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Abstract. To achieve security and privacy for data stored on the cloud, we need the ability to
secure data in compute. Equality comparisons, “x = y, x 6= y”, have been widely studied with
many proposals but there is much room for improvement for order comparisons, “x < y, x ≤
y, x > y and x ≥ y”. Most protocols for order comparisons have some limitation, either leaking
some information about the data or requiring several rounds of communication between client and
server. In addition, little work has been done on retrieving with compound conditions, mixing sev-
eral equality and order comparisons. Fully homomorphic encryption (FHE) promises the ability
to compute arbitrary functions on encrypted data without sacrificing privacy and without com-
munication, but its potential has yet to be fulfilled. Particularly, private comparisons for database
queries using FHE are expensive to compute.
In this work, we design efficient private database query (PDQ) protocols which support order
comparisons and compound conditions. To this end, we first present a private comparison algorithm
on encrypted integers using FHE, which scales efficiently for the length of input integers, by applying
techniques from finite field theory. Then, we consider two scenarios for PDQ protocols, the first
for retrieving data based on one order comparison and the second based on a conjunction of one
order and four equality conditions. The proposed algorithm and protocols are implemented and
tested to determine their performance in practice. The proposed comparison algorithm takes about
20.155 seconds to compare 697 pairs of 64-bit integers using Brakerski-Gentry-Vaikuntanathan’s
leveled FHE scheme with single instruction multiple data (SIMD) techniques at more than 110
bits of security. This yields an amortized rate of just 29 milliseconds per comparison. On top of
that, we show that our techniques achieve an efficient PDQ protocol for one order and four equality
comparisons, achieving an amortized time and communication cost of 36 milliseconds and 154 bytes
per database element.
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1 Introduction

Databases are used by many companies ranging from small shops to large banks for various purposes.
With the wide availability of cloud services such as Amazon Relational Database Service [4], reliable and
scalable databases can be deployed with ease and without the need to spend large sums to procure and
maintain necessary infrastructure. On the other hand, this invites a new set of challenges in retaining
data privacy while taking full advantage of the cloud revolution. Challenges include preventing data
on the cloud from being stolen by hackers and employees of cloud service providers and reducing the
exposure of data by protecting the queries that are performed on them.

Private database queries (PDQ) have been active areas, with many proposals for protocols intended
for equality comparisons [8, 21, 30, 31, 36, 38, 44] “x = y, x 6= y”, but the performance of those for
order comparisons, “x < y, x ≤ y, x > y, x ≥ y”, have a lot of room for improvement. A wide va-
riety of techniques have been applied to this problem; interactive solutions include [17, 21, 36], while
non-interactive solutions can be sub-divided into two types, order-preserving (OPE)/revealing (ORE)
encryption [1, 6, 7, 9, 12,29,33,37,39,43] and fully homomorphic encryption (FHE) [14,15,26,34].

The security of the PDQ protocol depends heavily on the techniques used in its realization. There has
been some research [18,28,32] showing that access pattern and even communication volume leakage can
lead to serious attacks against private database queries. In particular, these are generic attacks against



PDQs that do not depend on any system details and only their leakage profile. Therefore, it is important
to minimize leakage in the design of PDQ protocols.

Besides access pattern leakage concerns, a non-interactive protocol for private comparisons is most
desirable, allowing users to go offline after they have provided their inputs and only returning when
they wish to collect the result. This minimizes communication costs such as uptime and bandwidth
for users. However, there are limitations to current non-interactive solutions as well. Those based on
OPE/ORE leak information about the encrypted data in exchange for very fast comparisons. On the
other hand, using FHE either takes some time [14, 15, 26] or suffers limitations to the bit-length of
compared integers [34].

For private database queries, there are other metrics that are important as well: How much space is
required to store and send the database and query results as well as the amount of time required to query
the database. In these two metrics, existing FHE-based approaches fall short. The work by Cheon et
al. [14,15] gave single instruction multiple data (SIMD)-optimized algorithms based on Boolean circuits
but only considered low bit-length inputs. Although they showed good performance for small integers,
their approach incurs a lot of space overhead and requires more bandwidth to transfer encrypted data
around. For the protocol proposed by Lu et al. [34] and an extension by Ishimaki and Yamana [26], they
only encrypt around 10-16 bits per ciphertext of about 60 KB. Lu et al. [34]’s protocol is quite fast,
reporting a time of about 30 milliseconds per comparison but such performance is restricted to integers
of at most 16 bits. Ishimaki and Yamana [26] extended the protocol to support larger integers but its
performance falls short of the original protocol.

For private database queries to make sense in practice, we need to consider larger integers, e.g. 64 bits
or more, and large databases sizes. Thus, there is still room for improvement; to construct an efficient
private comparison algorithm that can scale to batches of large integers with less space overhead.

One common point amongst all secure comparison methods using FHE is that they did not consider
using finite extension fields, which is the native space for the most widely used SIMD-capable FHE
schemes by Brakerski et al. [11] and Brakerski [10] and Fan and Vercauteren [20]. The main obstacle
to its adoption is the lack of work into their potential use for computation, with only several papers
published to date. Kim et al. [30, 31] proposed efficient methods to perform equality comparisons with
finite fields but their techniques do not translate to order comparisons. Aside from that, Jäschke and
Armknecht [27] explored encoding integers to finite fields to compute additions but found that it was
most effective to use the base fields instead of extension fields. However, their findings have limited use
as they did not consider the entire structure of finite fields; the fact that finite fields are Fp-algebras.

1.1 Our Contributions and Strategy

In this work, we propose a new order-preserving method of encoding integers to finite field elements, called
the vector of field elements (VFE). Then, we construct algorithms for equality and order comparisons
for integers encoded in VFE. This is achieved by generalizing the idea of comparing the individual digits
of numbers to field elements. In particular, we construct a novel and efficient algorithm to compare
two field elements based on the lexicographic order of its basis elements. Then, we show applications
of VFE encoding and algorithms by designing two PDQ protcols: The first is a simple information
retrieval protocol which returns the values of database records whose keys satisfy an order condition,
i.e. key < Q for some query constant Q. The second highlights the composability of our techniques,
retrieving values (vρ) in the database whose keys ρ = (ρ1, . . . , ρt), satisfy a compound condition, e.g.
ρ0 < Q0 and ρ1 = Q1 and . . . and ρz = Qz for some z < t − 1. Finally, we provide some experiment
results on the performance of the algorithms and protocols.

A generalization of the binary representation, VFE encoding decomposes an integer in Z∩ [0, pn·d) to
a length-n vector of digits in Z∩ [0, pd), which are then encoded to Fdp. This latter encoding, called field

element (FE) encoding, simply takes the base-p representation of the digits x =
∑d−1
i=0 xip

i and maps it

to the field element
∑d−1
i=0 xit

i, where t is the root of some degree-d polynomial irreducible modulo p.

From this encoding, we exploit depth-free automorphisms, rotations and shifts on plaintext slots to
construct algorithms for equality and order comparisons on VFE-encoded encrypted integers. First, the
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structure of the Boolean circuits for equality and order are abstracted to VFE-encoded inputs,

EQVFE(x, y) =

n−1∏
i=0

EQFE(xi, yi), (1)

LTVFE(x, y) = LTFE(xn−1, yn−1) +

n−2∑
i=0

LTFE(xi, yi)

n−1∏
j=i+1

EQFE(xj , yj). (2)

Equations (1) and (2) express the result of comparisons (EQVFE, LTVFE) with VFE-encoded inputs as an
arithmetic circuit with modules that compute equality and order (EQFE, LTFE) of FE-encoded inputs.
EQFE was previously considered by Kim et al. [31] and we simply apply it to our framework to realize
equality comparisons with VFE encoding.

Order comparisons with FE-encoded integers, on the other hand, have not been explored previously.
To construct an efficient algorithm for FE-encoded integers, we start with a simple method that evaluates
a bivariate polynomial representing the order comparison function. This polynomial can be derived using
Lagrange interpolation and roughly has O(p2d) monomials. However, this approach does not scale well
to fields with high extension degree, since the size of the polynomial is exponential in the degree.

For efficiency, we introduce a decomposition technique, based on similar ideas to VFE encoding.
Exploiting the vector space structure of the extension field, we apply linear maps to reduce FE-encoded
inputs to vectors of blocks, which are field elements in a smaller subspace Pr = {

∑r−1
i=0 ait

i | ai ∈
Fp}, with r = 1 or 2 in practice. Field elements

∑d
i=0 xit

i ∈ Fpd are mapped to the vector (B
(x)
0 =∑r−1

i=0 xit
i, . . . , B

(x)
`−1 =

∑r−1
i=0 x(`−1)r+it

i) ∈ (Pr)`, where ` = d/r. Order and equality over these blocks
are computed using a bivariate polynomial obtained by interpolating over Pr ×Pr instead of Fpd × Fpd .
Equation (2) is then adapted to this setting, with blocks instead of FE-encoded digits, to complete the
algorithm. With this, we reduce the number of monomials evaluated to O(d/r · p2r) from O(p2d).

