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Abstract. Concerning the side-channel attacks on Advanced Encryp-
tion Standard, it seems that majority of studies focus on the lowest size:
AES-128. Even when adaptable to higher sizes (AES-192 and AES-256),
lots of state-of-the-art attacks see their complexity substantially raised.
Indeed, it often requires to perform two consecutive dependent attacks.
The first is similar to the one applied on AES-128, but a part of the key
remains unknown and must be retrieved through a second attack directly
dependent on the success of the first.

This configuration may substantially raise the complexity for the at-
tacker, especially if new signal acquisitions with specific input, built using
the first key part recovered, must be performed. Any error/uncertainty
in the first attack raise the key recovery complexity.

Our contribution is to show that this complexity can be lowered to two
independent attacks by the mean of attacking separately first and last
round keys. We show that the information is enough to recover the main
key (or a very small list of candidates) in a negligible exploratory effort.

Keywords: Advanced Encryption Standard, AES, AES-192, AES-256,
key recovery, Side-Channel Analysis, SCA

1 Introduction

Side-channels research field concerns the malicious usage of an involun-
tary leaked information during the execution of an algorithm, with the
objective to retrieve a secret such as a cryptographic key. This was first
introduced in [Koc96], where the processing time of operations, that was
secret-dependent, was revealing the secret information. Once the side-
channels potential discovered, numerous channels where used to extract
secret information, such as: power consumption [KJJ98], electromagnetic
emissions [GMO01], acoustic emissions [GST14] (extension of preliminary
work of 2004), light emission [FH08]. The subject is wide, as in 2014 was
shown a new leak source can be used: the ground of a laptop could leak
sensitive information along cables (USB, Ethernet, . . . ) in [GPT14].



Side-channels might not leak directly the secret itself but be an infor-
mation related to the secret, e.g. leakage model linear with the Hamming
weight1 of the processed data or with the Hamming distance2 between
two successive states are commonly considered. In order to exploit those
kind of leakages, statistical methods where developed that can reveal the
secret information from the leakage, such as: Differential Power Analy-
sis (DPA) [KJJ99], Correlation Power Analysis (CPA) [BCO04], Mutual
Information Analysis (MIA) [GBTP08], SCATTER [TGWC18]. All consist
in using the variations of a known data (e.g. plaintext, ciphertext) to
recover a constant secret data (e.g. key). The guesses of candidates for
all, or a part of, the key are ranked from the most fitting to the leakages
to the least one. Errors might occur in this ranking, leading to partial
recoveries of the targeted secret as, sometimes, the good candidate might
not be judged the most fitting one. Those errors might be due to various
causes such as: countermeasures, noise on the leakage acquisition, error
in leakage model estimation.

Due to such errors, an exploration in probable solutions might be nec-
essary. The guessing entropy represents the number of bit of information
that is missing to attacker at the end of an attack. Using the side-channel
attacks results, one can build an estimate ranking of the full secret can-
didates and test each candidate against a plaintext/ciphertext pair to
confirm/infirm its validity (under some computational limit in depth).
The determination of an efficient order of candidates to be tested are ex-
plored in [VGRS12,PSG16]. We speak about guessing depth of an attack
to indicate the complexity to reach the good candidate. This depth can
be underestimated at 2 to the guessing entropy.

Some attacks might not be concerned by our method, such as blind at-
tacks originally introduced in [LDL14] and further in [lB14,CR17,CRW18]
that do not need to know the round inputs to attack intermediate data
within, even in case of some masking countermeasures. This methodology
giving the attacker the ability to recover any round keys independently.

AES, for Advanced Encryption Standard [Nat01], is the NIST3 sym-
metric cipher standard. Established in 2001 after a contest to find a
successor to the DES (Data Encryption Standard), being the previous
standard established in 1977 [Nat77].

1 Number of bits to ”1” in a binary word.
2 Number of bits that differ between two binary words.
3 U.S. National Institute of Standards and Technology



In this paper we focus on the key scheduling part of the algorithm,
that consists in transforming the 128-bit main key (respectively 192-bit
and 256-bit) into 11 (respectively 13 and 15) 128-bit round keys. This
configuration of key schedule implies that a side-channel attack target-
ing the first (respectively last) round is sufficient for AES-128 but only
retrieves a part of the main key for higher sizes, thus requiring an addi-
tional attack, directly depends on the success of the first one, onto the
second (respectively penultimate) round to complete the key recovery. In
this paper we propose to solve this potential difficulty by applying two
independent attacks onto extreme (first and last) rounds instead of two
consecutive rounds. We describe how such information is enough for an
attacker to retrieve the main key.

