
Theory and application of computationally
independent one-way functions:

Interactive proof of ability - Revisited

Sabyasachi Dutta? and Kouichi Sakurai

Faculty of Information Science and Electrical Engineering,
Kyushu University

saby.math@gmail.com,sakuraicsce2009g@gmail.com

Abstract. We introduce1 the concept of computationally independent
pair of one-way functions (CI-OWF). We also provide two rich classes of
examples of such functions based on standard assumptions. We revisit
two-party interactive protocols for proving possession of computational
power and existing two-flow challenge-response protocols. We analyze
existing protocols for proof of computation power and propose a new two-
flow protocol using CI-OWF based on square Diffie-Hellman problem.

Keywords: one-way functions, zero knowledge proof, computational indepen-
dence, proof of computation ability.

1 Introduction

1.1 Background

Interactive proof systems were developed by Goldwasser et al. [15] to prove mem-
bership in a language. In such a system, a prover and a verifier interacts so that
at the end of the protocol the prover convinces the verifier (with overwhelming
probability) that indeed the input is a member of some prefixed language. A
zero-knowledge interactive proof between a prover and a verifier was introduced
to capture the scenario that after the interaction, the verifier is convinced of
the fact that the input belongs to a language but gains no more knowledge.
Later, zero-knowledge proof of knowledge was introduced in which a polynomial-
time prover not only proves membership in a zero knowledge manner but also
provides evidence of the fact that he really possesses/knows a witness for some
predicate about the input. Feige et al. [11] and Tompa et al. [28] gave formal
definitions and implementations of a zero-knowledge (interactive) proof of knowl-
edge system. However, what we are interested in this paper is not exactly the
knowledge/possession of witness for proving a statement but to “prove the abil-
ity to perform a computational task”. Such a scenario was first considered by
Yung [30] and Koyama [20] independently and later by Bellare et al. [4].

? S. Dutta is financially supported under the NICT International Exchange Program.
1 This article was accepted & presented at the International Conference on Mathe-

matics & Computing (ICMC 2019)



1.2 Motivation

Suppose a prover wants to prove that it has the power to “invert” a one-way
function f : D −→ R (may or may not be trapdoor). One intuitive example is
to consider an asymmetric encryption scheme in which the prover may or may
not have the secret key. However, the prover does not want to reveal the secret
algorithm that he has found to break the scheme. A verifier wanting to judge
the veracity of the claim may query the prover with a value y = f(x) ∈ R with
a randomly chosen x ∈ D. The prover can invert y to find a value x′ such that
y = f(x′). One important thing to note is that it may be possible that the
prover has an algorithm where the functionality is hard-wired and he only gets
to invert f on inputs of his choice. On the other hand, while proving to a verifier
the prover must not reveal such an x′ (non-triviality).

1.3 Related Work

Initial two works [30, 20] are along the same line. Both of them considered the sce-
nario when someone possesses some extraordinary power to solve a hard problem
and he wants to “prove this ability” to a verifier. Yung [30] considered the power
to solve integer factorization and gave a “zero-knowledge proof of computational
ability” protocol by using two zero-knowledge proof of knowledge protocols as
subroutines. The author also gave a protocol for proving computational power
for “samplable verifiable” problem by using two perfect zero-knowledge proof
protocols as subroutines. The techniques are novel which help to extend “proofs
of knowledge” to “proofs of proving computational power” but the complexity
of the protocols are very high. Later Bellare et al. [4] formalized the idea and
provided theoretical constructions.
On the other hand Koyama [20] proposed a novel idea to prove “directly” the
computational power that a prover possesses. He proposed protocols with only
two flows of message transfer between a prover and a verifier which rapidly de-
creased the cost of the protocol. On the downside, the protocols remain no longer
zero-knowledge protocols as claimed by the author. However, the idea of reduc-
ing communication complexity just by using two flows of message transfer was
novel. Similar idea was also considered by Stinson et al. [27] to build an efficient
zero-knowledge identification protocol. Their scheme is secure in the random
oracle model and is based on non-standard “knowledge of exponent” problem
and standard computational Diffie-Hellman problem. Some more works [1, 29]
followed the idea of Koyama [20] in different scenarios.

