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Abstract. Blockchains have the potential to revolutionize markets and
services. However, they currently exhibit high latencies and fail to handle
transaction loads comparable to those managed by traditional financial
systems. Layer-two protocols, built on top of (layer-one) blockchains,
avoid disseminating every transaction to the whole network by exchang-
ing authenticated transactions off-chain. Instead, they utilize the expen-
sive and low-rate blockchain only as a recourse for disputes. The promise
of layer-two protocols is to complete off-chain transactions in sub-seconds
rather than minutes or hours while retaining asset security, reducing fees
and allowing blockchains to scale.
We systematize the evolution of layer-two protocols over the period from
the inception of cryptocurrencies in 2009 until today, structuring the
multifaceted body of research on layer-two transactions. Categorizing
the research into payment and state channels, commit-chains and pro-
tocols for refereed delegation, we provide a comparison of the protocols
and their properties. We provide a systematization of the associated syn-
chronization and routing protocols along with their privacy and security
aspects. This Systematization of Knowledge (SoK) clears the layer-two
fog, highlights the potential of layer-two solutions and identifies their
unsolved challenges, indicating propitious avenues of future work.

Keywords: Applied Cryptography, Blockchain Applications, Layer-Two
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1 Introduction

Blockchains offer a mechanism through which mutually mistrusting entities can
cooperate in the absence of a trusted third party. However, the permissionless
nature of their consensus algorithms (i.e. where no third party is entrusted with
the safekeeping of funds) limits their scalability to about ten transactions-per-
second (tps) [1,2], far fewer than custodian payment systems offering thousands
of tps [3]. These scaling issues have led to a rich literature corpus exploring
different blockchain scaling solutions: (i) alternative blockchain consensus ar-
chitectures [4–13], (ii) sharding [14–18] and (iii) side-chains [19], some of which



were systematized in related work [20]. However, modifying a consensus mech-
anism implies changing one of the key elements of a blockchain system while
already in-use, which creates crucial issues such as a lack of backward compati-
bility, clearly hindering their implementation in practice. Additionally, consensus
changes might even lead to different, forked systems [21].

Layer-two protocols are an orthogonal scaling solution. Contrary to the afore-
mentioned solutions, layer-two protocols scale blockchains without changing the
layer-one trust assumptions and they do not extend or replace the consen-
sus mechanism. Layer-two protocols enable users to perform so-called off-chain
transactions through private and authenticated communication, rather than
broadcasting every single transaction on the (parent) blockchain. This opti-
mization reduces the transaction load on the underlying blockchain and is fully
backward compatible. The theoretical transaction throughput is only bounded
by the communication bandwidth and latency of the involved parties. Off-chain
transaction security can be guaranteed via allocated collateral, e.g. in payment
channel designs [22–25] or by offering delayed transaction finality in commit-
chain proposals [26].

A rich body of literature has emerged on off-chain protocols, proposing pay-
ment [22–25, 27], state [28] and virtual [29] channels, payment channel net-
works (PCNs) [25, 27] and related routing protocols [30–35], channel rebalanc-
ing [36] and channel factories [37] constructions, commit-chains [26,38], channel
hubs [39, 40], privacy-enhancing channels [39, 41–43] and protocols for refereed
delegation [44,45]. However, the sources of information about layer-two protocols
are highly disparate. Moreover, in part due to the rapid pace of advancement
in the blockchain field, we observe, mostly outside academia, a frequent under-
specification of constructions and their adversarial assumptions. This makes it
exceedingly difficult to discern thought-through concepts from marketing activi-
ties. We aim to clear the fog surrounding layer-two protocols, equipping newcom-
ers to this inaccessible field with a concise reference, and inform the directions
of future work. This Systematization of Knowledge (SoK) provides a systematic
overview of layer-two systems since the inception of cryptocurrencies in 2009
and identifies the complete set of proposed layer-two protocol types.

This SoK is structured as follows. Section 2 outlines the necessary back-
ground followed by different layer-two design classes, channels in Section 3,
commit-chains in Section 4 and protocols for refereed delegation in Section 5.
For completeness, Section 6 presents two sets of complementary approaches to
layer-two protocols. Section 7 considers the anonymity and privacy aspects of
layer-two protocols, Section 8 covers security properties and we conclude the
paper in Section 9.

2 Blockchains and Off-Chain Transactions

This section establishes the necessary background and isolates the blockchain
components relevant to layer-two. The background presented here is necessarily
not a complete overview of blockchain-related concepts, which have been sur-
veyed in other SoKs [20,46]. We distinguish between four different layers within
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a blockchain system: the hardware, layer-zero, layer-one and layer-two (cf. Fig-
ure 1).

Hardware Layer. Trusted Execution Environments (TEE) substitute the need for
a blockchain clock with a trusted hardware assumption, thus enabling efficient
protocols at other layers such as off-chain payments [47, 48], the removal of
dispute processes and backward compatibility [49]. TEE (e.g. Intel SGX) execute
sensitive or security-critical application code within enclaves [50, 51], tamper-
proof from the operating system or other higher-privileged software.

