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Abstract.

The effort in reducing the area of AES implementations has largely been focused on
Application-Specific Integrated Circuits (ASICs) in which a tower field construction
leads to a small design of the AES S-box. In contrast, a naive implementation of the
AES S-box has been the status-quo on Field-Programmable Gate Arrays (FPGAs).
A similar discrepancy holds for masking schemes — a well-known side-channel analysis
countermeasure — which are commonly optimized to achieve minimal area in ASICs.
In this paper we demonstrate a representation of the AES S-box exploiting rotational
symmetry which leads to a 50% reduction of the area footprint on FPGA devices. We
present new AES implementations which improve on the state of the art and explore
various trade-offs between area and latency. For instance, at the cost of increasing
4.5 times the latency, one of our design variants requires 25% less look-up tables
(LUTs) than the smallest known AES on Xilinx FPGAs by Sasdrich and Giineysu at
ASAP 2016.

We further explore the protection of such implementations against side-channel attacks.
We introduce a generic methodology for masking any n-bit Boolean functions of degree
t with protection order d. The methodology is exact for first-order and heuristic for
higher orders.

Tts application to our new construction of the AES S-box allows us to improve previous
results and introduce the smallest first-order masked AES implementation on Xilinx
FPGAs, to-date.

Keywords: AES - SCA - DPA - Rotational Symmetry - Threshold Implementations -
d + 1 Masking - FPGA

1 Introduction

Ever since the introduction of Differential Power Analysis (DPA) by Kocher et al. [KJJ99],
protecting cryptographic devices against Side-Channel Analysis (SCA) has been a chal-
lenging and active area of research. A notable category of countermeasures is masking,
in which a secret value is distributed among shares, which do not reveal any information
about the secret separately. We speak of a d"P-order DPA attack when the adversary
exploits the statistical moments of the SCA leakages (e.g., power consumption) up to order
d. Such estimated statistical moments are expected to be independent of the secret, when
sensitive variables are shared into d + 1 shares.

Masking. In 2003, Ishai et al. [ISWO03] introduced the d-probing model, in which a
very powerful attacker has the ability to probe the exact values of up to d intermediate
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variables. Security in this model has been related to more realistic adversary scenarios
such as the noisy leakage [CJRR99] and the bounded moment leakage model [BDF*17].
However, in 2005 it was noted by Mangard et al. [MPOO05] that the Boolean masking
schemes which are secure in sequential platforms [Tri03, ISW03] still exhibit side-channel
leakage when implemented in hardware. This is due to unintended transitions (or glitches)
on wires before they stabilize. For hardware implementations, the probing model was
therefore redefined using glitch-extended probes [RBNT15]. The first masking scheme to
achieve provable first-order security in the presence of glitches is Threshold Implementation
(TT) [NRRO6, NRS11], a particular realization of Boolean masking. As a result, the most
challenging task in securing implementations is to mask the non-linear components of a
cipher.

Masking schemes are typically introduced by means of a single description of a masked
multiplier. Such constructions are easily extended to obtain a construction for a monomial
of degree t, but it is not trivial to obtain a non-complete sharing of just any Boolean
function. Ueno et al. [UHA17a] describe a generic method for constructing d 4+ 1-share
maskings of any function of n variables. However, this method is not efficient for functions
of many variables, since the number of output shares is expected to be O ((d + 1)™). Bozilov
et al. [BKN18] introduce a more efficient method for d 4+ 1-share maskings of functions of
degree t, but only for functions with exactly ¢t + 1 variables.

AES S-box. The AES S-box is an algebraically-generated vectorial Boolean function with
8-bit input and 8-bit output. It consists of an inversion in GF(28) followed by an affine
transformation over GF(2)%. Having a small implementation of this S-box is important
to achieve compact AES hardware, especially in the context of masked implementations.
The tower field decomposition has proved to be a valuable approach to implement the
field inversion, resulting in small AES S-boxes by Satoh et al. [SMTMO01], Mentens et
al. [MBPVO05] and finally Canright [Can05]. More recently, an even smaller S-box was
created by Boyar et al. [BMP13] using a new logic optimization technique. This S-box
implementation is the smallest to date. These S-box designs have all been successfully used
to create the state-of-the-art smallest masked AES implementations [BGN115, CRBT16,
GMK17, UHA17b]. However, when it comes to Look-up Table (LUT) based FPGA
implementations, these optimized constructions do not perform better than the 8 slices
that are required for any 8-bit to 8-bit mapping such as the AES S-box.

Another line of work in this area [Waml4, WHS15, WS17] exploits a property of
inversion-based S-boxes that any inversion in GF(2™) can be implemented by a Linear
Feedback Shift Register (LFSR). The ASIC-based smallest such construction [Wam14]
needs on average 127 clock cycles, i.e. its latency depends on the given S-box input, hence
is vulnerable to timing attacks. The idea has been further developed in [WHS15] leading
to 7 clock cycles latency (on average) for one S-box evaluation, which for sure needs more
area compared to the original design. The authors also presented a constant-time variant
of their design with a latency of 16 clock cycles. The underlying optimizations are not
FPGA specific, and achieving SCA-protection by means of masking on such a construction
does not seem easily possible!.

FPGA vs. ASIC. An FPGA design is indeed very different to its ASIC counterpart,
most notably in the use of LUTSs, which makes the number of inputs to a Boolean function
a more defining factor for implementation cost than its algebraic complexity. Since the
standardization of Rijndael as the AES, several successful efforts [CG03, BSQT08, CB12]
have been made to reduce its size on FPGAs. In 2016, Sasdrich et al. [SG16] introduced

1t is based on the fact that every = € GF(28) is presented by a™ and its inverse by (ofl)n. So, two

LFSRs constantly multiply by o and a~!. When one of them reaches x, the other one is ~!. The concept
does not work when x is shared by Boolean masking.
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an unprotected AES implementation on Xilinx Spartan-6 FPGAs which occupies 21 slices
and remains the smallest FPGA implementation of AES known to date. Notably in
such a design, the S-box is naively implemented as an 8-to-8 look-up table. The authors
furthermore introduced a variant with 24 slices that additionally realizes shuffling as
a SCA-hardening technique. Note that we exclude the designs like [CG03, NBD10,
BGS*11, BGD12, BDGH15] from our comparisons as their constructions relay on the
Block RAM (BRAM) modules.

While research on masking mostly targets ASIC designs, some efforts have been made
to utilize the specific architecture of an FPGA. In 2012, Moradi and Mischke [MM12]
investigated a glitch-free implementation of masking on FPGAs by avoiding the occurrence
of glitches with a special enable-logic, which has been further re-developed in [MW15] by
Moradi and Wild. Sasdrich et al. [SMMG15] used the field-programmability to randomize
the FPGA configuration during runtime. Recently, Vliegen et al. [VRM17] investigated
the maximal throughput of masked AES-GCM on FPGAs. However, their masked S-
box is taken from [MPLT11] without further FPGA-specific improvements. We would
like to emphasize that several AES masked FPGA designs have been reported in the
literature which consider neither the glitches nor the non-completeness property defined in
TI [NRS11]. For example, the masked S-box design used in [RWS11] is not different to
Canright and Batina’s design [CB08] which has been shown to have first-order exploitable
leakage [MPO05, MME10].

Our Contribution. This is an extended work of [DMW18], in which we exclusively focus
on FPGA devices and in particular those of Xilinx. All our case studies target a Xilinx
Spartan-6 FPGA. We exploit a rotational symmetry property of Galois field power maps,
e.g. the field inversion, to construct a novel structure realizing the AES S-box. This leads
to an FPGA footprint of only 4 slices which is — to the best of our knowledge — smaller
than any reported FPGA-based design of the AES S-box in the literature. Such an area
reduction comes at the cost of a latency of 8 clock cycles for one S-box evaluation. We
present several new AES implementations for Xilinx FPGAs. We adapt the currently
smallest known FPGA-based AES design of [SG16] to use our S-box construction and
achieve a new design that occupies only 17 slices - a 19% reduction over the previous record.
We also restructure the smallest known ASIC-based AES design of [JMPS17] to efficiently
use the FPGA resources and combine it with our S-box design, leading to another very small
footprint of only 63 LUTs for the entire encryption function. Our designs use only FPGA
LUTs and other slice-internal components such as slice registers and internal MUZXes, but
no block RAM (BRAM) which has been used in [BGST11, NBD"10, BDGH15, BGD12]
as a principle feature.

In the second part of this work, we implement our construction with resistance against
SCA. To this end, we apply Boolean masking with a minimum number of two shares on
a decomposition of the AES S-box, which again exploits the rotational symmetry. We
detail a methodology for finding a d*" order non-complete masking of n-variable Boolean
functions of degree t by splitting them into the minimal number of components necessary to
achieve non-completeness. With our new method, the number of output shares is expected
to be O ((d + 1)), which is far better than that of [UHA17a] when n > t.

Targeting an optimized implementation with respect to LUT utilization, we introduce
a new masked AES design which far outperforms that of [DMW18] with a reduction of at
least 20% in all resources (LUTs, flip flops and slices) and the randomness consumption
reduced to one third. This is - to the best of our knowledge - the smallest masked AES
design on Xilinx FPGAs. We deploy our design on a Spartan-6 and evaluate its SCA
resistance by practical experiments.
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2 Preliminaries

In the following we give an introduction to FPGA technology, Boolean algebra and masking
schemes to counteract SCA attacks. Further, we define the notation for the rest of the

paper.

2.1 FPGAs

FPGASs are reconfigurable hardware devices consisting of configurable logic blocks (CLB),
each of which is further subdivided into two slices that each contain four look-up tables
(LUTS), eight registers and additional carry-logic. In the following, we give a bottom-up
description of the the structure of Xilinx Spartan-6 FPGAs, but this is similar for series 7
devices and FPGAs of other manufacturers.

2.1.1 LUTs

An FPGA’s LUT is a combination of a multiplexer tree and read-only RAM. The Xilinx 6
and 7 series contain one type of LUT block, which can be used to create functions with
either six input bits and one output bit (O6) or five input bits and two output bits (06,05).
This is illustrated in Figure 1la.
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Figure 1: The illustrations are taken from [Xil10].

Because of this structure, the algebraic complexity of Boolean functions does not
matter in FPGAs as long as the number of inputs is six or fewer. When realizing a
vectorial Boolean function on FPGAs, two coordinates that jointly depend on five or fewer
inputs can be mapped into one LUT. This puts FPGA design in stark contrast with ASIC
design as they clearly demand very different optimization strategies to achieve a low-cost
implementation.