Our Contribution

We first revisit Koyama’s protocol in Section 3 which acts as a motivation to our
work. We analyze the protocols and show some flaws. We then introduce notion of
computationally-independent one-way functions (CI-OWF) which can be useful
to construct interactive protocols for proving computational power. We argue
that since in a two-flow message transfer protocol achieving “zero-knowledge” is



impossible [12], one has to make a trade-off between the level of security and cost
of communication. With moderate and practical security, one can build proof of
computational ability using CI-OWF. Moreover, all the existing works consider
scenarios like “inverting a one-way function” to be a hard problem and the
prover has the power to invert. But there can be hard computational problems
which may not require inversion of one-way functions e.g., computational Diffie-
Hellman Problem. Studying a pair of one-way functions as a building block for
constructing cryptographic protocols is not new. The work of Goldwasser et al.
[16] constructs a pair of claw-free one way functions to build general signature
schemes. Later the concept was studied in [8, 10, 21, 26].

2 Preliminaries

We mention some basic results that will be needed in the paper.

Variants of Diffie-Hellman Problem

Let us recall the some relevant notions required for our work. Let G be a cyclic
group of order n and generator g. The two well-known “hard” problems are the
following:

– The Discrete Logarithm Problem(DLP): On input g, gx ∈ G, compute
x ∈ Zn.

– The Computational Diffie-Hellman Problem(CDH): On input g, gx, gy ∈
G with x, y ∈ Zn, compute gxy.

It is not hard to see that if an adversary is able to solve DLP then he can also
solve CDH, i.e., DLP =⇒ CDH. The converse has been shown to hold for some
cases [6, 22] but in general, it is yet to be proved that the problems are indeed
equivalent. Numerous cryptographic primitives have been developed based on
the DLP and CDH assumptions. Chaum et al. [7] gave a “proof-of-possession” of
discrete logarithm in a zero-knowledge manner. In their work they have provided
a protocol which enables a prover to convince a verifier that he really possesses
discrete log without actually revealing the value to the verifier.

Maurer and Wolf [23] defined various types of CDH oracles and proved their
equivalence. One of the interesting type is called square Diffie-Hellman problem
(SDHP) where the corresponding oracle returns gx

2

when given inputs g and
gx. Bao et al. [2] proved the equivalence of CDH and SDH when the underlying
group is of prime-order. Many more variations of CDH and their connections to
DLP have been studied in the literature. For example, l-weak DHP [24], square
root DHP (SRDHP) [19], equivalence between SDHP and SRDHP [25], to name
a few. In the following we clearly state the problems that are needed in this
work.

– The Square DH Problem(SDH): On input g, gx ∈ G, compute gx
2

.



– The Square root DH Problem(SRDH): On input g, gx ∈ G, compute y

such that gy
2

= gx.

– The l-weak DH Problem(l-wDH): On input g, gx, . . . , gx
l ∈ G, compute

gx
l+1

.

3 Revisiting the protocols of Koyama [20]

Koyama [20] considered a scenario where a cryptanalyst wants to convince a
potential buyer that the former has indeed invented an efficient code-breaking
algorithm without actually revealing the algorithm to the buyer. To be more
precise, suppose a cryptanalyst has found an efficient algorithm to break an en-
cryption scheme (Enc,Dec) completely. So, given any ciphertext c = E(m) he
is able to find the underlying message m. Now the cryptanalyst acts as a prover
and a potential buyer acts as a verifier. The main goal of the prover is to demon-
strate the breaking of the cryptosystem without revealing any knowledge about
the algorithm and the message m to the verifier. Therefore, basic requirements of
such a secure demonstrating protocol are as follow: it must be “non-cheatable”
and revealing no knowledge. Formally, the protocol must be:

1. (Complete) if the proof is correct then the verifier should accept prover’s
claim with probability 1.

2. (Sound) if the proof is incorrect then verifier should reject prover’s claim
with overwhelming probability.

3. (zero-knowledge) the proof does not yield knowledge such as value of m and
the code-breaking method.

Based on the above requirements described in [20], the author built two protocols
to securely and directly demonstrate the possession of code-breaking algorithm
by a cryptanalyst to a potential buyer. First protocol corresponds to breaking
the RSA cryptosystem and the second protocol corresponds to solving the DLP
on a cyclic group.

The idea of Koyama was to decompose the underlying encryption function
Enc into two one-way functions f and g such that Enc(m) = gof(m). Writing
the encryption function in this cleverly manner, a generic protocol (Algorithm
1) was given (Protocol 1 in [20]):

This above mentioned general form of protocol relies primarily on the follow-
ing three requirements:
(i) f, g are both one-way functions, (ii) computing f−1 is no easier than com-
puting E−1 and (iii) g−1 is computationally no easier than computing E−1.

