
nGraph-HE: A Graph Compiler for Deep
Learning on Homomorphically Encrypted Data

Fabian Boemer1, Yixing Lao1, Rosario Cammarota1, and Casimir Wierzynski1

Intel AI Research
San Diego, CA

fabian.boemer@intel.com

Abstract. Homomorphic encryption (HE)—the ability to perform com-
putation on encrypted data—is an attractive remedy to increasing con-
cerns about data privacy in deep learning (DL). However, building DL
models that operate on ciphertext is currently labor-intensive and requires
simultaneous expertise in DL, cryptography, and software engineering.
DL frameworks and recent advances in graph compilers have greatly ac-
celerated the training and deployment of DL models to various computing
platforms. We introduce nGraph-HE, an extension of nGraph, Intel’s
DL graph compiler, which enables deployment of trained models with
popular frameworks such as TensorFlow while simply treating HE as
another hardware target. Our graph-compiler approach enables HE-aware
optimizations– implemented at compile-time, such as constant folding
and HE-SIMD packing, and at run-time, such as special value plaintext
bypass. Furthermore, nGraph-HE integrates with DL frameworks such
as TensorFlow, enabling data scientists to benchmark DL models with
minimal overhead. 1

Keywords: Homomorphic encryption, intermediate representation, deep learn-
ing

1 Introduction

One of the key challenges in deploying machine learning (ML) at scale is how to
help data owners learn from their data while protecting their privacy. This issue
has become more pressing with the advent of regulations such as the General
Data Protection Regulation [54]. It might seem as though “privacy-preserving
machine learning” would be a self-contradiction: ML wants data, while privacy
hides data [55]. One promising solution to this problem is known as homomorphic
encryption (HE). Using HE, one can perform computation on encrypted data
without decrypting it. Data owners can encrypt their data with the public key,
send it to a data processor that has no access to the secret key, and receive the
answer to their query in encrypted form, which only the data owner can unlock
with the secret key.

1 To appear in ACM International Conference on Computing Frontiers 2019.

The idea of HE dates back to 1978 [45], and theoretical breakthroughs occurred
in 2009 [27] to make the idea real but highly impractical. Further algorithmic
breakthroughs have occurred since then, in tandem with the development of post-
quantum cryptosystems and their implementations [7, 42] to yield HE schemes
that map naturally onto vector addition and multiplication—the core of DL
workloads. Recent work has shown the feasibility of evaluating convolutional
neural networks using lattice-based HE cryptosystems [21,28,31,34,39,48].

One of the biggest accelerators in DL has been the development and rapid
adoption of software frameworks, such as TensorFlow [2], MXNet [16] and Py-
Torch [43], making use of open-source graph compilers such as Intel nGraph [50],
XLA [1] and TVM [17], that allow data scientists to describe DL networks and
operations at a high level while hiding details of their software and hardware
implementation. By contrast, a key challenge for building privacy-preserving DL
systems using HE has been the lack of such a framework. As a result, developing
and deploying DL models that operate on ciphertext is currently labor intensive
and forces data scientists to become experts in DL, cryptography, and software
engineering.

In this work, we leverage recent work in graph compilers to overcome this
challenge. Specifically, we present nGraph-HE, an HE backend to the Intel
nGraph DL graph compiler that allows data scientists to train networks on
the hardware of their choice in plaintext, then easily deploy these models to
HE cryptosystems that operate on encrypted data. The core idea is to create
a privacy-preserving hardware abstraction layer, with its own instruction set
architecture (ISA) (Section 3.3) and optimization support (Section 3.4). This
hides the complexity of HE from data scientists while exploiting the considerable
compiler tooling and DL frameworks that the DL community has built (Figure 1).
Using this approach, for example, modifying an existing TensorFlow model to
operate on encrypted data becomes as easy as adding a single line of code
(Appendix A.2). Indeed, the open-source release of this framework2 has already
gathered significant attention in the DL community [41,56].

Using HE to implement DL computations imposes a number of constraints
due to the mathematical requirements of HE and DL themselves, such as limited
arithmetic depth and polynomial activation functions (Section 2.2). Overcoming
these constraints is an area of active algorithmic research [21,28,31,34,39,48]. The
contributions of this paper are along a different vector, namely, how to provide a
software framework for developing privacy-preserving DL models that cleanly
separates DL and HE functions (Figure 1). This will enable the DL and HE
communities to improve their own technologies as independently as possible while
still enjoying the advances of the other with minimal changes to the high-level
code.

In this paper, we present the following:

1. We describe an efficient software framework for combining DL and HE. To our
knowledge, we present the first use of a DL graph compiler and intermediate

2 The nGraph-HE library is available under the Apache 2.0 license at https://ngra.ph/he

2

BFV CKKS

SEAL

HECPU GPU

nGraph

TensorFlow ONNX MXNet

PyTorch

Fig. 1: Overview of the nGraph-HE software stack. nGraph-HE currently supports
the SEAL encryption library [36], and the underlying cryptosystems BFV [5]
and CKKS [18], and it can be extended to support additional cryptosystems.

representation (IR) to accelerate the development and deployment of privacy-
preserving machine learning models.

2. We develop HE-aware graph-compiler optimizations, both at compile-time and
at run-time. The compile-time optimizations include graph-level optimizations
such as batch-norm folding and parallel operations through HE-SIMD packing
and OpenMP parallelization. Runtime optimizations include special plaintext
value bypass and ciphertext-plaintext operations.

3. We demonstrate the framework on: (1) subgraphs of DL models: general
matrix-matrix multiplication (GEMM) operations, and a convolution-batch-
norm operation; and (2) two convolutional neural network benchmark prob-
lems (MNIST and CIFAR-10) with different choices of encryption parameters,
using Python and TensorFlow. Furthermore, we verify that the runtime
overhead imposed by the additional software layers is small (0.1% of total
runtime) compared to implementing these operations in C++ using HE
libraries directly.

2 Background

2.1 Homomorphic encryption

What does it mean for a cryptosystem to be homomorphic? Informally, an
encryption function E and its decryption function D are homomorphic with
respect to a class of functions F if for any function f ∈ F , we can construct a
function g such that f(x) = D (g(E(x))) for some set of x that we care about3.
That is, for certain cryptosystems and target functions, it is possible to map a
desired computation (the function f) on plaintext into a specific computation on

3 We are omitting the public and secret keys that would also be arguments for the
encryption and decryption functions.

3

ciphertext (the function g) whose result, when decrypted, matches the desired
plaintext result. For a detailed review of HE, we refer the reader to [3].

Figure 2 shows how this property enables a user, Alice, to perform inference
on private data using a remote, untrusted computer. The remote machine receives
a ciphertext from Alice (with no decryption key), executes a function g on the
ciphertext, then returns the result to Alice. Alice then decrypts the result to
reveal the plaintext for f(x). At no point does the remote machine gain access
to Alice’s unencrypted data. An analogous setup provides secure inference in the
case where the function g is kept private, while the data remains unencrypted,
as might occur when, for example, g corresponds to a proprietary 3rd party DL
model.

Fig. 2: Simple model of secure inference via HE.

One important property of RLWE-based HE schemes is semantic security,
which is the inability of a computationally bounded adversary to distinguish
between the ciphertexts of known plaintexts. Notably, E(x) 6= E(y), even when
x = y. This is due to random noise which is introduced during the encryption
process. Without this property, a malicious remote server in Figure 2 might
be able to deduce f(x) in cases where g maps to a finite number of outputs,
as in binary classification problem, by performing inference on inputs whose
classification is already known.