The Network Layer. The network layer, or layer-zero, is typically a peer-to-peer
layer on which blockchain nodes exchange information asynchronously [52]. The
network layer is of utmost importance to the scalability [53,54], security [1] and
privacy [55] of a blockchain. An efficient layer-zero enables higher transaction
throughput and stronger resilience against malicious actors [1]. Blockchain min-
ers, who write transactions to the blockchain, are connected through dedicated
miner P2P networks (e.g. Fibre [56]), in addition to the public blockchain P2P
network. Note that the network layer encompasses the complete network stack
of the traditional network architecture rather than only the classical network
layer, which focuses Internet routing. More concretely, the network layer should
provide reliable communication between two participants in a blockchain.

Fig. 1. Suggested blockchain layers. Layer-two channels
and commit-chains operate without additional consen-
sus mechanism and transact payments, state, and spawn
networks.

The Blockchain Layer.
Layer-one hosts an im-
mutable append-only chain
of blocks that accumu-
lates transactions from
parties in a network for
public verifiability [46].
Each transaction encodes
an update of the state of
the blockchain. A trans-
action can exchange dig-
ital assets between par-
ties or invoke an appli-
cation (i.e. smart con-
tract). The integrity of
the blockchain is ensured
by means of a consen-
sus algorithm executed
across participants. Con-
sensus algorithms rely on

e.g. the computationally expensive Proof-of-Work (PoW) [13, 57–60] or a large
number of alternatives [8, 9, 61–65]. Blockchains can be permissionless or per-
missioned depending on whether participation is open or restricted. We focus on
permissionless blockchains as permissioned blockchains lack the non-custodial
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property, but layer-two concepts apply equally to permissioned blockchains.
Crucial for the design of layer-two protocols is the scripting language of the
underlying blockchain. Bitcoin-like blockchains are based on a restricted Script
language [57] and operate via a set of Unspent Transaction Outputs (UTXO),
while other blockchains support Turing-complete languages enabling highly ex-
pressive smart contracts [66]. Layer-two protocols typically assume two proper-
ties from the blockchain layer: integrity (i.e. only valid transactions are added
to the ledger) and eventual synchronicity with an upper time-bound (i.e. a valid
transaction is eventually added to the ledger, before a critical timeout).

We informally define off-chain or layer-two protocols as follows.

Definition 1. (Layer-two protocols). A layer-two protocol allows transactions
between users through the exchange of authenticated messages via a medium
which is outside of, but tethered to, a layer-one blockchain. Authenticated asser-
tions are submitted to the parent-chain only in cases of a dispute, with the parent-
chain deciding the outcome of the dispute. Security and non-custodial properties
of a layer-two protocol rely on the consensus algorithm of the parent-chain.

Off-chain protocols can be categorized into in three principal flavors: (i) chan-
nels, which are formed between n coequal parties (Section 3, e.g., [25, 27]); (ii)
commit-chains, which rely on one central intermediary, trusted regarding avail-
ability but untrusted regarding funds. (Section 4, e.g. [26,67]); and (iii) protocols
for refereed delegation (Section 5, e.g. [44,45]). While side-chains [19] let parties
transact on a distinct blockchain, they do not classify as layer-two due to having
their own consensus algorithm.

3 Channels

In this section we first provide an account of the evolution of channel construc-
tions (sections 3.1 to 3.4), including the requirement for new watching services
(section 3.3), before considering how multiple single channels can be synchro-
nized (section 3.5); the routing challenges that synchronized channels present
(section 3.6); and finally the construction of payment channel hubs (section 3.7).

3.1 Channel Overview

A channel establishes a private peer-to-peer medium, governed by pre-set rules,
e.g. a smart contract, allowing the involved parties to consent to state updates
unanimously by exchanging authenticated state transitions off-chain. We provide
an overview of state-of-the-art channel constructions in Appendix G Table A1
where we distinguish between two channel techniques: (i) payment channels,
supporting off-chain payment interactions; and (ii) state channels, supporting
off-chain arbitrary interactions.

Payment channels emerged [22] to support rapid one-way payments, then
transitioned towards bi-directional channel designs [25], where both parties can
issue and receive payments. State channels [28] generalize the concept to support
the execution of arbitrary state transitions. A state channel allows n parties
to agree, via unanimous consent, to a new state of a previously agreed smart
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contract. A channel’s lifetime consists of three phases: (i) channel establishment,
(ii) transition and (iii) channel closure or disputes7.

Fig. 2. Payment channel fund-
ing (UTXO model) and off-chain
transaction.

Channel Establishment. All parties coopera-
tively open a channel by locking collateral on
the blockchain (cf. Figure 2). The funds can
only be released by unanimous agreement or
through a pre-defined refund condition.

Channel Transitions. Once the channel is
open, all parties can update the channel’s
state in a two-step process. First, one party
proposes a new state transition by sending
a signed command and the new statei to
all other parties. Each party computes the
state transition as statei ← Tα(statei−1, cmdα),
where Tα denotes the transition function for

application α and cmdα denotes a given command relevant to application α.
Second, all other parties re-compute the state transition to verify the proposed
state before signing it and sending their signature to all other parties.

Channel Disputes/Closure. If an honest party does not receive n signatures
before a local timeout, it assumes that there has been a disagreement about the
proposed state. The honest party may trigger a layer-one dispute and enforce a
new state transition without the cooperation of the other parties.

We generalize [28, 29] the properties and security guarantees for responsive
parties offered by channels:

Unanimous Establishment: A channel is only considered open if all n parties
agree to its establishment.