This paper is organized as follows. The Section 2 introduces the con-
text of our attack with scenarios of application and the notations used in
the paper. The Section 3 describes our contribution on how the knowl-
edge of extreme round keys gives the ability to the attacker to retrieve
the main key, or a reduced set of candidates, in a negligible exploration
time for both AES-256 and AES-192. The Section 4 gives a conclusion to
this paper and further work perspectives.

2 Context and Notations

As stated previously, the side-channel attacks might be imprecise, we
measure this imprecision by the guessing entropy N . Meaning that the
good key is then in a set of 2N candidates. In the following we denote
by N1 the guessing entropy remaining after the first attack applied on
one round key and N2 the guessing entropy remaining after the second
attack.

The methodology consist in confronting those candidates against a
plaintext/ciphertext pair . This has a low incidence on AES-128 size but
a great on higher sizes. Indeed this implies that the second attack might
have to be replayed until reaching the good candidate, at the guessing
depth of the first one. Depending of the cost of the second attack, this
might become tedious or infeasible.

Our extreme key attack does not reduce the error level of the key
recovery attacks, but it may i) reduce the candidate exploration cost or
ii) make feasible attacks when consecutive rounds cannot be attacked.



One can note that our main key recovery using extreme keys method
is trivial in DES algorithm. As defined in its specification in [Nat77], the
key schedule description implies that 48-bit round keys are composed of
unmodified bits from the 56-bit main keys. A first round key attack would
reveal all main key bits except 8, those missing bits can all be found in
the last round key. Then recovering first and last DES round keys gives
the main key without need for specific exploration.

2.1 AES Key Schedule

The Figures 1, 2 and 3 show the different size key computation processes,
where 4-byte columns Wi are represented with the computations that
relate them.

The main key is used as first round key(s), then next round keys are
derived using several transformations: RW stands for RotWord that will
rotate the 4-byte column from one byte up, SW stands for SubWord that
will apply the AES SBox look-up table on each of the 4 bytes indepen-
dently and finally, RC stands for RCON that consists in applying a xor
operation between the first byte of the column and a round dependent
constant byte.
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Fig. 1. AES-128 key schedule structure.

For the AES-128 (Figure 1), the main key fits in the first round key
K0. The next key (K1) columns are computed as:

W4 = W0 ⊕ RC ◦ SW ◦ RW(W3) W6 = W2 ⊕W5

W5 = W1 ⊕W4 W7 = W3 ⊕W6

Each round key being computed using columns from the previous one
in the same way. This bring a property of AES-128: an attacker recovering
any round key is able to compute the main key from it.

For the AES-192 (Figure 2), the same procedure is applied but onto
blocks of 6 columns instead of 4. One can remarks that the main key fills
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Fig. 2. AES-192 key schedule structure.

K0 and the half of K1, the other half being completed by the first two
columns of next treated block. As only 13 keys are needed, the last two
columns of the last block are not computed.
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Fig. 3. AES-256 key schedule structure.

For the AES-256 (Figure 3), the same procedure is applied but onto
blocks of 8 columns this time. One supplementary operation consists in
applying of SW transformation operation onto fourth column before be-
ing used to compute the fifth. One can remark that the main key fills
both K0 and K1. As only 15 keys are needed, the last four columns of the
last block are not computed.

2.2 Attacker Scenarios

Here are given some scenarios as example of configurations where our
attack can ease or enable an attack onto higher sizes of AES algorithm.
In those scenarios we consider cases where several attacks must be done,
each recovering a part of the full key. We show here that this unavoidable
depth to reach can be very costly depending on the operations to perform



during its exploration, and then how our method can reduce its impact
by lowering this cost.

Scenario 1: Small Ease of an Attack In this scenario, the attacker
knows the plaintext and the ciphertext and the leakage is linear to the
Hamming weight of intermediate data.