2.2 Challenges of homomorphically encrypted deep learning

HE schemes are often subject to several mathematical limitations:
Supported functions. Some HE schemes only support a single algebraic

operation, such as addition or multiplication. These are known as “partially
homomorphic” schemes (PHE). Others schemes, called “fully homomorphic”
(FHE), support two, such as addition and multiplication. Note that composing
addition and multiplication suffices to construct polynomial functions, and hence
polynomial approximations to non-polynomial functions such as sigmoid or ReLU4.
Notably, this limitation prevents the exact computation of any comparison-based

4 Going further, by building gates out of addition and multiplication over GF(2), one
can in theory implement any boolean circuit, and hence any computable function.

4

operations, such as Max, Min, and ReLU, as well as common functions such
as exponential or sigmoid. One workaround to this limitation in the case of a
final softmax layer is to leave the softmax calculation to our user Alice after
she decrypts the model outputs. Finally, “leveled homomorphic” schemes (LHE)
support addition and multiplication, but only up to a fixed computational depth.

Computational depth. HE schemes derived from Gentry’s original lattice-
based system [27] rely on noise to hide plaintext. This encryption noise tends to
accumulate with each homomorphic operation, and decryption becomes impossible
if this noise exceeds a threshold. One common solution to this problem is to
constrain the depth of the computation and set encryption parameters accordingly.
Other solutions involve noise management techniques such as bootstrapping, which,
depending on the HE scheme, may incur significant computational costs, but
can extend the computational depth indefinitely. LHE schemes do not perform
bootstrapping, relying instead on the fixed computational depth of DL models.

Number fields. Most HE schemes operate over integers [29,36], while others
use booleans [20] or real numbers [19]. One particular challenge in the case of
integer-based schemes is scaling the magnitude of numbers by factors less than 1.
Most DL models require real, i.e., non-integer, numbers, so adapting integer HE
schemes typically involves mapping large integers to a fixed-point representation
using a scaling factor. Preventing the scaling factor from accumulating, however,
requires division by the scaling factor after each multiplication, which is not
possible in all HE schemes.

Computational and memory load. The cryptographic computations re-
quired to implement HE typically consume several orders of magnitude more
CPU time and memory compared to their plaintext counterparts. These costs
have long been the critique of HE. A detailed response to these critiques is out of
the scope of this paper, but we note that there have been dramatic improvements
in this area—for example, the runtime for homomorphic inference on the seminal
CryptoNets MNIST network has been reduced from 297.5s [28] to 0.03s [34] in
two years (although the latter uses a hybrid scheme; see Section 5).

From a software engineering perspective, there is additional complexity:
there are multiple libraries for HE [19, 20, 29, 36, 46], based on multiple HE
schemes [49], and with a variety of APIs (with some notable attempts to provide
uniformity [8, 46]). This diversity makes it difficult for developers to evaluate
the tradeoffs of different schemes in the context of their specific applications.
Moreover, the complexity of implementing DL models has led to the development
of multiple DL libraries [2, 16, 33, 43, 53, 57]. Finally, and not surprisingly, no
currently-available DL libraries were designed with HE in mind, and vice-versa.
As a result, developers of privacy-preserving DL models have been forced either
to import DL functions into HE code, or HE functions into DL code, with large
code changes required if either of these library choices should change.

Given the computational and memory overhead of HE, we target inference,
rather than training. The inference use case is also particularly relevant from a
privacy point of view, given that statistical techniques such as differential privacy
do not easily apply to the case of protecting the privacy of the query.

5

2.3 Mathematical Background

We provide a brief introduction to the mathematical objects used in HE. Many
HE schemes are based on the assumed hardness of the Ring Learning with Errors
(RLWE) problem [40], which uses polynomials whose coefficients are members
of a finite field. [9]. In particular, let N = 2n for some positive integer n. N
is known as the polynomial modulus degree. Let R = Z[x]/(xN + 1) be the
ring of integer-coefficient polynomials with degree at most N . We denote by
Ra = Za[x]/(xN + 1) the same ring as R, but whose coefficients are integers
modulo a. The plaintexts and ciphertexts in the HE schemes we consider consist
of pairs or lists of polynomials in Rt and Rq, where t, q > 0 are known as
the plaintext modulus and ciphertext modulus, respectively. In practice, t, q
are often large enough that, for performance reasons, they are decomposed as
q =

∏
i qi, t =

∏
i ti, where qi and ti are known as ciphertext coefficient moduli and

plaintext coefficient moduli, respectively. Typically, multiplying two ciphertexts
c1, c2 ∈ Rj+1

q of size j + 1 results in a ciphertext of larger size, up to j2/2 in
the BV scheme [10], and 2j + 1 in the BFV and CKKS encryption schemes [36].
Subsequent operations on these larger ciphertexts become slower; however, an
operation called relinearization reduces the length of each ciphertext to mitigate
this slowdown. Performing relinearization requires a public relinearization key.

These RLWE parameters, including the polynomial modulus degree, ciphertext
moduli, and plaintext moduli, are chosen to ensure a security level, measured
in bits, where λ-bit security indicates ∼2λ operations are required to break
the encryption [38, 44]. The choice of λ depends on the security needs of the
application, with typical values for λ being 128 bits, 192 bits, and 256 bits. The
runtime requirements to mitigate several attacks on different security levels are
detailed in [15]. Additionally, the parameters need to be chosen sufficiently large
such that the amplification of the random noise during arithmetic operations
does not render the original message unrecoverable. Specifically, each ciphertext
(or plaintext) encoded in Rq (or Rt) is associated with a level l with, 0 ≤ l ≤ L,
where L is maximum multiplicative depth. The multiplicative depth L is one of
the parameters to the HE scheme in addition to the RLWE parameters. The
HE scheme allows at most l multiplications on the ciphertext. Multiplication is
typically much more expensive than addition, so the multiplicative depth of the
desired computation, Lf , is an important consideration when computing on HE.
Hence, for an assigned computation of a certain multiplicative depth L ≥ Lf , HE
parameters are selected to guarantee, for example, 128-bit security. The choice of
parameters presents a trade-off between security to preserve data privacy, and
speed of computation.

2.4 Related Work

While there has been much previous work detailing algorithmic improvements to
HE for DL [21,28,31,34,39,48], there have been only a few notable efforts to
provide privacy-preserving machine learning software frameworks. PySyft [47] is a
generic framework for distributed, privacy-preserving DL, built on PyTorch, that

6

uses multi-party computation (MPC) for private computation. TF-encrypted [24]
also enables private machine learning via MPC, and is built on TensorFlow. Both
of these systems are tied to a specific DL framework and use MPC, not HE, which
assumes a different security model. By contrast, by operating on computational
graphs, nGraph-HE enables users of multiple DL frameworks (Figure 1), and
requires much smaller code changes to non-HE code to invoke—potentially only
one line (Appendix A.2).

There have also been some recent compiler projects around HE. The RAM-
PARTS project [4] translates models from the Julia language to HE operations
implemented by PALISADE HE library [46]. No source code for the compiler is
available, and source language support is limited to Julia. Moreover, the PAL-
ISADE library does not currently support CKKS, the HE scheme of choice for DL.
The Cingulata [13] compiler uses C++ as a source language and targets a custom
implementation of the Fan-Vercauteren HE scheme. Because it first translates
computations into boolean circuits rather than arithmetic compute graphs, it
loses performance on DL operations such as GEMM. SHEEP [32] describes an
abstract ISA for HE, and includes several HE schemes and implementations.
However, the low-level language and lack of compiler make it difficult to use as a
data science tool.