Unanimous Transition: A transition on layer-two, i.e. without an on-chain
dispute, requires all n parties to agree.

Balance Security: An honest party can always withdraw the agreed balance
from the channel with an on-chain dispute.

State Progression: A party can always enforce an off-chain state transition
on-chain, the state machine thus always reaches a terminal state.

3.2 State Replacement Overview

Channel constructions are inherently based on state replacement techniques (cf.
Figure 3). These techniques assume that participants in a channel are rational
and follow the strategy with the highest payoff (e.g. a user publishes an older
state if it represents a payment of higher value for this user). To be applicable
for the wide range of protocols used to realize channels, the following section
discusses generic state transitions. We distinguish four state replacement tech-
niques:

7 While the earliest channel protocols differ slightly from the above three-part state
replacement technique, they nonetheless fit within the framework of unanimous con-
sent coupled with the local verification of state transitions.
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– Replace by Incentive (RbI). A sender shares newly authorized states with a
receiver. A rational receiver only signs and publishes the state that pays the
highest amount.

– Replace by Time Lock (RbT). Every state is associated with a time lock8,
which decrements every time the state changes. The state with the low-
est time lock is considered the latest state, as it can be accepted into the
blockchain before all previously authorized states. Once a channel closes, the
state that is included in the blockchain deprecates all other states.

– Replace by Revocation (RbR). All parties collectively authorize a new state
before revoking the previous state. Upon dispute, the blockchain provides a
time period for parties to prove that the published state is a revoked state.

– Replace by Version (RbV). States have a monotonic increasing counter repre-
senting the state version. Upon dispute, the authorized state with the highest
state version is considered the latest state. A new state replaces a previous
state if it has a larger version number.

Fig. 3. Payment channel update
(UTXO model), invalidate out-
dated state.

We provide further detail on the evolution
of payment and state channels in Appendix A.
For RbI and RbT , the latest state can only be
written to the blockchain once. RbR and RbV
introduce a dispute process where the counter-
party can provide evidence that a state sub-
mitted to the blockchain is invalid. After the
dispute, the off-chain contract can either be
re-deployed to the blockchain (i.e. closure dis-
pute, cf. Section A.2) or a set of commands can
be executed via the blockchain (i.e. command
dispute, cf. Section A.2). The introduction of a
dispute process introduces a new assumption
critical to the channel’s security; the always online assumption [68] (cf. Sec-
tion 8). Watching services mitigate the assumption by allowing users to delegate
their responsibility of raising disputes to a third party.

3.3 Watching Services

To alleviate the online assumption for channel users, related work proposes to
outsource the responsibility of issuing challenges to third-party watching ser-
vices [68–70]. Users outsource their latest state to the watching service before
parting offline. Watching services then act on behalf of the users to secure their
funds. Users can still verify the correct behavior of watching services and pun-
ish them (e.g. by keeping pre-allocated collateral) in case of non-compliance.
Monitor [69] provides watching services within the Lightning Network. Watch-
Tower [70] is designed for Eltoo and requires O(1) storage but is currently not

8 Time locks define either absolute time expressed as a blockchain block height, or
relative time expressed as the number of blocks that must elapse after a transaction
is included in the blockchain.
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compatible with Bitcoin’s consensus rules. PISA [68] provides watching services
for state channels and requires O(1) storage. PISA instances provide receipts to
offline users; the users can burn an instance’s security deposit if the instance
misbehaves.

DCWC [71] enables users to engage with multiple watching services, increas-
ing the probability of at least one honest watcher protecting the offline user’s
interests. On the other hand, Brick [72] proposes an additional proactive role for
a watching service. Watchtower committees are formed to manage dispute reso-
lution on behalf of channel participants (i.e. as opposed to executing the dispute
process on the blockchain). This approach ensures channel participants are pro-
tected against blockchain latency and high transaction fees as the committee will
decide the final agreed state for the channel and post it to the blockchain at a
later time, but like PISA, its security relies on financial incentives and collateral
lockup by members of the watchtower committee.

Outpost [73] achieves O(1) storage for a watchtower in Bitcoin without the
need to change any consensus rules. Instead of sending an encrypted justice trans-
action to the watchtower for every update in the channel, the encrypted justice
transaction is stored in the corresponding channel state (as an OP RETURN).
When there is a dispute in the channel, the encrypted justice transaction is
recorded in the blockchain. Thus an observer with the decryption key can sim-
ply decrypt the justice transaction and relay it to the network. Cerberus [74]
considers how to build financially accountable watchtowers in Bitcoin (as PISA
accomplished in Ethereum). It requires the watchtower to lock up collateral for
each channel it is watching and to participate in every channel update. If the
watchtower fails to protect the channel participants, then the participants can
force the watchtower to forfeit its deposit.

3.4 Channel Hierarchy

Aiming to reduce the number of required on-chain transactions, there have been
proposals to increase the flexibility of channels with regard to applications and
participants.

Multiple Applications. Dziembowski et al. [75] and Counterfactual [76] explore
the possibility of installing and uninstalling applications off-chain (i.e. without
on-chain fee) 9. This allows parties to execute multiple concurrent applications
(e.g. tic-tac-toe, poker and bi-directional payments). Such modular channels
maintain a set of application instances and each instance operates on an indi-
vidually allocated collateral. Application instances are isolated from each other
(even in case of disputes) and based on RbV. Collateral is unanimously assigned
to one application and cannot be used simultaneously for other applications due
to security reasons.

