blocks. We will make use of the following crypto-
graphic primitives: cryptographic hash functions, randomness extractors [36], robust non-interactive
zero-knowledge (NIZK) [40], and iterated sequential functions.

Iterated sequential functions. We recite the hardness de�nition introduced in [12]:

De�nition 1 ([12]). f : X → Y is a (t, ε)-sequential function for λ = O(log(|X|)), if the following
conditions hold:

1. There exists an algorithm that for all x ∈ X evaluates f in parallel time t using poly(log(t), λ)
processors.

2. For all A that run in parallel time strictly less than (1− ε) · t with poly(t, λ) processors:

Pr[yA = f(x)|yA ← A(λ, x), x← X] < negl(λ).

De�nition 2 ([12]). Let g : X → X be a function which satis�es (t, ε)-sequentiality. A function
f : N×X → X de�ned as f(k, x) = g(k)(x) = g ◦ g ◦ . . . ◦ g is called an iterated sequential function

(with round function g), if for all k = 2o(λ), the function h : X → X such that h(x) = f(k, x) is
(kt, ε)-sequential.

Collision resistance. We will make use of the following notion of security for cryptographic hash
functions:

De�nition 3. Let H = {{Hk : M(λ) → Y (λ)}k∈K(λ)}λ∈N be a hash-function family, and A be
a PPT adversary. Then H is collision resistant if and only if for any λ ∈ N and corresponding
{Hk}k∈K in H,

Pr[k
$← K; (m,m′)← A(1λ, k); (m 6= m′) ∧ (Hk(m) = Hk(m

′))] ≤ negl(λ).

Randomness extractors. We also make use of the notion of randomness extractors, introduced
in [36]. A random variable X is a k-source if H∞(X) ≥ k, i.e., if Pr[X = x] ≤ 2−k.

De�nition 4. A function Ext : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-extractor if for every k-source
X on {0, 1}n, ∆[Ext(X,Ud), Um] ≤ ε.

The di�erence k + d−m is called the entropy loss of the extractor.

Robust non-interactive zero-knowledge. In our construction (Section 4) we will make use of
the following notion, introduced in [40].
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De�nition 5. Given an NP relation R, let L = {x : ∃w s.t. R(x,w) = 1}. Π = (q, P, V, S =
(S1, S2), E)) is a robust NIZK argument for L, if P, V, S,E ∈ PPT and q(·) is a polynomial such
that the following conditions hold:

1. Completeness. For all x ∈ L of length λ, all w such that R(x,w) = 1, and all Ω ∈ {0, 1}q(λ),
V(Ω, x,P(Ω, w, x))] = 1.

2. Multi-Theorem Zero-knowledge. For all PPT adversaries A, we have that Real(λ) ≈ Sim(λ),
where

Real(λ) = {Ω← {0, 1}q(λ); out← AP(Ω,·,·)(Ω);Output out},
Sim(λ) = {(Ω, tk)← S1(1

λ); out← AS′2(Ω,·,·,tk)(Ω);Output out},

and S′2(Ω, x, w, tk)
4
= S2(Ω, x, tk) if (x,w) ∈ R, and outputs failure if (x,w) 6∈ R.

3. Extractability. There exists a PPT algorithm E such that, for all PPT A,

Pr

[
(Ω, tk)← S1(1

λ); (x, π)← AS2(Ω,·,tk)(Ω);w ← E(Ω, (x, π), tk) :

R(x,w) 6= 1 ∧ (x, π) 6∈ Q ∧ V(Ω, x, π) = 1

]
≤ negl(λ)

where Q contains the successful pairs (xi, πi) that A has queried to S2.

As in [20], we also require that the proof system supports labels. That is, algorithms P,V, S,E
take as input a public label φ, and the completeness, zero-knowledge and extractability properties
are updated accordingly. This can be achieved by adding the label φ to the statement x. In
particular, we write Pφ(Ω, x, w) and Vφ(Ω, x, π) for the prover and the veri�er, and Sφ2 (Ω, x, tk) and
Eφ(Ω, (x, π), tk) for the simulator and the extractor.

Theorem 6 ([40]). Assuming trapdoor permutations and a dense cryptosystem exist, robust NIZK

arguments exist for all languages in NP .

3 Necessary Conditions for PoW-based Blockchain Protocols

In this section we study the necessary conditions for the security of PoW-based blockchain protocols,
focusing on (an abstraction of) Bitcoin. To analyze the problem, we �rst present an appropriate
security model, introduced in [25], where a standard model analysis can be carried out. Our focus
will be on distilling what are the necessary properties the underlying moderately hard problem
should satisfy. In the Bitcoin protocol this problem is related to a real-world hash function, namely,
SHA-256. We abstract the problem in Section 3.2, where we introduce the notion of hard iterated

search problems. Then, in Section 3.3 we describe a generalized Bitcoin-like protocol based on such
problems, and show that both the existence of such problems is necessary to prove the security of
Bitcoin, and yet it is not su�cient.

3.1 The Bitcoin backbone model

In [22], an abstraction was proposed for the analysis of the Bitcoin protocol. Here we overview the
basics, substituting IRAMs for ITMs for the reasons explained in Section 2. The execution of a
protocol Π is driven by an �environment� program Z that may spawn multiple instances running
the protocol Π . The programs in question can be thought of as �interactive RAMs� communicating
through registers in a well-de�ned manner, with instances and their spawning at the discretion of a
control program which is also an IRAM and is denoted by C. In particular, the control program C
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forces the environment to perform a �round-robin� participant execution sequence for a �xed set of
parties.

Speci�cally, the execution driven by Z is de�ned with respect to a protocol Π, an adversary A
(also an IRAM) and a set of parties P1, ..., Pn; these are hardcoded in the control program C. The
protocol Π is de�ned in a �hybrid� setting and has access to one �ideal functionality,� called the
di�usion channel (see below). It is used as subroutine by the programs involved in the execution
(the IRAMs of Π and A) and is accessible by all parties once they are spawned.

Initially, the environment Z is restricted by C to spawn the adversary A. Each time the
adversary is activated, it may communicate with C via messages of the form (Corrupt, Pi). The
control program C will register party Pi as corrupted, only provided that the environment has
previously given an input of the form (Corrupt, Pi) to A and that the number of corrupted parties
is less or equal t, a bound that is also hardcoded in C. The �rst party to be spawned running
protocol Π is restricted by C to be party P1. After a party Pi is activated, the environment is
restricted to activate party Pi+1 , except when Pn is activated in which case the next party to be
activated is always the adversary A. Note that when a corrupted party Pi is activated the adversary
A is activated instead.

Next, we describe how di�erent parties communicate. Initially, the di�usion functionality sets
the variable round to be 1. It also maintains a Receive() string (register) de�ned for each party Pi.
A party is allowed at any moment to fetch the contents of its personal Receive() string. Moreover,
when the functionality receives an instruction to di�use a message m from party Pi it marks the
party as complete for the current round; note that m is allowed to be empty. At any moment, the
adversary A is allowed to receive the contents of all messages for the round and specify the contents
of the Receive() string for each party Pi. The adversary has to specify when it is complete for the
current round. When all parties are complete for the current round, the functionality inspects the
contents of all Receive() strings and includes any messages that were di�used by the parties in the
current round but not contributed by the adversary to the Receive() tapes. The variable round is
then incremented.

Based on the above, we denote by {viewP,t,n
Π,A,Z(z)}z∈{0,1}∗ the random variable ensemble that

corresponds to the view of party P at the end of an execution where Z takes z as input. We will
consider stand-alone executions, hence z will always be of the form 1λ, for λ ∈ N. For simplicity,
to denote this random variable ensemble we will use viewP,t,n

Π,A,Z . By view
t,n
Π,A,Z we denote the

concatenation of the views of all parties. The probability space where these variables are de�ned
depends on the coins of all honest parties, A and Z.

Next, we consider the complications in the modeling due to the analysis of Bitcoin in the concrete
security setting. Both in [22] and [37] a modi�ed version of the standard simulation-based paradigm
of [14] is followed, where there exist both a malicious environment and a malicious adversary. In
addition, the underlying computational problem is modeled in a non black-box way using a random
oracle (RO), and the computational power of the adversary is then bounded by limiting the number
of queries it can make to the RO per round. Since in this work the underlying computational
problem is modeled in a black-box way, an alternative approach to bound the adversary's power is
needed.

A naïve �rst approach is to only bound the computational power of A. Unfortunately this will
not work for several reasons. Firstly, nothing stops the environment from aiding the adversary,
i.e., computing witnesses, and then communicating with it through their communication channel
or some other subliminal channel; secondly, even if we bound the total number of steps of A, it is
not clear how to bound the steps it is taking per round in the model of [14], which we build on.
Furthermore, if the adversary is able to send, say, θ messages in each round, it can force each honest
party to take θ times the veri�cation time extra steps per round. If we do not bound θ, then the
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adversary will be able to launch a DOS attack and spend all the resources the honest parties have2.
In order to capture these considerations we are going to de�ne a predicate on executions and

prove our properties in disjunction with this predicate, i.e., either the property holds or the execution
is not good.

De�nition 7. Let (tA, θ)-good be a predicate de�ned on executions in the hybrid setting described
above. Then E is (tA, θ)-good, where E is one such execution, if

the total number of steps taken by A and Z per round is no more than tA;
3

the adversary sends at most θ messages per round.

De�nition 8. Given a predicate Q and bounds tA, θ, t, n ∈ N, with t < n, we say that protocol
Π satis�es property Q for n parties assuming the number of corruptions is bounded by t, provided
that for all PPT Z,A, the probability that Q(viewt,n

Π,A,Z) is false and the execution is (tA, θ)-good
is negligible in λ.

3.2 Iterated search problems

An iterated search problem (ISP) I speci�es a collection (Iλ)λ∈N of distributions.4 For every value of
the security parameter λ ≥ 0, Iλ is a probability distribution of instance descriptions. An instance
description Λ speci�es: (i) �nite, non-empty sets X,W , and (ii) a binary relation R ⊂ X ×W . We
write Λ[X,W,R] to indicate that the instance Λ speci�es X,W and R as above.