Applying this technique, we obtain an efficient order comparison algorithm for encrypted integers
using VFE encoding and FHE with finite fields: When we use (p, d, n)-VFE encoding with blocks from
Pr, meaning integers are decomposed to base pd and encoded as length-n Fpd -vectors, our comprehensive
analysis shows that the proposed algorithm, LTVFE, takes about (2p − 1)d + 2blog nc + 2 depth-free
automorphisms, (d/r)

(
3pr−5+log(d/r)

)
+blog nc+2 multiplications and blog(p−1)c+blog dc+blog nc+3

depth.
To illustrate the efficiency of the proposed algorithm and protocols, we provide their implementation

results for various choices of p, d, n and r. Based on our experiments using the HElib library by Halevi
and Shoup [25], when p = 5, d = 7, n = 4 and r = 1, the proposed comparison algorithm performs best
and takes about 20.155 seconds to compare 697 pairs of 64-bit integers, yielding an amortized rate of just
29 milliseconds for one comparison. On top of that, our techniques provide an efficient PDQ protocols
for one order and four equality comparisons, achieving an amortized time and communication cost of
36 milliseconds and 154 bytes, respectively, per database element.

1.2 Related Work

The core of PDQs for comparison conditions is a private comparison protocol or algorithm. This can
be realised with encryption schemes such as order-preserving/revealing (OPE/ORE) encryption and ho-
momorphic encryption. OPE was introduced by Agrawal et al. [1] and is a type of encryption scheme
that preserves the order of plaintexts after encryption. Following their work, many schemes were pro-
posed [6, 7, 9, 12, 29, 33, 37, 39, 43] improving the performance and security of such schemes. ORE was
proposed by Boneh et al. [9] as a generalization of OPE that uses an additional algorithm to reveal
the order of encrypted plaintexts instead. The initial proposal, which would only reveal the order of
encrypted plaintexts and nothing else, requires multilinear maps which are still impractical. However,
more practical schemes [12,13,33] have been achieved at the expense of more leakage.

Unfortunately, OPE schemes, when applied to database queries, have been shown to be vulnerable
to inference attacks by Naveed et al. [35] while the schemes mentioned above, except for [33, 39], were
attacked by Durak et al. [19]. In fact, the premise for OPE and ORE has been shown to be a potential
problem due to generic reconstruction attacks by Kellaris et al. [28] and Lacharité et al. [32].

Interactive comparison protocols using homomorphic encryption include Damg̊ard et al. [17] and
Gentry et al. [21]. They use interaction to achieve fast comparisons but it is unclear how they can be
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extended to support compound conditions. The direct method will be to run several protocols, one for
each condition, and finally retrieve the results of those that satisfy the compound condition. This requires
rounds of communication proportional to the number of conditions and can reveal partial information
about the query if not handled properly.

FHE has also been applied to obtain non-interactive solutions. Cheon et al. [14, 15], Lu et al. [34]
achieved reasonably fast comparisons on small integers of around 16 bits but suffer from large communi-
cation overhead as they do not pack many bits in a single ciphertext. Ishimaki and Yamana [26] extended
the Lu et al. [34] protocol to handle larger integers but has lower performance than the original protocol
even at small integers.

1.3 Outline

In the next section, some background and notations that are used throughout the paper are presented.
After that, in Section 3, we introduce the vector of field elements (VFE) encoding technique and VFE-
based circuits for comparisons. Following that, we design an algorithm to determine the order of elements
in Fpd in Section 4 to complement the equality comparison algorithm over Fpd . Next, in Section 5, we
showcase applications of the techniques developed earlier with two efficient private database queries
that enjoy low communication complexity. In Section 6, we evaluate the performance of the proposed
protocols. Lastly, we provide concluding remarks in the last section.

2 Preliminaries

Notation. Throughout the paper, the set of integers from 1 to a is denoted by [a] and bac (resp.
dae) denotes the largest (resp. smallest) integer that is smaller (resp. larger) than or equal to a real
number a. In our work, we use finite extension fields Fpd of characteristic p and extension degree d,

Fpd = {(
∑d−1
i=0 γit

i) mod g(x) | γi ∈ Fp and t is the root of an irreducible polynomial g(x) ∈ Fp[x]}. We
consider the set {1, t, . . . , td−1} as a basis of Fpd , when it is viewed as an Fp-vector space. Logarithms in
base-2 are denoted with log while those in base-w with w 6= 2 specified with a subscript, logw.

The security parameter is denoted by λ and for simplicity, it is assumed that all algorithms take it as
an input. A function ε : N→ R is negligible in λ, if for all positive polynomials p(·) and sufficiently large
λ, ε(λ) ≤ 1

p(λ) . We use poly(λ) and negl(λ) to represent unspecified polynomials and negligible functions

in λ respectively. A probabilistic polynomial-time (PPT) algorithm is a randomised algorithm that runs
in time poly(λ).

2.1 Comparisons

In this work, we consider six comparisons, over some totally ordered set (A,<A). These are then divided
into two categories, equality and order comparisons. Let x, y ∈ A. There are two equality comparisons,
formally defined as follows.

EQA(x, y) =

{
1, if x = y;

0, otherwise,
NEQA(x, y) =

{
1, if ¬(x = y);

0, otherwise.

The other four are order comparisons given, below as

LTA(x, y) =

{
1, if x <A y;

0, otherwise,
GTA(x, y) =

{
1, if y <A x;

0, otherwise,

LEQA(x, y) =

{
1, if ¬(y <A x);

0, otherwise,
GEQA(x, y) =

{
1, if ¬(x <A y);

0, otherwise.

Unless confusion arises, we omit the set A in order notations. In practice, only two of the six functions,
LT and EQ, need to be considered. This is because GT can be derived by swapping the inputs to LT
and the other three functions, NEQ, GEQ and LEQ, are complements of EQ, LT and GT respectively. We
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use the formulas NEQ(x, y) = 1 − EQ(x, y), GEQ(x, y) = 1 − LT(x, y) and LEQ(x, y) = 1 − GT(x, y) to
compute them.

Generalized Order Comparison. In all, we can define a general function which specifies the particular
order comparison to be done with two additional bits of information, α, β. In Equation (3), α is a bit
which decides the order which the inputs x and y are given to the LT function and β is a mask which
inverts the boolean value of LT if set to 1.

Ord(x, y, α, β) = β − LT(x+ α(y − x), y + α(x− y)) =


LT(x, y), if α = 0, β = 0;

GEQ(x, y), if α = 0, β = 1;

GT(x, y), if α = 1, β = 0;

LEQ(x, y), if α = 1, β = 1.

(3)

2.2 Finite Extension Fields

This subsection establishes several important lemmas for working in plaintext spaces other than F2. The
proofs are omitted due to space constraints but interested readers are referred to Section 3.2.2 of [31].

Definition 1 ( [31, Definition 1]). Let p be a prime and d and n be positive integers. A polynomial f ∈
Fpd [x1, x2, . . . , xn] is a polynomial expression of a function ϕ : (Fpd)n → Fpd if f(a1, a2, . . . , an) =
ϕ(a1, a2, . . . , an) for all (a1, a2, . . . , an) ∈ (Fpd)n.

With Definition 1, we are able to relate functions to polynomials over Fpd . The following lemma
guarantees that there is a unique polynomial expression with a particular property, minϕ, for a function
ϕ : (Fpd)n → Fpd .

Lemma 1 ( [31, Lemma 1]). Let p be a prime and d and n be positive integers. For any function
ϕ : (Fpd)n → Fpd , there exists a unique polynomial expression minϕ ∈ Fpd [x1, x2, . . . , xn] of ϕ whose
degree is at most pd − 1 with respect to each variable.

This unique polynomial expression minϕ is called the minimal polynomial expression of a function ϕ
and it has a property that is very important for designing efficient algorithms to evaluate ϕ on encrypted
data.

Lemma 2 ( [31, Lemma 2]). For a function ϕ : (Fpd)n → Fpd with n, p and d as in Lemma 1, the
minimal polynomial expression of ϕ has the minimum total degree among all polynomial expressions of ϕ.

The total degree of a polynomial determines the multiplicative depth required for evaluating that
polynomial. Thus, Lemma 2 implies that we can evaluate a function ϕ with minimum multiplicative
depth by evaluating minϕ using general FHE schemes.