There are alternative uses to the circuitry of a LUT. A single LUT? can also be
configured as a 32-bit shift register with a 5-bit read address port in addition to serial
shiftin and shiftout ports (see Figure 1b). It is also possible for a LUT to be used as 32
addressable RAM cells of two bits each.

2.1.2 Slices

When mapping a hardware design to an FPGA, we count the number of occupied slices as
a metric for size. As each slice contains not only four LUTs but also further logic gates
and registers, this opens up more optimization potential compared to a naive mapping to
LUTs exclusively.

20nly in particular slice type SliceM.
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More Inputs. Since each slice consist of four LUTSs, it can trivially realize four 6-to-1-
bit functions. Further, due to internal multiplexers between the four LUTs, each slice
can also implement two 7-to-1-bit functions or one 8-to-1-bit function. As a result, the
8-bit AES S-box can be easily implemented in 8 slices; one for each Boolean coordinate
function. In fact, this is the smallest known FPGA implementation of the AES S-box,
used in [BSQ'08, SG16].

Memory. A slice also contains eight flip-flops, connected to the O5 and O6 output of
each LUT (see Figure 1a). Note that every slice is limited in its functionality by many
constraints. For example, while the inputs to four of the eight registers are directly
accessible from the slice-external wires, a connection to the other four can only be made
via the LUTs.

Types. In Spartan-6 devices we distinguish three different types of slices: The SliceX
contains only four LUTs and eight flip-flops, while the Slice contains additional carry
logic and finally the most complex one, SliceM, can be used as a RAM unit with 256 bits
of memory in different chunks of addressability or a 128-bit shift register.

2.2 Mathematical Foundations

Boolean Algebra. We define (GF(2), +, -) as the field with two elements ZERO and
ONE. We denote the n-dimensional vector space defined over this field by GF(2)". Its
elements can be represented by n-bit numbers and added by bit-wise XOR. In contrast,
the Galois Field GF(2") contains an additional field multiplication operation. It is well
known that GF(2)™ and GF(2") are isomorphic.

A Boolean function F is defined as F': GF(2)" — GF(2), while we call G : GF(2)" —
GF(2)™ a vectorial Boolean function. A (vectorial) Boolean function can be represented
by a look-up table (LUT), which is a list of all output values for each of the 2™ input
combinations. Further, each Boolean function can be described by a unique representation
- so called normal form. Most notably the Algebraic Normal Form (ANF) is the unique
representation of a Boolean function as a sum of monomials. In this work, we designate by
m € GF(2") the monomial z{°z]" ... 2", where (mg,m1,...,m,_1) is the bitvector
of m. The monomial’s algebraic degree is simply its hamming weight: deg(m) = hw(m).
We can then write the ANF of any Boolean function F' as

My —
F(z) = @ amxy
meGF(27)

The algebraic degree of F' is the largest number of inputs occurring in a monomial with a
non-zero coefficient:

deg(F) = hw(m)

max
meGF(2™),a,, #0

Finite Field Bases. We denote the isomorphism between the finite field GF(2") and
the vector space GF(2)™ by ¢ : GF(2") — GF(2)"™. This mapping depends on the basis
chosen for GF(2™). The vector ¢(z) = (ag,...,an—1) € GF(2)™ holds the coordinates of x
with respect to that basis, and we denote by ¢(z); the i*® coordinate of this vector. A
polynomial basis has the form
(1,a,0%,...,a" 1)

with o € GF(2") the root of a primitive polynomial of degree n. We denote ¢ the
isomorphism mapping to a polynomial basis with «. Consider for example av = 2. In that
case, we have ¢?(2!) = e; with e; the i*" unit vector, so the representation of z € GF(2")



6 Spin Me Right Round Rotational Symmetry for FPGA-specific AES

in polynomial basis simply corresponds to its binary expansion. In contrast, a normal
basis has the form

8%, 8%,....85 )

with 27~1 possible choices for 8 € GF(2"). In a normal basis over any finite field, the zero
(resp. unit) element is represented by a coordinate vector of all zeros (resp. all ones). An
clement 3 € GF(2") can thus form a normal basis if @/~ 8% = 1. We denote by ¢2(z)
the isomorphic mapping from x € GF(2") to its GF(2)" representation in normal basis
with 3, although we sometimes omit [ for ease of notation.

The conversion between any polynomial and normal basis is merely a linear transfor-
mation which can be represented by a matrix multiplication over GF(2)™. The matrix can
be determined column-wise by mapping each basis element of the original basis to the
target basis. Let @ € GF(2)"*™ be the matrix mapping from a normal basis with 5 to a
polynomial basis with «, i.e. Q x ¢2(z) = ¢*(x). Then, the i*® column of Q is simply
#*(B?"). The inverse mapping uses the inverse matrix: Q=% x ¢*(z) = ¢2(z).

2.3 Boolean Masking in Hardware

We denote the s;-sharing of a secret variable z as © = (zo,...,zs,—1) and similarly an
so-sharing of a Boolean function F(x) as F = (Fy,...,Fs,—1). Each component function
F; computes one share y; of the output y = F'(z). A correctness property should hold for
any Boolean masking:

r = @ zj < F(z) = @ Fj(x)

0<j<si 0<j<s0

We define S(x) as the set of all correct sharings of the value z. Creating a secure masking
of cryptographic algorithms in hardware is especially challenging due to glitches. Despite
this major challenge, Nikova et al. [NRRO6] introduced a provably secure scheme against
first-order SCA attacks in the presence of glitches, named Threshold Implementation (TT).
A key concept of TI is the non-completeness property which we recall here.

Definition 1 (Non-Completeness). A sharing F is non-complete if any component function
F; is independent of at least one input share.

Apart from non-completeness, the security proof of TT depends on a uniform distribution
of the input sharing fed to a shared function F'. For example, when considering round-based
block ciphers, the output of one round serves as the input of the next. Hence, a shared
implementation of F' needs to maintain this property of uniformity.

Definition 2 (Uniformity). A sharing x of x is uniform, if it is drawn from a uniform
probability distribution over S(x).

We call F a uniform sharing of F(z), if it maps a uniform input sharing « to a uniform
output sharing y:

dc: Vo € GF(2)",Vx € S(x),Vy € S(F(x)) : Pr(F(x) =y) =c.

Finding a uniform sharing without using fresh randomness is often tedious [BNNT12,
BB16] and may be impossible. Hence, many masking schemes restore the uniformity by
re-masking with fresh randomness. When targeting first-order security, one can re-mask s
output shares with s — 1 shares of randomness as such:

(Fo®ro, Fi®ry, ..., Fe o ®re_g, Fo_1 @ @ )

0<j<s—2
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Threshold Implementation was initially defined to need s; > td 4 1 shares with d the
security order and ¢ the algebraic degree of the Boolean function F' to be masked. The
non-completeness definition was extended to the level of individual variables in [RBNT15],
which allowed the authors to reduce the number of input shares to s; = d 4+ 1, regardless of
the algebraic degree. As a result, the number of output shares s, increases to (d + 1)*. For
example, two shared secrets a = (ag,a1) and b = (bg, b1) can be multiplied into a 4-share
¢ = (cop, c1, 2, c3) by just computing the cross products.

Co — aobo Cc1 — a0b1
c2 = aibg c3 = aiby

The number of output shares can be compressed back to d + 1 after a refreshing and a
register stage. This method was first applied to the AES S-box in [CRB*16] and lead to a
reduction in area, but an increase in the randomness cost. A similar method for sharing
2-input AND gates with d + 1 shares is demonstrated by Gross et al. in [GMK16, GMK17].
In particular, they propose to refresh only the cross-domain products a;b; for ¢ # j,
resulting in a fresh randomness cost of (d‘gl) units. In [UHA17a], Ueno et al. demonstrate
a general method to find a d + 1-sharing of a non-quadratic function with d + 1 input
shares in a non-complete way by suggesting a probabilistic heuristic that produces (d+1)"
output shares in the worst case, where n stands for the number of variables.

3 Rotational Symmetry of the AES S-box

Rotational Symmetry of Power Maps. In 2008, Rijmen et al. [RBF08] noted a rotational
property of power maps in finite fields. More specifically, they showed that every power
map based S-box (or vectorial Boolean function) over GF(2") is a rotation-symmetric
S-box in a normal basis. We denote by rot(v,4) the i-times rotation of v € GF(2)™ to the
right, i.e. rot(v,1) = (ap—_1,a0,.-.,an—2) when v = (ag,ay,...,a,—1). When 4 is omitted,
it is equal to 1.

Definition 3 (Rotation-Symmetry). An n-bit S-box S : GF(2)" — GF(2)" is rotation-
symmetric if and only if rot(S(v)) = S(rot(v)) for all v € GF(2)".

We consider a normal basis with 5:

(BO)Bl?BQ?"'aﬂn—l) = (ﬂ7/8275227"'aﬂ2n_1)

This basis allows for an effective realization of squaring. As the order of the multiplicative
group is 2" — 1, we derive that Vo € GF(2") : 22"~ = 1 by Lagrange’s theorem. As
a result, we have that 22" = z for any element in GF(2"). This leads to the following
lemma.

Lemma 1 ([RBF08]). In a normal basis over GF(2™), the squaring operation corresponds
to a rotation of the coordinates vector: ¢,(x?) = rot(¢n(x))

Proof. We make use of the fact that = 22" holds for any element in GF(2").

2 2 2 2 2
x5 = aofByt+aifi...+an-2B, o+ an-18, 4

2 n n
= af®+a1f” ...+ an—2B® '+ a,_15?
an 1B+ aoB® +ar1f¥ ..+ an_oB>
= an—1Bo+aoBi+aiBa... +an—2fn_1

Hence, the below equation holds.

bn(2%) = (an_1,a0,. .., 0n_2) = rot(¢,(z),1)
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Successive application of the above property yields the relation

bn(22) = rot(dp (), ).

Now consider a power map F(z) = 2¥ over GF(2"). Clearly, for any power map we have
that F(z)! = F(z2'). Let S(¢n(z)) = ¢n(F(z)) be the normal basis S-box over GF(2)"
for which F(z) is an algebraic description. We denote the component Boolean functions
by S; : GF(2)" — GF(2). By Theorem 9 in [RBF08], S is thus rotation-symmetric, i.e.
rot(S(v)) = S(rot(v)) for all v € GF(2)™ or equivalently, for each ¢ € {0,...,n — 1}:
Si(v) = So(rot(v,4)). All n output bits of the S-box can be calculated using the same
Boolean function Sy. From now on, we denote the Boolean function that calculates the least
significant bit of the S-box output as S*(v) = Sp(v). It is related to the power map function
as follows: S* (¢, (x)) = ¢n (F (x)),. We demonstrate the rotational symmetry and show
how to calculate the i** coordinate of the power map’s normal basis representation:

Si(¢n(2)) = én (F (x));

Il
-

o
o+
—~
©

3
—
=
—~
]
S~—
N
~—
|
~
~

Note that ¢,, and by extension S* depend on the choice of 3, which generates the normal
basis, but we omit 8 here for readability.