Without our method: The full key recovery consists in running an
attack on first round key (guessing depth: D1) and then use this gained
knowledge to compute the input of second round and attack it the same
way to recover the second round key (guessing depth: D2).

This creates a dependence between the success of the first attack and
the complexity of the second. In a worse case this became challenging as
the attacker have to run as many times the second attack as the guessing
depth of first one (D1). Each one of D1 ×D2 full key proposed would be
tested against a plaintext/ciphertext pair to be confirmed/infirmed.

With our method: The attacker can target independently the first
round key and the last one. The remaining action is to run our key re-
covery process on the D1×D2 (first key, last key) pairs, the returned full
key candidates would be tested against a plaintext/ciphertext pair to be
confirmed/infirmed.

The main time cost without our method is to run 1 + D1 attacks on
the whole trace set, when our method needs only two attacks on the trace
set and then D1 ×D2 key candidate exhaust.

Scenario 2: Huge Ease of an Attack In this scenario, the attacker can
choose the plaintext and knows the ciphertext and the leakage is linear
to the Hamming distance between successive data, e.g. output of current
round erase the register with previous round in it.

Without our method: The first step consists in running a chosen
plaintext attack on first round key (guessing depth: D1). This gained
knowledge allows to forge a new set of plaintext inducing chosen second
round inputs. This require a new trace acquisition phase. The new trace
set is used to recover the second round key (guessing depth: D2).

This time the dependence is much worse than in scenario 1. The at-
tacker have to acquire a new trace set and run a new attack on it as many
times as the guessing depth of first attack (D1).



With our method: The attacker can apply independently, and on
the same trace set, chosen plaintext attack to target first round key and
known ciphertext to target the last round key. As in previous scenarios
the remaining action is to run our key recovery process on the D1 × D2

(first key,last key) pairs.

The main time cost without our method is to generate 1 + D1 trace
sets and run 1 + D1 attacks, when our method needs only two attacks on
a single trace set and the D1 ×D2 key exhaust.

Scenario 3: Enable an Attack In this scenario, the attacker knows
the plaintext and ciphertext, and can observe encrypt or decrypt and the
leakage is linear to the distance of Hamming between successive data.

Without our method: As stated in previous scenario the attack may
recover only the last round key, that is enough in AES-128 but not for
higher sizes. No easy attack path is known in this configuration. Attacker
might start to wait for known plaintext to be in specific condition to build
subset that got the same properties than chosen plaintext attack but its
represent a huge cost.

With our method: The attacker build two independent trace sets,
one with encryption, the second with decryption. Respectively last and
first4 round keys are recovered, targeting the last round execution of en-
cryption and decryption sets.

Without our method the attack cannot be performed, while our method
needs only two attacks on a two trace sets and the D1×D2 key candidate
exhaust.

Remark 1. If a countermeasure against faults is implemented that com-
pute C = cipher(P ) and then control that P = cipher−1(C) both encryp-
tion and decryption can be acquired in a row. This countermeasure then
simplify the attack scenario as it requires only one acquisition set instead
of two and the countermeasure relaxes the constraint to be able to run
decipher on the device.

2.3 Notations

The notations used in this paper are defined as follows:

4 The decryption uses the same keys as encryption but in the reverse order: the key
used in last round of decryption is the first round key.



– Ki, i ∈ [0, r] is the ith 128-bit round key. r = 10/12/14 for AES-
128/192/256.

– Wi, i ∈ [0, n[ is the ith 4-byte column of the expanded key:
• e.g. first round key K0 is composed of {W0,W1,W2,W3},
• n = 44/52/60 for AES-128/192/256,
• each Wi can be decomposed in 4 bytes wj

i , j ∈ [0, 3].
– We denote by Ta,b,c The xor of several atomic elments sharing the

same letter: Ta,b,c = Ta ⊕ Tb ⊕ Tc.
– f1() is the invertible column transformation function that apply AES

non linear SubWord operation onto input column.
– f2,r() is the invertible column transformation function that apply

RotWord, SubWord and RCON addition.
– L letters represent a set of candidates for a 32-bit word and Li will

be one of the candidates of the set Li.
– SBox[ ] is the AES byte table lookup.