The CHET project [25] also describes an ISA and a compiler for HE, but
adopts a different approach from nGraph-HE. Whereas CHET performs compiler
optimizations for HE at code generation time, just as any traditional compilation
approach, nGraph-HE elevates optimizations for HE to the DL framework level,
similarly to what frameworks such as TVM [17] do. Furthermore, to date, nGraph-
HE is the only existing open-source framework for privacy-preserving DL. nGraph-
HE’s ability to support existing DL frameworks such as TensorFlow with minimal
code changes is vital for data scientists, who must be able to rapidly prototype
the accuracy and performance of DL models.

2.5 The power of graph compilers

DL frameworks, such as TensorFlow, MXNet and PyTorch, have greatly accel-
erated the development of DL models, allowing data scientists to express DL
operations in high-level languages that can be easily ported from one platform
to another (from a laptop to a cloud-based server, e.g.). Graph compilers, such
as the open-source Intel nGraph, have recently been developed to attack the
challenge of optimizing performance on multiple DL frameworks and hardware
targets. Compiling high-level framework code into an IR—a computation graph—
removes the need to generate optimized code for each (framework, hardware
target) pair. Instead, in order to use a new hardware target for all frameworks,
one only needs to develop optimized code for each operation in the computation
graph for the targeted hardware. In addition, the graph can be an advantageous
representation for reasoning about higher-level optimizations, such as fusing
operations, vectorization, etc.

These advantages apply directly to expressing DL computations using HE.
By treating HE schemes and the operations they support as instructions on

7

a virtual machine [29], we can enable HE computations to a large set of DL
frameworks while providing a clean separation between DL and HE technologies.
Moreover, as in the case of deep learning, the graph representation facilitates
various HE-specific optimizations, such as reducing computation depth and
identifying opportunities for parallelism.

3 nGraph-HE

We first describe the API adopted by nGraph-HE, as well as the mapping onto two
currently supported cryptosystems: BFV [5] and CKKS [18], both implemented
by the SEAL encryption library [36]. We then discuss compile-time and runtime
optimizations used in nGraph-HE. These include HE-specific optimizations that
exploit the capabilities of the underlying cryptosystems, as well as parallelization
methods to reduce execution time. Lastly, we discuss how to support additional
cryptosystems.

One difficulty in providing a unified framework for HE has been the variety
of APIs and supported operations for various HE schemes. Following [11], our
API has three components: (1) a cryptographic context, which contains the
static parameters of the encryption scheme, (2) a payload representation, which
contains the data, and (3) an assembly language, which describes the functions
implemented by the encryption scheme.

3.1 Cryptographic context

The cryptographic context stores the parameters of the cryptosystem, which
consist of:

– polynomial modulus degree (N);
– plaintext moduli (t =

∏
i ti);

– ciphertext moduli (q =
∏L
i=1 qi);

– security level (λ);
– HE scheme as a unique string representation.

Depending on the cryptosystem, one or more of these parameters may not be
required. The HE scheme implementations we currently support do not include
bootstrapping; as such, we expect the cryptographic context to include enough
ciphertext moduli to support the multiplicative depth of the DL model, i.e.,
L ≥ Lf . The user will specify the cryptographic context as a command-line
variable. In nGraph-HE, the “HEBackend” class stores the cryptographic context,
as well as instantiations of (public, secret, relinearization) key tuples.

3.2 Payload representation

The payload representation stores the data and consists of plaintext and ciphertext
representations. In nGraph-HE, the payload is stored in the “HETensor” class,

8

Data (K) Plaintext (P) Ciphertext (C)

Encode

Decode

Encrypt

Decrypt

Fig. 3: Relation between payload terms.

which stores a pointer to an “HEBackend”, necessary to obtain the keys. Figure 3
shows the relation between the terms in the payload representation. Specifically,
we have :

– data: (K). Usually K = Rs or K = Zs, s ∈ N, a vector of numbers.
– encode: (K → P). Uses the cryptographic context.
– encrypt : (P → C). Uses the public key.
– decrypt : (C → P). Uses the secret key.
– decode: (P → K). Uses the cryptographic context.

This overall abstraction strictly generalizes the standard (encrypt, decrypt) model,
since the encode and decode functions can be identity mappings. This allows us
to store pre-computed plaintext values for optimization (Section 3.4).

3.3 Assembly language

We describe the assembly language of nGraph-HE in terms of nGraph opera-
tions [50]. There are four low-level operations, which are typically supported by
the APIs of HE cryptosystems:

– Add: (C ∪ P)× C → C.
– Subtract: (C ∪ P)× C → C.
– Multiply: (C ∪ P) × C → C. For efficiency, the implementation should use

relinearization if possible.
– Negate: C → C.

Additionally, HE schemes will often implement a plaintext version (P → P or
P × P → P) of each operation. Based on these low-level operations, nGraph-
HE provides efficient parallelized implementations for the following compound
operations: AvgPool, Convolution, and Dot. Developers can overwrite these
default implementations with cryptosystem-specific optimizations.

nGraph-HE also provides implementations for the following tensor manipu-
lation operations: Broadcast, Concat, Pad, Reshape, Reverse, and Slice. See
Table 1 for a full list of supported operations and their mapping to TensorFlow
operations.

Concretely, the nGraph-HE API consists of the following major components,
shown in Figure 4:

9

Table 1: Supported operations and mapping to TensorFlow operations.

nGraph/nGraph-HE op TensorFlow op

Add tf.add

AvgPool tf.nn.avg pool

Broadcast tf.broadcast to

Concat tf.concat

Constant tf.constant

Convolution tf.nn.convolution

Dot tf.matmul

Multiply tf.multiply, tf.square

Negate tf.negative

Pad tf.pad

Reshape tf.reshape

Reverse tf.reverse

Slice tf.slice

Subtract tf.subtract

Sum tf.reduce sum

Parameter tf.placeholder

– Backend. This stores the cryptographic context, and performs graph-level
optimizations. The HESealBackend and HEBFVBackend classes inherit from
HEBackend class, which, in turn inherits from nGraph’s Backend class.

– Tensor. This stores the data. HEPlainTensor and HECipherTensor inherit
from HETensor, which in turn inherits from nGraph’s Tensor class. HEP-
lainTensors store HEPlaintext ’s, which is an abstract class from which
seal::Plaintext inherits; HECipherTensors operate analogously.

– Kernel. The kernel consists of stand-alone implementations of nGraph ops.
Each implementation operates on HEPlaintext and HECiphertext inputs,
which are dynamically cast to the appropriate cryptosystem-specific type at
runtime. The Tensor class hierarchy enables nGraph-HE to provide default
implementations for each operation when no cryptosystem-specific imple-
mentation is present. This further decreases the overhead in adding a new
cryptosystem to nGraph-HE.

3.4 Optimizations

One of the benefits of using a compiler approach to homomorphic computation is
the ability to perform optimizations that exploit the structure of the computation,
the underlying cryptosystem, and the hardware. To illustrate this benefit, we
implemented three classes of optimizations of which the first is run-time, and
the second two are compile-time optimizations: (1) detection of special plaintext
values; (2) mapping ISA-level parallelism in the privacy-preserving abstraction
layer onto the parallel structures found in HE and modern microprocessors; and
(3) graph-level optimizations.