As a result, instead of n Boolean functions S, S, ..., S,_1 operating in parallel, the
power map based S-box S can be evaluated entirely with a single n-to-1-bit function S*
by rotating the input vector bitwise.

4 Smallest Unprotected AES on FPGAs

It is generally known that an optimal FPGA implementation of the AES S-box requires 32
LUTs in eight slices, as each of its eight coordinate functions is an 8-to-1 mapping (see
Section 2.1.2). There is no obvious way to reduce this number, as every linear combination
of coordinate functions maintains the maximal algebraic degree of seven and depends on
all eight inputs. Hence, every coordinate function occupies an entire slice.

Note that Canright’s tower field construction [Can05] does not provide an alternative
as it is ill-suited for Spartan-6 devices due to the underutilization of six-input LUTs by
the operations in GF(2*) and even GF(22). More precisely, realizing the basis conversion,
square-scaling, inversion and multiplications can occupy as much as 53 LUTs on an FPGA.

4.1 Optimizing the S-box for FPGA

S-box Structure. We demonstrate that it is indeed possible to realize the AES S-box
in fewer LUTs by trading off latency for area. Recall that the AES S-box consists of
an inversion in GF(2%), followed by an affine transform over GF(2)®. For the inversion
part, we exploit the rotational symmetry of the power map z°* in GF(2®) as explained in
Section 3. The structure is illustrated in Figure 2a. Since the AES inversion is defined
in a polynomial basis with o = 2, we first convert the input byte x to a normal basis
using a linear transform (“p2n”). Then, in a bit-wise fashion, we calculate the output



Felix Wegener, Lauren De Meyer and Amir Moradi 9

(a) byte-parallel loading (b) bit-serial loading

Figure 2: Illustration of the bit-serial AES S-box based on rotational symmetry.

of the rotation-symmetric S-box by rotating the first register R1. The single-bit output
of S§* is shifted into a second register R2. When all eight bits have been calculated, we
use another linear transform to convert the result back into the polynomial basis (“n2p”).
This transform is combined with the affine transform of the AES S-box.

S-box Implementation Cost. We examine various normal bases and target a minimal
number of LUTS needed to implement the 8-to-8-bit functions p2n and n2p. Note that it is
not required to optimize S* since it is an 8-to-1-bit Boolean function of algebraic degree 7
and requires 4 LUTs (an entire slice) in any normal basis. At the end of our investigations,
we pick 3 = 145.3 By optimizing our implementation for intensive usage of 5-to-2 LUTSs,
we can implement the affine transformations p2n and n2p and the rotating register R1 in
one slice each. More specifically, the affine transforms each consume 4 LUTs. The 8-bit
register R1 uses all 8 registers in a slice. The choice between parallel loading and rotational
shifting is achieved using the four LUTs of that slice. As mentioned previously, S* itself
also occupies 1 slice. Finally, the 7 slice flip-flops for R2 are found in the already used
slices for n2p, p2n and S*. In total, the S-box design occupies 16 LUTs and 15 registers, all
fitting into only 4 slices. This means a 50% reduction over the status-quo [BSQ™T08, SG16].

We pay for the reduction in area with latency. While the 32-LUT S-box computes the
output within one clock cycle, our bit-serialized approach (Figure 2a in 16 LUTs) increases
the latency to 8 clock cycles. The linear function p2n is applied immediately to the S-box
input z. In cycles 1 to 8, register R1 rotates while S* serially computes each output bit.
The outputs are shifted into R2 bit by bit. In the last cycle, the last output bit is combined
with the 7-bit content of R2 as input to the affine transform n2p, which computes the
S-box output y. The register bypassing of n2p allows the S-box latency to be 8 cycles and
the R2 register to be only 7 bits wide.

4.2 Fully Byte-serial AES

A Grain in the Silicon. We start from the smallest unprotected state-of-the-art AES
design for FPGA [SG16] illustrated in Figure 3. The entire implementation requires only
21 slices, of which 15 slices construct the round function and key schedule, including 8
slices for the AES S-box and 2 slices configured as 256-bit memory for the state and key
arrays. The round constants are also stored in this memory. The remaining 6 slices make

3The algebraic normal forms for S*, p2n and n2p are given in Appendix A
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Mix
Columns

S-Box X &
. Add
RndKey

Figure 3: Illustration of the byte-wise AES design by [SG16]. All wires are 8-bit wide.
Especially notable is the 8-bit aggregation register in the MixColumns block. The RAM
blocks are further divided into two parts of 128 bits which are used in alteration.

up a heavily optimized control unit with a finite state machine (FSM) of 32 states. Each
round in this design requires 147 clock cycles. In the first 50 cycles, the key schedule
is performed to compute the entire 128-bit key state of the current round. In the next
97 cycles the round function is computed, using the freshly calculated round key. Most
of these clock cycles is spent on the MixColumns operation because it performs 4 S-box
evaluations on the fly for each byte of the MixColumns output. The S-box outputs are
not stored but discarded and recomputed when needed. Therefore, 64 S-box invocations
(instead of 16) are performed. In the last round, MixColumns is omitted and the round
function takes only 33 clock cycles. With 65 cycles spent on loading a new plaintext and
key, an entire encryption has a latency of (65 + (50 + 97) x 9 4+ 50 4+ 33) = 1471 clock
cycles. For more details on this design, we refer to the original work [SG16].

Latency optimization. We note that the above design can be optimized with respect to
latency without sacrificing its minimal area requirement. Instead of performing the key
schedule and round function separately in each round, we can interleave them, i.e. we
compute one key byte and immediately use it to update the corresponding state byte. To
do this, we only have to adapt the control logic. We create a new FSM of 16 states and
derive the LUT mappings for the control signals and addresses. We decrease the number of
LUTs from 24 to 21 and the number of flip flops from 16 to 13. The resulting design has a
latency of 113 clock cycles per round, except 49 in the last round. Loading of plaintext and
key bytes is done in 32 cycles. In total, one encryption requires (32 + 113 x 9+49) = 1098
clock cycles. Note that this design retains the original 8-LUT S-box. It is summarized in
row 2 of Table 1.

Bit-serializing the S-box. We now start from the latency-optimized design and replace
the 8-slice byte-parallel S-box with our bit-serialized S-box from Figure 2a. We accordingly
change the control unit to make use of such an S-box design by means of an extra 3-bit
counter to account for the S-box latency. It still contains an FSM of 16 states. This
results once again in a control unit of 24 LUTs and 16 flip flops. Each cipher round now
has a latency of 589 clock cycles and the last round 205 cycles. Hence, one encryption
is completed in (32 + 589 x 9 4 205) = 5538 clock cycles. An overview of the post-map
area and latency of this designs is shown in row 3 of Table 1. We can fit the entire AES
encryption into only 17 slices, a 19% reduction over the state-of-the-art.

4From the Post-PAR Static Timing Report
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Table 1: Overview of unprotected AES implementations for FPGA

Design # LUTs # Flip flops # Slices # CCs frnax

Sasdrich et al. [SG16] 84 24 21 1471 108 MHz
Latency optimized 81 21 21 1098 113 MHz
With bit-serial S-box 68 39 17 5538 109 MHz
Fully bit-serialized 63 38 19 4852 155 MHz

4.3 Fully Bit-serial AES

We now combine our bit-serialized AES S-box with the bit-serialized AES implementation
of [JMPS17]. We first adopt the S-box for bit-serial loading and then we adopt their AES
design for FPGAs, since it originally targets ASIC platforms.

S-box. The structure of the bit-serialized S-box with bit-serial loading is shown in
Figure 2b. The conversions to and from the normal basis (p2n and n2p modules) are now
realized in 12 LUTS, i.e. 3 slices (including the S-box affine). This is more than before
because these LUTs also implement the choice between the parallel and shift-serial input
to R1 and R2. This new constraint requires a different normal basis than before to achieve
the stated size. We choose 3 = 133.°> As a result, shift-registers R1 and R2 only require 16
more flip-flops, for which we can use the same slices. The 8-to-1-bit Boolean function S*
still occupies exactly 4 LUTs of a slice. Therefore, the entire S-box circuit, 7.e. all elements
and components shown in Figure 2b, requires only 16 LUTs and 16 flip-flops fitting into 4
slices (again 50% less area compared to [SG16]).

The S-box now has a latency of 16 cycles. In cycles 1 to 7, input bits are shifted into
the first register. In cycle 8, the linear conversion p2n is applied to the 7-bit content of the
register and the newest incoming bit at input x;. The 8-bit result is written to that same
register in parallel in the same cycle. In the 8 subsequent cycles (9 to 16), this register is
rotated, which allows S* to evaluate the 8-bit output. The first 7 bits are shifted serially
into R2. In cycle 16, the affine conversion n2p is applied to the 7 bits stored in R2 and the
last output of S*. The result is written in parallel to R2. The AES S-box output y is then
ready to be shifted out serially over 8 cycles. Note that this can be done in parallel with
the feeding of the next S-box input into R1.

Architecture. Our design is shown in Figure 4. We refer to [JMPS17, Fig. 3.4] for the
corresponding original architecture. To accommodate for bit-sliding, we instantiate four
LUTs as 32-bit shift registers (SRLC32E, see Figure 1b) for both the state and key arrays.
Each LUT represents one row of the array and has its own shift enable signal (not drawn).
This means that ShiftRows can be implemented without additional area cost by letting row
i € {0,1,2,3} shift & times. This requires 24 clock cycles in total. As shown in Figure 1b,
the shift register LUT has both a serial output and a custom read port. In the state array,
this port reads the next-to-last bit, which is used in the computation of MixColumns. In
the key array, this port reads the 7t bit of each row. The MixColumns is performed in 32
clock cycles as in [JMPS17]. The implementation uses 6 LUTs and 4 flip flops (for the four
most significant bits). We plug in the 16-LUT S-box as described in Section 4.1. With a
bit-serial loading of the input, the S-box has a latency of 16 clock cycles. The same S-box
is shared between the round function and key schedule. The multiplexers in the state array
can be implemented using 4 LUTs. The same goes for the operations at the input of each
row of the key state. We also have one LUT for the AddRoundKey which also includes
two multiplexers to select the serial input to R1. On the one hand, it chooses z; between
the S-box input from the round function and from the key schedule. On the other hand, it

5The algebraic normal form for S*, p2n and n2p are given in Appendix B
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Figure 4: Bit-serial architecture for AES-128. Left: State Array and Round Function,
Right: Key Schedule

chooses the feedback from R1 when R1 should be rotating, .e. the multiplexer shown in
Figure 2b.