When the equation needs the distinction, over-lined elements are un-
known to the attacker. e.g. X3,7 = Y0 ⊕ Z5,7 means:

– X3,7 is initially unknown, because X3, or X7 or both are unknown.
– Y0 is known.
– Z5,7 is known but it does not assume that Z5 and Z7 are known.
– X3,7 became now known as being a combination of known values.

3 Our Contribution

3.1 Recover AES-256 Key

Attacker Model We consider an attacker that managed to recover the
first round key (K0) and last round key (K14) of an AES-256 implemen-
tation. The main key is the concatenation of K0 and K1 so we explain
here how to recover a short list of candidates for K1 in a negligible com-
putational effort using the knowledge of (K0,K14) pair.

A naive approach to solve this question would have been to use the
brute force method: guess the 128-bits of K1 and apply the key schedule
on it to check if the last key corresponds to the expected value or not,
but such a 2128 exhaust is considered infeasible in practice.

First Observations Table 1 is giving Wi, i ∈ [0, 60[ equations of the
AES-256 key schedule process. First 8 columns are initialized with the
256-bit main key. Other values are computed as a combination of ini-
tial values {W0, . . . ,W7}. Those expressions require the introduction of



Pi, i ∈ [0, 5] and Ti, i ∈ [0, 6] columns, resulting from application of f1(),
respectively f2,r() transformation functions onto some W columns.

One can remark different behaviors between the round key of even
or odd rounds. Indeed, the even ones are using a cyclic combination of
values from set {W0, . . . ,W3}, use the T values and produce the P values,
when the odd ones are using a cyclic combination of values from set
{W4, . . . ,W7}, use the P values and produce the T values.

Table 1. AES-256 key schedule equations

W0 = W0 W4 = W4

K0 W1 = W1 K1 W5 = W5

W2 = W2 W6 = W6

W3 = W3 W7 = W7 T0 = f2,0(W7)

W8 = W0 ⊕ T0 W12 = W4 ⊕ P0

K2 W9 = W0,1 ⊕ T0 K3 W13 = W4,5 ⊕ P0

W10 = W0,1,2 ⊕ T0 W14 = W4,5,6 ⊕ P0

W11 = W0,1,2,3 ⊕ T0 P0 = f1(W11) W15 = W4,5,6,7 ⊕ P0 T1 = f2,1(W15)

W16 = W0 ⊕ T0,1 W20 = W4 ⊕ P0,1

K4 W17 = W1 ⊕ T1 K5 W21 = W5 ⊕ P1

W18 = W0,2 ⊕ T0,1 W22 = W4,6 ⊕ P0,1

W19 = W1,3 ⊕ T1 P1 = f1(W19) W23 = W5,7 ⊕ P1 T2 = f2,2(W23)

W24 = W0 ⊕ T0,1,2 W28 = W4 ⊕ P0,1,2

K6 W25 = W0,1 ⊕ T0,2 K7 W29 = W4,5 ⊕ P0,2

W26 = W1,2 ⊕ T1,2 W30 = W5,6 ⊕ P1,2

W27 = W2,3 ⊕ T2 P2 = f1(W27) W31 = W6,7 ⊕ P2 T3 = f2,3(W31)

W32 = W0 ⊕ T0,1,2,3 W36 = W4 ⊕ P0,1,2,3

K8 W33 = W1 ⊕ T1,3 K9 W37 = W5 ⊕ P1,3

W34 = W2 ⊕ T2,3 W38 = W6 ⊕ P2,3

W35 = W3 ⊕ T3 P3 = f1(W35) W39 = W7 ⊕ P3 T4 = f2,4(W39)

W40 = W0 ⊕ T0,1,2,3,4 W44 = W4 ⊕ P0,1,2,3,4

K10 W41 = W0,1 ⊕ T0,2,4 K11 W45 = W4,5 ⊕ P0,2,4

W42 = W0,1,2 ⊕ T0,3,4 W46 = W4,5,6 ⊕ P0,3,4

W43 = W0,1,2,3 ⊕ T0,4 P4 = f1(W43) W47 = W4,5,6,7 ⊕ P0,4 T5 = f2,5(W47)