10

Backend

ngraph::Backend

HEBackend

HESealBackend

Tensor

ngraph::Tensor

HETensor

HEPlainTensor HECipherTensor

HEPlaintext HECiphertext

seal::Plaintext seal::Ciphertext

ngraph::op

Add

AddSeal

Kernel

Conv

ConvSeal

Mult

MultSeal

Fig. 4: Visualization of nGraph-HE architecture. Objects with the same color
interact. The dotted line from Conv to ConvSeal indicates optional overriding of
the default Conv implementation.

Special plaintext value bypass Operations between a ciphertext and a plain-
text may arise when either the model or the data are encrypted, but not both.
When performing such operations, nGraph-HE detects special values in the
plaintext and, when possible, bypasses the corresponding HE operations. These
runtime optimizations are HE-specific strength-reduction optimizations. Specifi-
cally, where c ∈ C is a ciphertext, and p(i) ∈ P is the plaintext encoding of i we
implement:

– c± p(0): bypass HE operations and return c;
– c × p(0): bypass HE operations and return a freshly-encrypted zero ciphertext,

thereby resetting the noise budget;
– c× p(1): bypass HE operations and return c;
– c× p(−1): return the negation of c, avoiding an expensive multiply operation.

Bypassing HE operations not only reduces or resets encryption noise accumulation
but also reduces runtime. One benefit of using a graph compiler is that higher-level
compound operations, such as Dot and Convolution, automatically inherit the
benefits of these optimizations. For instance, in a binarized neural network with
binary convolution kernels, applying a Convolution operation will not invoke any
calls to Multiply. To accommodate different binarization settings, we allow the
user to independently enable or disable the Optimized Multiply and Optimized
Addition plaintext value bypass. We demonstrate some of these runtime benefits
quantitatively in Section 4.1 and Section 4.3.

Parallel operations: (1) HE-SIMD packing. Some HE schemes (includ-
ing BFV and CKKS) support Single Instruction Multiple Data (SIMD) opera-
tions [51], which we refer to as “HE-SIMD” operations to avoid confusion with

11

the usage of the “SIMD” term in computer architecture. In simple terms, a
vector of payload values can be encoded and encrypted as a single ciphertext,
and operations on this ciphertext are equivalent to the same HE-SIMD operation
on the values in the vector individually. nGraph-HE utilizes HE-SIMD packing
across the mini-batch dimension, as in [28]. Concretely, given a 4D tensor with
shape (N,C,H,W) format (batch size, channels, height, width), which typically
requires N ×C×H×W ciphertexts, nGraph-HE uses HE-SIMD packing to store
the tensor as a 3D tensor of C×H×W ciphertexts, with each ciphertext packing
N values. As shown in Section 4.3, running models with different mini-batch sizes
(within the maximum allowed size) gives near-identical runtimes, significantly
increasing the inference throughput. Analogously, loop unrolling in standard
compiler optimization selects the amount of unrolling to maximize the number of
utilized slots in vectorized operations. Here, increasing the batch size maximizes
the number of utilized slots in each ciphertext.

Recent work [25,34] has experimented with using HE-SIMD packing to store
NCHW-formatted tensors as different 2D or 3D tensors, improving on both
memory usage and runtime on small batch sizes. However, although efficient
operations for convolution and dot product exist in these packing schemes, reshape
and broadcast operations become more complicated, and the ciphertext slots
are more difficult to utilize entirely. Hence, our choice of HE-SIMD packing
represents a performance tradeoff, optimizing for throughput and simplicity of
implementation over latency.

(2) OpenMP parallelization. nGraph-HE makes extensive use of OpenMP [23],
an API for shared-memory programming, for parallelization. It is used in data
encryption and decryption, unary and binary element-wise operations, GEMM
operations, and convolution. Different from HE-SIMD packing, OpenMP paral-
lelization is applied to non-mini-batch dimensions. For instance, to encrypt a
batch of 1024 images with shape 28 × 28, nGraph-HE encrypts the values at
the first pixel location across all 1024 images as one ciphertext with HE-SIMD
packing, and does so for all 784 pixel locations in parallel with OpenMP, resulting
in a total of 784 ciphertexts. OpenMP parallelization significantly reduces the
inference latency of our system.

Graph-level optimizations One advantage of graph compilers is the ability
to offer higher-level optimizations based on the computation graph. We briefly
describe several graph optimizations analogous to standard compiler optimization
of constant propagation and which are particularly relevant for HE.

– AvgPool folding. An AvgPool layer with window size s1 × s2, followed by a
Convolutional (Conv) layer with weights W is replaced by the equivalent
ScaledMeanPool operation followed by a Conv layer with weights W/(s1×s2).
This reduces the multiplicative depth Lf from two to one.

– Activation folding. A Conv or Fully Connected (FC) layer with weights W
followed by a polynomial activation of the form ax2 + bx + c is equivalent
to the same Conv or FC layer with weights aW , followed by a polynomial
activation of the form x2 + (b/a)x+ (c/a). This reduces Lf from two to one.

12

– Batch-Norm folding. A Conv or FC layer followed by a Batch-Norm (BN)
has the form:

z = W ∗ x; ẑ =
z − µz√
σ2
z + ε

; zBN = γẑ + β

where γ, β, µz, σz are all fixed during inference. A näıve implementation would
require a multiplicative depth Lf = 2: one to compute z, and one to compute

zBN = γ̂z + β̂, where γ̂ =

(
γ√
σ2
z+ε

)
and β̂ =

(
β − γµZ√

σ2
Z+ε

)
are constants

at inference. However, we can equivalently compute zBN = (Wγ̂) ∗ x + β̂
where (Wγ̂) is also constant at inference. This simplified representation has
multiplicative depth Lf = 1.

These optimizations are also possible in non-HE settings; for instance, BN
folding is implemented in TensorFlow. However, the reduction in Lf makes these
optimizations especially useful in HE models. For instance, AvgPool folding is
used in the CryptoNets model [28]. See Section 4.3 and Section 4.2 for examples
of BN folding.

3.5 Ciphertext-plaintext operations

HE implementations of ciphertext-plaintext operations C × P → C are typically
much faster than implementations of ciphertext-ciphertext operations C × C → C.
To take advantage of this performance gain, nGraph-HE allows for three distinct
computing paradigms, based on the privacy needs of the application.

– Encrypted data, unencrypted model. This use case occurs when private data
are obtained from medical patients, while the model is kept on a remote
server. This paradigm is the fastest, as it allows the most number of C × P
operations.

– Encrypted model, unencrypted data. This is the case when a company deploys
a proprietary model to untrusted servers.

– Encrypted data, encrypted model. Here, both the model and data are kept
encrypted for most privacy, at the cost of the slowest runtime. This use
case might occur when a company deploys a proprietary model to perform
computations on sensitive data on untrusted hardware.

For debugging purposes, nGraph-HE also offers each operation in plaintext:
P × P → P or P → P.

3.6 Adding a new cryptosystem

Currently, nGraph-HE supports two cryptosystems, each implemented by the
SEAL encryption library: BFV and CKKS. To support another cryptosystem, one
simply needs to implement the storage model and the low-level operations in the
assembly language instructions described above. Most HE cryptosystems already

13

include similar APIs, so the implementation is usually straightforward. As shown
in Section 3.3, nGraph-HE provides default implementations for higher-level
compound ops such as Dot and Convolution, which may be overridden with
more efficient cryptosystem-specific implementations by the developer.