Based on the requirements and observations Koyama gave the following pro-
tocol (Algorithm 2) for the discrete logarithm problem. The prover wants to
demonstrate the power of solving DLP to a verifier. Let G be a cyclic group of
order n with g as one of the generators.

Koyama gave another protocol (Algorithm 3) to demonstrate the power of a
prover that he can attack RSA cryptosystem.



Algorithm 1 General Form of Direct Protocol [20]

1: procedure Agreement between Prover & Verifier
2: Prover and Verifier agree on functions Enc, f, g such that Enc(m) = g(f(m)).
3: Prover and Verifier share a random input C in the ciphertext space.

4: procedure Computation by Prover
5: Prover computes m from C using his efficient attacking method as m = E−1(C).
6: Prover computes P = f(m) easily and sends P to the Verifier.

7: procedure Verification by the Verifier
8: Upon receiving P , Verifier checks g(P ) = C or not.
9: If equality holds then the Verifier accepts the claim that Prover can break the target

public-key cryptosystem. Otherwise, the Verifier rejects.

Algorithm 2 Direct Protocol for DLP [20]

1: procedure Agreement between Prover & Verifier
2: Prover and Verifier agree on base value g and modulus n.
3: Prover and Verifier share a random input C ∈ G.

4: procedure Randomness chosen by Verifier
5: Verifier randomly generates R relatively prime to n− 1.
6: Computes S such that RS = 1 mod(n− 1).
7: Computes k = gR and sends k to the Prover.

8: procedure Computation by the Prover
9: Prover uses his efficient algorithm to compute m such that gm = C.

10: Computes P = km and sends P to the Verifier.

11: procedure Verification by the Verifier
12: Verifier computes PS and checks PS = C or not.
13: If equality holds then the Verifier accepts. Otherwise, the Verifier rejects.

Algorithm 3 Direct Protocol for RSA [20]

1: procedure Agreement between Prover & Verifier
2: Prover and Verifier agree on public key e = km, k,m ≥ 3 and RSA modulus n

(whose factorization is unknown to both).
3: Prover and Verifier share a random input C ∈ {0, 1, . . . , n− 1}.
4: procedure Computation by the Prover
5: Prover uses his efficient algorithm to compute M from (c, e, n) such that Me = C.
6: Computes P = Mk mod n and sends P to the Verifier.

7: procedure Verification by the Verifier
8: Verifier computes Pm and checks Pm = C or not.
9: If equality holds then the Verifier accepts. Otherwise, the Verifier rejects.



4 Analysis of Koyama’s Protocols

We show some flaws present in Koyama’s direct protocols. Both the protocols
do not satisfy conditions for zero-knowledge. We further claim that the protocol
for the DLP is not sound. That is, a cheating prover is always able to make an
honest verifier accept. In this regard, we again mention that solving DLP implies
solving CDH but the converse is yet to be proved as true. Although there are
a number of works [6, 22] that shows evidence to the fact that possibly CDH
and DLP are equivalent, but it is not proved for all cyclic groups. An adversary
attacking CDH problem is thus less powerful adversary.
Suppose A is an adversary who is able to solve CDH problem and not DLP. The
adversary A can cheat an honest verifier into making him believe that A has the
power of solving DLP in the following manner:

1. After receiving k = gR from the verifier (line 7 of Algorithm 2), A possesses
(g, C = gm, k = gR).

2. A computes gmR ←− (g, gm, gR) using his algorithm to solve CDHP.
3. A sends gmR to the verifier who then computes (line 12 of Algorithm 2)

(gmR)S = gm = C.
4. Since the equality holds, the verifier accepts (line 13 of Algorithm 2).

We now have the following theorem.

Theorem 1. The protocol (Algorithm 2) for DLP does not satisfy the soundness
property. Hence, the protocol is not secure.

Remark 1. We want to make a remark at this point that although we have shown
that there is a direct attack to Koyama’s protocol for DLP, the protocol is also
not a zero-knowledge protocol. The verifier comes to know about a S-th root of
a randomly chosen element C of G.

Theorem 2. The protocol (Algorithm 3) for RSA is not secure. More specifi-
cally, the protocol lacks zero-knowledge property.

Proof. We simply note that the scheme is not zero-knowledge, as claimed by
Koyama [20]. The verifier gets a random m th root of C, which makes the
scheme insecure even against an honest verifier.