An ISP also provides several algorithms. For this purpose, we require that the instance descrip-
tions, as well as elements of the sets X and W , can be uniquely encoded as bit-strings of length
polynomial in λ, and that both X and (Iλ)λ have polynomial-time samplers. The following are the
algorithms provided by an ISP:

Solving algorithm MΛ(x): A probabilistic algorithm that takes as input an instance description
Λ[X,W,R], and a problem statement x and outputs a witness w.

Veri�cation algorithm VΛ(x,w): A deterministic algorithm that that takes as input an instance
description Λ[X,W,R], a problem statement x, and a witness w and outputs 1 if (x,w) ∈ R
and 0 otherwise.

Successor algorithm SΛ(x,w): A deterministic algorithm that takes as input an instance de-
scription Λ[X,W,R], a problem statement x, and a valid witness w and outputs a new instance
x′ ∈ X.

In the sequel, we will omit writing Λ when it is clear from the context. We require that for
all λ ∈ N, all Λ[X,W,R] ∈ Iλ, and for all x ∈ X, there exists w ∈ W such that (x,w) ∈ R.
Moreover, M(x) outputs such a witness with overwhelming probability in λ. As an example, we
present Bitcoin's underlying computational problem captured as an ISP:

Iλ is the uniform distribution over functions H : {0, 1}∗ → {0, 1}λ in some family5 of hash
functions H, i.e., Λ = {H};
X = {0, 1}λ,W = {0, 1}∗ × {0, 1}λ;
R = {(x,w)|H(H(x||m)||ctr) < T, for w = m||ctr};
V (x,w) checks whether H(H(x||m)||ctr) < T , for w = m||ctr;

2This problem is extensively discussed in [2], Section 3.4.
3The adversary cannot use the running time of honest parties that it has corrupted; it is activated instead of them

during their turn. Also, note that it is possible to compute this number by counting the number of con�gurations
that A or Z are activated per round.

4Here we follow the notation used to de�ne subset membership problems in [16]. We remark that no other connection
exists between the two papers.

5In the actual protocol a double invocation of SHA-256 is used.
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M(x) tests whether V (x, (m, ctr)) is true, for di�erent m, ctr pairs, until it �nds a solution, and

S(x,w) = S(x, (m, ctr)) = H(H(x||m)||ctr).
where T is a protocol parameter that has to do with how hard it is solve a problem instance. For
simplicity, in our exposition the hardness parameter for each ISP is �xed, and we do not capture it
explicitly.

To ease the presentation, we recursively extend the de�nitions of S and R to sequences of
witnesses as follows:

S(x, (wi)i∈[k]) =

{
x, k = 0;

S(S(x, (wi)i∈[k−1]), wk), k ≥ 2.

(x, (wi)i∈[k]) ∈ R
4⇔ ∧k

i=1(S(x, (wj)j∈[i−1]), wi) ∈ R.
Finally, in the same spirit of Boneh et al. [12]'s de�nition of an iterated sequential function (cf.

De�nition 1), we de�ne the notion of a hard iterated search problem. Our de�nition is parameterized
by t, δ and k0, all functions of λ which we omit for brevity. Unlike the former de�nition, we take
in account the total number of steps instead of only the sequential ones, and we require the error
probability to be negligible after at least k0 witnesses have been found instead of one, which in turn
allows for the solving algorithm S to be parallelizable. In that sense, our notion relaxes the strict
convergence criterion of [12].

De�nition 9. An ISP I = (V,M, S) is (t, δ, k0)-hard i� it holds that:

for su�ciently large λ ∈ N , for all Λ[X,W,R] ∈ Iλ, x ∈ X, and for all polynomially large
k ≥ k0:

Pr

[
(wi)i∈[k] ←Mk(x) : (x, (wi)i) ∈ R
∧ StepsMk(x) ≤ k · t

]
≥ 1− negl(λ),

where Mk(x) denotes k iterations of M on inputs (x, S(x,M(x)), . . .), and

for any PPT RAM A, and for su�ciently large λ ∈ N, k ≥ k0:

Pr
Λ[X,W,R]←Iλ;

x←X

[
(wi)i∈[k] ← A(1λ,Λ, x) : (x, (wi)i) ∈ R
∧ StepsA(1λ,Λ, x) < (1− δ)k · t

]
≤ negl(λ).

3.3 An ISP-based Bitcoin protocol

Next, we describe the Bitcoin backbone protocol with respect to an ISP I = (M,V, S), which we call
ΠiPL(I). With foresight, we note that in Section 4 we will introduce a di�erent ISP-based protocol,
which we will prove secure.

At the start of the protocol, all parties have as common input a randomly sampled instance
description Λ[X,W,R] and a randomly sampled statement xGen ∈ X. We use the terms block and
chain to refer to tuples of the form 〈x,w〉 ∈ X ×W , and sequences of such tuples, respectively. A
block B = 〈x,w〉 is valid if (x,w) ∈ R; a chain C = (〈xi, wi〉)i∈[k] is valid if (i) x1 = xGen, (ii) the
i-th block is valid, and (iii) xi+1 = S(xi, wi), for all i ∈ [k].

The protocol proceeds as follows: Each party tries to �extend� its chain of blocks (initially just
xGen) using M . In case it receives a valid chain C that is longer than the chain that the party tries
to extend, it adopts the longer chain, and runs M on the new problem de�ned by this chain. If
M �nishes executing before receiving a new chain, the party di�uses the newly found chain to the
network, and stops for this round. We assume that all honest parties take the same number of steps
tH per round. If the allowed steps do not su�ce for M to �nish in a speci�c round, the program is
interrupted until the next round.

10



Remark 1. In the ISP-based Bitcoin backbone protocol we have just described, transactions are not
explicitly considered neither in the mining algorithm nor in the messages exchanged by the protocol.
This corresponds to a special case of the Bitcoin Backbone protocol, where the environment only
sends transactions at the rounds that some block was mined. Hence, the necessary conditions
derived for ΠiPL(I), are weaker than those of the Bitcoin Backbone that also model transactions.

Security properties of the blockchain. A number of desired basic properties for the blockchain
were introduced in [22, 31, 37]. At a high level, the �rst property, called common pre�x, has to do
with the existence, as well as persistence in time, of a common pre�x of blocks among the chains of
honest players. Here we will consider a stronger variant of the property, presented in [31, 37], which
allows for the black-box proof of application-level properties (such as the persistence of transactions
entered in a public transaction ledger built on top of the Bitcoin backbone ). We will use C � C′ to
denote that some chain C is a pre�x of some other chain C′, and Cdk to denote the chain resulting
from removing the last k blocks of C.
De�nition 10 ((Strong) Common Pre�x). The strong common pre�x property Qcp with parameter
k ∈ N states that the chains C1, C2 reported by two, not necessarily distinct honest parties P1, P2,

at rounds r1, r2 in viewt,n
Π,A,Z , with r1 ≤ r2, satisfy Cdk1 � C2.

The next property relates to the proportion of honest blocks in any portion of some honest
player's chain.

De�nition 11 (Chain Quality). The chain quality property Qcq with parameters µ ∈ R and k ∈ N
states that for any honest party P with chain C in viewt,n

Π,A,Z , it holds that for any k consecutive
blocks of C the ratio of adversarial blocks is at most µ.

Further, in the derivations in [22] an important lemma was established relating to the rate at
which the chains of honest players were increasing as the Bitcoin backbone protocol was run. This
was explicitly considered in [31] as a property under the name chain growth.

De�nition 12 (Chain Growth). The chain growth property Qcg with parameters τ ∈ R (the �chain
speed� coe�cient) and s, r0 ∈ N states that for any round r > r0, where honest party P has chain
C1 at round r and chain C2 at round r + s in viewt,n

Π,A,Z , it holds that |C2| − |C1| ≥ τ · s.
For the purposes of our analysis we will also make use of lower and upper bounds in honest

chain growth. Honest chain growth refers to the chain growth property when limited to executions
where the adversary remains silent. The lower bound of honest chain growth is at least as big as
the chain growth parameter τ . On the other hand, an upper bound for the property is guaranteed,
since the running time of honest parties per round is limited.

Robust public transaction ledgers. A public transaction ledger [22] is de�ned with respect to a
set of valid ledgers L and a set of valid transactions T , each one possessing an e�cient membership
test. A ledger x ∈ L is a vector of sequences of transactions tx ∈ T . Ledgers correspond to chains
in the backbone protocol. In the protocol execution there also exists an oracle Txgen that generates
valid transactions. Note, that it is possible for the adversary to create two transactions that are
con�icting; valid ledgers must not contain con�icting transaction. We will assume that the oracle
is unambiguous, i.e., that the adversary cannot create transactions that come in `con�ict' with the
transactions generated by the oracle. A transaction is called neutral if there does not exist any
transactions that comes in con�ict with it.

De�nition 13. A protocol Π implements a robust public transaction ledger if it satis�es the following
two properties:
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Persistence: Parameterized by k ∈ N (the �depth� parameter), if in a certain round an honest
player reports a ledger that contains a transaction tx in a block more than k blocks away from
the end of the ledger, then tx will always be reported in the same position in the ledger by any
honest player from this round on.

Liveness: Parameterized by u, k ∈ N (the �wait time� and �depth� parameters, resp.), provided
that a transaction either (i) issued by Txgen, or (ii) is neutral, is given as input to all honest
players continuously for u consecutive rounds, then there exists an honest party who will report
this transaction at a block more than k blocks from the end of the ledger.

Finally, note that persistence and liveness imply in a straightforward way the common-pre�x
and chain-growth properties, with parameters k and τ = 1

u , respectively. Through the rest of this
section, we take advantage of this fact, to argue about the necessary conditions that the ISP that
Bitcoin utilizes must satisfy.