3.7 DL Framework Integration

A critical aspect of a new software library is the ease of adoption. nGraph-
HE leverages Intel nGraph-TensorFlow [14] for seamless integration with the
TensorFlow DL library [2]. Modifying existing TensorFlow code to use nGraph-HE
requires adding only a single line of code. See Appendix A.2 for a full example.
This makes nGraph-HE extremely easy to use. To use models from other DL
frameworks, such as MXNet, ONNX, and PyTorch, nGraph-HE users must first
export the DL model to nGraph’s serialized format.

nGraph-HE supports most operations commonly found in neural networks.
Table 1 shows the full list of operations currently supported by nGraph-HE, and
the corresponding translation from TensorFlow operations. Notably absent is
the support for MaxPool and ReLU operations. This is because HE supports
only addition and multiplication, through which MaxPool and ReLU operations
cannot be expressed.

4 Evaluation

We tested nGraph-HE on a dual-socket Intel Xeon Platinum 8180 2.5GHz system
with 376GB of RAM running Ubuntu 16.04. We used SEAL’s implementation
of CKKS and floating-point numbers for these measurements, although we have
also tested nGraph-HE with SEAL’s BFV implementation. We report two main
findings. First, we leverage our compiler framework to implement HE-specific
optimizations on small computation graphs. Second, we demonstrate the ease
of implementing convolutional neural networks using a popular DL framework
(TensorFlow), on both the MNIST [37] and CIFAR-10 [35] datasets. For the
MNIST dataset, we additionally:

– verify that the additional software layers through nGraph-HE to the underly-
ing HE library impose minimal overhead;

– demonstrate the HE-SIMD packing (Section 3.4) and special plaintext value
bypass (Section 3.4) optimizations;

– show the runtime dependence on three computing paradigms: encrypted data,
encrypted model, encrypted data and model.

For the CIFAR-10 dataset, we also demonstrate the BN folding optimization.

4.1 GEMM operations

We first tested nGraph-HE on general matrix-matrix multiplication (GEMM)
operations, since these form the backbone of DL workloads. Figure 5 shows the

14

runtime of computing AB+C, where A, B, and C are n×n matrices of random
integers, and where A ∈ C, while B,C ∈ P. (This corresponds to the encrypted
data, unencrypted model use case where, A contains a user’s data while B and C
are model weights.) To demonstrate two different parameter settings, we set the
polynomial modulus degree to N = 213 and N = 214, and used SEAL’s default
ciphertext modulus for λ = 128-bit security.

Fig. 5: Single-threaded runtime on GEMM operations as a function of matrix
size, polynomial modulus, and sparsity.

To illustrate the power of enabling HE using graph compilers, we perform the
Optimized Multiply special plaintext value bypass on the P × C multiplication
operation (Section 3.4). We then measured the runtime savings by randomly
setting 50% and 80% of the B matrix to 1. These results correspond to the p1 =
0.5, 0.8 curves in Figure 5. Because multiplication is more expensive than in most
HE schemes, the runtime improvement is significant. The larger point, however,
is that providing HE in the context of a graph compiler enables developers to
provide HE-specific optimizations to the backend while data scientists continue
to use the DL framework of their choice, treating HE as just another (virtual)
hardware target.

4.2 Graph-level optimizations

To demonstrate the utility of graph-level optimizations, we show an example of BN
folding. We perform Convolution on a 3-channel 10×10 input of shape (1,3,10,10)
using 4 kernels per channel, each of size 5 × 5, followed by BN. We consider
two choices of parameters, each with security level 128 < λ < 192: (1) N = 214,

15

7 50-bit coefficient moduli; (2) N = 213, 4 50-bit coefficient moduli.5 Table 2
shows a moderate ∼4% decrease in runtime using BN folding, as expected. The
larger point, however, is that this HE-specific graph-level optimization reduces
the multiplicative depth Lf , enabling smaller encryption parameters, thereby
greatly improving both runtime (∼4x) and memory usage.

Table 2: Single-threaded runtimes on Conv-BN function when encrypting the
data, using nGraph-HE directly. Runtimes are averaged across 10 trials.

N
BN

folding
Lf

Runtime (s)

Conv BN Total

214 7 2 130.83± 1.14 6.28± 0.12 137.24± 1.21
214 3 1 130.57± 1.57 0.25± 0.01 130.97± 1.57
213 3 1 33.06± 0.68 0.06± 0.00 33.16± 0.68

4.3 Neural networks

Next, to demonstrate the ease of using nGraph-HE, we implement neural networks
on the standard MNIST dataset [37], as well as the more challenging CIFAR-10
dataset [35].

MNIST The MNIST dataset consists of handwritten digits, 60,000 for training,
and 10,000 for testing, and is a standard benchmark for DL on HE. The original
CryptoNets network [28] is the standard HE-friendly network for MNIST, with
architecture given in Appendix A.1. Appendix A.2 shows the code to implement
this network, which notably differs from the native TensorFlow code by just one
line. We achieve an accuracy of ∼99%, matching that reported in [28].

One concern with adding software abstractions is the runtime overhead.
To measure this, we timed the network executing the TensorFlow code with
nGraph-HE as the backend. This incurs the overhead of TensorFlow, the nGraph-
TensorFlow bridge, and nGraph IR compilation. Within this execution, we
separately time the sections that are also used in the execution of a C++
application that executes the serialized network natively.

Table 3 shows the runtimes of these experiments, using N = 213, N = 214. We
use SEAL’s first 7 30-bit ciphertext coefficient moduli for CKKS (i.e., q =

∏7
i=1 qi,

with each qi consisting of 30-bits), for security levels 128 < λ < 192 and λ > 256,

5 A given set of encryption parameters achieves security level λ if the coefficient
modulus is smaller than SEAL’s default coefficient choice at the same (N,λ) pair [36].
For instance 7× 50 = 350, which is between SEAL’s 305-bit (N = 214, λ = 128) and
438-bit modulus (N = 214, λ = 192), hence we achieve security level 128 < λ < 192.

16

respectively. Note that the differences in times between the fourth and fifth
columns (0.02s and 0.03s), which capture the overhead of graph compilation and
bridging nGraph to TensorFlow, represent less than 0.1% of overall runtime.

Table 3: Runtimes on CryptoNets network with and without the overhead of
TensorFlow integration and graph compilation. Runtimes are averaged across
10 trials. Amortized runtimes are reported per image using batch size N/2 for
maximum throughput and HE-SIMD slot utilization.

N Lf
Acc.
(%)

Runtime (s)

nGraph-HE TF+nGraph-HE Amortized

213 5 ∼99 16.70 ± 0.23 16.72 ± 0.23 0.004
214 5 ∼99 41.91 ± 1.58 41.94 ± 1.58 0.005

Another benefit of using a graph compiler with HE is that the computation
graphs provide opportunities to identify parallelism that can be exploited by some
HE schemes, such as the ability to perform “HE-SIMD” operations on vectors of
payload values (Section 3.4). We implemented this capability and demonstrate it
on the CryptoNets network. Figure 6 shows the CryptoNets inference runtime
using batch sizes of 1 to 4096 for N = 213, 214. We picked a maximum batch size
of 212 = 4096 because CKKS performs HE-SIMD operations on at most N/2
packed values. Note that runtimes are independent of batch size, for each step in
running the network. Batching increases throughput significantly: for example,
for the N = 213 case, using a batch size of 4096 leads to an amortized runtime of
4.1ms per image, compared to 16.7s for a batch size of 1.

Another optimization nGraph-HE implements is C × P operations, which are
typically much faster than C × C operations, and enable the three computing
paradigms (encrypted data, model, or both) discussed in Section 3.5. Using the
CryptoNets network and same cryptographic context, Table 4 shows the fastest
runtime is achieved when just the data is encrypted. Encrypting the model incurs
∼3.2x runtime penalty, whereas encrypting the data and the model incurs ∼3.6x
runtime penalty. Users can switch between the computing paradigms, enabling
users to measure the privacy-performance tradeoff.