We conclude that, Koyama’s “zero-knowledge” requirement is not exactly
the same as standard zero-knowledge requirement. It is but a loose version of
the standard one. The main requirement was not to leak the message m and to
keep the design of the attacking algorithm completely hidden.

5 Computationally-independent one way functions

Building cryptographic tools on the basis of existence of two one-way functions is
not new in the literature. Goldwasser et al. [16] considered claw-free permutations



to build signature schemes resisting chosen-message attack. Later, Damgard [8]
constructed collision-free hash functions based on the claw-free permutations
and Russell [26] showed existence of collision-free hash functions is equivalent
to the existence of claw-free pairs of pseudo-permutations. Krawczyk et al. [21]
provided non-interactive trapdoor commitments based on claw-free permutations
and lastly, Dodis et al. [10] showed that claw-free pair of permutations deliver
more security than trapdoor permutations when building full-domain hash like
signature schemes.

We begin with a proposal to defining computationally-independent one-way
functions drawing motivation from Koyama’s work and justify the reasons be-
hind it. Our aim is also to define a pair of one-way functions based on which
a moderately secure “proof of computational power” can be built leaking only
minimal amount of information.

5.1 On the definition of computationally-independent one way
function

Definition 1. A pair of one-way functions f, g is called computationally-independent
one way functions if they satisfy the following two conditions

– (CI-a) The function H(x) = (f(x), g(x)) is still one-way.
– (CI-b) Given f(x0) for randomly chosen x0, it is hard to compute g(x0) and

given g(y0) for randomly chosen y0, it is hard to compute f(y0).

In the above definition the first condition viz. (CI-a) ensures the fact that nothing
about the input is revealed when both the functional outputs are obtained, which
is a basic requirement. This condition is called the one-wayness of the pair. The
second condition guarantees the computational independence of the functions
i.e. it is hard to compute one function given the output of the other function.
To understand the necessity of the second condition let us consider the following
example.

Example 1. Let us choose the functions f(x) = x2 mod n and g(x) = x4 mod n,
where n = pq is a product of two large safe primes so that we are in a RSA
group. Now we can see that (CI-a) is automatically satisfied because computing
a pre-image would be equivalent to finding integer square root modulo n which
is widely believed to be a hard problem. However, computing g(x) from f(x)
is easy and when intended to be applied as a proof of work/computing power
protocol, a cheating verifier can easily fool an honest verifier.

Remark 2. We point out that the two conditions (CI-a) and (CI-b) are indepen-
dent. One does not imply the other. In Example 1 we see that although (CI-a)
holds, (CI-b) does not hold true. Therefore, (CI-a) does not imply (CI-b). To
see that the reverse implication is also false we consider the following Example
2.

Example 2. Let us consider the functions f(x) = x2 mod n and g(x) = x3 mod n
where n is a product of two large safe primes. It is easy to see that given a



randomly chosen input x0 ∈ Z∗n it is easy to compute f(x0) and g(x0) both.
Individually, they are one-way. Given the value of one function it is hard to
compute the value of the other one. For example, if one can efficiently find the

value of (g(x0)) from x20 then by division
x3
0

x2
)

yields x0 and thus there exists

an efficient algorithm to extract integer square roots modulo n. Similarly, the
hardness of computing f(x) from g(x) follows. But given the value H(x0) =
(f(x0), g(x0)), it is easy to compute the pre-image x0 by simply dividing g(x0)
by f(x0). Thus the function H is not one-way anymore.

We now give two examples of family of computationally-independent one-way
functions based on RSA problem and variants of Diffie-Hellman problems.

Example 3. Let us consider the family of functions with RSA modulus n = pq,
F = {x2 mod n, x3 mod n, . . . , xs mod n, . . .}. Let us choose the functions
f(x) = x4 mod n and g(x) = x6 mod n from the above family F . Now we can
see that (CI-a) is satisfied because from x4 mod n and x6 mod n one can compute
x2 mod n, but producing a pre-image is as hard as finding a square root in the
RSA group. The idea of the proof is as follows:
Suppose there is an adversary A who can successfully break the one-wayness of
H(x) = (x4 mod n, x6 mod n). We can now construct an adversary B having
an oracle access to A to solve the problem of finding square root. B is given a
quadratic-residue y in the RSA group and is asked to find a square root of it.
B computes (y2, y3) and passes the tuple to A. B outputs the number that he
receives from A. The success probability of B is equal to the success probability
of A.