After establishing a connection between a function and polynomial expressions, the next step is to
find the minimal polynomial expression. We will use Lagrange interpolation to achieve this. Below, we
provide a theorem of Lagrange interpolation for 2-variable functions defined on P ×P ⊆ (Fpd)2 for some
P ⊆ Fpd . Note that this can be extended to n-variable functions for arbitrary n ≥ 2.

Theorem 1. (Lagrange Interpolation) Given the outputs of a function ϕ on all points (x, y) ∈ P ×P ⊆
F2
pd , a polynomial expression f(x, y) of ϕ can be constructed as

f(x, y) =
∑

(xi,yj)∈P×P

ϕ(xi, yj)
( ∏
xα 6=xi
xα∈P

x− xα
xi − xα

)( ∏
yβ 6=yj
yβ∈P

y − yβ
yj − yβ

)
.

Then, f(x, y) is the polynomial that evaluates to ϕ(x∗, y∗) for any (x∗, y∗) ∈ P × P. The degrees of x
and y in f are at most |P| − 1 each and so the total degree of f is at most 2|P| − 2.

The following corollary states that the polynomial f(x, y) specified in Theorem 1 is the minimal
polynomial expression of ϕ(x, y) by Lemma 1.

Corollary 1. The polynomial f(x, y) as specified by Theorem 1 is the minimal polynomial expression of
ϕ(x, y), if P = Fpd .
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Proof. Since the degrees of x and y in f(x, y) are both at most pd− 1, it is straightforward by Lemma 1.

Here, we introduce an important property of finite extension fields that will be used in the next
section: linear maps on (Fp)d. See Theorem 10.4.4. in [40] for a proof of Lemma 3.

Lemma 3. Let T be a Fp-linear map on Fpd for a prime p and a positive integer d. Denote by τ(x)
the Frobenius map on Fpd which sends x to xp. There is a unique set of constants {ρ0, ρ1, ..., ρd−1}, ρi ∈
Fpd for i ∈ {0, . . . , d− 1} such that

T (µ) = ζT (µ) =

d−1∑
i=0

ρiτ
i(µ).

Lastly, we state a simple theorem characterising the multiplicative group of Fpd , which has applica-
tions that we discuss in Section 3.2.

Theorem 2 (Fermat’s Little theorem on Fpd). Let p be a prime and d > 0. Then, for any α ∈
Fpd\{0}, we have

αp
d−1 = 1. (4)

2.3 Fully Homomorphic Encryption

Let m denote a ciphertext that encrypts the plaintext m. A leveled fully homomorphic encryption (FHE)
scheme5 is a 4-tuple of probabilistic polynomial time algorithms (KeyGen, Enc, Dec, Eval) as follows,

– (pk, evk, sk) ← KeyGen(1λ, L): Takes as inputs security parameter λ and maximum depth L and
outputs a public key pk, evaluation key evk and secret key sk.

– c = m ← Enc(pk,m): Takes as inputs public key pk and plaintext m ∈ P for plaintext space P,
outputs a ciphertext c which is an encryption of m.

– m′ ← Dec(sk, c): Takes as inputs secret key sk and ciphertext c and outputs a plaintext m′.

– c′ ← Eval(evk, ϕ,m1,m2, . . . ,mn): Takes as inputs evaluation key evk, n-variate polynomial expres-
sion ϕ of total degree at most 2L and n ciphertexts m1, . . . ,mn and outputs a ciphertext c′ such that
c′ = ϕ(m1, . . . ,mn).

Usually, Eval is performed with two sub-algorithms EvalAdd and EvalMult which correspond to addi-
tion and multiplication of encrypted plaintexts respectively.

– c+ ← EvalAdd(evk,m1,m2): Takes as inputs evaluation key evk and two ciphertexts m1,m2 and
outputs a ciphertext c+ such that c+ = m1 +m2.

– c× ← EvalMult(evk,m1,m2): Takes as inputs evaluation key evk and two ciphertexts m1,m2 and
outputs a ciphertext c× such that c× = m1 ×m2.

Multiplicative Depth and Complexity. For n-variable polynomials, f(x1, . . . , xn), we consider mul-
tipliations between monomials in the inputs as multiplications and those between coefficients of f and
monomials in the inputs as constant multiplications. Then, we can view the evaluation of f as an arith-
metic circuits with addition and multiplication gates corresponding to the operations on the plaintext
space. Constant multiplications are simply scalings of the ciphertext by the constants. Our measure of
multiplicative complexity of f will be the number of multiplications required to evaluate f , because it is
the most expensive operation in FHE.

However, there is another important metric of complexity in FHE, multiplicative depth. This is
defined as the maximum number of multiplications along any path from the inputs, x1, . . . , xn to the
outputs f(x1, . . . , xn). For leveled FHE schemes, the parameter L, called the level, is used during setup
to specify maximal multiplicative depth of arithmetic circuits that can be evaluated by the scheme.

5 A leveled fully homomorphic encryption scheme is a homomorphic encryption scheme which supports L-depth
circuits, where L is a parameter of the scheme.
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Batching and Automorphisms on the Plaintext Space. Smart and Vercauteren [42] showed that
some FHE schemes can support SIMD operations, also known as batching, through suitable parameter se-
lection and the use of Chinese Remainder Theorem on number fields. In particular, the Brakerski-Gentry-
Vaikuntanathan (BGV) [11], Brakerski (B) [10] and Fan-Vercauteren (FV) [20] schemes are compatible
with these techniques.

When the plaintext modulus p is prime and not divisible by m, the cyclotomic polynomial modulus
Φm(x) decomposes into ` irreducible factors f1(x), . . . , f`(x) of degree d modulo p. This induces an
isomorphism, via the Chinese Remainder Theorem, between the algebra of the plaintext space Ap =
Fp[x]/〈Φm(x)〉 and the product of ` finite fields Li ∼= Fpd for i ∈ {1, . . . , `},

Ap ∼= Fp[x]/〈f1(X)〉 × · · · × Fp[x]/〈f`(x)〉
= L1 × · · · × L` ∼= (Fpd)`.

(5)

With this decomposition, plaintexts of compatible FHE schemes can be regarded as length-` vectors
m = (m1, . . . ,m`), where mi ∈ Fpd for i ∈ {1, . . . , `}. Addition and multiplication on ciphertexts m1,m2

correspond to component-wise addition and multiplication over their encrypted plaintexts m1,i,m2,i for
i ∈ {1, . . . , `}. Gentry et al. [22] described how to apply automorphisms on the plaintext space Ap
without adding depth to the circuits for the BGV FHE scheme, adding new sub-algorithms for Eval,
with an augmented evaluation key evk. These automorphisms include rotation and shift of the entries of
the plaintext vector and component-wise Frobenius map evaluations:

– c? ← EvalShift(evk,m, i): Takes as inputs evaluation key evk, encrypted vector m = (m1, . . . ,m`)
and index i and outputs a ciphertext c? such that c? = (mi, . . . ,m`, 0, . . . , 0).

– c? ← EvalRotate(evk,m, i): Takes as inputs evaluation key evk, encrypted vector m = (m1, . . . ,m`)
and index i and outputs a ciphertext c? such that c? = (mi, . . . ,m`,m1, . . . ,mi−1).

– c? ← EvalFrobenius(evk,m, i): Takes as inputs evaluation key evk, encrypted vector m = (m1, . . . ,m`)

and exponent i and outputs a ciphertext c? such that c? = (mpi

1 , . . . ,m
pi

` ).

For EvalShift and EvalRotate, using a negative index −i corresponds to shifting or rotating to the right
instead.

Furthermore, there is a software library for homomorphic encryption, HElib [25], by Halevi and Shoup
that implements the necessary algorithms to fully utilize the plaintext space with BGV as the base FHE
scheme.

Parameters vs. Performance. For leveled FHE schemes, the parameters for maximum depth L and
security level λ both affect performance. Supporting deeper circuits with bigger L means larger parameter
sizes, thereby increasing the time required to evaluate circuits and ciphertext sizes. Thus, it is important
for algorithms to have minimal depth for optimal FHE performance. The impact of the parameter sizes
on performance can be seen in the results we present in Section 6.