Finally, to demonstrate the benefit of special plaintext value bypass (Sec-
tion 3.4), we implement a binarized neural network. We adapt the CryptoNets
network by binarizing each weight in the FC and Conv layers to {−1, 1}, using
the approach in [22]. To mitigate the diminished accuracy, we further add a
non-binarized BN layer after each FC and Conv layer. BN-folding is disabled to
preserve the binarization of the FC and Conv weights.

We consider two choices of parameters: 1) N = 214 , 9 30-bit coefficient moduli,
with security 192 < λ < 256; 2) N = 213, 7 30-bit coefficient moduli, with security
128 < λ < 192. As shown in Table 5, enabling the Optimized Multiply special

17

Fig. 6: Runtimes on pre-compiled CryptoNets network with HE-SIMD packing
for different batch sizes, for N = 213 () and N = 214 ().

Table 4: Runtimes on CryptoNets network when encrypting the data, the model,
or both, using the TensorFlow nGraph-HE integration. Runtimes are in seconds
and averaged across 10 trials.

N
Encrypt

Data Model Data and model

213 16.7 ± 0.2 53.3± 1.0 59.5± 1.7
214 41.9 ± 1.6 128.2± 1.2 142.6± 9.9

plaintext value bypass provides a moderate ∼1.2x speedup. However, a more
significant ∼3.7x runtime speedup arises due to the lower multiplicative depth
Lf , enabling a smaller choice of N . The runtime of 14.8s is faster than 16.7s in
the original CryptoNets network, at the cost of reduced accuracy.

Table 5: Runtimes on binarized CryptoNets network when encrypting the data,
using the TensorFlow nGraph-HE integration. Runtimes are averaged across 10
trials.

N L Lf Optimized Mult. Runtime (s) Acc. (%)

214 9 8 7 55.2± 2.3 96.9± 0.5
214 9 5 3 45.2± 1.3 96.9± 0.5
213 7 5 3 14.8± 0.9 96.9± 0.5

18

CIFAR-10 The CIFAR-10 dataset is a standard image classification dataset
consisting of 60,000 color images of shape 32 × 32 × 3, of which 50,000 are
used for training, and 10,000 are used for testing, and with 6,000 examples
for each of 10 different classes. The larger image size and color channels make
CIFAR-10 a significantly more challenging task than MNIST. There is currently
no seminal CIFAR-10 HE-friendly network as there is for MNIST. Due to the
use of unbounded polynomial activations, numerical overflow during training is
prevalent, although gradient clipping and BN somewhat mitigate this effect. We
implement a CIFAR-10 network with architecture given in Appendix A.1. To
demonstrate the versatility of our framework, we train the CIFAR-10 network in
four different configurations, by toggling two independent settings:

– BN. If enabled, a BN layer is added after each Conv layer. During training,
we use batch size n = 128; during inference, we use HE-SIMD packing to
enable batch size n = 8192.

– Trained activations. If enabled, each polynomial activation is of the form
ax2 + bx, with a initialized to 0, and b initialized to 1, and with a, b updated
during training. If disabled, each polynomial activation is 0.125x2+0.5x+0.25,
following the approach in [21].

Furthermore, to prevent numerical overflow during training, we clip the gradients
to [−0.25, 0.25]. To demonstrate the advantage of our graph-level optimizations,
we toggle the BN folding optimization where BN is used. The CIFAR-10 network
has a multiplicative depth Lf = 8, which is significantly deeper than the Cryp-
toNets network, with Lf = 5. In order to accommodate this additional depth,
we choose 10 30-bit ciphertext coefficient moduli, and N = 214 for security level
λ = 192 [36]. When BN folding is disabled, Lf increases to 10. Accordingly, we
use 11 30-bit ciphertext moduli for a reduced security level of 128 < λ < 192.

Table 6 shows the runtimes of the CIFAR-10 network, which are significantly
higher than the MNIST CryptoNets network, due to the increased complexity
of the model and dataset. BN provides a significant increase in accuracy, as
polynomial activations are constrained within a narrower range. We observe Lf is
constant when BN folding optimization is enabled. Enabling BN-folding reduces
Lf from 10 to 8, with negligible speedup. However, the reduced multiplicative
depth allows for use of fewer ciphertext moduli, which provides a ∼1.2x speedup.

5 Conclusion and Future Work

We have presented nGraph-HE, a backend to the Intel nGraph DL compiler,
which enables DL on homomorphically encrypted data. nGraph-HE supports a
variety of DL frameworks such as TensorFlow to allow easy adoption by data
scientists. We have demonstrated the capability of nGraph-HE to implement net-
works on MNIST and CIFAR-10 with minimal computational and code overhead.
Furthermore, we demonstrated several optimizations, including special plaintext
value bypass, HE-SIMD packing, graph-level optimizations, and plaintext oper-
ations. The data scientist can take advantage of these optimizations with only
minimal changes to their code, enabling rapid prototyping and development.

19

Table 6: Runtimes on CIFAR-10 network when encrypting the data, using the
direct nGraph-HE integration. Runtimes and accuracies are averaged across 10
trials. Amortized runtimes are per image, using batch size N/2 for maximum
throughput and HE-SIMD slot utilization.

L Lf BN/fold Act.
Accuracy

(%)
Runtime (s)

Total Amortized

11 10 3/ 7 Train 62.1 ± 6.4 1628 ± 37 0.199
11 8 3/ 3 Train 62.1 ± 6.4 1637 ± 42 0.200
10 8 3/ 3 Train 62.1 ± 6.4 1350 ± 22 0.165

11 10 3/ 7 Fix 62.2 ± 3.5 1641 ± 32 0.200
11 8 3/ 3 Fix 62.2 ± 3.5 1651 ± 33 0.202
10 8 3/ 3 Fix 62.2 ± 3.5 1359 ± 19 0.166

10 8 7 Tr 55.6 ± 6.7 1321 ± 20 0.161

10 8 7 Fix 57.8 ± 1.3 1324 ± 13 0.161

Looking ahead, an additional benefit of using graph compilers in the context
of HE is the ability to extract the computational (especially multiplicative) depth
of the computation, which is needed to set the security parameters of the HE
scheme. A useful extension of this work, therefore, would be to enable automatic
selection of HE parameters at compile time as a function of desired security level.
Another area for future work is to incorporate recent optimizations for matrix
operations in HE [34]. Finally, we would like to extend this framework so that it
can also include hybrid schemes that combine HE with multi-party-computation
(MPC), such as garbled circuits [6, 52], or oblivious transfer [12, 26, 30]. Such
hybrids have been shown [34] to deliver much faster performance at the expense
of higher communication costs. The optimal decomposition of a DL workload
into HE and MPC stages could be determined at compile time and would be
greatly facilitated by access to the underlying computation graph.