Finally, we make a controller to supply the control signals, read addresses and round
constant to the round function, key schedule and S-box. The controller consists of an FSM
with 8 states, which are encoded in a way that minimizes the number of LUTSs needed to
compute the control signals and addresses. In total, the control unit takes up 24 LUTs and
18 flip flops. This brings the total LUT cost of the AES implementation on a new record
of 63 LUTs (see Table 1, row 4). The bit-serial loading of plaintext and key requires 128
clock cycles. Each encryption round is done in 476 cycles, except the last round, which is
done in 440 cycles. In total, one encryption takes (128 4476 x 9 +440) = 4852 clock cycles.
It might be surprising that this bit-serialized design is faster than the byte-serialized AES
from Section 4.2. This is due to the high latency of the S-box and the fact that the
architecture of [SG16] has a “wasteful” MixColumns implementations that evaluates the
S-box multiple times.

5 Masking Methodology for Functions of Degree t

The rotational symmetry approach to implement the AES S-box reduces its non-linear
proportion significantly. This is especially interesting when we consider the application of
masking schemes. It is well known that the non-linear parts of a circuit grow exponentially
with the masking order, while linear operations can simply be duplicated and performed on
each share independently, i.e. a linear increase in the area. Instead of sharing a complete
8-bit to 8-bit mapping, the rotational symmetry approach allows us to mask only a single
8-to-1 Boolean function.

In this section, we introduce a methodology for finding an optimal sharing for generic
degree-t functions. Our descriptions have our AES application in mind, but can be
generalized to any algebraic degree and any number of inputs. Moreover, the methodology
is not platform-specific and can be used both for ASIC and FPGA implementations.

Masking Cubic Boolean Functions with d + 1 shares. Each cubic monomial abc can
be trivially masked with d + 1 input shares and (d + 1)® output shares (one for each
crossproduct). For example, a first-order sharing (i.e. d = 1) of z = abc is given in (1).

20 = apboco, 21 = agbpci, z9 = agbico, 23 = agbycy,

z4 = arbgco, z5 = aibgcy, 26 = a1bico, 27 = arbicy (1)
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The result can be compressed back into d + 1 shares after a refreshing and register stage.
Our refreshing strategy resembles that of Domain Oriented Masking [GMK16] in such
a way that we apply the same bit of fresh randomness to cross-share terms and do not
re-mask inner-share terms:

26 = [ZO]reg S5 [Zl ® TO]reg ® [22 5> rl]reg S¥ [23 D T2]reg
Zi = [Z4 S T2]reg D [ZS ® Tl]reg 2 [Z6 ¥ TO]reg ¥ [27]7’651 (2)

Note that every term after refreshing e.g. zg or z1 @ rg, is stored in a dedicated register
before going to the XOR chain which produces z{ and .

The most basic way to mask a more general t-degree function is thus to expand each
monomial into (d + 1)* shares. However, this is wildly inefficient for a Boolean function
which can have as many as 20 monomials (in our case). On the other hand, it is impossible
to keep certain monomials together without violating non-completeness. We devise a
sharing method that keeps as many monomials as possible together by splitting the function
into a minimum number of sub-functions. These sub-parts are functions such as for example
z = abc @ abd, for which it is trivial to find a non-complete sharing. For each sub-function
we create independent sharings, each with (d + 1) output shares, and recombine them
during the compression stage.

5.1 Sharing Matrices

We introduce a matrix notation in which each column represents a variable to be shared
and each row represents an output share domain. Output share j only receives share M;;
of variable i. For example, the sharing matrix M of the sharing in Equation (1) is

a b ¢

0 0 0\ z
0 0 1 Z1
0 1 0 z9
1 0 0 zZ4
1 0 1 z5
1 1 0] z
1 1 1/ 2z

From this matrix, it is clear that a correct and non-complete sharing for the cubic
function z = abc exists, since the 23 rows of the matrix are unique, i.e. each of the
23 possible rows occur in the matrix. Moreover, this Sharing matrix implies a correct
and non-complete sharing for any function z = f(a, b, ¢). Note also that each column is
balanced, i.e. there are an equal number of 0’s and 1’s. It is also possible to add a fourth
column, such that any submatrix of three columns consists of unique rows:

a b ¢ d

0 0 0 0\ 2
0 0 1 1 z1
0 1 0 1 V)

M |0 1 1 0]z 4)

1 0 0 1| 2z
1 0 1 0 z5
1 1 0 0] 2
1 1 1 1/ =z
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Hence, the matrix M’ demonstrates the possibility to find a correct and non-complete
sharing with eight output shares for any combination of cubic monomials defined over four
variables a, b, ¢, d. Note that the non-completeness follows from the fact that each output
share (row) only receives one share of each input (column) by construction. To generalize
this observation, we introduce the following concepts:

Definition 4 (Sharing Vector). We call a vector v of length (d + 1)* with entries v; €
{0,...,d} a (t,d)-Sharing Vector, if and only if it is balanced, i.e. each entry occurs an
equal number of times:

vr €{0,...,d}: #{ijvi =7} = (d+ 1) !

Definition 5 (Sharing Matrix). We call a (d + 1)" x ¢ matrix M with entries M;; €
{0,...,d} a (t,d)-Sharing Matriz, if and only if every column M; is a (¢, d)-Sharing Vector
and if every (d + 1)* x ¢ sub-matrix of M contains unique rows.

5.1.1 How to construct Sharing Matrices

The main question in creating masked implementations is thus how to find such a (¢, d)-
Sharing Matrix. Below, we present both provable theoretical and experimental results:

Exact.

Lemma 2. A (t,d)-Sharing Matriz with t columns exists and is unique up to a reordering
of rows.

Proof. A (t,d)-Sharing Matrix has exactly (d+1)" rows. If the matrix has ¢ columns, then
each row is a t-length word with base d + 1. The existence of such a matrix follows trivally
from choosing as its rows all (d + 1) elements from the set {0,...,d}’. The uniqueness
follows from the fact that the rows must be unique, hence each of the (d + 1)* elements
can occur exactly once. Up to a permutation of the rows, this matrix is thus unique.

O

Lemma 2 is equivalent to the fact that it is trivial to mask ¢-variable functions of degree
t (e.g. z = abc) with (d+ 1) output shares but also functions such as z = abc + abd (since
¢ and d can use the same Sharing Vector).

Lemma 3. A (t,1)-Sharing Matriz has at most ¢ =t + 1 columns.

Proof. We prove this Lemma by showing that the t + 1** column M, exists and is unique.
Consider the Sharing Matrix M from Lemma 2 with ¢ columns and 2! rows. We reorder
the rows as in a Gray Code. This means that every two subsequent rows have only one
coordinate (or bit) different. Equivalently, since there are ¢ columns, any two subsequent
rows have exactly ¢ — 1 coordinates in common. Consider for example row ¢ and i + 1. We
have the following properties:

E”j s.t. Mi,j 7& MH‘LE (5)
Vj S {0,...,t—1}\{j} : Mi,j = Mit1,5 (6)

Recall that by definition of Sharing Matrix M, any two rows may have at most ¢t — 1
coordinates in common. For row ¢ and i + 1, these coordinates already occur in the first ¢
columns (6), hence for the last column we must have:

M+ # Mitat
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Since this condition holds for ever pair of subsequent rows ¢ and 7 + 1, we can only obtain
the alternating sequence ...010101...as the last column M;. This column is therefore
unique up to an inversion of the bits. An example for ¢t = 3 is shown below:

0 0 0 0 0 0 0 1

0 0 1 0 0 1 1 0

01 0 0 1 1 0 1

0 1 1f i 0 10 1 0
M=(1 0 0] —— 1 1 0 =M= 0 OR 1 (7)

1 0 1 1 1 1 1 0

1 1 0 1 0 1 0 1

1 1 1 1 0 0 1 0

The example shows clearly that adding both columns to the matrix would violate the
Sharing Matrix definition, since a 3-column submatrix including both new columns cannot
have unique rows. Hence, the ¢ 4+ 1** column is unique and thus a (¢, 1)-Sharing Matrix
has at most ¢ + 1 columns. Note also that the labels 0/1 in the last column correspond to
a partitioning of the rows in the first ¢ columns based on odd or even hamming weight.

O

An alternative proof using graph theory is shown in Appendix C.

While the relation between the degree ¢t and the maximum number of columns in a
(t,d)-Sharing Matrix is easily described for masking order d =1 (cf. Lemma 3), no simple
formula can describe the relationship for higher orders. More general (d + 1)-ary Gray
Codes exist, but the proof of Lemma 3 does not result in uniqueness for d > 1. We
therefore construct an algorithmic procedure for finding Sharing Matrices for higher orders.
The results are shown in Table 2.

Search procedure with backtracking. We start from the ¢-column (¢, d)-Sharing Matrix
from Lemma 2. To extend this matrix with another column M;, we keep for each column
element M, ,; a list £; ; of non-conflicting values € {0,...,d}. For each new column, these
lists are initialized to all possible values. Without loss of generalization, we set the first
element of the column to zero: My, = 0. For every row ¢ with ¢ — 1 common coordinates,
this element then needs to be removed from its list £; ;.

If there is a row r with a list of length 1 (|£, ;| = 1), then the unique value in that list
is chosen as the value M, ;. Again, this value is subsequently removed from all lists £, ;
for which row 7 has t — 1 coordinates in common with row r. This process continues until
either the column M; is complete, or until there are only lists of length > 1. In the latter
case, any element of the list £; ; can be chosen as the value M; ;. The choice is recorded so
that it can later be revoked during backtracking. Whenever a value is assigned to a column
element, the remaining lists are updated as before. When a column is fully determined,
the next column is added in the same way. As soon as an empty list is obtained for one of
the column elements, the algorithm backtracks to the last made choice. If for all possible
choices empty lists occur, then the maximum number of columns is obtained and the
algorithm stops.

A simplified version of the procedure is shown in Algorithm 3 in Appendix E. Note that
optimizations are possible for the algorithm, but we leave this for future work since first-
order security is the target in this work. According to the proof of Lemma 3, backtracking
is not necessary for d = 1.

Table 2 shows that the maximum number of columns does not follow a simple formula
for d > 1. The results in Table 2 without additional indication have been obtained by
exhausting all possible choices via backtracking. As this strategy becomes infeasible with
larger matrices, we indicate results of greedy search without backtracking with an asterisk.
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Table 2: Maximum Number of Columuns in (¢, d)-Sharing Matrices

Degreet Orderd=1 Orderd=2 Orderd=3

2 3 4 5
3 4 4 6
4 5 5* 5%
5 6 6* 6*
6 7 * *
7 8 8* 8%

This choice is made based on the observation that (for smaller parameters), if a solution
exists, backtracking was never necessary to find it.