3.4 Iterated hardness is necessary

We now analyze the necessary conditions that Bitcoin's underlying ISP should satify in order for
Bitcoin to be secure. In particular, we show that the ISP used in Bitcoin must be hard (De�nition 9).
In more detail, we prove that no adversary that is suitably computationally bounded, should be
able to �nd witnesses at a rate much higher than that of the honest parties. In addition, other,
somewhat secondary properties are necessary to state our subsequent result. We start with those.

First, we introduce some additional notation. For some Λ[X,W,R] ∈ Iλ, denote the distribution
overX induced by the standard sampler by X̃0(Λ), and let X̃i(Λ) be equal to S(X̃i−1(Λ),M(X̃i−1(Λ))).
X̃i(Λ) follows the distribution of the i-th problem in a sequence generated using the solver M and
starting from a randomly sampled problem in X.

The �rst property has to do with the event that two di�erent chains de�ne the same next problem
statement to be solved. If such an event happens, it can lead to situations where a chain contains
a cycle, which the protocol cannot handle.

De�nition 14. An ISP I = (V,M, S) is collision resistant i� for all PPT A and su�ciently large
λ ∈ N, it holds that

Pr
Λ[X,W,R]←Iλ;

x←X

((wi)i, (w
′
j)j)← A(1λ,Λ, x) :

(x, (wi)i) ∈ R ∧ (x, (w′j)j) ∈ R
∧ S(x, (wi)i) = S(x, (w′j)j)

 ≤ negl(λ).

Next, we de�ne tver to be an upper bound on the the running time of the veri�cation algorithm
V for R.

De�nition 15. An ISP I = (V,M, S) is tver-veri�able i� algorithm V takes time at most tver (on
all inputs).

Intuitively, the time to verify that a tuple is in R must be a lot smaller than the rate at which
the adversary can send messages to honest parties. Otherwise, the adversary can launch a denial
of service attack by spamming parties with �fake� witnesses, making them spend most of their
computing power on verifying them.

For the rest of this section we will assume that I is tver-veri�able, and collision resistant. We
are now ready to state the necessary condition regarding ISPs.
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Theorem 16. Let n, t, tH, tA such that tA = c · tH, for some c ∈ (0, 1), and I be an ISP. If ΠiPL(I)
satis�es the common-pre�x and chain growth properties with parameters k and τ, s, respectively,

then there exists δ ∈ (0, 1) such that I is ( (n−t)tH
τ , δ,max{k, s · τ})-hard.

Proof. Let τ ′ be an upper bound on the (honest) chain growth rate, where τ ≤ τ ′, and let δ = 1−c· ττ ′ .
It holds that δ ∈ (0, 1). W.l.o.g., let parameter r0 of the chain growth property be 0.

For the sake of contradiction, assume that I is not ( (n−t)tH
τ , δ,max{k, s·τ})-hard. First, we show

that the �rst part of the de�nition of the hardness property is satis�ed. Since, τ is a lower bound
on the chain growth rate of the honest parties, there exists a RAM M ′ (the parallel execution of n

instances of M) that after m · (n−t)tH
τ steps (or m

τ rounds) computes m blocks with overwhelming
probability on λ, for any m ≥ s · τ . This implies that, there exists an adversary A that breaks the
second part of the property with non-negligible probability, for some m0 ≥ max{k, s · τ}. We are
going to use A to construct an adversary A′ that breaks the security of Bitcoin.
A′ runs A on input (Λ, x). A after (1 − δ)m0

(n−t)tH
τ steps, i.e., less than (1 − δ)m0

(n−t)tH
τ ·tA

rounds, will have extended x by at least m0 blocks with non-negligible probability. On the other
hand, due to the honest chain growth upper bound, during the same time, the honest parties will
extend their chains by at most

(1− δ)m0
(n− t)tH
τ · tA

τ ′ ≤ c τ
τ ′
m0

1

c

τ ′

τ
≤ m0

blocks. It follows that with non-negligible probability the adversary can create a fork of size greater
than m0 ≥ k and break the common-pre�x property, which is a contradiction.

Note, that as c approaches 1 the theorem states that the resulting ISP should be secure for
smaller δ. This is in line with our intuition: The better the security of the resulting protocol is, the
harder the requirements from the ISP are.

The existence of hard ISPs is implied by the existence of iterated sequential functions (cf.
De�nition 1).

Lemma 17. If there exist (t, δ)-iterated sequential functions, then there exist (t, δ, 1)-hard ISPs.

Proof. Let fλ : X → X be a (t, δ)-iterated sequential function, for some λ ∈ N. Let I be the
following ISP: R(x,w) = {(x, fλ(x))|x ∈ X}, S is equal to the identity function, M is the standard
solver of fλ, and Iλ = {[X,X,R]}. It is easy to see that I is a (t, δ, 1)-hard ISP for the standard
solver of fλ. The lemma follows.

We conclude this subsection by stating a stronger hardness property that allows the adversary
some precomputation time and is also implied by Bitcoin.

De�nition 18. An ISP I = (V,M, S) is (t, δ, k0)-hard against precomputation i� there exists a
RAM M as in De�nition 9 and for any PPT RAM A = (A1,A2), for su�cient large λ ∈ N, k ≥ k0,
there exists a polynomially large m such that:

Pr
Λ[X,W,R]←Iλ;

x←X̃m(Λ)

[
st← A1(1λ,Λ); (wi)i∈[k] ← A2(1λ, st, x) :

(x, (wi)i) ∈ R ∧ StepsA2(st, x) < (1− δ)k · t

]
≤ negl(λ)

Theorem 19. Let n, t, tH, tA such that tA = c · tH, for some c ∈ (0, 1), and I be an ISP. If ΠiPL(I)
satis�es the common-pre�x and chain growth properties with parameters k and τ, s, respectively,

then there exists δ ∈ (0, 1) such that I is ( (n−t)tH
τ , δ,max{k, s · τ})-hard against precomputation.
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Proof. For the sake of contradiction, assume the there exists an adversary A = (A1,A2) that breaks
the hardness of I. We are going to describe only A′1, as the second phase of the attack is as in
Lemma 16. A′1 is going to take as input Λ. Then, it is going to run A1 with input Λ, and forward its
output st to A′2. In the meantime, honest parties will have produced chains of at most polynomial
length in λ. A′2 will pick the longest among these chains, and run A2 with input st, x, where x
is the problem de�ned by the most recent block in the chain. The attack then proceeds as in the
previous Lemma to break the common pre�x property. Note, that the distribution of x is as de�ned
in the hardness property.

3.5 Iterated hardness is not su�cient

We showed above that iterated sequential functions, imply the existence of hard ISPs. In this
section, we explore the question of whether Bitcoin can be solely based on such functions, and
show that this is not the case. The main reason being that the honest solving algorithm must be
parallelizable�exactly the opposite of what sequential functions guarantee.

More formally, we will argue that the solving algorithmM must be parallelizable in the following
sense: Running multiple instances of M in parallel should result in �nding a witness before a
single invocation of M that runs for about the same number of steps in total, with non-negligible
probability. We �rst give a formal de�nition of this property, and then prove that is implied by
Bitcoin.

De�nition 20. Let δ ∈ (0, 1) and n ∈ N. An ISP instance I = (V,M, S) is (n, δ)-non-interactive
parallelizable (NIP), i� there exists a polynomial p(·), such that for in�nitely many λ ∈ N, some
polynomially large m ∈ N, and some (ai)i∈[n] ∈ [n]n it holds that:

Pr
Λ[X,W,R]←Iλ;
x0,...,xn←X̃m(Λ)

[min{StepsM (xai)}i∈{1,...,n} <
StepsM (x0)

n · δ ] ≥ 1

p(λ)
.

Lemma 21. Let I be an ISP that is not (n− t, δ)-NIP. If tA ≥ δ · tH(n− t), then there exists an

adversary that breaks the common pre�x property in viewt,n
ΠiPL(I),A,Z with non-negligible probability.

Proof. For the sake of contradiction, assume that the lemma does not hold. Since I is (n−t, δ)-NIP,
it follows that for su�ciently large λ, any polynomially large m, and any (ai)i∈[n−t] ∈ [n− t]n−t:

Pr
Λ[X,W,R]←Iλ

x0,...,xn−t←X̃m(Λ)

[min{StepsM (xai)}i∈{1,...,(n−t)} <
StepsM (x0)

(n− t) · δ ] ≤ negl(λ)

We will describe an adversary A that corrupts t parties, and breaks the common pre�x property
with non-negligible probability. We are going to argue that the adversary starting from xGen can
create a private chain of maximum length by iteratively invoking M . Let TH be the number of
steps it takes for at least one of the honest parties to extend its chain by one block, i.e., TH =
min{StepsM (xi)}i∈{1,...,n−t} where (xi)i are the inputs used by the honest parties. During the same
time, A runs a single invocation of M for TA ≥ THδ(n − t) steps. By our assumption, and with
overwhelming probability it holds that

StepsM (x0) ≤ (n− t) · δ ·min{StepsM (xi)}i∈{1,...,n−t} = δ(n− t)TH ≤ TA,

where x0 is the problem that the adversary is solving. Hence, A successfully computes a block on
his own during the same period, and thus increases the length of the fork by one block. A repeats
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this process, until a deep-enough fork is generated, and the common pre�x property is violated.
Note, that the distribution of problems solved both by the honest parties and the adversary follows
the distribution de�ned in the NIP property.

The optimal scenario here would be for I to be (n, 1−negl(λ))-NIP. That is, if the total number
of steps of the single running machine were smaller by a negligible factor, then with non-negligible
probability the n smaller parties would �nd a solution �rst; i.e., no computational power would
be lost by distributing the computation. On the �ip side, the worst-case scenario is for I to be
(n, 1

n)-NIP. That is, with non-negligible probability a single machine manages to compute a solution
by taking the same number of steps as one of the n distributed machines.

Next, we prove that iterated sequential functions are not parallelizable.

Lemma 22. Let f(k, x) be an (t, ε)-iterated sequential function. For all n ∈ N, the implied ISP is
not (n, 1

n)-NIP.