20

References

1. Xla overview (2019), https://www.tensorflow.org/xla/overview

2. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine
learning. In: OSDI. vol. 16, pp. 265–283 (2016)

3. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption
schemes: theory and implementation. ACM Computing Surveys (CSUR) 51(4), 79
(2018)

4. Archer, D.: Ramparts: Rapid machine-learning processing applications and recon-
figurable targeting of security (2018), https://galois.com/project/ramparts/

5. Bajard, J.C., Eynard, J., Hasan, M.A., Zucca, V.: A full rns variant of fv like some-
what homomorphic encryption schemes. In: International Conference on Selected
Areas in Cryptography. pp. 423–442. Springer (2016)

6. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from
a fixed-key blockcipher. In: 2013 IEEE Symposium on Security and Privacy. pp.
478–492. IEEE (2013)

7. Bernstein, D.J., Lange, T.: Post-quantum cryptography-dealing with the fallout of
physics success. IACR Cryptology ePrint Archive 2017, 314 (2017)

8. Boura, C., Gama, N., Georgieva, M.: Chimera: a unified framework for b/fv, tfhe
and heaan fully homomorphic encryption and predictions for deep learning. IACR
Cryptology ePrint Archive 2018, 758 (2018)

9. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe
and security for key dependent messages. In: Annual cryptology conference. pp.
505–524. Springer (2011)

10. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) lwe. SIAM Journal on Computing 43(2), 831–871 (2014)

11. Brenner, M., Dai, W., Halevi, S., Han, K., Jalali, A., Kim, M., Laine, K., Malozemoff,
A., Paillier, P., Polyakov, Y., Rohloff, K., Savaş, E., Sunar, B.: A standard api
for rlwe-based homomorphic encryption. Tech. rep., HomomorphicEncryption.org,
Redmond WA, USA (July 2017)

12. Büscher, N., Demmler, D., Katzenbeisser, S., Kretzmer, D., Schneider, T.: Hycc:
Compilation of hybrid protocols for practical secure computation. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
pp. 847–861. ACM (2018)

13. Carpov, S., et al.: Cingulata (2018), https://github.com/CEA-LIST/Cingulata

14. Chakraborty, A., Proctor, A., et al.: Intel(r) ngraph(tm) compiler and runtime for
tensorflow* (2018), https://github.com/NervanaSystems/ngraph-tf

15. Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Hoffstein, J., Lauter,
K., Lokam, S., Moody, D., Morrison, T., Sahai, A., Vaikuntanathan, V.: Security
of homomorphic encryption. Tech. rep., HomomorphicEncryption.org, Redmond
WA, USA (July 2017)

16. Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C.,
Zhang, Z.: MXNet: A flexible and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274 (2015)

17. Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H., Cowan, M., Wang,
L., Hu, Y., Ceze, L., et al.: TVM: An automated end-to-end optimizing compiler for
deep learning. In: 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). pp. 578–594 (2018)

21

https://www.tensorflow.org/xla/overview
https://galois.com/project/ramparts/
https://github.com/CEA-LIST/Cingulata
https://github.com/NervanaSystems/ngraph-tf

18. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approximate
homomorphic encryption. IACR Cryptology ePrint Archive 2018, 931 (2018),
https://eprint.iacr.org/2018/931

19. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of
approximate numbers. In: International Conference on the Theory and Application
of Cryptology and Information Security. pp. 409–437. Springer (2017)

20. Chillotti, I., Gama, N., Georgieva, M., Izabachene, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: International Conference
on the Theory and Application of Cryptology and Information Security. pp. 3–33.
Springer (2016)

21. Chou, E., Beal, J., Levy, D., Yeung, S., Haque, A., Fei-Fei, L.: Faster cryp-
tonets: Leveraging sparsity for real-world encrypted inference. arXiv preprint
arXiv:1811.09953 (2018)

22. Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: Training deep neural net-
works with binary weights during propagations. In: Advances in neural information
processing systems. pp. 3123–3131 (2015)

23. Dagum, L., Menon, R.: Openmp: an industry standard api for shared-memory
programming. IEEE computational science and engineering 5(1), 46–55 (1998)

24. Dahl, M., Mancuso, J., Dupis, Y., Decoste, B., Giraud, M., Livingstone, I., Patriquin,
J., Uhma, G.: Private machine learning in tensorflow using secure computation.
arXiv preprint arXiv:1810.08130 (2018)

25. Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter, K., Maleki, S., Musuvathi,
M., Mytkowicz, T.: Chet: Compiler and runtime for homomorphic evaluation of
tensor programs. arXiv preprint arXiv:1810.00845 (2018)

26. Demmler, D., Schneider, T., Zohner, M.: Aby-a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

27. Gentry, C., Boneh, D.: A fully homomorphic encryption scheme, vol. 20. Stanford
University, Stanford (2009)

28. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
CryptoNets: Applying neural networks to encrypted data with high throughput and
accuracy. In: International Conference on Machine Learning. pp. 201–210 (2016)

29. Halevi, S., Shoup, V.: Algorithms in HElib. In: International Cryptology Conference.
pp. 554–571. Springer (2014)

30. Henecka, W., Sadeghi, A.R., Schneider, T., Wehrenberg, I., et al.: Tasty: tool
for automating secure two-party computations. In: Proceedings of the 17th ACM
conference on Computer and communications security. pp. 451–462. ACM (2010)

31. Hesamifard, E., Takabi, H., Ghasemi, M.: Cryptodl: Deep neural networks over
encrypted data. arXiv preprint arXiv:1711.05189 (2017)

32. Institute, A.T.: Sheep is a homomorphic encryption evaluation platform (2018),
https://github.com/alan-turing-institute/SHEEP

33. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama,
S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. In:
Proceedings of the 22nd ACM international conference on Multimedia. pp. 675–678.
ACM (2014)

34. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: A low latency frame-
work for secure neural network inference. In: 27th (USENIX) Security Symposium
(USENIX) Security 18). pp. 1651–1669 (2018)

35. Krizhevsky, A., Nair, V., Hinton, G.: The cifar-10 dataset. online: http://www. cs.
toronto. edu/kriz/cifar. html (2014)

36. Laine, K.: Simple encrypted arithmetic library-SEAL (v3.1). Tech. rep., Technical
report, June (2018)

22

https://eprint.iacr.org/2018/931
https://github.com/alan-turing-institute/SHEEP

37. LeCun, Y.: The mnist database of handwritten digits. http://yann. lecun. com/exd-
b/mnist/ (1998)

38. Lindner, R., Peikert, C.: Better key sizes (and attacks) for lwe-based encryption.
In: Cryptographers’ Track at the RSA Conference. pp. 319–339. Springer (2011)

39. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via
miniONN transformations. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. pp. 619–631. ACM (2017)

40. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. Cryptology ePrint Archive, Report 2012/230 (2012), https://eprint.iacr.
org/2012/230

41. Mancuso, J.: Privacy-preserving machine learning 2018: A
year in review (2019), https://medium.com/dropoutlabs/
privacy-preserving-machine-learning-2018-a-year-in-review-b6345a95ae0f

42. Nejatollahi, H., Dutt, N.D., Ray, S., Regazzoni, F., Banerjee, I., Cammarota, R.:
Post-quantum lattice-based cryptography implementations: A survey. ACM Comput.
Surv. 51(6), 129:1–129:41 (2019)

43. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In:
NIPS-W (2017)

44. van de Pol, J., Smart, N.P.: Estimating key sizes for high dimensional lattice-
based systems. In: IMA International Conference on Cryptography and Coding. pp.
290–303. Springer (2013)

45. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Foundations of secure computation 4(11), 169–180 (1978)

46. Rohloff, K.: The palisade lattice cryptography library (2018), https://git.njit.edu/
palisade/PALISADE

47. Ryffel, T., Trask, A., Dahl, M., Wagner, B., Mancuso, J., Rueckert, D., Passerat-
Palmbach, J.: A generic framework for privacy preserving deep learning. arXiv
preprint arXiv:1811.04017 (2018)