5.1.2 From Sharing Matrices to Sharings

Now consider a mapping p : {0,...,n — 1} — {0,...,c — 1} which assigns any input

variable z; to a single column of a Sharing Matrix. That column holds the Sharing Vector

of that variable. For a monomial to be shareable according to those Sharing Vectors, each

variable of that monomial must be mapped to a different column. We therefore introduce

the concept of compatability between monomials and a mapping p.

Definition 6 (Compatible Mappings). A mapping p : {0,...,n — 1} — {0,...,c— 1}
mo .m1 My —1

is compatible with a monomial z(°x7"* ...z, "' of degree hw(m) = t if it maps each

variable in the monomial to a different Sharing Vector, i.e.

Vi je{0,...,n—1}st. my =m; =1:p(i) # p(j)

Lemma 4. Consider a set of monomials of degree <t (of which at least one monomial
has degree t) defined over a set of n variables with ANF

~1
@ amxy oyt gy

meGF(2n)

and a sharing of each variable x; into d + 1 shares. A correct and non-complete sharing
of this set of monomials with (d + 1)* output shares exists if and only if a (t,d)-Sharing
Matriz can be constructed such that for each variable in the set of monomials, the Sharing
Matriz has ezxactly one column corresponding to its Sharing Vector and such that for each
monomial, the (up to) t variables of that monomial have different Sharing Vectors. In other
words, there exists a single mapping p : {0,...,n —1} = {0,...,¢c— 1} that is compatible
with each monomial in the ANF:

Vm e GF(2") s.t. am =1:Vi#j€{0,...,n—1} s.t. my =m; =1:p(i) # p(j)

The mapping p assigns to each variable z; column p(i) of the Sharing Matriz as Sharing
Vector.

The terms with degree lower than ¢ also have to be compatible with the mapping p so
that their variables are assigned to different Sharing Vectors. However, lower-degree terms
naturally do not need to appear in each of the (d + 1)* output shares. Given a monomial of
degree | < t and a set of [ (t,d)-Sharing Vectors, it is trivial to choose the (d + 1)! output
shares for the monomial to appear in.

We note that our Sharing Matrices are very similar to the D}-tables of Bozilov et
al. [BKN18], who also demonstrated that any ¢-degree function with ¢ + 1 input variables
can be shared with the minimal (d + 1) output shares. However, their work only treats
the sharing of t-degree functions with exactly ¢ 4+ 1 input variables. Since our goal is to
find a sharing of cubic functions with 8 input variables, we consider here the more general
case where both the degree t and the number of variables n are unconstrained.
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5.2 Sharing any ANF

Naturally, not any function is compatible with a (¢, d)-Sharing Matrix. In what follows,
we develop a heuristic method to determine efficient maskings with d + 1 shares for any
degree t-Boolean function starting from its unshared algebraic normal form (ANF). If a
compatibility mapping with a single Sharing Matrix cannot be found, our approach is to
split the monomials of the ANF into a number of subgroups, each for which a (¢, d)-Sharing
Matrix and thus a correct and non-complete sharing exists.

Our Heuristic. We want to minimize the number of parts the ANF should be split
into. This is equivalent to limiting the expansion of the number of shares and thus
minimizing both the required amount of fresh randomness and the number of registers for
implementation.

We assume a (t, d)-Sharing Matrix of ¢ columns is known at this point. A procedure
for this was described in §5.1 and Algorithm 3. There are ¢™ possible mappings p to assign
one of the ¢ Sharing Vectors to each of n variables. In an initial preprocessing step, we
iterate through all possible p and determine which ¢-degree monomials are compatible
with it. During this process we eliminate redundant mappings (7.e. with an identical list
of compatible monomials) and the mappings without compatible monomials of degree t.
Note that up to this point (including for algorithm 3), the specific function to be shared
does not need to be known.

The next step is function specific: We first attempt to find one mapping that can
hold all the monomials of the ANF. Its existance would imply that all the monomials
in the ANF can be shared using the same Sharing Matrix (see Lemma 4). This is not
always possible and even extremely unlikely for ANFs with many monomials. If this first
attempt is unsuccessful, we try to find a split of the ANF. A split is a set of mappings
that jointly are compatible with all monomials in the ANF of the Boolean function,
i.e. it implies a partition of the ANF into separate sets of monomials, each for which a
Sharing Matrix exists. In this search, we first give preference to partitions into a minimal
number of subfunctions. With an FPGA target in mind, we also attemp to minimize the
number of variables each subfunction depends on. It is trivial to change this for ASIC
implementations.

We perform the above described search for all possible normal bases. We note that our
search is heuristic and we do not claim optimality.

Implementation Details. We encode mappings and ANFs which are dependent on n

inputs as bitvectors with 2" entries. An entry in the bitvector at position m € GF(2")

. Moy — .
corresponds to one monomial zg®z}" ...z, "' of degree t = hw(m) and prescribes

whether this monomial is present in the ANF. Recall the ANF of an n-bit Boolean function

F:
F(z) = @ amayT
meGF(2™)

We thus define the bitvector representations
rep(F) = Z 2™ and rep(p) = Z ab 2™
m m
where af, = 1 if monomial m is compatible with mapping p. Consider for example the
function F' = xgroxs ® x125:
rep(zorazs ® a17s5) = (22 7F ) 4+ (227%) = 02400200000

Now, we can determine whether for example a set of mappings (p1, p2) specifies a
two-split for a Boolean function F' as follows. Assuming both are represented as a 2"-bit
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vector, we check if the following condition holds:

rep(p1) | rep(pz2) | rep(F') = rep(p1) | rep(p2),

where | refers to the Boolean OR-operation. The condition evaluates to true whenever
all monomials of the ANF of F' are also compatible monomials with at least one of the

mappings p; or ps.

Algorithm 1 Preprocessing of mappings

Input: n: number of input bits; ¢: deg(F'); ¢: number of columns of (¢, d)-Sharing Matrix
Output: L: list of mappings; o: compatibility af,

1: L {(pl0), .., p(n — D)|p(i) € {0,...,c — 1}}

2: for p€ L do

3: for m € GF(2") s.t. hw(m) <t¢ do

4: ab, —0

5: if p(i) # p(§)Vi # j s.t. m; =m; =1 then

6: af, + 1

7: end if

8: end for

9: if 3p € L s.t. rep(p) = rep(p) or max,, ,» _, hw(m) <t then
10: L+ L\ {p}

11: end if

12: end for

The preprocessing step is illustrated in Algorithm 1 and creates a list of mappings L.
The list initially contains all ¢ possible mappings, i.e. all assignments of n variables x; to
one of ¢ Sharing Vectors (1). We iterate over L (2). For each monomial m up to the target
degree t (3), we check whether it is compatible with the mapping p, i.e. whether for any
two variables in the monomial m they do not have the same Sharing Vector (5). After all
compatible monomials for one mapping p have been determined, we check for a duplicate -
another mapping p with an identical list of compatible monomials - and eliminate it. We
also check whether the mapping p is compatible with at least one monomial of the target
degree t and otherwise discard it (9,10). The runtime of the entire preprocessing step is
bounded by O(2" - ¢").

Algorithm 2 Search for a [-split

Input: L: list of mappings; c: compatibility af,; F: target function
Output: S: a list of I-splits

S+ 0

: for (p1,...,p) € L! do

if xop(p1) | - | rep(py) | rep(F) = rep(p1) | ... | rep(p) then

S+ Su{(pr,.--,p)}
end if

end for

DR

Algorithm 2 demonstrates the search for an [-split of mappings for a specific target
function F. Its run-time is |L|' = O(c™).

6 SCA-protected AES on FPGA

In this section, we apply our masking methodology from Section 5 to achieve the smallest
first-order secure FPGA-specific design of AES. We describe the structure of our design
in detail, compare it to state-of-the-art implementations and demonstrate side channel
resistance by practical measurements.
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Rotational Symmetry. As noted in [Mor16, NNR18, WM18], the inversion in GF(2%)
has an algebraic degree of 7 but can be decomposed into two cubic bijections:
ol = 2254 = (26)19

Since masking with d+ 1 shares for a function with degree t requires at least (d+1)* output
shares [RBN*15], we choose to mask the cubic bijections 225 and z%? instead of realizing
271 in one step. Moreover, since both components of the decomposition are power maps
themselves, they can both be implemented using the rotation symmetry approach. Using
the same method as before, we can thus find two Boolean functions F* and G* such that

F*(¢(x)) = (b(x%)o and G*(¢(x)) = ¢($49)0~

S-box Structure. We illustrate the structure of the decomposed shared S-box in Figure 6.
Our purpose is to reuse as much hardware as possible to minimize the utilized FPGA
resources. As before, a (shared) byte enters the circuit bit-serially via the input x; and
is saved to the upper shift register R1. Each byte share is then transformed to a normal
basis representation using the affine mapping p2n. By rotation of R1, the power map 26
is calculated bit by bit using a shared implementation of Boolean function F*. The result
is shifted bit-wise into the lower register R2 and when completed, the byte is written back
into the upper register in parallel. There, it is rotated to calculate the power map z*°
through shared Boolean function G*. When all eight 2-share bits have been calculated and
shifted into the lower register, the resulting shares go through the final affine transform,
which transforms back into polynomial basis and applies the AES affine function (n2p).
The S-box output shares can be obtained bit by bit on wire y;.

The block F*/G* can compute either shared Boolean function F* (corresponding to
power map 2:2%) or Boolean function G* (corresponding to power map z%°). Its functionality
is determined by a control selection bit.

6.1 Implementation

Since our fully bit-serialized design (cf. Table 1; row 4) occupies the smallest area in
LUTs and exhibits a lower latency than the byte-serial with bit-serial S-box design based
on [SG16] (cf. Table 1; rows 3), we choose to mask this design rather than the byte-serialized
architecture.

G*/F*. Figure 5 shows the masking of the non-linear block G*/F™* in more detail. Note
its significant optimization compared to Figure 5 in [DMW18]. A control bit sel chooses
whether this block computes G* or F*. We split each cubic function G* and F* into two
parts [GA, GB] and [FA, FB] and share them according to the (3, 1)-Sharing Matrix (4)
and Equations (1) and (2).

Functions F4, FB G4 and G® were found using the algorithm described in Section 5.2
for all possible normal bases. For both F* and G*, we found that the minimum number of
mappings needed for a split is two.