Channel Factories. Burchert et al. [37] propose the concept of a channel factory
for Bitcoin, whereby n parties lock coins into a n-party deposit that is then

9 See A.2 for detail on the notions of installing and uninstalling in this context.
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re-allocated to a set of pair-wise payment channels. Each party may maintain
one or more pair-wise channels to facilitate transactions. Whenever two parties
want to establish a direct channel, all parties cooperatively agree to create a
new re-allocation of pair-wise payment channels by jointly updating the n-party
deposit. This re-allocation of pair-wise channels can be built using DMC [37],
while Ranchal-Pedrosa et al. [77] replace DMC with Lightning channels.

3.5 Channel Synchronization

The channel designs discussed in the previous section are limited to the direct
interaction among connected parties. This brings forth a new question of whether
it is possible for two (or more parties) to avoid setting up a new direct channel
on the parent blockchain (and thus avoid prohibitive fees) by finding a path of
separate existing channels that indirectly connects them on the network. For
instance, if Alice has a channel with Bob, and Bob has a channel with Caroline,
then Alice could transact with Caroline via Bob. Such a network of channels
is known as a Payment Channel Network (PCN). To facilitate synchronizing a
payment (or executing a smart contract) across a path of channels, we present
conditional transfers. Those allow the sender to lock coins into a transfer such
that the receiver can only claim the funds if a condition is satisfied before an
expiry time [78–81]. Channel synchronization requires every hop along the path
to set up conditional transfers with their counterparty. Two security properties
are crucial for channel synchronization. First, no counterparty risk is required
to ensure that no party defaults on its obligation to execute a transaction in the
prescribed manner. Second, atomicity ensures that a transaction either succeeds
or fails in its entirety. Atomicity is particularly important if one transaction is
split over multiple payments or paths. We provide further detail on techniques
for channel synchronization in Appendix B.

Virtual channels. In all constructions discussed previously, intermediate users
are required to remain online and explicitly confirm all mediated transactions to
successfully synchronize their channels. Dziembowski et al. [29,75] address these
shortcomings with the introduction of virtual channels that support payment
and state transitions. All intermediaries along the route can lock coins for a
fixed period of time and both parties can treat the path as a new virtual channel
connecting them directly. In this manner, A and B can transact without inter-
acting with intermediaries along the path, thus reducing the transaction latency.
Virtual channels are limited by the need to recursively set up a new virtual chan-
nel for every intermediary along the path. It is the intermediary’s responsibility
to ensure the channels close appropriately. Dziembowski et al. [82] extended vir-
tual channels to support more than two parties such that any number of parties
can set up a virtual channel without blockchain interaction.

3.6 Routing

If A wants to pay B using a set of intermediate channels, it is necessary to
first find one or several paths of open channels from A to B. If the payment only
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utilizes a single path, all channels need to have sufficient collateral to conduct the
payment. If the payment is split over multiple paths, it is necessary to divide the
payment in such a manner that channels on each path can handle the partial
payment. In this section, we introduce routing algorithms, i.e. algorithms for
finding paths in a network of payment or state channels. For simplicity, we
use the example of payment channels throughout the section. The protocols,
however, do apply to state channels.

Existing network routing algorithms for data transmission experience unique
challenges when applied to PCNs. The goal of data routing algorithms is the
transfer of data from one node to another, i.e. routing changes the state of
nodes by transferring information. Node links and bandwidth capacities in data
networks moreover are not considered private information. Retransmission of
data is an inherent feature of e.g. TCP, and typically doesn’t induce significant
economic losses to either sender or receiver.

In contrast, the goal of a payment channel routing algorithm is to change
the state of the traversed channels to secure the asset delivery from sender to
receiver. Depending on the transaction amount, certain channels may not be
suitable to route a payment, and channel balances are thus an obstacle that
routing algorithms have to account for. An executed channel transaction per-
manently alters the state of all channels along the path. Further parameters,
such as bandwidth and network latencies moreover influence channel path de-
lay characteristics. To protect user privacy, only the total capacity of a channel
is disclosed, not the distribution of funds among the two channel participants.
Channel transactions might therefore fail and the routing algorithms attempt
different execution paths until one succeeds. PCN routing algorithms, therefore,
have to account for the unique characteristic of channels to provide satisfactory
path recommendations10. We summarize five crucial properties routing algo-
rithms for payment channels should satisfy [30–32].

Effectiveness: Given a PCN snapshot and the channel balances, the algorithm
should find paths which maximize the success probability of a payment. The
algorithm should remain effective when channel balances change.

Efficiency: The overhead of path discovery should be low in latency, communi-
cation and computation. Changes of the PCN topology should entail a low
update overhead cost.

Scalability: The routing algorithm should remain effective and efficient for
large-scale PCNs and high transaction rates.

Cost-Effectiveness: The algorithm should find paths with low transaction
fees. The fees of a layer-two transaction should be lower than a layer-one
transaction.

Privacy: Routing paths should be found without disclosing transaction values
(i.e. value privacy) and the involved parties (i.e. sender and receiver privacy).