Proof. Let M be the solver for f . By de�nition, we have that for some polynomial poly(·) it holds
that

min{StepsM (xi)}i∈{1,...,n} = StepsM (x0) = t · poly(log(t), λ)

for any inputs x0, . . . , xn. Hence, it follows that

min{StepsM (xi)}i∈{1,...,n} ≥
StepsM (x0)

n · 1
n

and the lemma follows.

It follows from the previous two lemmas that if Bitcoin is based on an iterated sequential function,
an adversary that has a little more power than one of the honest parties can break the security of
the protocol.

Corollary 23. Let f(k, x) be an (t, ε)-iterated sequential function, and I be the implied ISP instance.

If tA ≥ tH, then there exists an adversary that breaks the common pre�x property in viewt,n
ΠiPL(I),A,Z

with non-negligible probability.

Remark 2. Our analysis, with minor di�erences, also applies to other well-known PoW-based
blockchain protocols. For example, in the GHOST protocol [41] parties choose their chain by
iteratively choosing the �heaviest� subtree of blocks, starting from the �rst block. By similar argu-
ments as above, it is implied that it is necessary for the iterated search problem to be hard with
respect to the rate at which the honest parties generate blocks (cf. the chain growth rate in Bitcoin).
While this may sound as an improvement, it opens up the space for other attacks against the search
problem, e.g., the ability to cheaply generate witnesses for a statement if you already know, one
harms the protocol.

4 Su�cient Conditions and a Provably Secure ISP-based Blockchain

As we showed earlier, the existence of hard ISPs is necessary, but not su�cient, to prove secure
most well-known PoW-based blockchain protocols. In this section we �rst de�ne an enhanced,
�blockchain-friendly� notion of security for ISPs, encompassing hardness, which then show to be
su�cient to implement a provably secure blockchain. We conclude the section with a candidate ISP
proposal that satis�es the extra security properties and is plausibly hard.
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4.1 Enhanced ISPs

We now present a set of extra ISP properties, besides hardness, that are speci�c to the use of an ISP
in blockchain applications. All properties presented here concern the solving algorithm M . Later
on, in Section 4.3, we present a candidate problem that satis�es all these properties. We note that
the properties' speci�cs are not necessary for the description of our protocol, hence the eager reader
can directly proceed to Section 4.2.

In general, attacking an honest solver amounts to �nding a certain set of inputs over which the
honest solving algorithm fails to produce witnesses su�ciently fast or regularly. In order to combat
this attack, we introduce two properties. First, we say that an ISP I is (t, α)-successful when the
probability that M computes a witness in t steps is at least α.

De�nition 24. An ISP I = (V,M, S) is (t, α)-successful i� for su�ciently large λ ∈ N it holds that

Pr
Λ[X,W,R]←Iλ;

x←X

[
StepsM (x) < t

]
≥ α.

Moreover, as shown in Section 3.5, it is necessary for the honest solver M to be parallelizable.
The next property has to do with the (limited) independence of the runtime of di�erent invocations
of the honest solver. This will prove crucial in ensuring that when multiple parties work together,
the distribution of the number of them who succeed in producing a witness has some �good� variance
and concentration properties. (However, this property alone is not su�cient to imply parallelization,
as can be seen for example with the repeated squaring problem.)

De�nition 25. An ISP I = (V,M, S) has almost-independent runtime i� for any polynomial p(·),
for su�ciently large λ ∈ N, and for all Λ[X,W,R] ∈ Iλ, there exists a set of mutually independent
random variables {Yi}i∈[p(λ)] such that for any x1, . . . , xp(λ) ∈ X it holds that ∆[(StepsM (xi))i, (Yi)i] ≤
negl(λ).

The iterative hardness property, as formulated in the previous section, does not give any guar-
antees regarding composition. In the Bitcoin setting, however, this is necessary as many parties
concurrently try to solve the same ISP. The next property states that there exists an e�cient sim-
ulator whose running time and output is computationally indistinguishable from the distributions
of the time it takes to compute a witness w for some statement x and the next statement S(x,w),
respectively.

De�nition 26. An ISP I = (V,M, S) is t-next-problem simulatable i� there exists an t-bounded
RAM S such that for su�ciently large λ ∈ N and for all Λ[X,W,R] ∈ Iλ, it holds that

{(S(x,M(x)),StepsM (x))}x∈X
c≈ {S(Λ)}x∈X

The next property has to do with a party's ability to �cheaply� compute witnesses for a statement,
if it already knows one. We call this ISP property witness malleability.

De�nition 27. An ISP I = (V,M, S) is t-witness malleable i� there exists a t-bounded RAM Φ
such that for su�ciently large λ ∈ N , and for all Λ[X,W,R] ∈ Iλ, it holds that

(x,Φ(x,w)) ∈ R, for all (x,w) ∈ R and {S(x,Φ(x,w))}(x,w)∈R
c≈ {S(x,M(x))}(x,w)∈R.

Finally, we call a hard ISP that satis�es all the above properties enhanced.
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De�nition 28. An ISP I = (V,M, S) is {tver, tsucc, α, thard, δhard, k0, tnps, tmal}-enhanced i� it is
correct, tver-veri�able, (tsucc, α)-successful, (thard, δhard, k0)-hard against precomputation, almost
runtime independent, tnps-next-problem simulatable, and tmal-witness malleable.

Remark 3. Gentry and Wichs in [27] de�ne as falsi�able the cryptographic assumptions that can be
expressed as a game between an e�cient challenger and an adversary. We note that all assumptions
that constitute an enhanced ISP are falsi�able in this sense, with a caveat due to the concrete
security approach our work takes: the challenger should take as input the number of steps of the
adversary.

4.2 The provably secure ISP-based protocol

The main challenges that our protocol has to overcome is to achieve security guarantees similar
to iterative hardness, in a setting where the adversary can also take advantage of the work of
honest parties. Towards this end, blocks in our protocol instead of exposing the relevant witness
computed, contain a proof of knowledge of such a valid witness through a non-interactive zero-
knowledge (NIZK) proof. Moreover, to further reduce the security guarantees required by the ISP,
the hash chain structure of blocks is decoupled from the underlying computational problem. Finally,
the protocol adopts the longest-chain selection rule, which as we will see later allows it to operate
even if the witnesses of the ISP are malleable (cf. Remark 2).

4.2.1 Protocol description

The protocol uses as building blocks three cryptographic primitives: An enhanced ISP I = (M,V, S),
a collision-resistant hash function familyH and a robust NIZK protocol ΠNIZK = (q,P,V, S = (S1, S2),E)
for the language L = {(Λ[X,W,R], x, x′)|∃w ∈ W : (x,w) ∈ R ∧ S(x,w) == x′}.6 ΠNIZK also sup-
ports labels, which we denote as a superscript on P and V. Moreover, as in [22], our protocol is
parameterized by functions V(·),R(·), I(·) that capture higher-level applications (such as Bitcoin).
We assume that at the start of the execution all parties share a common reference string (CRS),
which contains: An instance description Λ[X,W,R], a statement xGen, the description of a hash func-
tion H : {0, 1}∗ → {0, 1}λ and a reference string Ω, each randomly sampled from Iλ, X,H, {0, 1}q(λ),
respectively.

First, we introduce some notation needed to understand the description of the algorithms
(similarly to Section 3.3). We use the terms block and chain to refer to tuples of the form
〈s,m, x, π〉 ∈ {0, 1}λ × {0, 1}∗ ×X × {0, 1}poly(λ), and sequences of such tuples, respectively. The
rightmost (resp., leftmost) block of chain C is denoted by head(C) (resp., tail(C)). Each block con-
tains the hash of the previous block s, a message m, the next problem x to be solved, and a NIZK
proof π. We denote by BGen = 〈0λ, 0λ, xGen, 0λ〉 a special block called the genesis block. A chain
C = (〈si,mi, xi, πi〉)i∈[k] is valid if: (i) The �rst block of C is equal to BGen; (ii) the contents of the
chain mC = (m1, . . . ,mk) are valid according to the chain validation predicate V, i.e., V(mC) is
true; and (iii) si+1 = H(si,mi, xi) and Vsi+1((Λ, xi−1, xi), πi) is true for all i ∈ [k] (see Algorithm 1).

We call H(si,mi, xi) the hash of block Bi and denote it by H(Bi), and de�ne H(C) ∆
= H(head(C)).

At each round, each party chooses the longest valid chain among the ones it has received (Algo-
rithm 2) and tries to extend it by computing a new witness. If it succeeds, it di�uses the new block
to the network. In more detail, each party will run the solver M on the problem x de�ned in the
last block 〈s,m, x, π〉 of its' chain. If it succeeds, and computes a witness w, it will then compute a
NIZK proof that it knows a witness w such that (x,w) ∈ R and S(x,w) == x′, for some x′ ∈ X, and

6We assume that both V and S are e�ciently computable. Hence, L ∈ NP .
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Algorithm 1 The chain validation predicate, parameterized by BGen, the hash function H(·), the
chain validation predicate V (·), and the veri�cation algorithm V of ΠNIZK. The input is C.

1: function validate(C)
2: b← V(mC) ∧ (tail(C) = BGen) . mC describes the contents of chain C.
3: if b = True then . The chain is non-empty and meaningful w.r.t. V (·)
4: s′ ← H(BGen) . Compute the hash of the genesis block.
5: x′ ← xGen
6: C ← C1e . Remove the genesis from C
7: while (C 6= ε ∧ (b = True)) do
8: 〈s,m, x, π〉 ← tail(C)
9: s′′ ← H(tail(C))
10: if (s = s′ ∧ Vs

′′
(Ω, (Λ, x′, x), π)) then

11: s′ ← s′′ . Retain hash value
12: C ← C1e . Remove the tail from C
13: else

14: b← False
15: end if

16: end while

17: end if

18: return (b)
19: end function

with label H(H(s,m, x),m′, x′), where m′ is the output of the input contribution function I(·); see
Algorithm 3. Then, the party di�uses the new extended chain to the network. Finally, if the party
is queried by the environment, it outputs R(C) where C is the chain selected by the party; the chain
reading function R(·) interprets C di�erently depending on the higher-level application running on
top of the backbone protocol. The main function of the protocol is presented in Algorithm 4. We
assume that all honest parties take the same number of steps tH per round.