W48 = W0 ⊕ T0,1,2,3,4,5 W52 = W4 ⊕ P0,1,2,3,4,5

K12 W49 = W1 ⊕ T1,3,5 K13 W53 = W5 ⊕ P1,3,5

W50 = W0,2 ⊕ T0,1,4,5 W54 = W4,6 ⊕ P0,1,4,5

W51 = W1,3 ⊕ T1,5 P5 = f1(W51) W55 = W5,7 ⊕ P1,5 T6 = f2,6(W55)

W56 = W0 ⊕ T0,1,2,3,4,5,6

K14 W57 = W0,1 ⊕ T0,2,4,6

W58 = W1,2 ⊕ T1,2,5,6

W59 = W2,3 ⊕ T2,6

Attack Step 1: Guess-Free Knowledge The knowledge of W0, W1,
W2, W3, W56, W57,W58 and W59 allows to use K14 equations and revert
them to gain new effortless knowledge:

T0,1,2,3,4,5,6 = W0 ⊕W56 T1,2,5,6 = W1 ⊕W2 ⊕W58

T0,2,4,6 = W0 ⊕W1 ⊕W57 T2,6 = W2 ⊕W3 ⊕W59

Now this 4 combinations of T values are known, we can combine them
in order to reduce the number of inner elements. So we gained, without
need to guess, one atomic element: T3 and three composed: T0,4, T1,5 and
T2,6 from which we do not know the atomics yet.



The gained knowledge continues to give us guess-free elements: W35,
W42, W43, W49, W50 and W51.

Some of those values are involved into the computation of P values
that we can also learn:

P3 = f1(W35) P4 = f1(W43) P5 = f1(W51)

Attack Step 2: Identify Where to Guess Here we describe how to
identify where to make a pertinent guess on a value in order to confront
those candidates to constraints and then reduce the size of exploration
tree. We observe that some composed T rely on the same combination of
K1 columns, e.g.:

T0,4 is known and:

T0 = f2,0(W7) = f2,0(W7) (1)

T4 = f2,4(W39) = f2,4(W7 ⊕ P3) (2)

The above equations can be confronted to their relative known data,
for example a guess of W7 gives a value to T0 thanks to Equation 1 an
gives a value to T4 thanks to Equation 2. We can invalidate all W7 values
that do not lead to a pair (T0,T4) respecting the known T0,4. An attacker
is then able to build:

– a reduced list L0 of candidates for W7 thanks to T0,4
– a reduced list L1 of candidates for (W4,5,6,7 ⊕ P0) thanks to T1,5
– a reduced list L2 of candidates for (W5,7 ⊕ P1) thanks to T2,6
– a list of one candidate L3 for (W6,7 ⊕ P2) thanks to T3

Attack Step 3: Reduce the Guessing Cost The guess over 32-bit
words is feasible but costly. In our situation we are able to reduce this
cost. Indeed, all our pairs of equations, used to create candidate lists,
can be split at the byte level. Due to the AES key schedule design, our
pairs of equations contains the same guessed data and the f2,r function
are applied at byte level. Then, the guesses list and the confrontations
to known data can be established at a byte level too. As an example, we
can guess the byte w3

7 (the last byte of W7) and confront it to the known
value of t20,4 through the equation system:

t20 = SBox[w3
7]

t24 = SBox[w3
7 ⊕ p33]

}
t20,4

?
= t20 ⊕ t24



Attack Step 4: Building the List of Keys Each quadruplet (L0, L1, L2, L3)
is transformed into a valid candidate forK1 that is composed of {W4,W5,W6,W7}:

1. L0 gives the knowledge of P0 = f1(W0,1,2,3 ⊕ f2,0(L0))
2. L1 gives the knowledge of P1 = f1(W1,3 ⊕ f2,1(L1))
3. L2 gives the knowledge of P2 = f1(W2,3 ⊕ f2,2(L2))
4. L0 gives the knowledge of W7 = L0

5. L3, P2 and W7 gives the knowledge of W6 = W7 ⊕ P2 ⊕ L3

6. L2, P1 and W7 gives the knowledge of W5 = W7 ⊕ P1 ⊕ L2

7. L1, P0 and W5,6,7 gives the knowledge of W4 = W5,6,7 ⊕ P0 ⊕ L1

This corresponds to the exhaustive list of keys that have the same
pair of extreme keys: (K0, K14), even if they have different second round
key K1.