We combine G4 with F4 and let the control bit sel pick one of the two. We do the
same with GP and FZ. The possibility to incorporate the selection bit sel in the first
stage of both parts A and B can be attributed to the fact that we performed the search for
2-splits of both functions F* and G* simultaneously. This minimizes the registers needed
between the first and second stage considerably since each part creates immediately the
minimum number of eight output shares. These results were found for a normal basis with
£ = 205. For the exact equations we refer to Appendix D.

Each individual output share (or register input) depends on one share of each input (i.e.
8 bits) and the control bit sel. As stated before, we only refresh the cross-domain shares.
The six cross-domain shares thus depend on 10 variables in total and the shares zy and z7
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Figure 5: Illustration of the masked realization of the functions F*/G*.

depend only on 9 variables. Since the number of LUTs can double for each additional input
variable, a standard LUT mapping could require as much as 16 LUTs for the cross-domain
shares and 8 LUTs for the other two shares. However, since F4, FB, G4 and G are only
cubic functions, we were able to find a more optimal mapping manually. For block F4/G4,
we can implement each cross-domain share with 7 LUTs and the inner-domain shares with
6 LUTs, resulting in a total cost of 54 LUTs. The second part of the split (FZ/GP) has
less monomials in the ANF and can be implemented with only 5 LUTs per share, which
brings the total cost to 40 LUTs. The resulting 2 x 8 output shares are stored in a register
to prevent propagation of glitches. Finally, the shares of the two blocks are compressed into
d+ 1 = 2 shares yy and y; using two 8-bit XORs. Each of those can be implemented using
2 LUTs. In total, the entire circuit of G* /F* thus occupies 16 registers and 54+40+4 =
98 LUTs and exhibits a latency of one clock cycle (due to the compression).

Masked S-box. The masked S-box (Figure 6) has a latency of 26 cycles. In clock cycles 1
to 8, input @ is shifted bit-serially into the upper register R1. In cycle 8, we also apply the
affine transform p2n. The evaluation of G* takes one clock cycle because of the register
stage between expansion and compression of shares. We use the block as a pipeline, so the
upper register R1 rotates continuously in clock cycles 9 to 16, feeding its content to G* and
the results are shifted bit-serially into R2 in clock cycles 10 to 17. The 7 most significant
bits (in 2 shares) of the lower register R2 and the result of the last G* computation are
written to the upper register R1 in cycle 17 as well. Then, register R1 rotates again in
cycles 18 to 25 and the results of F'* are shifted into R2 in clock cycles 19 to 26. The final
affine transform is done in cycle 26. Result y can then be taken out bit-serially in 8 cycles,
but this can be done in parallel with the loading of the next S-box input « into R1.

Vulnerability Potential. When R1 rotates, the input of F*/G* instantly changes, and
this may result in first-order leakage. As an example, consider x1zoxg as one of the terms
in the ANF of GP (see Appendix D). Let us denote the value of (21,22, 73,6, 27) at one
clock cycle by (a,b,c,d,e). Based on Equation (1), one of the eight terms in a 2-share
realization is zo = apbidy. In the next clock cycle, register R1 rotates and (z1,x2, xg) have
the values (b, ¢, e), hence the same circuit evaluates zo = bocieg. This means that such a
piece of circuit observes b; in one clock cycle, and by in the next clock cycle. Hence, during
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Figure 6: Illustration of the first-order secure AES S-box based on rotational symmetry
when decomposed into 226 and z4°.

the transition (positive edge of the clock) the leakage of the circuit can depend on both
shares by and by, hence breaking the non-completeness and inducing first-order leakage.

In order to avoid this issue, we pre-charge the input of F*/G* before every shift in
register R1. To this end, we employ an extra register at F*/G*’s input (see Figure 6),
which is triggered at the negative edge of the clock, and reset (clear asynchronously) when
clock is high. During the first half of the clock cycle (when clock is high) this pre-charge
register clears the input of F*/G*. Once the clock changes to low, the value in R1
(already shifted) is stored in the register, hence given to F*/G*. At the next positive
edge of the clock, R1 shifts and at the same time the pre-charge register is cleared, thereby
pre-charging the F*/G* input. This construction prevents any race between R1 being
shifted and the pre-charge register being cleared. Even if R1 is shifted earlier (since its
clock should have low skew) this transition does not pass through the pre-charge register,
and F*/G™*’s input stays unchanged.

As a disadvantage, this construction can theoretically halve the maximum clock fre-
quency. However, we have observed that F*/G* is not involved in the critical path of
the circuit realizing the full AES encryption. Hence, the maximum clock frequency is not
very much affected, and can even be maintained if the duty cycle of the clock is properly
adjusted.

With respect to implementation, the F* /G* block requires 98 LUTs and 16 flip-flops.
In addition, for each share we need 7 LUTs for both p2n and n2p, 1 LUT for the addition
of the round key and 4 LUTs for the multiplexer that chooses the parallel input to R1.
Each share also requires two 8-bit registers (R1 and R2) as well as one 8-bit register for
the precharging of the F*/G* input. Therefore, our masked S-box can be implemented
with (98 +2 x (7+7+4+ 1)) =136 LUTs and (16 + 2 x (8 + 8 + 8)) = 64 flip-flops.
Further, the S-box has a fresh randomness cost of 2 x 3 = 6 bits per F*/G* evaluation,
i.e. 6 bits per clock cycle. Each group of 3 bits is used in one part of the shared Boolean
function as in Equation (2) (see Figure 5 with r; € GF(2)3).

Full-AES. We integrate the S-box into the same bit-serial AES design as used in Sec-
tion 4. The state and key array and linear components of the AES cipher (MixColumns,
AddRoundKey and ShiftRows) have simply been duplicated for each share separately. This
results in occupying 23 x 2 = 46 LUTs and 4 x 2 = 8 registers. The latency of ShiftRows
and MixColumns stays the same as for an unmasked design. When plugging in the masked
S-box, we also need to adapt our control logic since the S-box latency has changed and we
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require an extra control signal to select G* or F*. This new control unit uses 31 LUTs
and 20 flip-flops. The design has a latency of 676 cycles per round with a shorter last
round of 640 cycles. In total, with 128 cycles of loading, one encryption takes 6 852 cycles.
The total footprint of our masked AES (post-map) is 92 flip-flops and 230 LUTs when the
key schedule is masked and 220 LUTs when it is not.

Results. 1t is difficult to compare these results to state-of-the-art masked AES implemen-
tations [BGNT15, CRBT16, GMK17, UHA17b] since they target an ASIC platform. We
can let Xilinx map these designs to Spartan-6 resources, but unlike our design, they have
not been optimized specifically for this purpose. In Table 3, we do this first for various
masked S-box implementations. The results from other works are obtained by synthesis,
translate and map using Xilinx default settings apart from the KEEP HIERARCHY constraint
which is turned on to prohibit optimization across shares. We stress that no optimization
for FPGA has been done for these designs. When comparing these results to the ASIC
numbers reported in the original works, the stark contrast between the worlds of ASICs
and FPGAs is clearly confirmed. Moreover, the FPGA footprint is strongly influenced by
the coding style of the creators (e.g. extent of hierarchy use, clock gating vs. clock enabling,
...), which is obviously different for each of the designs. We also see clearly the advantage
of the new sharing method for the Boolean function G*/F* compared to [DMW18], both
in resource requirements and randomness consumption.

We should emphasize that all the considered designs are expected to provide only
first-order security with minimum number of shares for the state and key arrays. The
random bits, which we report in Table 3, are corresponding to the number of fresh random
bits required at each clock cycle. Since the other designs have a byte-serial S-box, the
number of required fresh masks per clock cycle is the same as those required for every
S-box evaluation. However, since in our design the S-box is bit-serial, the number of
required fresh masks per S-box invocation is different.

We further report the same performance figures for the corresponding full AES
encryption-only implementations in Table 4. Note that for all these designs, both
the state and key arrays are shared.

Table 3: Comparison of first-order secure AES S-boxes, mapped for Spartan-6.

Design # LUTs # FFs # Slices # Random bits
Bilgin et al. [BGNT15] 361 92 177 32
Gross et al. [GMK17] 327 208 242 18
Cnudde et al. [CRB" 16] 340 144 283 54
Ueno et al. [UHA17Db] 302 96 218 64
[DMW18] 182 96 95 18
This work 144 64 67 6

Table 4: Comparison of first-order secure AES implementations, mapped for Spartan-6.

Design # LUTs # FFs # Slices # CCs fmax

Bilgin et al. (nimble) [BGNT15] 1198 611 475 246 127 MHz
Gross et al. [GMK17] 595 734 366 246 103 MHz
Cnudde et al. [CRB16] 1191 642 553 276 181 MHz
[DMW18] 293 124 162 6852 103 MHz
This work 230 92 108 6852 120 MHz

6We do not have access to the design of the full AES implementation of [UHA17b].



Felix Wegener, Lauren De Meyer and Amir Moradi 23

6.2 SCA Evaluation

VerMI. As a first evaluation step, we use the VerMI tool [ANR17], which was specifically
created to verify the security of masked implementations in the presence of glitches. This

tool can be used directly on our VHDL code and confirms the non-completeness and
uniformity of the F*/G* block.

Measurement Setup. For practical evaluations, we implement our full AES encryption
design on the target Spartan-6 FPGA of the SAKURA-G platform [sak], a commonly
known and employed board for SCA evaluations. By means of a digital oscilloscope at a
sampling rate of 625 MS/s, we measure the power consumption of the target FPGA, which
is clocked at a frequency of 6 MHz, through the dedicated on-board AC amplifier. Due to
the very low power consumption of our design (particularly since the state and key arrays
are stored in shift register LUTs), we additionally employ an AC amplifier” with 10 dB
gain. During the measurements, the masked AES core receives the shared plaintext and
the shared key and sends back the shared ciphertext.

Each of the required 18-bit fresh masks are provided by a dedicated 31-bit LFSR with
the feedback polynomial 23! 4+ 22® 4+ 1. Such an LFSR has a maximum cycle 23* — 1 with
only two taps [WM12], hence should suffice for more than 2 billion measurements. Each
LFSR is implemented by means of only 3 LUTs, of which two are employed as shift register
and the last one to make the feedback signal, i.e. the entire fresh mask generation is
realized in 18 x 3 = 54 LUTs. We arbitrarily initialize the LFSRs (not null) right after the
FPGA power-up. They are supplied with the same clock as the masked AES core, but
operate on the negative edge of the clock. This is done to reduce the effect of the LFSR
transitions on the SCA measurements associated to the masked AES core [CRBT16].