Algorithm 2 The function that �nds the �best� chain, parameterized by function max(·). The
input is {C1, . . . , Ck}.

1: function maxvalid(C1, . . . , Ck)
2: temp← ε
3: for i = 1 to k do
4: if validate(Ci) then
5: temp← max(C, temp)
6: end if

7: end for

8: return temp
9: end function

In order to turn the above protocol into a protocol realizing a public transaction ledger suitable
de�nitions were given in [22] for functions V (·), R(·), I(·). Here we change those de�nitions slightly
as shown in Table 1. We denote the new public ledger protocol by ΠnPL(I).
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Algorithm 3 The proof of work function is parameterized by the hash function H(·), and the
proving algorithm P of ΠNIZK. The input is (m′, C).

1: function pow(m′, C)
2: 〈s,m, x, π′〉 ← head(C)
3: w ←M(x) . Run the honest solving algorithm of the ISP.
4: if w′ 6= ⊥ then

5: x′ ← S(x,w) . Compute the next problem to be solved.
6: s′ ← H(s,m, x) . Compute the hash of the last block.
7: s′′ ← H(s′,m′, x′) . Compute the hash of the new block.
8: π′ ← Ps

′′
(Ω, (Λ, x, x′), w) . Compute the NIZK proof.

9: B ← 〈s′,m′, x′, π′〉
10: end if

11: C ← CB . Extend chain
12: return C
13: end function

Content validation pre-
dicate V(·)

V(·) is true if its input 〈m1, . . . ,m`〉 is a valid ledger, i.e., it is in
L, and each mi starts with a neutral transaction of the form r||i,
where r is a string of length λ.

Chain reading function R(·) R(·) returns the contents of the chain if they constitute a valid
ledger, otherwise it is unde�ned.

Input contribution function
I(·)

I(·) returns the largest subsequence of transactions in the input and
receive registers that constitute a valid ledger, with respect to the
contents of the chain C the party already has, preceded by a neu-
tral transaction of the form r|||C|, where r is sampled uniformly at
random.

Table 1: The instantiation of functions V(·),R(·), I(·) for protocol ΠnPL.

4.2.2 Security analysis

In this section we prove that ΠnPL(I) implements a robust public transaction ledger (cf. De�ni-
tion 13), assuming the underlying ISP I is {tver, t′H, α, thard, δhard, k0, tnps, tmal}-enhanced; we de�ne
t′H in the next paragraph. Further, we assume that running the prover (resp., veri�er, simulator,
extractor) of ΠNIZK takes tP (resp. tV, tS, tE) steps.

To ease the presentation, we will introduce two variables that capture most of the costs related
to I and ΠNIZK. Let tbb (bb for backbone) be an upper bound on the number of steps needed to
run the code of an honest party in one round, besides the calls to M,P,V. By carefully analyzing
protocol ΠnPL one can extract an upper bound on this value7. We introduce constants t′A and
t′H to denote : (i) The maximum time needed by a RAM machine to simulate the adversary, the
environment and the honest parties in one round of the execution of the protocol, without taking
into account calls made toM by the latter, and run the NIZK extractor once, and (ii) the minimum

7Note that tbb depends on the running time of three external functions: V (·), I(·) and R(·). For example, in Bitcoin
these functions include the veri�cation of digital signatures, which would require doing modular exponentiations. In
any case, tbb is at least linear in λ.
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Algorithm 4 The Bitcoin backbone protocol, parameterized by the input contribution function

I(·) and the chain reading function R(·).

1: C ← BGen . Initialize C to the genesis block.
2: st← ε
3: round← 0
4: while True do

5: C̃ ← maxvalid(C, any chain C′ found in Receive())
6: 〈st,m〉 ← I(st, C̃, round, Input(),Receive()) . Determine the m-value.
7: Cnew ← pow(m, C̃)
8: if C 6= Cnew then

9: C ← Cnew
10: Broadcast(C)
11: end if

12: round← round+ 1
13: if Input() contains Read then

14: write R(mC) to Output()
15: end if

16: end while

number of steps that an honest party takes running M per round, respectively. They amount to:

t′A = tA + θ · tV + tE + n(tbb + tnps + tmal + tS) and t′H = tH − tbb − θtV − tP.

It holds that in any round at least n− t (non-corrupted) parties will run M for at least t′H steps.
Next, we introduce some additional notation. For each round j, we de�ne the Boolean random

variables Xj and Yj as follows. Let Xj = 1 if and only if j was a successful round, i.e., at least one
honest party computed a witness at round j, and let Yj = 1 if and only if j was a uniquely successful

round, i.e., exactly one honest party computed a witness at round j. With respect to a set of rounds
R and some block B, let ZB(R) denote the maximum number of distinct blocks di�used by the
adversary during R that have B as their ancestor and lie on the same chain. Also, let X(R) =∑

j∈RXj and de�ne Y (R) and XB(R) similarly. Finally, we denote by β = ((1 − δhard) · thard)−1

an upper bound on the rate at which the adversary can compute witnesses in the iterated hardness
game.

We are now ready to state our main computational assumption regarding the honest parties
and the adversary. In particular, we are going to assume that the honest parties have enough
computing power in order for the rate of uniquely successful rounds to outperform the rate at which
the adversary generates blocks. Note that in our approach the running time of the adversary and
the running time of honest parties do not necessarily have the same value, i.e., the adversary may
use a superior solving algorithm. Hence, the computational assumption takes into account the
parameters related to the ISP (refer to Table 2 for the relevant parameters). Finally, note that
the computational power assumption implies that the honest parties must have at least double the
adversary's computational power.

Assumption 1 (Computational Power Assumption). It holds that γ ≥ 2(1 + δ)β · t′A, for some
δ ∈ (0, 1).

Next, we focus on the hash functions used by the protocol and the necessary security assumptions
to avoid cycles in the blockchains. Observe that the hash structure of any blockchain in our protocol
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λ : security parameter
n : number of parties
t : number of parties corrupted
tH : number of steps per round per honest party
tA : total number of adversarial steps per round
θ : upper bound on the number of messages sent by the adversary per round
f : probability that at least one party computes a block in a round
γ : probability that exactly one party computes a block in a round
β : upper bound on the rate at which the adversary computes witnesses per step
δ : advantage from the computing power assumption
σ : quality of concentration of random variables in typical executions
k : number of blocks for the common-pre�x property
k0 : convergence parameter of ISP hardness
` : number of blocks for the chain-quality property

Table 2: The parameters in our analysis: λ, n, t, tH, tA, θ, k, ` are in N, f, γ, β, δ, σ are in (0, 1).

is similar to the Merkle-Damgard transform [17], de�ned as:

MDH(IV, (xi)i∈[m]) : z := IV ; for i = 1 to m do z := H(z, xi); return z.

Based on this observation, we can show that no e�cient adversary can �nd distinct chains8 with
the same hash.

Lemma 29. For any PPT RAM A, the probability that A can �nd two distinct valid chains C1, C2

such that H(C1) = H(C2) is negligible in λ.

Proof. To show that the adversary cannot �nd distinct chains with the same hash, we are going to
take advantage of the following property of the MD transform.

Fact 1. For any non-empty valid chain C = B1, . . . , Bk, where Bi = 〈si,mi, xi, πi〉, it holds that for
any j ∈ [k], H(head(C)) = MD(H(Bj), ((mi, xi))i∈{j+1,...,k}).

Let C1 = BGen, B1, . . . , B[|C1|], C2 = BGen, B
′
1, . . . , B

′
[|C2|], z = ((mi, xi))i∈[|C1|] and z

′ = ((m′i, x
′
i))i∈[|C2|].

For the sake of contradiction, assume that the lemma does not hold and there exists an adversary
A that can �nd valid chains C1, C2 such that H(C1) = H(C2), with non-negligible probability. By
Fact 1, this implies that MD(H(BGen), z) = MD(H(BGen), z

′).
We will construct an adversary A′ that breaks the collision resistance of H also with non-

negligible probability. We have two cases. In the �rst case, |C1| 6= |C2|. Then, since the height of
the chain is included in a �xed position in m|C1|,m

′
|C2| (cf. Table 1), it follows that m|C1| 6= m′|C2|,

which in turn implies that B|C1| 6= B′|C2|. Since H(head(C1)) = H(head(C2)), it follows that a

collision in H has been found. In the second case, where |C1| = |C2|, following the classical inductive
argument for the MD transform, it can be shown that there exists ` less or equal to |C1|, such that
MD(H(BGen), ((mi, xi))i∈[`]) = MD(H(BGen), ((m

′
i, x
′
i))i∈[`]) and (m`, x`) 6= (m′`, x

′
`). The lemma

thus follows.

The following two properties, introduced in [22], regarding the way blocks are connected are
implied by Lemma 29.9

8 We stress that if two valid blocks di�er only on the NIZK proof, they are considered the same. Note, that in
both cases the rest of the contents of the blocks are the same.

9A third property, called �prediction,� also introduced in [22], is not needed in our proof as it is captured by the
fact that the ISP is hard even in the presence of adversarial precomputation.
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De�nition 30. An insertion occurs when, given a chain C with two consecutive blocks B and B0,
a block B∗ created after B0 is such that B,B∗, B0 form three consecutive blocks of a valid chain.
A copy occurs if the same block exists in two di�erent positions.

Corollary 31. Let H be a collision-resistant hash functions family. Then, no insertions and no

copies occur with probability 1− negl(λ).

Next, we prove that the adversary cannot mine blocks extending a single chain, with rate and
probability better than that of breaking the iterative hardness property.

Lemma 32. For any set of consecutive rounds R, where |R| ≥ k0/βt
′
A, and for any party P , the

probability that P mined some honest block B during the �rst round of R and ZB(R) ≥ βt′A|R|, is
negl(λ).