2.4 Batched Boolean Circuit Approach for Comparisons

Cheon et al. [14, 15] described how to apply the SIMD techniques by Smart and Vercauteren [42] to
efficiently evaluate boolean circuits for equality, comparison and full adders for n-digit inputs. In partic-
ular, they used the plaintext modulus p = 2 which yields the plaintext space L1 × · · · × L`, where each
Li ∼= F2d for some d ≥ 1. However, they did not use all of F2d , restricting themselves to the base field F2

where addition corresponds to the exclusive-or (XOR) gate and multiplication to the AND gate.
For any n that divides `, we can fit up to `/n-many n-bit integers into a single ciphertexts and exploit

SIMD functionality to simultaneously evaluate comparisons on multiple integers. Let x =
∑n−1
i=0 xi2

i and

y =
∑n−1
i=0 yi2

i be two n-digit integers, then we have

EQ(x, y) =

n−1∏
i=0

(1− (xi − yi)), (6)

LT(x, y) = xn−1(1− yn−1) +

n−2∑
i=0

xi(1− yi)
n−1∏
j=i+1

(1− (xi − yi)). (7)
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SIMD-Optimized Evaluation of Running Products. With all the bits of the encoded integer
encrypted in a single ciphertext, there are some optimizations that can be done to reduce the number of
multiplications needed to evaluate running products, i.e. vectors of the form πx = (x0, x0x1, . . . ,

∏n−1
i=0 xi)

for x = (x0, . . . , xn−1). The most efficient way, proposed by Cheon et al. [14,15] is to do log n-many shift-
multiply steps as illustrated below.

Let ∗ denote component-wise multiplication of vectors and

x(i) = (x
(i)
0 , . . . , x

(i)
i , . . . , x

(i)
n−1) = (1, . . . , 1︸ ︷︷ ︸

i copies

, x0, . . . , xn−1−i) (8)

for x = (x0, . . . , xn−1) and define the following sub-routine

shift mul(x, i) = x ∗ x(i).

πx is obtained by iteratively applying shift mul as follows,

1. set z0 = x;

2. for 0 ≤ i ≤ blog nc, compute zi+1 = shift mul(zi, 2
i);

3. set πx = zblognc+1.

We prove the correctness of this via induction. For the base case, where i = 0, we have z0 = x and the

first 20 = 1 entries of z0 store the correct running products. z1 = x∗x(1) = (x0, x
(1)
1 ·x1, . . . , x

(1)
n−1 ·xn−1)

and since x
(i)
j = xj−i, z1 = (x0, x0x1, . . . , xn−2xn−1) and we have the correct running products in the

first 21 = 2 entries of z1, with the j-th entry containing xj and the term preceeding it xj−1 for j ≥ 21.

Now, suppose that at the i-th step, zi has j-th entry
∏j
k=0 xk for j < 2i and

∏2i−1
k=0 xj−k for 2i ≤

j ≤ n − 1; we have zi = (x0, x0x1, . . . ,
∏2i−1
j=0 xj︸ ︷︷ ︸

2i terms

,
∏2i−1
j=0 x2i+j , . . . ,

∏2i−1
j=0 xn−2i+j), i.e. correct running

products in the first 2i entries and the product of xj with the 2i − 1 entries before it for all other

2i ≤ j ≤ n − 1. Then, z
(2i)
i = (1, . . . , 1︸ ︷︷ ︸

2i terms

, x0, . . . ,
∏2i−1
j=0 xj︸ ︷︷ ︸

2i terms

,
∏2i−1
j=0 x2i+j , . . . ,

∏2i−1
j=0 xn−(2i+1)+j)

and zi+1 = zi ∗ z
(2i)
i yields the correct running products

∏j
k=0 xk for j < 2i+1 and

∏2i+1−1
k=0 xj−k for

2i+1 ≤ j ≤ n − 1. Therefore, all zi for i ≥ 0 have the correct form and after the blog nc + 1 steps,
zblognc+1 will have the correct set of running products. Further shift mul of zblognc+1 will only multiply
it with the (1, . . . , 1) vector and remain unchanged.

Note that x(i) is simply computed by shifting the vector to the right by i, yielding (0, . . . , 0, x0, . . . ,
xn−i−1), and adding the vector (1, . . . , 1, 0, . . . , 0), where the first i entries are 1’s and the rest 0’s.

Lastly, we describe an important procedure, replicate first(x) for x = (x1, . . . , xn), that produces
a vector x′ = (x1, . . . , x1︸ ︷︷ ︸

n times

). This is achieved by first multiplying the mask (1, 0, . . . , 0) to x to obtain

x† = (x1, 0, . . . , 0) and then iteratively applying shift and adds to x†.

3 Comparisons with Vectors of Field Elements

First, we introduce a generalization of encoding of integers as binary vectors, which are vectors whose
elements lie in F2. This technique, called vector of field elements (VFE) encoding, represents integers as
a Fpd -vector. Then, we show how arithmetic circuits in Fpd can be exploited to compute comparisons
over VFE-encoded integers in three phases:

1. We formulate VFE-based circuits for EQ, LT from component functions over (Fpd)2;

2. We derive a VFE-based equality algorithm by exploiting an algorithm for EQFE from Kim et al. [31];

3. We design an efficient algorithm for LTFE in Section 4.

These algorithms can then be adapted for use on encrypted data by replacing each gate with their
counterparts in the FHE scheme, EvalAdd,EvalMult,EvalShift, EvalRotate and EvalFrobenius.
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3.1 The Vector of Field Elements Encoding

To exploit the complete plaintext space that available in Smart-Vercautren SIMD compatible FHE
schemes, we propose a new encoding, called vector of field elements (VFE). Recall from Equation (5)
that plaintexts in such FHE schemes correspond to vectors in (Fpd)`. Unlike in the Boolean circuit case,
where p = 2 and d = 1, there is no restriction on p except that it is prime.

For any integer a ∈ Z ∩ [0, pn·d), we express a in base-p, i.e. a =
∑n−1
i=0

∑d
j=0 ai,jp

i·d+j and group
coefficients into sub-vectors of length d. In essence, we encode a as a vector a = (a0, . . . ,an−1), where
each ai = (ai,0, . . . , ai,d−1) with ai,j ∈ Fp for i ∈ {0, . . . , n − 1} and j ∈ {0, . . . , d − 1}. Each ai is
then encoded as elements in Fpd . For simplicity, we use the power basis {1, t, . . . , td−1} and denote the
encoding of ai by the function FE.enc, where

FE.enc : (Fp)d −→ Fpd

α = (α0, . . . , αd−1) 7−→
d−1∑
j=0

αjt
j .

Then, the VFE encoding of an integer a, denoted by VFE.enc, is

VFE.enc : Z ∩ [0, pn·d) −→ (Fpd)n

a 7−→ a =
(
FE.enc(a0), . . . ,FE.enc(an−1)

)
.

We note here that the order that is inherent in the integers is preserved in the FE and VFE encoding,
as in the case of binary decomposition. First, it is evident that for integers in {0, 1, . . . , pd − 1}, their
order over the integers correspond to the lexicographic ordering of elements in Fpd where 1 <F

pd
t <F

pd

. . . <F
pd
td−1. This then extends to integers in {0, 1, . . . , pn·d − 1} with the ordering over (Fpd)n, where

(1, 0, . . . , 0) <(F
pd

)n (0, 1, . . . , 0) <(F
pd

)n . . . <(F
pd

)n (0, . . . , 0, 1).

3.2 VFE-Based Comparison Functions

As mentioned in Section 2.1, only two comparison functions, EQ and LT are needed to obtain all six
possibilities. To obtain the VFE-based comparison functions, we first observe that the Boolean circuits
of Equations (6) and (7) can be abstracted as follows.

For x, y ∈ Z ∩ [0, 2n) such that x =
∑n−1
i=0 xi2

i and y =
∑n−1
i=0 yi2

i,

EQ(x, y) =

n−1∏
i=0

EQF2
(xi, yi), (9)

LT(x, y) = LTF2(xn−1, yn−1)︸ ︷︷ ︸
Case (a)

+

n−2∑
i=0

LTF2
(xi, yi)

n−1∏
j=i+1

EQF2
(xj , yj)︸ ︷︷ ︸

Case (b)

, (10)

where EQF2
(u, v) = 1− (u− v) and LTF2

(u, v) = (1− u)v for u, v ∈ F2.
The logic expressed in Equation (9) is that x and y are equal only if all their bits are equal. For

Equation (10), we can break down the cases where x <Z y according to the digit pairs, (xi, yi):

(a) For the most significant bit, i.e. i = n− 1, (xn−1 <F2
yn−1) =⇒ (x <Z y).

(b) Otherwise, for all other bits i < n− 1, if xj = yj for all i+ 1 ≤ j < n, then (xi <F2
yi) =⇒ (x <Z y).

Notice that all possible cases are pair-wise disjoint, which allows us to simply sum the results of each
to derive Equation (10). From Equations (9) and (10), we generalize them to the following EQ and LT
functions for VFE-encoded integers x, y ∈ Z ∩ [0, pn·d) with Fpd .