48. Sanyal, A., Kusner, M., Gascon, A., Kanade, V.: Tapas: Tricks to accelerate (en-
crypted) prediction as a service. In: International Conference on Machine Learning.
pp. 4497–4506 (2018)

49. Sathya, S.S., Vepakomma, P., Raskar, R., Ramachandra, R., Bhattacharya, S.: A
review of homomorphic encryption libraries for secure computation. arXiv preprint
arXiv:1812.02428 (2018)

50. Scott Cyphers, A.K.B., Bhiwandiwalla, A., Bobba, J., Brookhart, M., Chakraborty,
A., Constable, W., Convey, C., Cook, L., Kanawi, O., Kimball, R., Knight,
J., Korovaiko, N., Kumar, V., Lao, Y., Lishka, C.R., Menon, J., Myers, J.,
Narayana, S.A., Procter, A., Webb, T.J.: Intel ngraph: An intermediate represen-
tation, compiler, and executor for deep learning. CoRR abs/1801.08058 (2018),
http://arxiv.org/abs/1801.08058

51. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations (2011), https:
//eprint.iacr.org/2011/133

52. Songhori, E.M., Hussain, S.U., Sadeghi, A.R., Schneider, T., Koushanfar, F.: Tiny-
garble: Highly compressed and scalable sequential garbled circuits. In: 2015 IEEE
Symposium on Security and Privacy. pp. 411–428. IEEE (2015)

53. Tokui, S., Oono, K., Hido, S., Clayton, J.: Chainer: a next-generation open source
framework for deep learning. In: Proceedings of workshop on machine learning
systems (LearningSys) in the twenty-ninth annual conference on neural information
processing systems (NIPS). vol. 5, pp. 1–6 (2015)

23

https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2012/230
https://medium.com/dropoutlabs/privacy-preserving-machine-learning-2018-a-year-in-review-b6345a95ae0f
https://medium.com/dropoutlabs/privacy-preserving-machine-learning-2018-a-year-in-review-b6345a95ae0f
https://git.njit.edu/palisade/PALISADE
https://git.njit.edu/palisade/PALISADE
http://arxiv.org/abs/1801.08058
https://eprint.iacr.org/2011/133
https://eprint.iacr.org/2011/133

54. Voigt, P., Von dem Bussche, A.: The EU General Data Protection Regulation
(GDPR), vol. 18. Springer (2017)

55. Wierzynski, C., Wen, A.: Advancing both a.i. and privacy is not a zero-sum game
(2018), http://fortune.com/2018/12/27/ai-privacy

56. Wiggers, K.: A.i. weekly: 8 takeaways from neurips 2018 (2018), https://venturebeat.
com/2018/12/07/ai-weekly-8-takeaways-from-neurips-2018/

57. Yang, Y., Qiao, L., et al.: Baidu parallel distributed deep learning (2018), https:
//github.com/PaddlePaddle/Paddle

24

http://fortune.com/2018/12/27/ai-privacy
https://venturebeat.com/2018/12/07/ai-weekly-8-takeaways-from-neurips-2018/
https://venturebeat.com/2018/12/07/ai-weekly-8-takeaways-from-neurips-2018/
https://github.com/PaddlePaddle/Paddle
https://github.com/PaddlePaddle/Paddle

A Appendix

A.1 Network Architectures

For each architecture, n indicates the batch size.

– CryptoNets, with activation Act(x) = x2.
1. Conv. [Input: n × 28 × 28; stride: 2; window: 5 × 5; filters: 5, output:
n× 845] + Act.

2. FC. [Input: n× 845; output: n× 100] + Act.
3. FC. [Input: n× 100; output: n× 10].

– Binarized CryptoNets, with activation Act(x) = x2.
1. BinaryConv. [Input: n×28×28; stride: 2; window: 5×5; filters: 5, output:
n× 845] + BN + Act.

2. BinaryFC. [Input: n× 845; output: n× 100] + BN + Act.
3. BinaryFC. [Input: n× 100; output: n× 10] + BN.

– CIFAR-10 network, with polynomial activation.
1. Conv. [Input: n× 32× 32× 3; stride: 2; window: 5× 5; filters: 40, output:
n× 40× 16× 16] + (BN) + Act.

2. AvgPool. [Input: n × 32 × 32 × 3; stride: 2; window: 5 × 5, filters: 40,
output: n× 40× 8× 8].

3. Conv. [Input: n× 40× 8× 8; stride: 1; window: 3× 3; filters: 80, output:
n× 80× 8× 8] + (BN) + Act.

4. FC. [Input: n× 5120, output: n× 10].

A.2 CryptoNets Inference

Figure 7 shows a full example of performing inference on the CryptoNets model.
Note that the only modification required to enable nGraph-HE is the addition of
the import ngraph bridge line.

25

""" CryptoNets MNIST classifier """
import ngraph_bridge # <-- enable nGraph -HE
import numpy as np
from tensorflow.examples.tutorials.mnist

import input_data
import tensorflow as tf

batch_size = 4096

mnist = input_data.read_data_sets(
’/tmp/tensorflow/mnist/input_data ’,

one_hot=True)

Create inference network
parameter_0 = tf.placeholder(tf.float32 , [None

, 784])
reshape_5_7 = tf.reshape(parameter_0 , [-1, 28,

28, 1])
constant_4 = tf.constant(

np.loadtxt(’W_conv1.txt’, dtype=’f’).
reshape ([5, 5, 1, 5]))

convolution_8 = tf.nn.conv2d(
reshape_5_7 , constant_4 , strides =[1, 2, 2,

1], padding=’VALID’)
multiply_10 = tf.square(convolution_8)
constant_3 = tf.constant ([[0, 0], [0, 1], [0,

1], [0, 0]])
pad_11 = tf.pad(multiply_10 , constant_3)
reshape_12 = tf.reshape(pad_11 , [-1, 845])
constant_2 = tf.constant(

np.loadtxt("W_squash.txt", dtype=’f’).
reshape ([845, 100]))

dot_13 = tf.matmul(reshape_12 , constant_2)
multiply_14 = tf.square(dot_13)
constant_1 = tf.constant(np.loadtxt(’W_fc2.txt

’, dtype=’f’).reshape ([100 , 10]))
y_conv = tf.matmul(multiply_14 , constant_1)

Run network
with tf.Session () as sess:

x_test = mnist.test.images [: batch_size]
y_conv_val = y_conv.eval(feed_dict ={

parameter_0: x_test })

(a) Python code to execute a trained CryptoNets
model using TensorFlow

(b) Computational graph gener-
ated from the Python code by the
nGraph compiler

Fig. 7: Source code and intermediate representation of the MNIST CryptoNets
network.

26

B nGraph-HE Artifact Appendix

Code and runtime artifacts to replicate runtime results are publicly available at
https://github.com/NervanaSystems/he-transformer/tree/v0.2-benchmarks-2

Specifically, the benchmarks folder contains detailed instructions on how to
replicate the results, including our own runtime results from which the tables
and figures were created.

Performance analysis completed on Jan 16 - Mar 21, 2019 using a Xeon
Platinum 8180 platform with 112 CPUs operating at 2.5Ghz, 2 sockets, and
376GB of RAM running HE Transformer (v0.2) with nGraph-tf (v0.9.0) and
nGraph (v0.11.0) on Ubuntu 16.04.4 LTS.

27

https://github.com/NervanaSystems/he-transformer/tree/v0.2-benchmarks-2

	nGraph-HE: A Graph Compiler for Deep Learning on Homomorphically Encrypted Data