Evaluation. Most of the related state-of-the-art schemes evaluate the masked design
by means of fixed-versus-random t-test [GJJR11, CDG*13, SM15]. It has recently been
shown that such evaluations on masked hardware with only 2 shares can yield misleading
results [CEM18]. In other words, when the measurement noise is low, such a t-test may
always show detectable leakage independent of the implementation and the underlying
masking scheme. Since our design is also prone to this issue due to its very low resource
requirements, we conduct attacks instead of such leakage assessment techniques. To this
end, in order to relax the necessity of having a detailed and accurate power consumption
model, we decide to perform Moments-Correlating DPA [MS16] (MC-DPA) which is
a more robust and theoretically more accurate form of Correlation-Enhanced Collision
Attack [MME10]. In short, we perform first- and second-order collision Moment-Correlation
DPA attacks by considering the leakage of one S-box evaluation as the model and thereby
performing the attack on another S-box evaluation. It is noteworthy that such linear
collision attacks recover the linear difference between the associated keys [Bog08].
PRNG OFF. We first turn off the LEFSR PRNG (for the fresh masks) as well as the
initial masking of the plaintext and key to emulate an unprotected implementation. The
sample trace shown in Figure 7a covers eight S-box evaluations of the first encryption
round (indeed of the first two state rows). We also present the signal-to-noise ratio (SNR)
curves estimated based on the value of the plaintext bytes in Figure 7b. To this end, we
follow the procedure explained in [MOPO07]. The SNR curves show a clear dependency on
the plaintext bytes, and hence the S-box inputs. Using 10000 traces and considering the
leakage of the second S-box evaluation (of state byte no. 4) as the model, we conduct a
first-order MC-DPA on the third S-box (of state byte no. 8), which yields the correlation
curves shown in Figure 7c. The results indicate that very few traces are required to correctly
identify the difference between the corresponding key bytes. We further repeat the same

77ZFL-1000LN+ from Mini-Circuits
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Figure 7: PRNG and initial masking disabled, 10000 traces, (a) sample trace, (b) SNR
curves based on 8 plaintext bytes with the order from left to right: byte no. 0, 4, 8, 12, 1,
5,9, 13, (c) first-order Moments-Correlating DPA result targeting S-box no. 8 with model
S-box no. 4, the black curve belonging to the correct key difference.

experiment for two other cases: (a) LFSR PRNG on and initial masking off, (b) LFSR
PRNG off and initial masking on. For both cases we again observe clearly-distinguishable
SNR curves (although with lower amplitude, i.e. 0.02 compared to 13 in Figure 7b). The
same MC-DPA attacks also successfully recover the correct key difference using at most
100000 traces.

PRNG ON. When both the LFSR PRNG and initial masking are active, we collect
10000 000 traces, each covering only the above-selected two S-box evaluations®. Following
the same scenario as in the case PRNG off, we perform both first-order and second-order
MC-DPA attacks. The corresponding results are shown in Figure 8. It is noticeable that
although the first-order leakage cannot be exploited, the second-order attack succeeds with
very low number of,e.g. 10000 traces. This is due to two facts: (a) masking with minimum
number of two shares has in general a strong vulnerability to second-order attacks [CFE16],
(b) higher-order attacks are sensitive to the noise level [PRB09] and our design (due to
its extremely low resource utilization) has a very low switching noise particularly when
the masked S-box is evaluated the entire circuit stops till the termination of the S-box.
Hence, the S-box is the sole source of leakage at that time. Further, our utilized LFSR
PRNG (again using shift register LUTs) does not add a remarkable amount of noise to

8Due to the high latency of the entire encryption, the measurement process is relatively slow. We also
have to cover at least two S-box evaluations (for collision MC-DPA) leading to long power traces. This
limited our analysis with respect to the number of collected traces.
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Figure 8: PRNG and initial masking enabled, Moments-Correlating DPA result targeting
S-box no. 8 with model S-box no. 4, (a) first-order with 10000000 traces, (b) second-order
with 10000 traces.

the measurements. In such cases, adding noise modules would surely help to harden
higher-order attacks. As an example we refer to [EGMP17], where the design of such a
noise generator on the same FPGA type is given.

7 Conclusion

Our contribution is manifold. First, we made several FPGA-specific AES implementations
which compromise between the latency and area requirements. We improved the latency
of the formerly smallest known AES on Xilinx FPGAs [SG16]. Furthermore, we achieved
a new size record by replacing its S-box with our bit-serial rotational design fitting into
only 17 slices, while the former record by Sasdrich et al. [SG16] requires 21 slices - a 19%
size reduction. This can be fully attributed to cutting the size of the S-box by half from 8
slices to 4.

Second, with respect to masking as an SCA countermeasure, we developed an effective
heuristic to find sharings of any Boolean function with d 4+ 1 shares by splitting its ANF
into a minimum number of sub-components, each of which can be shared with a Sharing
Matrix.

Third, we applied our heuristic to our AES S-box construction to obtain an FPGA-
specific masked AES. We further reduce the area overhead by exploiting the rotational
symmetry of a cubic decomposition of the inversion in GF(28). Our first-order secure AES
S-box requires only 144 LUTS, while the masked AES encryption requires 230 LUTs - a
new area record on FPGAs. However, we should emphasize that such low area footprints
come at the cost of high latency. More precisely, our designs are suitable for applications
with no high throughput needs. To promote further research as well as for comparison
purposes, the HDL code of our implementations is publicly available online®.
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A ANFs for Byte-Serial Unprotected S-box

The following results are valid in a normal basis with 8 = 145. To allow replication of our
results we share S* both as ANF and in a machine-readable notation (i.e. the 256-bit
vector).

rep(S*) = 0x1c14813636£5767d6abc937b490334efd066cb1449f7ad147£30286c8bbefd14
S*(x) = 1 ® x2 B T123 D Tax3z D Tx2T3 D T1T2x3 D TeX1Tax3 D Texg ® T124 D ToT1Ty

D xory D TeT2x4 D XoX1X2T4 D T3T4 D ToX3T4 D XoX1T3T4 D TeT1X2X3%4 D 125
D xox1T5 D ToxX2Xs D L1L2xs D ToT1T3T5 D ToX2X3T5 D LoX4Xs D ToToLals
D 3245 D TeX3L4T5 D T1X3L4T5 D TOX1X3T4T5 D T2X3T4T5 D TXT2L3T4T 5
D T1X2X3L4T5 D 16 D Toxg D T3Tg D T1X3Le D ToX1X3%g D ToT2L3Tg
D xpT1T2x3%T6 D TuTe D ToT4Te © T104%6 D T2T4Te O ToT2T4T6 O T1T2T4T6
D T 1T2T4Te D T3X4Xe DB LoL1L3L4Xe D T1T2T3T4Lg P T1X5L6 D To2X5Xe D T3Ls5Lg
D xox3x506 D ToT1X3T5L6 D T1T2X3T5Tg D TeX1X2T3T5Le D ToTaT5Le D T1T4T5T6
D ToT2T4T5Te D T1X2X4X5L6 D T2X3X4T5L6 D T1L2X3L4L5L6 D LoT1T2T3T4T5Tg D Ty
D xox7 D X107 D ToT1T7 D TX2X7 D T1X2X7 D ToL1L2X7 D T1X3T7 D T2X3X7
D Tox223%7 © T4T7 D ToXak7 O T3T4T7 D ToX1T3T4T7 D T1X2T3T4T7 D X527 O ToTsT7
D XoX1T5X7 D T2X5X7 D ToX2X5X7 D T1T2T5T7 D T3T5L7 D ToX3T5L7 D LaX3T5T7
D 2oT1T223T5T7 O T1T4X5T7 D TpT1T4T5T7 D T2T4T527 D ToX2T4T5T7 © ToT1T2T4T527
D ToT3T4T5T7 D TX1X3T4T5L7 D LoX2X3X4X5L7 D L1L2L3L4X5L7 D TgXy D T1TeT7
D xox1TgxT7 D Ta2XgX7 P LoLaLeXy D T1T2TgL7 D ToX3TeX7 B L1X3XeX7 D LoT3LgLy
D TT2X3TexT7 O T1X2X3LLT D LaTgX7 D T1T4TT7 D T2X4TeL7 D ToL2X4XeTT
D 21T2T476T7 O TpT1T224T6T7 D ToT3T4T6T7 O T1T3T4T6T7 D T2T3T4T6T7
D Tox223%4T6T7 D ToT5TeL7 D T1T5T6X7 O T2T5T6XT7 D ToT2TsTeT7 D T3T5T6T7
D x0T 1X2X3T5T6X7 D T1T4T5X6L7 D LoTaT5LeT7 D T1X3X4T5L6L7 D LT 1T3T4L5T6LT
D ToX3T4T5TeT7

Furthermore, we provide the equations for the conversion from a polynomial base of GF(2%)

with @ = 2 to a normal base with § = 145 (p2n) and the conversion back concatenated
with the affine function of the AES S-box (n2p).

p2ny(x) = zo © 21 B 3 S Te
p2ny (x) = 2o © x1 ® 2 O w6 D 7
pP2ny(x) = 20 D 21 B T2 © T3 D 24
=20D T D2 D xg4 DT
=T0DT1DT2DT4DTs
p2ng(z) = 1o & 1 D T2 D T4
p2ng(z) = 20 B x2 S 23 B 24

p2n,(z) =20 B3 x4 D X6

n2pg(z) =ro®x1 ®r3 D s D@1
n2p;(x) =21 Pz Pars®redrr B 1
n2p,(z) = 71
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B ANFs for Bit-Serial Unprotected S-box

The following results are valid in a normal basis with 8 = 133. To allow replication of our
results we share S* both as ANF and in a machine-readable notation (i.e. the 256-bit
vector).

rep(S*) = 0x70355d75860553518544703c10a90ad5ef30c359047bf6edcccce9dcd635703a8
S*(x) = zox1 © ToT2 © ToT1T2 D T3 D Tox3 O T4 O ToTs D T124 O o4 O T1T2T4 D T3T4