EQVFE(x, y) =

n−1∏
i=0

EQFE(xi, yi), (11)

LTVFE(x, y) = LTFE(xn−1, yn−1) +

n−2∑
i=0

LTFE(xi, yi)

n−1∏
j=i+1

EQFE(xj , yj), (12)
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where VFE.enc(x) = (x0, . . . , xn−1) and VFE.enc(y) = (y0, . . . , yn−1). Note that when evaluated with
SIMD techniques, the result would be of the form (EQ/LT(x, y), α1, . . . , αn−1) where αi are some irrele-
vant interemediate results.

Correctness. Equation (11) captures the idea that two integers are equal if every component of their

VFE encoding are equal. This is straightforward to verify since equality between xi =
∑d−1
j=0 xi,jt

j and

yi =
∑d−1
j=0 yi,jt

j implies that their pre-image under FE.enc, (xi,0, . . . , xi,d−1) and (yi,0, . . . , yi,d−1) are
equal. Extending this to every component of VFE.enc(x) and VFE.enc(y) yields the desired conclusion
that x = y over the integers.

As for Equation (12), its correctness follows in a similar manner as the correctness of Equation (10).
The key is that the order of the integers between 0 and pn·d − 1 induces a corresponding ordering of
elements in the range of VFE.enc, (Fpd)n. Then, we have the following possibilities for x < y:

(a) For the most significant entry, i.e. i = n− 1, (xn−1 <F
pd
yn−1) =⇒ (x <Z y).

(b) Otherwise, for all other entries i < n−1, if xj = yj for all i+1 ≤ j < n, then (xi <F
pd
yi) =⇒ (x <Z y).

With this framework, we reduce the problem of comparing VFE-encoded elements to comparing
FE-encoded elements. Equality comparisons for FE-encoding is straightforward since it simply requires
checking if two field elements are equal. Order comparisons are more involved and we defer discussion
on it to Section 4.

Complexity Analysis. We apply the SIMD techniques of Section 2.3 to optimize the evaluation of
EQVFE, LTVFE. VFE-encoded inputs are encrypted in the slots of a single ciphertext, i.e. there is some
ciphertext cβ such that cβ = (βn−1, . . . , β0), where VFE.enc(β) = (β0, . . . , βn−1) for β ∈ {x, y}. From

this, when we evaluate a single function h on ciphertexts (xn−1, . . . , x0) and (yn−1, . . . , y0), we will obtain
(h(xn−1, yn−1), . . . , h(x0, y0)) for h ∈ {EQFE, LTFE}, an encryption of the result of h evaluated at the two
encrypted vectors. We consider the complexity of the VFE-based algorithms in terms on the number of
invocations of component functions EQFE, LTFE, depth-free automorphisms and multiplications.

For EQVFE, we apply EQFE once to obtain the vector (EQFE(xn−1, yn−1), . . . ,EQFE(x0, y0)). Then, we
use a variant of SIMD-optimized running product evaluation, replacing shift mul with rotate mul(x, i) =
x ∗ (xn−i, . . . , xn−1, x0, . . . , xn−i−1). This yields the final encrypted result (EQVFE(x,y), . . . ,EQVFE(x, y))︸ ︷︷ ︸

n times

.

The procedure above uses blog nc + 1 multiplications and rotations. Therefore, EQVFE uses a total of
blog nc + 1 multiplications and depth-free automorphisms and one invocation of EQFE. If we take the
results of the EQFE comparisons as fresh inputs, then the computation of the product in Equation (11)
has blog nc+ 1 depth.

As for LTVFE, we start with one call of EQFE and LTFE to get the component-wise comparisons of
VFE.enc(x) and VFE.enc(y), (EQFE(xn−1, yn−1), . . . ,EQFE(x0, y0)) and (LTFE(xn−1, yn−1), . . . , LTFE(x0, y0)),
needed by the algorithm. Then, we adjust the vector of equality comparisons to (1,EQFE(xn−1, yn−1), . . . ,
EQFE(x1, y1)) by applying a right shift and then adding (1, 0, · · · , 0) to the result. Then, we apply the
SIMD-optimized running product evaluation on the vector (1,EQFE(xn−1, yn−1), . . . ,EQFE(x1, y1)) which
requires blog nc+1 multiplications and depth-free automorphisms. Finally, we multiply the running prod-
uct with (LTFE(xn−1, yn−1), . . . , LTFE(x0, y0)) to obtain the individual terms in Equation (12) and apply
blog nc + 1 shift-and-adds to obtain the final result. Overall, LTVFE uses 2blog nc + 3 depth-free auto-
morphisms, blog nc + 2 multiplications and one call to each of EQFE and LTFE. Like before, taking the
outputs of LTFE and EQFE as fresh inputs, the algorithm has blog nc+ 2 depth.

Equality Comparisons with VFE. Two studies have been done on the efficiency of a finite extension
field based equality function. The first, by Kim et al. [31], analysed the theoretical depth of such a
function and showed that depth-free Frobenius maps can be used to drastically reduce the depth of finite
field equality tests, requiring only about log p+log d which is comparable to Boolean circuits. The other,
by Kim et al. [30], implemented the low-depth algorithm and found that it is quite efficient in practice.

Their key insight is that the Fermat’s Little Theorem (Theorem 2) can be used to derive an equality
function over elements in Fpd . For any x, y ∈ Fpd , we know that x − y = 0 ⇐⇒ x = y. Therefore, from
Equation (4),

EQFE(x, y) = 1− (x− y)p
d−1 =

{
1, if x = y;

0, otherwise.
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With depth-free Frobenius map evaluations, we compute αp
d−1 = α(p−1)(pd−2+pd−3+···+p+1) optimally

in two steps. First, obtain αp−1 with dlog pe repeated multiplications and then raise it by pd−2 + pd−3 +
· · · + p + 1 with roughly dlog de repeated Frobenius map evaluations and multiplications. Thus, the
VFE-based equality comparison can be obtained with dlog de + blog nc + 1 depth-free automorphisms,
dlog pe+ dlog de+ blog nc+ 1 multiplications and depth with SIMD optimizations.

4 An Algorithm for Order Comparisons

Here, we propose an algorithm that is parameterized by r, representing a block size, for evaluating order
comparisons between elements in Fpd . The key to this algorithm is a decomposition technique that lets

us transform the problem from the large field Fpd to a small subset Pr ⊂ Fpd , where Pr = {
∑r−1
i=0 ait

i |
ai ∈ Fp} for some r that divides d. In fact, we transform elements in Fpd into vectors in (Pr)d/r and
apply the principles established in Section 3.2 to evaluate LTFE.

4.1 Limitations with a Naive Use of Lagrange Interpolation for Order Comparisons

Since the order comparison LTF
pd

(x, y) for x, y ∈ Fpd is a function of two variables, Lagrange inter-

polation (refer to Theorem 1) can be used to find a 2-variable polynomial f(x, y) that evaluates to it.
However, there are huge drawbacks with this approach.

As |Fpd | = pd, the polynomial f(x, y) constructed from Theorem 1 has degree at most pd − 1 in each
variable. Using depth-free Frobenius maps, f(x, y) can be evaluated with an arithmetic circuit of only
about log p+ log d depth. Unfortunately, however the low depth we can achieve is insufficient for an effi-
cient algorithm, with O(p2d) coefficients in f(x, y), computing f(x, y) requires too many multiplications
to be efficient for large d. Therefore, to support arbitrary d, we need an alternative.

For an efficient order comparison algorithm, we choose to use Lagrange interpolation differently.
Let r > 0 such that r divides d,6 then Pr is a subspace of Fpd corresponding to vectors of the form
(a0, . . . , ai−1, 0, . . . , 0). When order comparisons are restricted to elements in Pr, the polynomial that
evaluates it, denoted by fPr (x, y), only has degree at most |Pr|−1 = pr−1 in each variable. This requires
about log p+ log r depth and O(p2r) constant multiplications which is manageable for small r.

4.2 Decomposition: From Fpd to (Pr)d/r

Since Fpd is a d-dimensional vector space with Pr as a subspace, there exists a set of linear maps {Ti,r}n−ri=0

that sends α =
∑d−1
j=0 αjt

j to Ti,r(α) =
∑r−1
j=0 αi+jt

j . Then, we define the map, Decompr, from Fpd to

(Pr)d/r as follows,

Decompr : Fpd −→ (Pr)d/r

α =

d−1∑
i=0

αit
i 7−→ (T0,r(α) =

r−1∑
i=0

αit
i, T1,r(α) =

r−1∑
i=0

αr+it
i, . . . , Td/r−1,r(α) =

r−1∑
i=0

αd−r+it
i).