Now it is easy to prove that computing g(x) from f(x) is hard. An adversary
who can break the above hardness with non-negligible success probability ε can
be used as an oracle to compute square root an element with success probability
roughly ε

4 . Also, computing f(x) from g(x) is hard because if one can compute
f(x) from g(x) then he can actually extract cube root of x6.

We can now state the following two theorems.

Theorem 3. Let F = {xk mod n}k≥2 denote a family of one-way functions
over Z∗n with RSA modulus n = pq, where p, q are two large safe primes of same
size. Let f(x) = xs mod n and g(x) = xt mod n be two functions from the family
such that gcd(s, t) = d > 1 and neither s divides t nor t divides s. Then the pair
(f(x), g(x)) gives computationally-independent one-way functions.

Proof. Since gcd(s, t) = d > 1, let us write s = dm1 and t = dm2 where
m1,m2 > 1 are two integers.
Let us first prove that the function H(x) = (f(x), g(x)) is still one-way. We will
show that if there is an adversary A who can invert H(x) with a non-negligible
probability then there is an adversary B with oracle access to A can solve d-
th root problem in the RSA group. Suppose a challenger C chooses a random
element r from Z∗n, computes rd = y and sends y to B to find a d-th root of y.
B computes (ym1 , ym2) and queries the pair to A. If A outputs r′ then B also



outputs the same number. It can be easily seen that the success probability of
B of finding a d-th root is also non-negligible.

To prove the second condition, i.e. the computational independence we ob-
serve that computing g(x) = xt from f(x) = xs is equivalent to extracting a
m1-th root of xs and conversely, computing f(x) = xs from g(x) = xt is equiv-
alent to extracting a m2-th root of xt.

This completes the proof.

Theorem 4. Let F = {xk mod n}k≥2 denote a family of one-way functions
over Z∗n with RSA modulus n = pq, where p, q are two large safe primes of same
size. Any two functions xa mod n and xb mod n from the family such that a, b
are relatively prime fails to be a pair of computationally-independent one-way
functions.

Proof. As a, b are relatively prime therefore one can efficiently find, using Eu-
clid’s algorithm, two integers u, v such that ua + vb = 1. Thus, finding x from
xa mod n and xb mod n becomes easy using the identity (xa)u + (xb)v = x.
Hence (CI-a) does not hold.

Another result that is based on the computational square Diffie-Hellman
Problem is stated below.

Theorem 5. Let G be a cyclic group of order p and generator g. Let f, h be two
functions defined by f(x) = gx and h(x) = gx

2

for all x ∈ Z∗p. Then the pair
(f(x), h(x) gives a computationally-independent pair of one-way functions.

Proof. The one-wayness of H(x) = (f(x), h(x)) follows from hardness of solving
the l-weak DHP (see Section 2). Since g is a generator of the cyclic group G,
the function gx where x ∈ {0, 1, . . . , p− 1} is an injective function. Thus there is

only one x which satisfies the tuple (g, gx, gx
2

, gx
3

). Therefore an adversary who
can find a pre-image of H(x) will be able to solve 2-weak DHP.
As for (CI-b), it is not very hard to see that computing h(x) from f(x) is the
SDH problem and the converse is at least as hard as SRDH (see Section 2).

5.2 On Leakage of information from CI-OWF

So far we have discussed the definition of computationally-independent one-way
functions and gave two rich classes of examples. In this section, we discuss on
the amount of information leaked (about the input) from the pair (f(x), g(x)),
where f(x) and g(x) are CI-OWF. The condition (CI-b) in Definition 1 requires
that computing the value of f(x) (resp. (g(x))) from g(x) (resp. (f(x)) is hard.
Therefore, when both the values are available, it is rather expected to have
some non-trivial knowledge about x. From the output values one can compute
every efficiently computable function with input (f(x), g(x)). We ask the most
important question: how much leakage about the input x is observed from the
values f(x) and g(x)?

From the condition (CI-a) of Definition 1 the leakage cannot be x itself or
something from which it is easy to derive x. Thus the leakage can be thought as
the output of some one-way leakage function L when evaluated at x, i.e., L(x).



Theorem 6. The leakage obtained from f(x) = xs mod n and g(x) = xt mod n
satisfying all the conditions of Theorem 3 can be written as L(x) = xd mod n
where d is the greatest common divisor of s and t.