Table 2. Occurrences of sizes of AES-256 key candidate set over 10 000 random keys

Remaining keys (2x) 12 13 14 15 19 20 21 26

Encounter (%) 78.94 15.09 1.17 0.08 3.83 0.77 0.03 0.09

Average Time (s) < 1 < 1 < 1 < 1 < 1 < 1 < 1 15.4

Simulation Results In order to estimate the number of keys that re-
mains indistinguishable at the end of our constraint application, we run
it onto a set of 10 000 random AES-256 keys. The number of candidates is
4 096 in ∼ 79% of cases as depicted in Table 2. The executions take place
onto a standard desktop computer with only one core used. The average
time needed is ∼ 0.03 second so we consider it negligible.

Considering the scenario of uncertainty in side-channel results, the
negligible execution time for both candidate list establishment and good
candidate extraction, allows the attacker to consider guessing depth of
K0 and K14.

Remark 2. Errors in extreme keys may lead to inconsistency in equations
and then to empty full key solution sets, discarding it without the need
to check it against a plaintext/ciphertext pair.

3.2 Recover AES-192 Key

Attacker Model We consider here an attacker that managed to recover
the first round key (K0) and last round key (K12) of an AES-192 imple-
mentation. The main key is the concatenation of K0 and first half of K1 so



Table 3. AES-192 key schedule equations

W0 = W0 W24 = W0 ⊕ R0,1,2,3

K0 W1 = W1 K6 W25 = W1 ⊕ R1,3

W2 = W2 W26 = W2 ⊕ R2,3

W3 = W3 W27 = W3 ⊕ R3

W4 = W4 W28 = W0,4 ⊕ R0,1,2,3

K1 W5 = W5 R0 = f2,0(W5) K7 W29 = W1,5 ⊕ R1,3 R4 = f2,4(W29)
W6 = W0 ⊕ R0 W30 = W0 ⊕ R0,1,2,3,4

W7 = W0,1 ⊕ R0 W31 = W0,1 ⊕ R0,2,4

W8 = W0,1,2 ⊕ R0 W32 = W0,1,2 ⊕ R0,3,4

K2 W9 = W0,1,2,3 ⊕ R0 K8 W33 = W0,1,2,3 ⊕ R0,4

W10 = W0,1,2,3,4 ⊕ R0 W34 = W1,2,3,4 ⊕ R1,2,3,4

W11 = W0,1,2,3,4,5 ⊕ R0 R1 = f2,1(W11) W35 = W2,3,4,5 ⊕ R2,4 R5 = f2,5(W35)

W12 = W0 ⊕ R0,1 W36 = W0 ⊕ R0,1,2,3,4,5

K3 W13 = W1 ⊕ R1 K9 W37 = W1 ⊕ R1,3,5

W14 = W0,2 ⊕ R0,1 W38 = W0,2 ⊕ R0,1,4,5

W15 = W1,3 ⊕ R1 W39 = W1,3 ⊕ R1,5

W16 = W0,2,4 ⊕ R0,1 W40 = W2,4 ⊕ R2,3,4,5

K4 W17 = W1,3,5 ⊕ R1 R2 = f2,2(W17) K10 W41 = W3,5 ⊕ R3,5 R6 = f2,6(W41)
W18 = W0 ⊕ R0,1,2 W42 = W0 ⊕ R0,1,2,3,4,5,6

W19 = W0,1 ⊕ R0,2 W43 = W0,1 ⊕ R0,2,4,6

W20 = W1,2 ⊕ R1,2 W44 = W1,2 ⊕ R1,2,5,6

K5 W21 = W2,3 ⊕ R2 K11 W45 = W2,3 ⊕ R2,6

W22 = W0,3,4 ⊕ R0,1,2 W46 = W3,4 ⊕ R3,4,5,6

W23 = W0,1,4,5 ⊕ R0,2 R3 = f2,3(W23) W47 = W4,5 ⊕ R4,6 R7 = f2,7(W47)

W48 = W0 ⊕ R0,1,2,3,4,5,6,7

K12 W49 = W1 ⊕ R1,3,5,7

W50 = W2 ⊕ R2,3,6,7

W51 = W3 ⊕ R3,7

we explain here how to recover the exact value of K1 first half in a negligi-
ble computational effort using the knowledge of (K0,K12) pair. The brute
force approach to try every 264 possibility is considered hard/infeasible
in practice.