For simplicity, we denote the output of Decompr(α) = (Bα0 , . . . , B
α
d/r−1). This map decomposes the

coefficients of α into d blocks embedded in Pr, with the order induced by the initial encoding FE.enc
being the lexicographic order on (Pr)d/r. Evaluating Decomp(α) for any α ∈ Fpd is straightfoward from
Lemma 3.

Concretely, we first determine the constants {ρ0,j , . . . , ρd−1,j} that represent the linear map Tj·r,r
for each 0 ≤ j ≤ d/r − 1, which is guaranteed to exist by Lemma 3. Then, we apply powers of the

Frobenius map to α, obtaining {α, αp, . . . , αpd−1}. Finally, we take appropriate linear combinations of
them according to the constants {ρ0,j , . . . , ρd−1,j}0≤j≤d/r−1 as follows,

Decompr(α) = (

d−1∑
i=0

ρi,0α
pi , . . . ,

d−1∑
i=0

ρi,d/r−1α
pi). (13)

6 This restriction is only done to simplify the exposition.
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4.3 An FE-Based Order Comparison Algorithm

The map Decompr allows us to apply the principles of Equation (12), that comparing the order of two
elements in Fpd can be broken down to evaluating order and equality of their components. Notice that

the order on Fpd naturally translates to the lexicographic order on (Pr)d/r. As a result, we obtain the
following equation, for x, y ∈ Fpd ,

LTFE(x, y) = LTPr (B
x
d/r−1, B

y
d/r−1) +

d/r−2∑
i=0

LTPr (B
x
i , B

y
i )

d/r−1∏
j=i+1

EQPr (B
x
j , B

y
j ), (14)

where Decompr(α) = (Bα0 , . . . , B
α
d−1) for α ∈ {x, y}.

From Equation (14), we get the framework to evaluate LTFE using Decompr, LTPr and EQPr . The
algorithm can be split into three steps, for two inputs x, y ∈ Fpd ,

1. process x and y with Decompr to get the blocks (Bx0 , . . . , B
x
d/r−1) and (By0 , . . . , B

y
d/r−1);

2. evaluate LTPr (B
x
i , B

y
i ) and EQPr (B

x
i , B

y
i ) for 0 ≤ i ≤ d/r − 1;

3. combine the separate results according to Equation (14).

Analysis of the Algorithm LTFE with Pr. The correctness of the algorithm follows from the discussions
in Section 3.2, just replacing FE with Pr.

We analyze the complexity of the proposed LTFE algorithm step by step. First, we decompose the
FE-encoded integers x, y with Decompr. This yields a length-d/r vector which is obtained by evaluating
d/r different linear maps on the FE-encoded inputs per Equation (13). For optimal performance, we first

compute the p-th powers of x and y needed, (x0, xp, . . . , xp
d−1

) and (y0, yp, . . . , yp
d−1

), and then combine
appropriate linear combinations of them to evaluate the maps Ti,r for 0 ≤ i ≤ d/r − 1. Thus, this step
only requires d− 1 many depth-free automorphisms.

Next, we evaluate equality and order comparisons on the blocks computed in the first step. These are
done by evaluating two bivariate polynomials, for EQPr and LTPr , at the “points” (Bxi , B

y
i ), for 0 ≤ i ≤

d/r − 1. From Theorem 1, each of these polynomials has degree pr − 1 in each variable, and therefore
we need to compute the monomials x2, . . . , xp

r−1 and y2, . . . , yp
r−1. As with the first step, the optimal

way is to obtain these monomials once and compute appropriate linear combinations to obtain their
evaluations at each polynomial. Overall, this step uses (p− 1)(2blogp p

r − 1c) depth-free automorphisms
and 3pr − 5 multiplications per block. Its overall depth is log(blogp(p

r − 1)c+ 1) + blog(p− 1)c+ 1 using
the depth-optimized polynomial evaluation technique described in Appendix A.

Finally, we evaluate Equation (14); note that there no SIMD is used in this computation. Considering
the optimized running product evaluation from Section 2.4, in the second step, it iteratively computes
zi+1 = shift mul(zi, 2

i) for 0 ≤ i ≤ blog d/r − 1c. In each of this iterations, without SIMD, we need
n − i multiplications, since there are i ‘1’s which do not need any processing. Therefore, we require∑blog(d/r−1)c
i=0 (d/r − 1)− i ≈ (d/r) log(d/r) multiplications and blog d/r − 1c depth in Step 3.
In total, LTFE requires d− 1 + 2(d/r)(p− 1)blogp p

r − 1c ≤ (2p− 1)d− 1 depth-free automorphisms,

(d/r)
(
3pr − 5 + log(d/r)

)
multiplications and log(blogp(p

r − 1)c+ 1) + blog(p− 1)c+ blog d/r− 1c+ 1 ≤
blog(p− 1)c+ blog dc+ 1 depth.

Balancing Trade-offs with r. In the choice of r, we are essentially balancing the number of blocks
we are to process and the complexity of the second step. In the second step, choosing larger r means
evaluating higher degree polynomials in fPr and hPr which are more expensive. Larger r, however, also
reduces the number of blocks that have to be processed, reducing the number of linear maps evaluated
in the first step and computing a shorter vector of running products in the last step. There are fewer
blocks in the second step as well, but the larger polynomials to be evaluated means that it would take
longer in general. We will look into the efficiency of our comparison algorithm with respect to the choice
of r in Section 6.

4.4 Analysis of a VFE-Based Order Comparison Algorithm

Putting the FE-based order comparison algorithm with the VFE-based framework, we obtain the com-
plete VFE-based order comparison algorithm. With a parameterized FE-based algorithm, the VFE-based
algorithm depends on three parameters, vector length n, field degree d and block size r.
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The integers from x, y ∈ Z∩ [0, pnd) are VFE-encoded to VFE.enc(x) = (x0, . . . , xn−1) and VFE.enc(y)
= (y0, . . . , yn−1). These vectors are encrypted in their own ciphertexts and then compared with the algo-
rithm, which consists of evaluating LTFE and EQFE with the two ciphertexts as inputs and then aggregat-
ing the results according to Equation (12). This is straightforward as the algorithms are described as arith-
metic circuits and is easily adapted to the homomorphic operations given by {EvalAdd,EvalMult,EvalShift,
EvalFrobenius}.

By combining the analysis in Section 3.2 with that in Section 4.3, the VFE-based comparison algo-
rithm with Pr takes approximately (2p− 1)d+ 2blog nc+ 2 depth-free automorphisms, (d/r)

(
3pr − 5 +

log(d/r)
)

+ blog nc+ 2 multiplications and blog(p− 1)c+ blog dc+ blog nc+ 3 depth.

5 Private Database Queries with VFE

To highlight the utility of the VFE-based comparisons, we apply them to construct two FHE-based private
database query (PDQ) protocols. Such protocols allow users to outsource their database to a cloud while
maintaining the privacy and security of their data (and query) through the use of cryptography. The first
is a simple application of the techniques from previous sections to retrieve records whose key satisfy an
order condition. The second targets more complex compound comparison queries, which shows how the
composability of VFE-based algorithms enhances the privacy of PDQ protocols without much overhead.
We use (p, d, n)-VFE to denote that integers are VFE-encoded to elements in (Fpd)n.

5.1 Model of the Private Database Query Protocols

Databases D are modeled as key-value stores, i.e. D = {(vρi ,ρi)} in this work. The value vρ ∈ Z∩ [1, pc)
is associated with its key ρi = (ρi,1, . . . , ρi,k), where ρi ∈ Z ∩ [0, pc) for i ∈ {1, . . . , k}. We assume that
vρ 6= 0 for the correctness of our protocols. However, there may be cases where v = 0 is needed in practice
and we can use the range Z ∩ [pc, 2pc) instead.

System and Security Model. The PDQ system model in our setting consists of a user and server.
Before the start of the protocol, the user who owns the database encrypts it and stores that encrypted
form on the server. When needed, the user sends a query to the server and receives a response with the
result of the query performed over the encrypted database stored at the server. There is only a single
round of interaction between the user and server.

During the execution of the protocol, the client desires that no partial information about their data
and query be revealed to the server or adversary. The adversary model is restricted to the semi-honest
case, where all players faithfully follow the actions of the protocol as described. However, they may try
to gain additional information, besides the result of the protocol, from transcripts of the execution of
the protocol.

Due to space limitations, the formal definitions of PDQ protocols are omitted. We refer interested
readers to [23, Chapter 7] for details of the semi-honest adversary model and [30] for the security defini-
tions for PDQ protocols.