Proof. The proof follows from the fact that d can be written as d = us + vt, a
linear combination of s, t using Euclid algorithm where u, v are integers.

Theorem 7. The leakage obtained from f(x) = gx and h(x) = gx
2

satisfying
all conditions of Theorem 5 can be written as L(x) = gQ(x), where Q(x) is a
quadratic polynomial in x.

Proof. Observing g, gx, gx
2

one can choose a, b, c ∈ {0, 1, . . . , p − 1} and can

compute gc.(gx)b.(gx
2

)a = gax
2+bx+c.

6 Protocol for proving ability

In this section we discuss two-flow protocols (one challenge from the verifier and
one response from the prover) for proving computational ability with the help
of CI-OWF (f, g). One fully secure way to implement a protocol is to follow the
footsteps of Yung [30]. However, we are interested in two-flow protocols.
The broad idea for constructing such protocols is as follows: the verifier sends a
challenge in the form of f(r) to the prover and prover responds back with g(r).
This way the prover establishes the fact that he has computational power to solve
the “hard” problem of computing g(r) from f(r), where r is chosen randomly
by the verifier. We note that it includes the scenario of “the power of inverting
f” (which was the original motivation for defining proof of ability [20, 30]) as
well as “the power to extract g(r) from f(r) without explicitly computing r”
capturing a notion of malleability.

We now describe modifications of Koyama’s protocols to convert them into
two-flow protocols assuming an honest verifier. We modify our requirements for
the protocols as follows:

1. (Completeness) if the proof is correct then the verifier should accept prover’s
claim with probability 1.

2. (Soundness) if the proof is incorrect then verifier should reject prover’s claim
with overwhelming probability.

3. (privacy) the proof does not reveal the input r (to an eavesdropper or a
dishonest verifier) and the “powerful” algorithm remains completely hidden.

We have already shown that the protocol of Koyama for DLP (Algorithm 2) is
not sound. We propose the following protocol based on the hardness of Square
DH (SDH) problem. Note that in a prime order group CDH problem and SDH
problem are equivalent [2]. We recall that SDH assumption says that given g

and gx it is hard to compute gx
2

, where x is randomly chosen element from Z∗p.
Suppose a prover wants to prove “securely” his ability to solve the SDH prob-
lem. The following simple protocol based on the CI-OWF (gx, gx

2

) provides a
solution to this problem in presence of an honest verifier.



Algorithm 4 Direct Protocol for SDH problem

1: procedure Agreement between Prover & Verifier
2: Prover and Verifier agree on base value g and modulus n.

3: procedure Challenge by Verifier
4: Verifier randomly generates r and computes gr = C.
5: Sends C to the Prover.
6: procedure Computation by the Prover

7: Prover uses his efficient algorithm to compute gr
2

= R from C.
8: Sends R to the Verifier.
9: procedure Verification by the Verifier

10: Verifier computes Cr and checks Cr = R or not.
11: If equality holds then the Verifier accepts. Otherwise, the Verifier rejects.

Conclusion

We revisited the interactive protocols to prove one’s computational power to
a verifier in a secure manner. We considered two-flow protocols with moder-
ate/practical security. We introduced the notion of computationally-independent
one-way functions and two rich classes of examples based on standard assump-
tions. We analyzed the two-flow protocols of Koyama [20] and showed some flaws
inherent in the protocols. Last we described a concrete two-flow protocol on
the basis of newly introduced computationally-independent one-way functions.
Finding further examples of such family of functions remain an interesting open
issue.

References

1. Bao, F., Lee,C.-C. and Hwang, M.-S, “Cryptanalysis and improvement on batch
verifying multiple RSA digital signatures”, Applied Mathematics and Computation
172(2): 1195-1200 (2006).

2. Bao, F., Deng, R. H. and Zhu, H., “Variations of Diffie-Hellman Problem”, ICICS’03:
301-312 (2003).

3. Bellare, M. and Goldreich, O., “On Defining Proofs of Knowledge”, CRYPTO’92:
390-420 (1992).

4. Bellare, M. and Goldreich, O., “Proving Computational Ability”, Studies in Com-
plexity and Cryptography 2011: 6-12 (2011).

5. Blum, M. and Kannan, S., “Designing Programs That Check Their Work”,
STOC’89: 86-97 (1989).

6. den Boer, B., “Diffie-Hillman is as Strong as Discrete Log for Certain Primes”,
CRYPTO’88: 530-539 (1988).