We distinguish between two classes of routing algorithms: global routing and
local routing. In global, or source routing, each node maintains a local snapshot

10 Note that Tor-like routing is inappropriate, as Tor assumes a random relay selection,
which wouldn’t account for channel capacities.
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of the complete PCN topology. In local routing, the algorithm operates on local
information, i.e. is only aware of the node neighbors with which it established
channels with. We summarize the performance of algorithms presented in related
work in Appendix G Table A2 and provide further detail on routing algorithms
in Appendix C.

3.7 Payment Channel Hubs

Related work [83] observes that layer-two systems benefit from centralized (but
non-custodial) star-topologies to reduce (i) collateral lockup costs and to (ii)
simplify routing complexities. A payment channel hub (PCH) is essentially a
node in a PCN that maintains many channels with different peers. Having a
network with multiple interconnected PCHs should result in a lower average path
length. A reduced path length implies a reduction in collateral cost and route
discovery complexity. Still PCHs face significant locked capital requirements for
each channel. For example, a PCN node with 1M channels, each channel sending
on average $1000 of transaction volume, requires the hub to lock up a total of
$1B. Rebalancing operations are only possible via costly and slow parent-chain
transactions. Moreover, user-onboarding is a costly process, a PCN node with
1M users would require 1M parent-chain setup transactions (costing more than
$100k on Ethereum).

3.8 Summary

In this section we have presented the evolution of channel constructions from
Replace by Incentive through to Replace by Version. Given a network of channels,
we have considered the role of conditional transfers to let parties synchronize
payments (or construct new virtual channels) across a path of channels. With
respect to routing and finding a path that connects two parties in a channel-
based network, we discussed the limitations of deployed routing algorithms due
to their reliance on source routing. Alternative algorithms that rely only on local
knowledge offer some promise, but require further work to achieve effectiveness
comparable to that of source routing. Finally a significant consequence of channel
networks is the requirement for users to remain online and synchronized with
the network to watch for malice disputes. To alleviate the online assumption,
there are several proposals for third party watching services who can respond
to a dispute on the user’s behalf. All proposals tend to focus on building highly
available watching networks and using on-chain collateral to ensure the watching
services can be held financially accountable.

The aforementioned results suggest that blockchains can scale further by
leveraging layer-two technologies and thus without changes to the underlying
layer one. However, PCNs experience limitations and their scalability properties
have not yet been quantified appropriately. While layer-one transaction costs are
quantified by their size (on UTXO blockchains), or computational complexity
(on smart contract blockchains), the transaction costs on layer-two are primar-
ily correlated to the transaction value (in $). The higher a layer-two transaction
value, the more on-chain collateral needs to be reserved, locking up potentially
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considerable amounts of funds in advance. Analysis of the economic consequences
of channel constructions, (e.g. as conducted in [84]), is an open and important
area for future work, particularly in relation to the economic incentives for chan-
nel watching services [85] and the fee structures for channel payments [86].

4 Commit-chains

In this section we provide an overview of commit-chains. We provide detail in
Appendix D, in particular describing two pioneering commit-chains proposals:
NOCUST [26] (section D.1), an account-based commit-chain, and Plasma [38]
(section D.2), a UTXO-based commit-chain. In Appendix G Table A3, we pro-
vide an overview of the properties of NOCUST and Plasma Cash [87] (a simpli-
fied Plasma variant).

4.1 Commit-chain Overview

In contrast to channels, commit-chains are maintained by one single party that
acts as an untrusted intermediary for managing transactions between users.
Hence, commit-chains serve a similar purpose as payment channel hubs but
with protocols specifically optimized for this scenario. The operator is respon-
sible for collecting commit-chain transactions from the users and periodically
submits a commitment to all collected transactions to the parent-blockchain.
Unlike channels, commit-chains do not rely on a three-state model (opening,
transitions, dispute/closure phase), but rather on an always ongoing state once
launched. After an operator has launched a commit-chain, users can join by
contacting the operator. They can then conduct transactions that are recorded
on the commit-chain. Users can anytime withdraw or move their assets to the
parent chain.

Periodic Checkpoint Commitments. Commit-chain users may need to period-
ically return online to observe the on-chain checkpoint commitment, which can
be instantiated as a Merkle tree root or a Zero Knowledge Proof (ZKP) [26,88].
Merkle root commitments do not self-enforce valid state transitions and there-
fore require users to participate in challenge-response protocols if a commitment
is invalid. In contrast, ZKPs enforce consistent state transitions on-chain, thus
reducing potential operator misbehavior. A challenge response mechanism is still
required to ensure the completeness of the checkpoint (i.e., that it summarizes
the latest state of all user accounts). Currently, there exists no efficient method
to instantiate commit-chains on blockchains without highly expressive scripting
languages.

Data Availability. As commit-chain data is not broadcast for efficiency rea-
sons, users must retrieve/maintain data required to (partially) exit a commit-
chain, commonly referred to as the data availability requirement. Data availabil-
ity challenges may challenge a commit-chain operator to provide the necessary
data or halt the operator upon misbehavior [26], allowing users to exit with their
last confirmed balance.

Centralized but Untrusted Intermediary. The centralized operator may be-
come a point of availability failure, but it does not hold custody of funds. The
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operator may thus censor commit-chain transactions, encouraging mistreated
users to exit anytime and move towards another commit-chain.