5.2 A PDQ Protocol with Single Order Comparison Condition

This first protocol allows a user to retrieve values vρi from the database whose j-th coordinate in their key
ρi = (ρi,1, . . . , ρi,k) is less than some constant Q. This corresponds to the following SQL-like statement:

select vρi from D where ρi,j < Q.

The protocol proceeds as follows,

1. The user encodes and encrypts the query constant Q to Q and sends the pair (j,Q) to the server.

2. On receipt of the query, (j,Q), the server

(a) runs Xi = LTVFE(ρi,j , Q) for ρi ∈ D;
(b) computes Γi = vρi ·Xi for ρi ∈ D;

(c) returns {Γi}ρi∈D to the user.

3. The user obtains the Γi’s by decrypting their respective ciphertexts Γi.
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The correctness of this protocol follows directly from that of the algorithm for LT described in
Sections 3 and 4. Compared to the LT algorithm, the protocol only requires an additional multiplication
and therefore multiplicative depth to account for Step (c). Besides that, for (p, d, n)-VFE encoding, we
need more log n depth-free automorphisms (due to use of replicate first(·) to propagate the result of LTVFE

being a vector whose first entry stores the comparison result and all others holding intermediate values)
in Step (c).

5.3 A PDQ Protocol with Compound Comparison Conditions

Our second protocol allows a user to retrieve values vρi from the databaseD whose key, ρi = (ρi,1, . . . , ρi,k),
satisfy certain conditions, roughly corresponding to the following SQL-like statement:

select vρi from D where ρi,j0 < Qj0and ρi,j1 = Qj1 and . . . and ρi,jr = Qjz ,

where z < k and the indices {j0, . . . , jz} ⊆ {1, . . . , k}.

The protocol proceeds as follows,

1. The user encodes and encrypts the query constants Qju to Qju for 0 ≤ u ≤ z and sends the pairs
{(ij , Qju)}zj=0 to the server.

2. On receipt of the query, {(ju, Qju)}zu=0, the server

(a) runs Xi,0 = LTVFE(ρi,j0 , Qj0) and Xi,ju = EQVFE(ρi,ju , Qju) for 1 ≤ u ≤ z and ρi ∈ D;

(b) computes Γi = vρi
∏z
u=0Xi,ju for ρi ∈ D;

(c) returns {Γi}ρi∈D to the user.

3. The user obtains the Γi’s by decrypting their respective ciphertexts Γi.

We note that the connective between the comparison conditions is not restricted to and and can be
adapted to the protocols for disjunctive or threshold conjunctive conditions proposed by Kim et al. [30,31].

The correctness of this protocol follows from the correctness of its component algorithms. Depending
on z, the protocol might not need additional depth compared to the previous protocol. This is because
EQVFE does not require as much depth and we can compute

∏z
u=1Xi,ju first before multiplying it to

vρi and Xi,j0 . As for computational complexity, we perform z EQ and z + 1 multiplications to compute∏z
u=1Xi,ju and multiply it to the other terms in Step (c).

6 Implementation Results

In this section, we present the results of some experiments conducted to evaluate the performance of
our proposed algorithms and protocols. First, we detail the experiment platform and parameters used
in the experiments. Then, we mention some aspects that were changed from the theoretical descriptions
in Sections 3, 4 in our implementation. After that, we introduce and discuss the results of evaluating
the performance of the two PDQ protocols proposed in Section 5. Finally, we end the section with some
discussion and comparisons with other related work on comparisons with FHE.

6.1 Experiment Platform and Parameter Settings

Experiments were conducted on a server with an Intel R© Xeon R© Platinum 8170 with a maximum
frequency of 3.7 GHz and 192 GB RAM. The following libraries were used to implement the tests:
GMP 6.1.2 [24], NTL 11.3.2 [41] (with AVX-accelerated FFT enabled) and HElib (commit 6397b23) [25].
Tests are run using a single thread, with thread boosts in NTL and HElib disabled.

HElib Parameters. In the experiments, we used a variety of FHE instances to test the performance
of different (p, d, n)-VFE encodings, focusing on settings which yield estimated λ > 80 with the LWE
estimator (commit 76d05ee)7 by Albrecht et al. [3] incorporating attacks specific to FHE instances by
Albrecht [2]. Note that for fixed m, the smaller L is, the greater the security of the FHE instance. We
focused on four small primes, p = 2, 3, 5, 7 and used the following instances for each prime:

7 Available at https://bitbucket.org/malb/lwe-estimator.
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Fig. 1: Figures for Performance of the Protocol in Section 5.28

– p = 2: (m = 21845, L = 13(1), 17(2), 19(3)), λ = 108(1), 89(2), 83(3);

– p = 3: (m = 14383, L = 13(1), 15(2), λ = 102(1), 85(2));

– p = 5: (m = 19531, L = 13(1), 15(2), 17(3)), λ = 117(1), 111(2), 100(3);

– p = 7: (m = 26419(1), 30025(2), L = 17, λ = 123(1), 118(2)).

In particular, they were chosen because they offered some of the smallest extension fields. The super-
scripts (i) identify the FHE instances in Figures 1(a) and 1(b) and Tables 1 and 2.

6.2 Implementation Details

The focus is on scalable and real-world applications and so we chose to work with 64-bit integers. When
determining the upper bound for other primes p > 2, we chose d, n such that n · d = d64/ log pe. This
gave us n · d = 42, 28 and 24 for p = 3, 5 and 7 respectively.

In these experiments, we did not use Fpd as it is not always possible due to parameter constraints.
Instead, we chose parameters where the plaintext space is Fpd′ for some d′ ≥ d and used the subspace
Pd. But the same techniques are applicable as we simply exploit the vector space structure on Fpd′ for
Decompr and field operations when evaluating LTP and EQP . The main impact to the complexity of the
algorithms is that the linear maps have d′ > d terms and we do not fully utilize the plaintext space.

Also, we did not implement the method to evaluate polynomials with depth-free Frobenius maps for
these experiments. It turns out that the range of r that yields efficient comparison is 1 and 2 when p = 2
and 1 for p > 2. This is because in these algorithms, we are evaluating around pr polynomials with up to
pr terms each. At p = 2, r = 3, we have to evaluate 8 polynomials of degree 8 each per block, as opposed
to 1 (resp. 4) polynomial(s) of degree 2 (resp. 4) if r = 1 (resp. r = 2), but the reduction in the number
of blocks is too low to justify. For p > 2, setting r = 2 already means evaluating pr polynomials with
degree pr > 8 and is not justifiable for similar reasons to the case where p = 2.

However, we save some computation when evaluating LTPr and EQPr by only generating the powers
of their inputs once. Furthermore, note that in the cases when d = r, LTPr and EQPr are equivalent to
LTFE and EQFE and there are fewer steps involved.

6.3 Results for the Protocol in Section 5.2

Our results showed that using Pr for moderate r is probably the optimal choice for comparisons with
VFE encoding, giving a good balance between amortized time and latency (total time). Figure 1(a) shows
various (p, d, n)-VFE encodings whose amortized time is under 0.2 seconds per database element, while
Figure 1(b) gives the total time for those (p, d, n)-VFE encodings from Figure 1(a) whose total time is
under 25 seconds. We also present a comprehensive breakdown of some of the performance results in
Table 1.

8 Labels (d, n)(i) above primes p indicate the point corresponds to the (p, d, n)-VFE encoding with HElib in-
stance (i).
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Table 1: Performance of the Protocol in Section 5.2

LTFE Algorithm

(p, d, n, r) # Decompr
LTPr , Equation

EQFE
Equation

Step (c)
Total Amortized

EQPr (14) (12) Time Time

(5,7,4,1)(1) 697 2.737 13.449 1.857 1.039 1.073 0.062 20.217 0.029

(5,4,7,1)(2) 398 2.680 7.638 0.793 1.008 1.260 0.061 13.439 0.034

(5,1,28,1)(3) 99 — ∗2.240 — — 2.659 0.075 4.974 0.050

(2,16,4,1)(1) 256 10.040 1.789 6.426 0.671 1.234 0.058 20.218 0.079

(2,8,8,1)(2) 128 12.925 1.140 3.263 0.900 2.293 0.071 20.592 0.161

(2,1,64,1)(3) 16 — ∗0.137 — — 4.617 0.073 4.827 0.302

(2,16,4,2)(1) 256 5.701 10.659 2.240 0.659 1.219 0.057 20.535 0.080

(2,8,8,2)(2) 128 7.506 6.805 1.111 0.901 2.350 0.074 18.747 0.146

(2,2,32,2)(3) 32 — ∗1.609 — — 3.812 0.070 5.491 0.172

# denotes the number of elements packed in a single ciphertext, ∗: combined LTFE and EQFE times.

Timings are averages of more than 100 runs and given in seconds.