Proof. Let R = {i′|i ≤ i′ < i + s} and let E be the event where in view
t,n
ΠnPL(I),A,Z the adversary

has mined at least βt′As blocks until round i+ s that belong to the same chain and descend honest
block B mined by party P at round i. For the sake of contradiction, assume that the lemma does
not hold, and thus the probability that E holds is non-negligible. Using A, we will construct an
adversary A′ that breaks the iterative hardness of I with non-negligible probability.
A′ is going to run internally A and Z, while at the same time simulating the work honest

parties do using the NIZK proof simulator. Moreover, A′ is also going to use the witness malleability
property, to force A produce blocks in a sequence, instead of interleaved adversarial and (simulated)
honest blocks. Finally, using the NIZK extractor, A′ is going to extract the witnesses from the
adversarial blocks, and win the iterative hardness game. By a hybrid argument, we will show that
the view of A,Z is indistinguishable both in the real and the simulated run, and thus the probability
that E happens will be the same in both cases.

Next, we describe the behavior of A′ in more detail. We are going to describe the two stages
of A′ separately, i.e. before and after obtaining x. First, A′1(Λ) sets (Λ, xGen, H,Ω) as the common
input for A and Z, where Ω has been generated using S1 and the rest of the input using the default
samplers, and stores the NIZK trapdoor tk. Then, it perfectly simulates honest parties up to round
i− 1 and at the same time runs A and Z in a black-box way. Finally, it outputs the contents of the
registers of A and Z as variable st. It can do all this, since in the iterated hardness experiment it
has polynomial time on λ on his disposal. Note, that up until this point in the eyes of A and Z the
simulated execution is perfectly indistinguishable compared to the real one.

For the second stage, A′2(st, x), is �rst going to use st to reset A and Z to the same state that
they were. We assume that this can be done e�ciently, e.g., by having A and Z read from the
registers where st is stored whenever they perform some operation on their registers. It will also
continue to simulate honest parties, this time in a more e�cient way.
A′2 takes as input a problem statement x generated from (possibly zero) iterated invocations of

M and S on some randomly sampled input in X, as in De�nition 18. It should somehow introduce
x to the simulated protocol execution, without the adversary noticing any di�erence that could help
him distinguish from the real execution. Let B0 = 〈s0,m0, x0, π0〉 be the block that party P is
extending at round i, and m1 the input it produced using I(·). A′2 is �rst going to run M on input
x for the amount of steps available to P . If it is not successful, it is going to abort. Otherwise, if it
is successful and produces some witnesses w, it will broadcast the following block:

B1 = 〈H(B0),m1, S(x,w), S
H(H(B0),m1,S(x,w))
2 (Ω, (Λ, x0, S(x,w)), tk)〉

where the last component is a simulated NIZK proof for the statement (x0, S(x,w)). Note, that A′2
does not know any witness for this statement, and it is possible that no such witness exists. Later,
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we will argue that the output of the simulator on this input should be indistinguishable from the
output on the statement (x0, S(x0,M(x0))). Also, note that due to the next-problem simuleatability
property, A2 will not be able to tell the di�erence of P running M on x0 or x at this round.
A′2 will follow a more complex strategy to simulate the rest of the honest parties invocations.

For each honest party, it will run the next-problem simulator S and check if the numbers of steps
output is less than the number of steps available on this invocation. If they are not, A′2 will proceed
by just updating the state of this party for the round. Otherwise, it will simulate its' behavior when
being successful, as follows: Let block B∗ = 〈s∗,m∗, x∗, π∗〉 be the block that the honest party was
trying to extend with message m′′ in this round. Let Bj = 〈sj ,mj , xj , πj〉 be the adversarial block
that descends B1 and at the same time the number of adversarial blocks between B1 and Bj is
maximized. Let B′ = 〈s′,m′, x′, π′〉 be the parent of Bj . If no such adversarial block exists, assume
that Bj = B1 and B′ = 〈∅, x, w, ∅〉. A′2 �rsts runs the NIZK extractor EH(Bj)(Ω, ((Λ, x′, xj), πj), tk)
to obtain a witness w′ for x′. Then, it runs Φ(x′, w′) and obtains a new witness w′′ for x′; let
x′′ = S(x′, w′′). Finally, it is going to make A2 believe that the block it has computed extends B∗,

instead of B′, by simulating a NIZK proof as follows: π′′ = S
H(H(B∗),m′′,x′′)
2 (Ω, (Λ, x∗, S(x′, w′′)), tk).

The new block thatA′2 is going to di�use is 〈H(B∗),m′′, x′′, π′′〉. We point to Figure 1 for an example
of the procedure described above.

In the following claim we argue that the view Hsim of the adversary in the simulated run we
just described, is computationally indistinguishable from its view H0 in viewt,n

ΠnPL(I),A,Z .

Claim 1. Hsim
c≈ H0.

Proof. We start by describing a sequence of hybrids:

Hybrid H0: The view of the adversary in viewt,n
ΠnPL(I),A,Z .

Hybrid H1: Same as H0, with the only di�erence being replacing honest parties' calls to P by
calls to S2, and Ω being generated by S1.

Hybrid H1+1 to H1+n·s: In hybrid H1+u·v, we replace the next statement and the NIZK in the
block produced by party u at round v if successful, with a possibly wrong statement and proof
computed as described in the proof above.

By the zero knowledge property of the NIZK proof system it easily follows that H0 is indistinguish-
able from H1; H0 corresponds to the real execution, while H1 to the simulated one.

Next, we will argue that H1+u·v−1 is indistinguishable from H1+(u·v) by contradiction. There
are three cases. In the �rst case, party u at round v is not successful. Obviously, in this case
nothing changes in the view of the adversary, and the two executions are indistinguishable. In the
second case, u = P , v = i and P is successful. Instead of S(x0,M(x0)), the next problem will be
S(x,M(x)), and the NIZK will be changed accordingly. Assuming that the two hybrids are not
indistinguishable, we can construct a PPT distinguisher D that distinguishes (x0, S(X̃m,M(X̃m)))
from (x0, S(x0,M(x0)), where X̃m is the distribution that x is sampled from in the hardness ex-
periment. This is a contradiction, since by the next-problem simuleatability property it follows
that:

(x0, S(X̃m,M(X̃m)))
c≈ (x0,S(Λ))

c≈ (x0, S(x0,M(x0)))

For our �nal case, assume that either u 6= P or v 6= i and u is successful. Similarly, we can arrive
to a contradiction due to the witness malleability property, by the fact that for any x, x′ ∈ X,w′ ∈W
where (x′, w′) ∈ R it holds that:

(x, S(x,M(x)))
c≈ (x,S(Λ))

c≈ (x, S(x′,M(x′)))
c≈ (x, S(x′,Φ(x′, w′)))
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Note also, that the simulated running time, is computationally indistinguishable from the running
time parties take when running M . The claim follows by the fact that H1+n·s is the same as
Hsim. a

Since A and Z cannot distinguish between the real execution and the one we described above, E
will occur with non-negligible probability in Hsim, i.e. A will compute at least βt′As blocks starting
from round i and up to round i+ s that descend B1 and lie on the same chain. By the way honest
blocks are constructed, A′2 knows the witnesses of the honest blocks in this chain, and using the
NIZK extractor it can extract the witnesses of the adversarial ones. Now note that, each adversarial
block extends the statement de�ned by the previous block by 1 witness, while at the same time
each subsequent honest block de�nes a problem statement that lies in a sequence starting from x
and followed by at least as many witnesses as on the previous block. It follows that A′2 can extract
a sequence of valid witnesses of length at least βt′As + 1, and win in the iterative hardness game
with non-negligible probability while taking at most

tH + s · (tA + θ · tV + tE) + s · n(tbb + tnps + tmal + tS) ≤ s · t′A + tH

steps. W.l.o.g. assume that the adversary has computing power at least as big as one party, i.e.,
t′A ≥ tH. Then, A′2 will have computed βt′As+1 ≥ β(s · t′A+ tH) ≥ k0 blocks in s · t′A+ tH steps with
non-negligible probability, which is a contradiction to our initial assumption that I is hard.

B0

B2

B3

B1

B4

x0

x3 x′′

x2
Φ(x,w)

w′
Φ(x′, w′)

x′

w

x

Figure 1: A possible scenario according to Lemma 32. The blocks have been generated in order

B0, B1, B2, B3, B4, withB3 being the only adversarial block. The cases where a valid witness is either

known or can be extracted, and a NIZK proof has either been computed or simulated correspond

to the dotted and normal edges, respectively.

Note that we can do exactly the same reduction without simulating honest parties' work. Then,
the total running time of the second stage of A′ is k0 · (t′A + nt′H)-bounded. Hence, we can derive
the following bound on the longest chain that can be produced by both honest and malicious parties
during a certain number of rounds.

Corollary 33. For any set of consecutive rounds R, where |R| ≥ k0/β(t′A + nt′H), and for any

party P , the probability that P mined some honest block B during the �rst round of R and ZB(R) +
XB(R) > β(t′A + nt′H) · |R|, is negl(λ).

Next, we prove lower bounds on the rate of successful and uniquely successful rounds. Our proof
crucially depends on the runtime independence property of I. Speci�cally, the property implies that
for some set of rounds the sum of the Bernoulli random variables of the event that a round is uniquely
successful, concentrate around the mean. In turn, this implies that we can lower-bound the rate of
uniquely successful rounds with good probability.
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Lemma 34. Let γ = (n− t) · α(1− βtH)n−1, f = (1− (1− α)n−t), and σ ∈ (0, 1). For any set of

consecutive rounds R, with |R| ≥ λ
γσ2 , the following two events occur with negligible probability in

λ:

The number of uniquely successful rounds in R is less than (1− σ
4 )γ · |R|;

the number of successful rounds in R is less than (1− σ
4 )f · |R|.

Proof. For some �xed execution we will denote by the array TR×n = (ti,j) ∈ N|R|×n the number
of steps each honest party takes running M , for each round in the set R. It holds that at most t
elements of each column are zero, i.e. corrupted, and the rest are lower bounded by t′H and upper
bounded by tH. W.l.o.g let R = {1, . . . , s}.