Eventual Transaction Finality. Unlike previously discussed layer-two proto-
cols, the intermediary commit-chain operator does not require on-chain collateral
to securely route a payment between two commit-chain users. In this setting,
commit-chain transactions do not offer instant transaction finality (as in chan-
nels), but eventual finality after commit-chain transactions are recorded securely
in an on-chain checkpoint.

Reduced Routing Requirements. Because a commit-chain can potentially host
millions of users, few statically connected commit-chains are envisioned to spawn
stable networks with low routing complexity. However, we are not aware of any
proposals for atomic cross commit-chain transactions.

We generalize the security properties for users as follows:

Free Establishment: Users join a commit-chain without an on-chain transac-
tion by requesting an operator signature [26].

Agreed Transition: A commit-chain transaction is agreed upon by at least
the sender and the commit-chain operator.

Balance Security: Honest users can always withdraw agreed balances from
the commit-chain with an on-chain dispute.

State Progression: User can enforce an off-chain state transition on-chain.
Commitment Integrity: Users can verify the integrity of commitments and

force the commit-chain operator to seize operation (and rollback to the latest
commitment)11.

Unlike with channels, state progression is not a default security property for
commit-chains, because they only offer eventual finality, unless off-chain trans-
actions are secured by additional collateral [26]. In the worst case, transactions
remain unconfirmed if the next commitment is invalid or not provided.

4.2 Summary

Unlike channels, commit-chains allow transaction recipients to remain offline
at the time of payment, approaching similar usability properties to layer-one
transactions. Conditional on using smart contract enabled blockchains, commit-
chains also allow for a reduction in the required layer-two collateral.

Commit-chains have been shown to scale PoW blockchains by several orders
of magnitude [26], trading-off decentralization for a more centralized (but non-
custodial) architecture. Due to periodic checkpoints in commit-chains, delayed
transaction finality is secure without collateral of the intermediate operator [26].
Operator collateral is “re-usable” [26] after each checkpoint, potentially reducing
the locked capital and on-chain costs of PCHs.

11 To mitigate the possibility of a false accusation attack by a user against the operator,
the operator may require the user to subsidize the cost of a response to such a
challenge. Note that this in turn may introduce a user grieving vector. To date, no
appropriate parameterization or more elegant solution has been proposed.
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Table 1 provides an overview and comparison of channel, channel-hub and
commit-chain constructions.

Table 1. Comparison of layer-two transaction designs1.

Channel Channel Hub Commit-Chain

Topology Mesh Star Star
Lifecycle 3-phase 3-phase Periodic commit
Compatibility Any chain Any chain Smart Contract chain
Privacy value privacy, payment anonymity, 5

relationship anonymity unlinkability
Offline TX Reception 5 5 X
Mass-Exit Security 5 5 X(payments)
TX Finality Instant Instant Delayed or Instant
Instant TX Collateral Full Full Reusable [26]
Delayed TX Collateral NA NA 0
Collateral Allocation O(n) on-chain O(n) on-chain O(1) on-chain [26]
User On-Boarding On-chain TX On-chain TX Off-chain [26]

1 Protocols for refereed delegation, distinct in nature with less focus on payments, are
presented in Section 5.

5 Protocols for Refereed Delegation

In this section, we overview the protocols that focus on solving disputes among
participants differently to how they are handled in channels and commit-chains12.

So far we have assumed that all state transitions in an off-chain protocol
can be executed on a layer-one blockchain. Such transitions range from the ex-
ecution of conditional transfers to the execution of an application for a state
channel. Yet while the layer-two approaches we have considered so far allow us
to significantly increase the number of state updates performed among two or
more parties, they are restricted to those whose dispute resolution mechanism
builds upon a mechanism that can be fully executed on-chain. We now present
two approaches which seek to reduce the on-chain requirements for the dispute
resolution, thereby enlarging the set of feasible layer-two applications.

5.1 Bi-section Protocols

Instead of forcing conflicting users to post their (partial) state on-chain, a bi-
section protocol works in two stages: (i) users look for the minimal verification
step required to convince a third party (e.g., miner) of the validity of their state-
ment; (ii) miners verify the (simplified) state from conflicting users to determine
who is right. Truebit [45] and Arbitrum [44] are two approaches in this paradigm.

Truebit [45], inspired by verifiable computation, proposed the use of bi-
section protocols to extend the computational capacity of a layer-one blockchain
by taking the computation off-chain. At a high level, for a given computational
task, a solver will post the solution alongside a commitment to a list of sub-tasks

12 In contrast to channels, commit-chains have not yet been specified to support arbi-
trary state transitions.
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that led to the solution. The blockchain enforces a challenge period to let chal-
lengers verify the solution’s correctness off-chain and issue a challenge if they
disagree. If there is a disagreement, the blockchain enforces a verification game
that performs a binary-search for the list of sub-tasks. When it finds the task
that led to the disagreement, it will simply execute it on-chain and verify the
claim. While the above approach permits scalable off-chain computation, every
verification game requires a logarithmic number of transactions depending on
the size of the computation.

Arbitrum [44] takes this approach further by introducing a new virtual ma-
chine and a state channel. This lets a distributed set of parties execute a program
in a custom virtual machine and unanimously agree to a commitment (i.e. state
assertion) of the program’s new state. If co-operation in the state channel breaks
down, then any party in the channel can compute a state transition and post
a commitment to the new state to the blockchain (i.e. a disputable assertion).
This triggers a similar dispute process to that used in Truebit, where any other
party can challenge the assertion and participate in a bi-section protocol.