In general, choosing a higher d results in a slower algorithm but is offset by comparing more elements
simultaneously. For p = 2, choosing r = 2 is better in almost every case except at d = 16, where
the performance is very close (within 2%). For LTFE, the increase in time from evaluating 4 degree-

4 polynomials is less than the reduction in the number of linear map evaluations and
∏d/r−1
i=j+1 EQPr .

Especially in the case where there is no decomposition, (2, 1, 64)-VFE encoding is only 0.5 seconds faster
than (2, 2, 32)-VFE encoding but only compares 50% as many elements simultaneously, meaning that
the former is more than 75% slower in amortized time.

The results further illustrate the need to consider other bases besides 2 as other bases may have
parameters that yield more performant FHE operations even if the algorithms themselves are slightly
less efficient. The best results come from using p = 5, with the next best amortized performance coming
from p = 7 but with significantly worse (> 2×) total time taken.

6.4 Results for the Protocol in Section 5.3

In this experiment, we focused on the (p, d, n)-VFE encoding for p = 5 since results from the previous
experiment indicated that it is by far the best performing base. We set the number of equality conditions
z = 4 as an estimate of how many equality conditions might be used in practice. Results for this
experiments are provided in Table 2.

Table 2: Performance of the Protocol in Section 5.3

EQVFE Total Result Amortized

(p, d, n, r) z # LTVFE z× Average Step (c) Time Size Time Space

(5,7,4,1)(2) 4 697 20.410 4.206 1.052 0.522 25.136 107 KB 0.036 154 B

(5,4,7,1)(3) 4 398 21.235 6.421 1.605 0.651 28.307 107 KB 0.071 270 B

(5,1,28,1)(3) 4 99 4.293 7.853 1.963 0.414 12.567 107 KB 0.127 1085 B

Timings are averages of more than 100 runs and given in seconds.

Result is a ciphertext which consists of 2 polynomials modulo Φ19531(x) and 221 < q = 3046837 < 222.

First, the performance of EQVFE is very good, requiring only 1-2 seconds to compute on average
compared to 4-22 seconds for LTVFE. However, one implication is that performing compound conjunctive
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queries with many equality conditions is better done with (p, d, n)-VFE encodings where d is larger. As
seen from the difference in total time, the proportion of time spent computing EQVFE is much less, around
20% for (5, 7, 4)-VFE versus almost 200% for (5, 1, 28)-VFE. Similarly, the amortized time shows a large
jump of more than 200% from results in Table 1 for (5, 1, 28)-VFE, going from 0.050 to 0.127 seconds.

Putting everything together, using a moderate degree field extension seems to be the most optimal
way; almost 4× improvement in amortized time by paying only 1× increase in total time taken. Results
also suggest that adding more equality conditions will only further widen the gap.

As for space complexity, choosing larger d increases the number of integers that can be packed in a
single ciphertext. In the case with best performance, with (5, 7, 4)-VFE, the protocol only requires an
amortized space of 154 bytes to store a single (positive or negative) result. With each result being a
64-bit (8-byte) integer, we see that the space overhead is only 154/8 ≈ 19.3×. Using simple arithmetic
circuits, such as gates in F5 with (5, 1, 28)-VFE in the third row of Table 2, we see an overhead of more
than 100× (1085/8 ≈ 135.6×) instead.

6.5 Comparisons with Other Works

We implemented the protocol from Section 5.2 with a basic recursive LT algorithm from Cheon et al. [14]
with the gate-boostrapped TFHE scheme by Chilotti et al. [16]. They provide a parameter set which is
estimated to offer around 128 bits of security.

For x, y ∈ [0, 264), decomposed into bits, it takes 6.253 seconds to compute LT and 1.584 seconds to
compute Step (c). In total, the protocol takes 7.837 seconds to run and process a single database record.
Compared to our best result, which takes an amortized time of 0.034 seconds, the TFHE-based system is
more than 200× worse. Althrough it takes a long time, it is important to keep in mind that this output
can be used in further processing unlike in our experiments.

7 Conclusion

In this work, we introduced a new method of encoding integers for FHE, called the vector of field
elements (VFE) encoding. The main motivation for this encoding is to unlock the potential of the
native plaintext space of the most widely-used FHE schemes, Brakerski-Gentry-Vaikuntanathan [11],
Brakerski [10] and Fan-Vercauteren [20]. The rich Fp-algebra structure of these plaintext spaces has not
been considered for computing on encrypted data.

Addressing this, we proposed two algorithms to compute equality (EQVFE) and order (LTVFE) com-
parisons. The utility of these algorithms are highlighted by designing private database query (PDQ)
protocols for simple order comparison and compound comparisons retrieval queries. Experiments con-
ducted demonstrate that these protocols are efficient and the algorithms outperform previous work. We
can compute equality (resp. order) comparisons between two 64-bit integers with an amortized time of
less than 1.5 (resp. 30) milliseconds. Furthermore, the space overhead is less than 20×, which is very
close to being practical.

We showed that finite fields can be used for efficient computation on encrypted data. Unlike Jäschke
and Armknecht [27], we exploited the vector space structure of finite fields and constructed algorithms
that perform better in extension fields. An interesting direction is to extend the techniques of this work
to compute addition (and possibly multiplication) of large integers. Also, for greater versatility, it may
be useful to incorporate bootstrapping and determine the optimal way to use it with our proposed
algorithms.
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A Depth-Optimized Polynomial Evaluation

Aung et al. [5] gave a method to generate the monomials x2, x3, . . . , xn with n − 1 multiplications; for

any degree 2 ≤ j ≤ n− 1, going from lowest to highest, simply multiply x2
i

to xj−2
i

where i = blog jc.
Since both monomials are smaller than j, they would already have been generated and it takes only one
multiplication to get xj . This applies to the base j = 2 where both monomials are just x and so by
induction every monomial from x2 to xn−1 only requires a single multiplication to obtain.

In our case, when working with extensions of Fp, we can use depth-free Frobenius maps to reduce
the depth of this procedure when n − 1 ≥ p. For powers of x whose degree is less than p, we stick to
Aung et al.’s method and apply depth-free Frobenius maps to get xp

i

for all pi ≤ n − 1. At this point,
we have used p− 2 multiplications and 1 depth-free Frobenius map evaluation. Then, starting from the
lowest ungenerated j = p+ 1 to n− 1, we obtain the remaining xj by taking the product of two smaller
monomials xj

′
and xj

′′
such that j′ + j′′ = j and the maximum depth between the two is minimized.

To find the two monomials that yield the minimal depth xj , we consider a 2-dimensional represen-

tation of j, in base p and 2. In base p, we have j =
∑blogp jc+1

i=0 jip
i. Since the possible digits in base-p

are 0 ≤ a ≤ p− 1, we can obtain xap
i

for 1 ≤ a ≤ p− 1 and 1 ≤ i ≤ blogp nc with a(blogp nc) depth-free
Frobenius map evaluations from x, . . . , xp−1. From here, we obtain the remaining monomials by iterating
over the Hamming weight of indices. For 2 ≤ k ≤ (blogp nc + 1), compute all xi, where the Hamming

weight of i is k, by multiplying xi
′
, xi
′′

where i′+i′′ = i and their Hamming weights are around k/2. With
this, we compute all monomials x2, . . . , xn using n − 1 multiplications and (p − 1)(blogp nc) depth-free
automorphisms. The depth required for this computation is log(blogp nc+ 1) + blog(p− 1)c.

To evaluate univariate polynomials f(x) =
∑n−1
i=0 fix

i, we simply compute the necessary monomials
1, x, . . . , xi using the steps above and take appropriate linear combinations of the monomials generated.
For bivariate polynomials f(x, y) =

∑nx−1
i=0

∑ny−1
j=0 fi,jx

iyj , we consider it as a univariate polynomial

in Fpd [x], fx(y) =
∑ny−1
j=0 fj(x)yj , where fj(x) =

∑nx−1
i=0 fi,jx

i and evaluate nx + 1 many univariate
polynomials, assuming that nx ≤ ny.

In the bivariate case, we use nx +ny − 4 multiplications and (p− 1)(blogp nxc+ blogp nyc) depth-free
automorphisms to obtain the required monomials. Since the polynomials fj(x) are univariate polynomials

19

http://eprint.iacr.org/2016/591


where the coefficients are constants, we do not need multiplications or depth. Finally, we use ny − 1
multiplications to evaluate the univariate polynomial fx(y) for a total of nx + 2ny − 5 multiplications.
The depth of the procedure is log(blogp nyc+ 1) + blog(p− 1)c+ 1 since we assumed that nx ≤ ny.
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