Since this lemma talks about the steps taken by M , we are going to use the almost independent
runtime property of I, and do all the analysis on the mutually independent random variable de�ned
by this property. For the rest of this proof, unless explicitly stated, assume that the StepsM (x)
random variable refers to its idealized mutually independent version. We �rst buildup some notation
to help in our analysis. For Λ[X,W,R] ∈ Iλ and array (xi,j) ∈ Xs×n, let:

� random variable Pi,j = 1 if StepsM (xi,j) ≤ ti,j , and 0 otherwise;

� random variable Yi = 1 if
∑n

j=1 Pi,j = 1, and 0 otherwise.

� random variable Xi = 1 if
∑n

j=1 Pi,j ≥ 1, and 0 otherwise.

� random variable Y =
∑

i∈[s] Yi, X =
∑

i∈[s]Xi.

It easily follows from the Successful property that Pr[Pi,j = 1] ≥ α. Next, we also prove an
upper bound for Pr[Pi,j = 1].

Claim 2. Pr[Pi,j = 1] ≤ tHβ

Proof. For the sake of contradiction, assume that Pr[Pi,j = 1] > tHβ. By the iterative hardness
property, we have that for k ≥ k0, any (1− δ)thard · k-bounded adversary will compute k witnesses
with negligible probability in λ. This implies that the expected number of blocks any such adversary
computes is at most k. By our assumption and the linearity of expectation, the expected number of
blocks the honest solver can mine on the same time is greater than (tHβ) ·(1−δhard)thard ·k/tH = k,
where β = ((1− δhard)thard)−1. This is a contradiction, and the claim follows. a

We continue by showing that the random variables we have de�ned are mutually independent.

Claim 3. The random variable families (Pi,j)i∈[s],j∈[n], (Yi)i∈[s], and (Xi)i∈[s] are mutually inde-

pendent.

Proof. First, notice that the independence of the scheme implies independence of (Pi,j). We will
show this for two random variables and the extension to m variables will be obvious. Let P1, P2 ∈
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(Pi,j)i,j , b1, b2 ∈ {0, 1} and x1, x2 ∈ X then

Pr[P1 =b1 ∧ P2 = b2] = Pr[StepsM (x1) ∈ S1 ∧ StepsM (x2) ∈ S2]

=
∑

(s1,s2)∈S1×S2

Pr[StepsM (x1) = s1 ∧ StepsM (x2) = s2]

=
∑

(s1,s2)∈S1×S2

Pr[StepsM (x1) = s1] · Pr[StepsM (x2) = s2]

=
∑
s1∈S1

Pr[StepsM (x1) = s1] ·
∑
s2∈S2

Pr[StepsM (x2) = s2]

= Pr[StepsM (x1) ∈ S1] · Pr[StepsM (x2) ∈ S2]

= Pr[P1 = b1] · Pr[P2 = b2]

where S1, S2 are either [0, t] or (t,∞). We use the independence property on the third line.
Next, we prove the second point of the claim. Again, w.l.o.g we only show it for 2 random

variables, Y1, Y2 and the extension to m is obvious. Let b1, b2 ∈ {0, 1}, then

Pr[Y1 = b1 ∧ Y2 = b2] = Pr[
∑
j∈[n]

P1,j ∈ S1 ∧
∑
j∈[n]

P2,j ∈ S2]

=
∑

(s1,s2)∈S1×S2

Pr[
∑
j∈[n]

P1,j = s1 ∧
∑
j∈[n]

P2,j = s2]

=
∑

(s1,s2)∈S1×S2

Pr[
∑
j∈[n]

P1,j = s1] · Pr[
∑
j∈[n]

P2,j = s2]

=
∑
s1∈S1

Pr[
∑
j∈[n]

P1,j = s1] ·
∑
s2∈S2

Pr[
∑
j∈[n]

P2,j = s2]

= Pr[Y1 = b1] · Pr[Y2 = b2]

where S1, S2 are {1} or {0, 2, 3, . . .} depending on b1, b2. The same follows for (Xi)i∈[s]. a

Next, we lower bound the expected value of random variables (Yi)i and (Xi)i.

Claim 4. It holds that for any i ∈ R : E[Yi] ≥ γ

Proof.

E[Yi] = Pr[Yi = 1] = Pr[
∑
j∈[n]

Pi,j = 1]

=
∑
j∈[n]

Pr[Pi,j = 1] ·
∏

m∈[n]\{j}

Pr[Pi,m = 0]

≥
∑
j∈[n]

α
∏

m∈[n]\{j}

(1− Pr[Pi,m = 1])

≥(n− t)α(1− tHβ)n−1 = γ

The inequalities follow from the successful and iterative hardness properties. Note, that in order
for E[Yi] to be big, α must be as big as possible and β must be as small as possible. a

Claim 5. It holds that for any i ∈ R : E[Xi] ≥ f
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Proof.

E[Xi] = Pr[Xi = 1] = Pr[
∑
j∈[n]

Pi,j ≥ 1]

=1− Pr[
∑
j∈[n]

Pi,j = 0]

=1−
∏
j∈[n]

Pr[Pi,j = 0]

≥1− (1− α)n−t = f

The inequality follows from the successful property. a

By the linearity of expectation we have that E[Y (R)] ≥ γ|R| and E[X(R)] ≥ f |R|. Since all
variables in (Yi)i and (Xi)i are mutually independent, by an application of the Cherno� Bound we
have that for any σ ∈ (0, 1) it holds that:

Pr[Y (R) ≤ (1− σ

4
)γ|R|] ≤ Pr[Y (R) ≤ (1− σ

4
)E[Y (R)]] ≤ e−Ω(σ2γ|R|)

Similarly, we can show that Pr[X(R) ≤ (1− σ
4 )f |R|] ≤ e−Ω(σ2f |R|).

These results, with only negligible di�erence in probability, follow for the random variables in
the real execution due to the almost runtime independence property and the fact that Y and X are
functions of the random variables referred by this property.

Following the strategy of [22], we are now ready to de�ne the set of typical executions for this
setting.

De�nition 35 (Typical execution). An execution is σ-typical if and only if for any set R of

consecutive rounds with |R| ≥ max{4k0,λ}
γσ2 , the following hold:

1. Y (R) ≥ (1− σ
4 )γ|R| and X(R) ≥ (1− σ

4 )f |R|;
2. for any block B mined by an honest party at the �rst round of R, ZB(R) ≤ βt′A · |R| and

ZB(R) +XB(R) ≤ β(t′A + nt′H) · |R| ; and
3. no insertions and no copies occurred.

Theorem 36. An execution of ΠnPL is σ-typical with probability 1− negl(λ).

Proof. In order for an execution to not be typical one of the three points of De�nition 35 must
not hold. For any set of rounds R, such that |R| ≥ max{4k0,λ}

γσ2 , it holds that point 1 is implied by
Lemma 34 and point 2 is implied by Lemma 32 and Corollary 33. Lastly, point 3 is implied by
Corollary 31. Hence, we can bound the probability that an execution is not typical by applying the
union bound on the negation of these events over all sets of consecutive rounds of appropriate size.
By the fact that the probability of each of these events is negligible in λ, and that the number of
the events is polynomial in λ, the theorem follows.

As protocol designers, our goal is to be able to tolerate t′A's that are as large as possible. On the
other hand, our proof strategy is going to be based on the fact that the rate of uniquely successful
rounds doubles the rate at which the adversary produces blocks. The tension between these two
separate goals is manifested in Assumption 1 (Computational Power Assumption). The next lemma
exactly highlights this implication.
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Lemma 37. For any set of rounds R in a typical execution, where |R| ≥ max{4k0,λ}
γδ2 , and for any

block B mined by an honest party during R, it holds that ZB(R) ≤ (1− δ
4)Y (R)

2 .

Proof.

ZB(R) ≤ βt′A · |R| ≤
1

2
· 1

1 + δ
γ|R| < (1− δ

4
)
Y (R)

2

The �rst and the last inequality follow from the assumption that the execution is typical. The
middle inequality follows from Assumption 1.

We can now use the machinery built in [22] to prove the common pre�x, chain quality and chain
growth properties, with only minor changes.

Higher level properties. The notion of a typical execution is at the core of the proof of security
of Bitcoin in [22]. Next, we describe the changes one has to do after proving the typical execution
theorem with respect to the analysis of [22], in order to prove the security of the protocol in our
model. We only give brief proof sketches of lemmas and theorems from [22] that are exactly the
same for our own setting.

Lemma 38. (Chain-Growth Lemma). Suppose that at round r an honest party has a chain of length

`. Then, by round s ≥ r, every honest party has adopted a chain of length at least `+
∑s−1

i=r Xi.

Proof. The main idea of the proof of this lemma is that, after each successful round at least one
honest party will have received a chain that is at least one block longer than the chain it had, and
all parties pick only chains that are longer than the ones they had.

Theorem 39. (Chain-Growth). In a typical execution the chain-growth property holds with param-

eters τ = (1− σ
4 )f and s ≥ max{4k0,λ}

γσ2 .

Proof. Let R be any set of at least s consecutive rounds. Then, since the execution is typical:
X(R) ≥ (1− σ

4 )f · |R| ≥ τ · |R|. By Lemma 38, each honest player's chain will have grown by that
amount of blocks at the end of this round interval. Hence, the chain growth property follows.

Lemma 40. Let B be some honest block in a typical execution. Any sequence of k ≥ max{4k0,λ}
γδ2 (γ+

βnt′H) consecutive blocks in some chain C, where the �rst block in the sequence directly descends B,
have been computed in at least k/(γ + βnt′H) rounds, starting from the round that B was computed.

Proof. For some k ≥ max{4k0,λ}
γδ2 (γ + βnt′H), assume there is a set of rounds R′ , such that |R′| <

k/(γ + βnt′H), and more than k blocks that descend block B have been computed. Then, there

is a set of rounds R, where |R| ≥ max{4k0,λ}
γδ2 , such that XB(R) + ZB(R) ≥ k ≥ |R|(γ + βnt′H) ≥

|R|β(t′A + nt′H). This contradicts the typicality of the execution, hence the lemma follows.