6 Complementary Approaches For Layer-two Protocols

In this section we present two sets of approaches which are complementary to
layer-two protocols: (i) trusted execution environments and (ii) side-chains. In
contrast to layer-two protocols, these approaches invoke additional and differ-
entiated trust assumptions. Trusted execution environments require a shifted
trust assumption towards the CPU manufacturer. Side-chains require trust in
the independent consensus algorithm of the side-chain.

6.1 Trusted Execution Environments

The trusted execution environment (TEE), e.g. Intel SGX [89], approach con-
stitutes an orthogonal approach to that of existing layer-two protocols and can
provide a high level of efficiency while requiring a benign hardware manufacturer.

Trusting a TEE to provide integrity naturally overcomes many obstacles of
non-TEE protocols:

No collateral lockup: TEEs absorb the trust requirements, otherwise guar-
anteed via on-chain collateral.

Interoperability: The computation at the TEE can encode the logic and trans-
action format required for any blockchain.

Parallelized Disputes: TEEs can emulate the logic of global preimage man-
ager to enable parallel disputes 13.

Ensured fees: TEEs follow the protocol definitions and pay honest users for
their synchronization service.

Note that besides the shifted trust assumptions towards the CPU manufac-
turer, TEEs suffer from their own security concerns such as rollback [51] and
side-channel attacks [90].

13 For detail on global preimage manager see Appendix B.
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Teechain [47] and Teechan [48] synchronize payments across channels using
TEEs. TEE enable expressive and off-chain smart contracts on restricted Bitcoin-
based blockchain [49]. Tesseract [91] proposes to construct a scalable TEE based
real-time cross-chain cryptocurrency exchange. In relation to light clients in Bit-
coin, BITE [92] leverages TEEs to enable full nodes to serve privacy-preserving
requests from light clients, when used in combination with other private informa-
tion retrieval and side-channel protection techniques. ZLiTE [93] also leverages
TEEs to provide privacy-preserving light clients for Zcash, whereby light clients
operate in conjunction with a TEE-enabled server (e.g., running Intel SGX [89]).

6.2 Side-chains

A second complementary approach is that of side-chains [19]. A side-chain is a
distinct blockchain with a separate consensus algorithm attached to a parent-
chain. Side-chains validate transactions and hence take over some of the parent-
chain’s load. Side-chains enable digital assets to be moved between a parent-chain
and a side-chain, such that alternative blockchains can be developed without
necessitating the creation of an alternative digital asset or coin: the parent-chain
asset can be used directly on the side-chain.

The central innovation for side-chains is that of a two-way peg. A two-way peg
is the mechanism permitting the transfer of digital assets at a certain exchange
rate between a parent-chain and a side-chain. A two-way peg allows digital assets
to be transferred from a parent-chain to a side-chain by sending parent-chain
coins an output on the parent-chain that is locked by a Simplified Payment
Verification (SPV) proof [19], which can then be unlocked by an SPV proof on
the side-chain. For the period in which digital assets are locked on the parent-
chain, the assets can be moved freely around on the side-chain. To transfer assets
back to the parent-chain, funds are sent to an SPV locked output on the side-
chain and an SPV proof on the parent-chain unlocks previously locked funds on
the parent-chain. The varieties of a two-way peg are as follows.

Symmetric: SPV security is required to transfer funds between the side-chain
and the parent-chain, independently of the direction.

Asymmetric: where users of the side-chain are fully aware of the state of the
parent-chain, such that an SPV proofs are not required to transfer funds
from a parent-chain to a side-chain, but are required to transfer funds back.

Side-chain constructions treat assets from different parent-chains as different
asset types, which are not interchangeable but which can be explicitly traded.
Potential limitations to the use of side-chains [19] include, for instance, an in-
crease in complexity at both the network and asset level, the creation of new
attack vectors, and an increase in the risks associated with centralized mining.

7 Anonymity and Privacy

In this section we first set out the relevant privacy concepts for layer-two (sec-
tion 7.1), before exposing privacy enhancing protocols (section 7.2).
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Layer-one transaction anonymity and privacy is extensively studied [94–97],
uncovering that blockchain pseudonymity does not entail strong privacy guar-
antees. A public blockchain allows an adversary to link a sender and receiver
of payments as well as trace back the origin of coins, breaking the unlinkability
and untraceability properties. Privacy-focused blockchains [98–101] build upon
cryptographic techniques [102–104] to obfuscate on-chain information. Unfor-
tunately, side-channel information (e.g. usage patterns) enable linkability and
traceability attacks [98,105–108]. As off-chain transactions only have a minimal
blockchain footprint, one might believe they provide privacy-by-design.

However, achieving privacy and unlinkability of layer-two transactions is not
trivial [41,78,109]. The creation of a channel associates a permanent pseudonym
(e.g. public keys), while synchronization among channels (cf. Section 3.6) may
reveal the pseudonym of the cooperating parties. In Lightning, the a node ID is
linked with an IP address and this information is broadcast across the network.
Furthermore, naive route discovery among two channels with a disjoint set of
participants might require the knowledge of the (partial) topology for the channel
network. In HTLC payments (cf. Section 3.5), the intermediate channels on the
path use the same cryptographic condition y = H(R). An adversary on the path
can observe the channel updates (i.e. share the same condition y) and can deduce
who is paying to whom.