7. Chaum, D., Evertse, J.-H., van de Graaf, J. and Peralta, R., “Demonstrating Posses-
sion of a Discrete Logarithm Without Revealing It”, CRYPTO’86: 200-212 (1986).

8. Damgard, I., “Collision Free Hash Functions and Public Key Signature Schemes”,
EUROCRYPT’87: 203-216 (1987).

9. Diffie, W. and Hellman, M. E., “New directions in cryptography”, IEEE Trans.
Inform. Theory 22(6), 644-654 (1976).



10. Dodis, Y. and Reyzin, L., “On the Power of Claw-Free Permutations”, SCN’02:
55-73 (2002).

11. Feige, U., Fiat, A. and Shamir, A., “Zero-Knowledge Proofs of Identity”, J. Cryp-
tology 1(2): 77-94 (1988).

12. Goldreich, O. and Kahan, A., “How to Construct Constant-Round Zero-Knowledge
Proof Systems for NP”, J. Cryptology 9(3): 167-190 (1996).

13. Goldreich, O. and Krawczyk, H., “On the Composition of Zero-Knowledge Proof
Systems”, SIAM J. Comput. 25(1): 169-192 (1996).

14. Goldreich, O., Micali, S. and Wigderson, A., “Proofs that Yield Nothing But
their Validity and a Methodology of Cryptographic Protocol Design (Extended Ab-
stract)”, FOCS’86: 174-187 (1986).

15. Goldwasser, S., Micali, S. and Rackoff, C., “The Knowledge Complexity of Inter-
active Proof-Systems (Extended Abstract)”, STOC’85: 291-304 (1985).

16. Goldwasser, S., Micali, S. and Rivest, R. L., “A “Paradoxical” Solution to the
Signature Problem (Extended Abstract), FOCS’84: 441-448 (1984).

17. Hastad, J., “Solving Simultaneous Modular Equations of Low Degree”, SIAM J.
Comput. 17(2): 336-341 (1988).

18. Joux, A., Naccache, D. and Thom, E., “When e-th Roots Become Easier Than
Factoring”, ASIACRYPT’07: 13-28 (2007).

19. Konoma, C., Mambo, M. and Shizuya H., “The computational difficulty of solving
cryptographic primitive problems related to the discrete logarithm problem”, IEICE
Trans. Fundam. Electron. Commun. Comput. Sci. E88-A-1, 81-88 (2005).

20. Koyama, K., “Direct Demonstration of the Power to
Break Public-Key Cryptosystems”, AUSCRYPT 1990: 14-21,
(https://link.springer.com/chapter/10.1007/BFb0030346) (1990).

21. Krawczyk, H. and Rabin, T., “Chameleon Signatures”, NDSS’00: 143-154 (2000).
22. Maurer, U. M., “Towards the Equivalence of Breaking the Diffie-Hellman Protocol

and Computing Discrete Algorithms”, CRYPTO’94: 271-281 (1994).
23. Maurer, U. and Wolf, S., “DiffieHellman oracles”, CRYPTO’96, LNCS 1109, 268-

282 (1996).
24. Mitsunari, S., Sakai, R. and Kasahara, M., “A new traitor tracing”, IEICE Trans.

Fundam. Electron. Commun. Comput. Sci, E85-A-2, 481-484 (2002).
25. Roh, D. and Hahn, S. G., “The square root Diffie-Hellman problem”, Des. Codes

Cryptography 62(2): 179-187 (2012).
26. Russell, A., “Necessary and Sufficient Conditions For Collision-Free Hashing”,

CRYPTO’92: 433-441 (1992).
27. Stinson, D. R. and Wu, J., “An efficient and secure two-flow zero-knowledge iden-

tification protocol”, J. Mathematical Cryptology 1(3): 201-220 (2007).
28. Tompa, M. and Woll, H., “Random Self-Reducibility and Zero Knowledge Inter-

active Proofs of Possession of Information”, FOCS’87: 472-482 (1987).
29. Verheul, E. R. and Van Tilborg, H. C. A, “Cryptanalysis of ’Less Short’ RSA

Secret Exponents” Appl. Algebra Eng. Commun. Comput. 8(5): 425-435 (1997).
30. Yung, M., “Zero-Knowledge Proofs of Computational Power” (Extended Sum-

mary), EUROCRYPT’89: 196-207 (1989).