D Xox3T4 D ToX2X3L4 D T1X2X3%4 D T1T5 D 1X2X5 O ToX1X2X5 D T3T5 D ToT1X3T5

D ToTor3x5 G Xx1X2X3T5 D TeT1T2X3%5 B L1X4T5 D ToT1X4X5 B T1X2T4T5 D ToT1X2X425

D X1T3T4%5 D TeX1T3T4T5 D T1X2T3T4T5 D ToX1T2T3T4T5 D T12T6 D ToT2Te D T1T2%6

D xoT1T2x6 D TeT3Te D T1T3T6 D T2X3%6 D ToT2T3Te D T1X2X3T6 D ToT1X2T3T6 D T4Te

D XoxaTg D ToX1X4X6 D ToT4Tg D ToT2T4Tg D T1X2X4T6 D T1X3X4Xg D T5Tg D ToT1T5T6

D 22576 D T12275T6 D T3T5T6 @ ToT3T5T6 O T1T223T5T6 D ToT102X3T5T6 D TaX4T5T6

D ToT2T4T5Te D T3X4X5L6 D LoL3L4X5L6 D T1T3T4L5Le D ToX1L3L4T5Le D ToXT2X3L4T5T6

D 1222304 T5T6 D ToX1X2T324X5T D T7 D T1X7 D T2X7 O T1T2x7 D TeX1T2X7 D ToT3T7

D Xox1X3T7 D T4X7 D TOL1X4X7 D ToT2T4T7 D ToX1X2X4 L7 D T2X3L4X7 D T1X5X7

D xoT1T527 D T2X5T7 D ToT2T527 O T2X3T507 D ToT2X3T5T7 @ T1X2X3T507 D T1X4T5T7

D X1T2T4x527 O T3T4T527 D T1X3T4T507 D ToX1T2T3L4T5T7 D TeT7 D T2TeXr O T1X2T6T7

D x3T6x7 D TX3TeTT D T2X3LeT7 D T1X2X3TXT D T4LeT7 D T1X4XeT7 D ToT3T4TTT

D T1X3T4TT7 D TX1X2X3T4TeL7T D T5X6X7 D T1T5LgL7 D ToX5LeL7 O ToL2L5L6LT

D T1T2T5TT7 D T3T5L6L7 D X1X3X5L6X7 D ToT1T3TL5LeL7 D ToX3T5LeL7 D T1X2X3L5L6LT

D 24x5T6X7 O L124T5T6L7 D L2TaT5T6L7 O ToL2LaT5L6T7 D T2X3L4T5T6LT
D TT2X3T4T5TL7 D T1X2X3L4X5L6LT7
Furthermore, we provide the equations for the conversion from a polynomial base of GF(2%)

with @ = 2 to a normal base with § = 133 (p2n) and the conversion back concatenated
with the affine function of the AES S-box (n2p).

p2ny(z) = 2o ® 3

p2n1(CL‘) =20DT1 D5 Dreg D7
p2ny(x) = 2o B 22 B 3 B x5
p2n5(z) = 2o ® x4 B 26 ® 7
p2ny(z) =20 @21 B3 B 25 B X7
p2ng(x) = 2o B 22 B 23 B X6
P2ng(z) = 20 D x4 B x5 D w6 © X7
p2n,(x) = zo ® x5 S 7
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0PI Pr3PrsPas Py d1

0D Te

n2py(7) = 76 1

n2p,(z) =z @1

n2p, () =z O T1 O T2

n2p; () = ro O T2 O T4

n2p,(r) = 1 O r2 © T3

n2p5(z) =20 D3 D rs D s D1
(z) ==
(z) ==

C Masking and Graph Colouring

In Section 5, we raised the question of how many columns a (¢, d)-Sharing Matrix can have.
We can connect this problem to that of finding balanced colourings of a graph.

Graph Colouring. Consider a graph (V, ) with vertices V = {0,...,d}! corresponding
to the rows of a t-column Sharing Matrix M. In other words, the vertices of G are words
of length t with base d + 1. There are (d + 1) vertices in total. Let two vertices in G be
connected by an edge when their labels differ in exactly one coordinate, 7.e. their Hamming
distance is one!®. Such a graph is called a Hamming graph H(t,d + 1). The case d = 1
is better known as a Hypercube graph [BH12]. It automatically follows that each pair of
connected vertices {v1,v2} € € have exactly t — 1 coordinates in common. Recall, that in
a (t,d)-Sharing Matrix, no two rows may have ¢ common elements. The problem of finding
column ¢ + 1 is thus equivalent to assigning to each vertex v a label L(v) € {0,...,d} such
that V{v1,va} € € : L(v1) # L(v2). An example of such a labeling for t = 3 and d = 1 was
shown in Eqn 4. Hence, if we can find a valid (d 4 1)-colouring £ of the graph H(t,d + 1),
then this implies the existence of a (¢, d)-Sharing Vector that can be added to the Sharing
Matrix M as extra column.
Given this equivalence, we can also provide an alternative proof for Lemma 3:

Proof. We consider the case d = 1, i.e. the vertices of H(t,2) are bitvectors of length ¢
and H(t,2) defines a ¢-dimensional hypercube. We show the existence and uniqueness of
the t + 1%¢ column by showing the existence and uniqueness of a 2-colouring of the graph.
It is well known that all hypercube graphs are bipartite, 7.e. can be coloured with only two
colours. This proves the existence of a ¢ + 1-column (¢, 1)—Sharing Matrix for any ¢. Next,
we show the uniqueness of this column by showing that the 2-colouring of a hypercube
graph is unique up to an inversion of the colours. Figure 9 depicts two 1-hypercubes (¢ = 1)
and shows clearly that a 2-colouring of the vertices is unique up to an inversion of the
colours. We refer to the colouring as £! and its inverse £t. By definition, they have two
properties:

V{vi,v;} € € Lt (v;) # Et(vj) and [:t('Ui) # [:t(vj) (8)
Yo« L (v;) # E_t(vi) 9)

10Note that we use the general (non-binary) notion of Hamming Weight which counts the number of
different coordinates (not bits)
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(a) Hypercube, H(1,2) (b) Hypercube, H(2,2) (c) Hypercube, H(3,2)

Figure 9: (a) unique 2-colouring of H(1,2) up to inversion (b) extension of H(1,2) to
H(2,2) (c) extension of H(2,2) to H(3,2). Dashed lines indicate new edges.

Now, we show by induction that a ¢ 4+ 1-dimensional hypercube only has a unique
colouring £+ and its inverse £*1. Consider a t-dimensional hypercube graph G = (V, €),
which can only be coloured using £' or £!. From this graph, we construct a hypercube
graph of dimension ¢ + 1 with vertices V' =V x {0,1} and edges

5/ = {{(’Ui,O), (’Ui, 1)},Vl}i S V} U {{(Ui,k‘), (Uj, k)},V{Ui,’Uj} S g,k’ S {0, 1}}

Naturally, a valid colouring £t+! has to agree with either £f or £t on the subgraphs Go, Gy
with nodes V x {0} and V x {1}, as both are isomorphic to G, hence

('Ct+1|goa £t+1|gl) € {(‘Ctvﬁt)a (Etv Et)v (‘Ctvit)a (‘Et,ﬁt)}

Now, edges of the form {(v;,0), (v;,1)} and the colouring property (8) prohibit the choice
of equal labelings. Hence, only two possibilties for £!*! remain, which are identical up to
an inversion:

(£t+1|g0, ‘Ct+1|g1) = (Etvzt)7
(L go, L g,) = (L%, L"),

O

As before, the proof cannot be generalized for d > 1. In Section 5.1, we therefore
provided specific numbers in Table 2. With this Appendix, we mean to show that the
problem of finding non-complete maskings is related to finding the number of d + 1-
colourings of Hamming graphs. To the best of our knowledge, there is not yet a formula to
describe this number. We note that not all colourings can be transformed to columns for
the Sharing Matrix, since many of them are equivalent up to a renaming of the colours.

D ANFs for Masked S-box

The following 2-splits are valid in a normal basis with g = 205.

A
F2(z) = xox0 @ x2x1 B T3®1 B T3Talo B T3T2T1 B TaTo D TaZo B TaToZo P TaToT1

D x5L2 D T5x4 D Texg D TgTox1 D xexXaxo D TeXsxy D T7x1 D Tx7x3 B T7X3X
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D x7x3x1 D x7X3T2 D T7L4X1 D T7T4T2 D 75 D 752 D T7T5T4
FB (a:) = X2X1Xy D Xy D 42321 D X520 D 5210 D T5L4x1 D g D TeX5x1 D L7LeLo

D T7T6%4
GA(J,‘) = X2Xg D X2x1 D T3T1 D X3X2X1 D T4Xg D T4Zo D T4X2Xg D L4221 D T3

D 52472 D TeX220 DB TeT2T1 D TeX322 D T6Ty D TeXaZo B TeXT523 S TeT5T4

D x7x1 © Xx7x2x9 @ T7X3%0 D 7Ty D T7X4Xo D T7X4X1 D T7T4To D T7T5X3
GB(a?) =20 D x129 D T2x1Tg D Xx3X1T9 D L4129 D 4T3 D T5X1T9 D T5X2X1 D T5T4Zg

B xe P xxax3 D TeT5L1 B T7TeT2 B T7TeT4

To allow a convenient replication of our results we additionally provide the functions
in a machine-readable notation (i.e. the 256-bit vector).

rep(FA) = 0x0000000000000000000100110014170400010000000200420001001000726460
rep(FB) = 0x0000000000010010000000000000000000000004000000010004000a04010080
rep(GA) = 0x0000000000000000000001000017022400010100000310600010010000724460
rep(GB) = 0x000000000001001000000000000000000000000401000001000200480108088a

Furthermore, we provide the equations for the conversion from a polynomial base
of GF(2%) with a = 2 to a normal base with 3 = 205 (p2n) and the conversion back
concatenated with the affine function of the AES S-box (n2p).

p2n5(z) = 11 ©® w3 S x4 O 7
P2ng(z) =20 D21 D T2 D 2a O 26 O 27
p2n,(z) = 20 © w2 S 5 B T

n2py(z) =z P2 D3Py Dasd1
n2p,(z) =z ® w3 Pas Brg®xr B 1
n2p2(x) =21 Dxo Dx3 DD TY
n2ps(x) = 3 S x5 B 6P

n2p,(r) = x0 © v2 © 23 © T4 S 77
n2ps(z) =1 @ar 1

n2pg(r) =20 ®xs ® 1

n2p;(z) = xo G x3 P x6 S x7
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E Finding Sharing Matrices

Algorithm 3 Backtracking Procedure for constructing (¢, d)-Sharing Matrices

1: M < from Lemma 2
2: ¢+t
3: while True do

4:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

forie{l,...,(d+1)" -1} do
£i,c < {0,,d}

end for

[:()’c < {0}

while M, not completely determined do
if 3r: L, . =0 then

Break
else if 3r: |£, .| =1 then
Mr,c — Lr,c[o]
else
Pick r,l (& record backtrackpoint)
Mr,c <~ ﬁr,c[l]
end if

forie{l,...,(d+1)' =1} \{r} do
if #{] : Mi,j = Mr,j} =t —1 then
»Ci,c — Ei,c \ {Mr,c}
end if
end for
end while
if M. not completely determined then
if Backtracking possible then
Jump to last backtrackpoint
else
Stop Algorithm
end if
end if
c+—c+1

31: end while
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