Lemma 41. (Common-pre�x Lemma). Assume a typical execution and consider two chains C1

and C2 such that len(C2) ≥ len(C1). If C1 is adopted by an honest party at round r, and C2 is

either adopted by an honest party or di�used at round r, then Cdk1 ≤ C2 and Cdk2 ≤ C1, for k ≥
max{4k0,λ}

γδ2 (γ + βnt′H).

Proof. The proof in [22] shows that for every block mined at a uniquely successful round, there
exists an adversarial block in one of the two chains. This in turn implies that one of the two chain
has a number of adversarial blocks that is at least as big as half the number of uniquely successful
rounds. Using the previous lemma the proof proceeds as in [22], reaching a contradiction with
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Lemma 37. Note, that all adversarial blocks in the matching between uniquely successful rounds
and adversarial blocks are descendants of the last honest block in the common pre�x of C1 and
C2.

Theorem 42. (Common-pre�x). In a typical execution the common-pre�x property holds with

parameter k ≥ max{4k0,λ}
γδ2 (γ + βnt′H).

Proof. The main idea of the proof is that if there exists a deep enough fork between two chains,
then the previously proved lemma cannot hold. Hence, the theorem follows.

Theorem 43. (Chain-Quality). In a typical execution the chain-quality property holds with param-

eter µ < 1− δ/4 and ` ≥ max{4k0,λ}
γδ2 (γ + βnt′H).

Proof. The main idea of the proof is the following: a large enough number of consecutive blocks will
have been mined in a set rounds that satis�es the properties of De�nition 35. Hence, the number
of blocks that belong to the adversary will be upper bounded, and all other blocks will have been
mined by honest parties.

Finally, the Persistence and Liveness properties follow from the three basic properties, albeit
with di�erent parameters than in [22].

Lemma 44. (Persistence). It holds that ΠnPL(I) with k = max{4k0,λ}
γδ2 (γ+βnt′H) satis�es Persistence

with overwhelming probability in λ.

Proof. The main idea is that if persistence is violated, then the common-pre�x property will also
be violated. Hence, if the execution is typical the lemma follows.

Lemma 45. (Liveness). It holds that ΠnPL(I) with k = max{4k0,λ}
γδ2 (γ + βnt′H) and u = 2k

(1− δ
4

)f

rounds satis�es Liveness with overwhelming probability in λ.

Proof. The main idea here is that after u rounds at least 2k successful rounds will have occurred.
Thus, by the chain growth lemma the chain of each honest party will have grown by 2k blocks,
and by the chain quality property at least one of these blocks that is deep enough in the chain is
honest.

Using these properties we prove that protocol ΠnPL(I) implements a robust transaction ledger.
Note that both Persistence and Liveness depend on the convergence parameter k0 of I.

Theorem 46. Assuming the existence of a common reference string, a collision-resistant hash

function family, a one-way trapdoor permutation and a dense cryptosystem (for the NIZK), an

enhanced ISP problem I, and model parameters {n, t, tH, tA, θ} that comply with Assumption 1,

protocol ΠnPL(I) implements a robust public transaction ledger with parameters k = max{4k0,λ}
γδ2 (γ +

βnt′H) and u = 2k
(1− δ

4
)f
, except with negligible probability in λ.

4.3 A candidate enhanced ISP

We now present an ISP problem that is plausibly hard against precomputation (De�nition 18), and
satis�es all other properties of an enhanced ISP (De�nition 28).

Construction 1. Let Hd be collision resistant hash function family, parameterized by d ∈ N, and
T ∈ {0, 1}λ be some hardness parameter. An instance of an enhanced ISP is as follows:
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Iλ is the uniform distribution over functions H : {0, 1}(d+1)λ → {0, 1}λ in Hd, i.e., Λ = {H};
X = {0, 1}λ,W = {0, 1}2dλ;
R = {(x,w)|H(x||w1) < T for w = w1||w2};
M(x) iteratively samples w1 from Udλ, and tests whether H(x||w1) < T , until it �nds a solution.
Then, it samples a uniformly random w2 from Udλ, and outputs w1||w2.

S(x,w) = H(H(x||w1)||w2).

Construction 1 is similar to Bitcoin's PoW construction (see Section 3.2), with the following
di�erences. The �rst is that, in our construction H(x||w1) is required to be smaller than the
hardness parameter T , while in Bitcoin H((x||w1)||w2) is expected to be small, where w1 there is
the hash of some message. This change allows a party who already knows a witness (w1, w2) for
some statement, to produce a new one by changing w2 arbitrarily. The second di�erence is that
each time M tests a new possible witness, w1 is sampled randomly, instead of just being increased
by one, as in Bitcoin. This will help us later on to argue that each test succeeds with probability
T/2λ. Obviously, if used in �native� Bitcoin this construction is totally insecure, as by the time
some honest party publishes a block, anyone can compute another valid block with minimal e�ort.
However, it is good enough for our new protocol, where the witnesses are not exposed, and thus
only a party who knows a witness can generate new witnesses for free. Next, we argue about the
security of the construction.

Regarding iterated hardness, to our knowledge no reductions exist (yet) of iterative hardness to
weaker assumptions in the standard model. We argue the plausibility of our construction being hard
against precomputation, by the fact that Construction 1 is based on Bitcoin's ISP construction, for
which no attacks are known.

Regarding the additional security properties that make up an enhanced ISP, assuming H is
a randomness extractor, all properties presented in Section 4.1 are satis�ed. First, the fact that
H(x||w1) is statistically indistinguishable from uniform, for any x ∈ X, implies the runtime inde-
pendence property. By the same argument, the solver M succeeds in each test with probability
T/2λ independently of the previous tests. This implies that the running time of the solver can be
simulated and is independent of the input x. Further, a lower bound on the probability of success
after any number of steps can be computed, as required by the successful property. Finally, since
w2 is also chosen uniformly at random, the next problem produced by S will also look uniformly
random, which implies the next-problem simulatability property, and by resampling w2 uniformly
at random, the witness malleability property also follows. We are thus able to state:

Lemma 47. Let E : {0, 1}(c+1)λ × {0, 1}(d−c)λ → {0, 1}λ, where E(x, i)
4
= H(x||i), the hash

function used in Construction 1, and c ∈ [1, d]. If E is an (cλ, negl(λ))-extractor, then Construc-

tion 1 is almost runtime independent, O(λ)-next-problem simulatable, O(λ)-witness malleable, and

(t, CT/2λ(O(t)))-successful for any t ∈ poly(λ), where CT/2λ is the cumulative geometric distribution

with parameter T/2λ.

Proof. Fix some x1, . . . , xm ∈ X, for m = poly(λ), and de�ne the following random variables:
Zxi = E(xi||Ucλ,U(d−c)λ), Yi = Uλ. Since E is a (cλ, negl(λ))-extractor, and xi||Ucλ has cλ bits
of entropy, it follows that ∆[Zxi , Yi] ≤ negl(λ). Moreover, by de�nition the random variables
{Zx1 , . . . , Zxm , Y1, . . . , Ym} are mutually independent. By a hybrid argument, this implies that

∆[(Zx1 , . . . , Zxm), (Y1, . . . , Ym)] ≤ negl(λ)

Now, assume that (x1, . . . , xm) are sampled instead by some distribution X̂ , as it will be the case in
an actual execution, and let (X̂1, . . . , X̂m) be the random variable produced by �rst sampling from
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X̂ , and the applying E(·||Ucλ,U(d−c)λ) for each xi. It holds that

∆[(X̂1, . . . , X̂m), (Y1, . . . , Ym)] ≤ max{∆[(Zx1 , . . . , Zxm), (Y1, . . . , Ym)]}(x1,...,xm)∈Xm ≤ negl(λ)

Algorithm M on input x, iteratively samples a uniformly random w1||w′1 from Ucλ × U(d−c)λ,
and tests whether H(x||w1||w′1) = E(x||w1, w

′
1) < T , until it �nds a solution. The number of steps

that M takes, is thus a function of (Zx1 , . . . , Zxm), for x1 = . . . = xm = x and m ∈ poly(λ). If at
each step M tested whether a value sampled from Uλ is smaller than T , its' running time would be
distributed according to the geometric distribution Gp with parameter p = T/2λ. By our arguments
above, the statistical distance of StepsM (x) from c1 · GT/2λ + c2 should be negligible close, where c1

is a small constant related to the cost of sampling a random value for each test and evaluating E,
and c2 to the cost of sampling w2. As before, we can extend this result to multiple random variables
with inputs sampled under some distribution X̂ , i.e.,

∆[(StepsM (X̂1), . . . , StepsM (X̂m)), (c1 · GT/2λ + c2, . . . , c1 · GT/2λ + c2)] ≤ negl(λ)

Hence, the runtime independence property follows.
Next, note that M , after �nding a small hash, it hashes again the result with a fresh randomly

sampled string w2. By the extractor property, it is implied that for any x ∈ X

∆[S(x,M(x)),Uλ] =∆[E(E(x||Ucλ,U(d−c)λ)||Ucλ,U(d−c)λ),Uλ]

≤max{∆[E(x′||Ucλ,U(d−c)λ),Uλ]}x′∈X ≤ negl(λ)

Hence, for the simulator S that outputs a randomly sampled pair from Uλ and c1 · GT/2λ + c2, M
satis�es the next-problem simuleatability property. Note, that using the inverse transform technique,
we can sample from the geometric distribution (truncated to 2λ) in O(λ) steps.

The witness malleability property holds if we assume that Φ(x, (w1, w2)) returns the witness
(w1, w

′
2), where w′2 is sampled uniformly at random. Again, S(x,Φ(x, (w1, w2))) will be indistin-

guishable from uniform.
Finally, the probability that for any input x, M(x) outputs a witness after t steps, is negligibly

close to the probability that the output of the geometric distribution is smaller or equal to t−c1
c2

=
O(t). Hence, our scheme satis�es the successful property.
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