Attack Step 1: Guess-Free Knowledge The equations Wi, i ∈ [0, 52[
are redefined for AES-192 in Table 3, expressed as a combination of cur-
rent main key columns: {W0,W1, . . . ,W5}. We introduce Ri, i ∈ [0, 7]
columns, resulting from application of f2,r() functions onto someW columns.

The knowledge of {W0, . . . ,W3,W56, . . . ,W59} allows to use K14 equa-
tions and revert them to gain effortless knowledge: R0,4, R1,5, R2,6 and
R3,7 from which we do not know the atomics. Those new knowledge con-
tinue to give us guess-free elements: W33, W38, W39, W43, W44 and W45.

Attack Step 2: Guess Pattern to Reach Constraints The Figure 4
is describing the path a guessed value G for a W5 byte will follow and how
it sets the five constraints {C1, . . . , C5} that will validate or invalidate the
guess G. The known operations/data are in blue, constraints are in red.
4-byte functions considered here (i.e. f2,i() family and ⊕) can be split at
a byte level, then, for a sake of clarity, applying such a function onto only
one byte in a 4-byte word means here that we applied the part of the
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Fig. 4. AES-192 Exploration Path.

function concerning this byte as it do not involves the 3 other bytes. For
sake of clarity again we removed the set of known values: W0,W1,W2,W3

from the equations. Original equations are given in Table 3.

One can follow the guessed byte G that allows to compute, through
plain arrows, the X values (∆ should be first be ignored). Once column
W5⊕R1 (last of first stage) is reached we can combine existing X values,
and known R3,7 and R1,5, vectors to compute the X values of the second
stage. Those are combined again to compute the X in third stage. As R2,6

and R0,4 are known, we can confront it to the proposed R2,6∗ and R0,4∗.
We keep only G values that fit with those constraints (C1 and C2). The
concerned byte of R2∗ is not known, so we cannot use it as a constraint,
but we can re-inject it in R2 on first stage. We choose to change the letter
from X to ∆ at this point in order to differentiates the paths. Now we can
compute ∆ in both directions on the whole first stage. The ∆ on second
stage and then third can then be computed, leading to new constraints
(C3 and C4 in R2,6∗ and R0,4∗) and a last one (C5) in R2∗ as, this time,
it corresponds to a known value obtained during X path.

This set of five constraints apply on G but also on another byte of the
W5 column obtained during the process. All simulation cases considered
show only one solution for the pair of bytes (G, ∆) in W5. The two other
bytes can be recovered by the same process, one just have to apply a
rotation of one byte of all column of Figure 4. Once W5 recovered we see
that W4,5 = (W4,5 ⊕R0)⊕R0 is recovered too, so is W4.



Simulation Results

We run our recovery algorithm on 10 000 randomly chosen AES-192 keys.
Every case considered lead to only one solution (the good one) in ∼ 0, 002
second of exploration in average.

4 Conclusion

In this paper we shown how the recovery of first and last round keys of
AES-192 or AES-256 might be used to recover the main key. Some exist-
ing attacks designed onto AES-128 and that cannot be trivially adapted
to higher sizes might became available. This method can also reduce the
complexity of attacks very sensitive to errors, because constituted of sev-
eral dependent chained attacks, by allowing to replace them by several
independent attacks. Despite the fact that the attacker scenarios are lim-
ited, we question the strength of the AES key scheduling process. It might
have been stronger, especially for bigger sizes.

Further works might be considered as determining the existence (or
not) of AES-192 key that shares same extreme keys could be interest-
ing. Applying this method to others algorithms than AES or DES as an
overview of security of the key scheduling processes might be valuable.
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[VGRS12] Nicolas Veyrat-Charvillon, Benôıt Gérard, Mathieu Renauld, and François-
Xavier Standaert. An optimal key enumeration algorithm and its applica-
tion to side-channel attacks. In Selected Areas in Cryptography, 19th In-
ternational Conference, SAC 2012, Windsor, ON, Canada, August 15-16,
2012, Revised Selected Papers, pages 390–406, 2012.