7.1 Layer-Two Privacy Notions

We differentiate between (i) an off-path adversary, which only has access to the
blockchain; and (ii) an on-path adversary, which additionally participates in the
layer-two protocol.

Payment Hub Privacy A PCH (cf. Section 3.7) or commit-chain (cf. Sec-
tion 4) operator may have access to mediated transaction amounts and sender
or receiver pseudonyms. In this setting, we consider the following privacy notions.

Payment Anonymity [41]: In the absence of side channels, the receiver of a
payment, possibly in collusion with a set of malicious senders, learns nothing
about an honest sender’s spending pattern.

Unlinkability [39]: The operator cannot link the sender and the receiver of a
given payment among the set of all feasible sender-receiver pairs.

Multi-Hop Privacy We consider the following privacy properties for routed
payments (cf. Section 3.6).

(Off-path) Value Privacy [78]: An adversary not involved in a payment does
not learn the transacted value. If the adversary is part of the payment path
it trivially learns the transacted value while forwarding it.

(On-path) Relationship Anonymity [78]: Given two payments between two
pairs of honest sender and receiver, the adversary (who might control some
of the intermediate channels) cannot tell which sender paid to which receiver
with a probability higher than 50%. Off-path adversaries are not considered
here since transaction data is shared only among involved participants.
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Unlike other payment networks such as credit networks [30,110–112], existing
privacy notions in PCNs do not consider link privacy (e.g. whether an adver-
sary can determine the existence of a payment channel between two users) or
whether it is possible to infer the (partial) topology of a PCN. Channels may be
unannounced (e.g. private Lightning channels), such that an adversary may be
unaware of the link between users.

7.2 Privacy Enhancing Protocols

While related work covers layer-one transaction privacy extensively [99,113–120],
it is as yet unclear if such techniques are applicable to layer-two protocols. In-
stead, the literature proposes layer-two tailored privacy proposals. We distin-
guish among (i) hub-based and (ii) multi-hop payment protocols.

Privacy Enhancing Payment Channel Hubs

TumbleBit. TumbleBit [39] is a unidirectional PCH relying on an untrusted in-
termediary, a Tumbler. The Tumbler issues anonymous vouchers that users can
exchange for coins. A key aim of TumbleBit is to prevent an adversary from
linking a payment from a particular payer to a particular payee (an unlinkable
payment hub). Recent work (A2L) [81] improves the interoperability and effi-
ciency of TumbleBit while preserving the security and privacy notions of interest.
However, in both TumbleBit and A2L, the collusion between the Tumbler and
the payee in combination with timing analysis can considerably reduce the num-
ber of potential payers. Similarly, side channels (e.g. a unique product price)
allow the set of feasible sender-privacy pairs to be narrowed. Particular threats
that are not addressed by the current design are: (i) intersection attacks [121]
correlate information across different time periods, (ii) abort attacks gain infor-
mation about other parties through abort of transactions, and (iii) n− 1 attacks
where the tumbler refuses all but one payment.

Bolt. Bolt [41] aims to offer privacy-preserving payment channels such that
multiple payments on a single channel are unlinkable to each other. Assuming
the channels are indeed funded with anonymized capital (e.g. using anonymized
assets [99]), Bolt payments are anonymous.

Privacy Enhancing Multi-Hop Payment Protocols

Rayo and Fulgor [78]. : Unlinkable Hashed Time-Locked Contract (HTLC) [78]14,
is a cryptographic primitive that ensures that a HTLC in a payment path is built
upon a different and unrelated hash value. Each intermediate user is provided
with two hash values yi := H(xi) and yi+1 := H(xi ⊕ xi+1) and the value xi+1. The
intermediate user is also provided with a ZKP that the preimage of yi+1 is the
same as the one of yi, just skewed by the value xi+1. Rayo and Fulgor achieve
the same functionality as HTLC but prevent linkability of payments.
14 See Appendix B for detail on HTLCs.
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Anonymous MHL (AMHL). Unlike Rayo and Fulgor, AMHL protocol embeds
the synchronization condition within a public key, improving upon Rayo and
Fulgor on efficiency and privacy (i.e. the synchronization condition does not
explictly appear on the transaction).

Z-channel [122]. is a channel construction for Zcash [123], seeking to provide a
payment channel construction leveraging the cryptographic schemes (and thus
privacy properties) of Zcash. In particular, Z-Channel defines an extension of
the distributed anonymous payment scheme (i.e., the payment scheme of Zcash)
that integrates multisignature and time lock functionalities. Building upon this
extension, Z-Channel conceptually mimics bidirectional micropayment channels
as implemented in Bitcoin but using Zcash as the underlying blockchain.

7.3 Summary

We have seen that while the default transaction privacy on layer-two is likely
better than on layer-one, layer-two transactions cannot by default be considered
private. TumbleBit and A2L achieve unlinkability but not payment anonymity.
BOLT does not support Bitcoin but offers stronger privacy guarantees. Even in
the simplified PCH setting, it seems that tradeoffs between privacy and com-
patibility are required. Multi-hop payment protocols do not enforce single hop
privacy guarantees (e.g a user learns predecessor and successor in a payment
path) at the gain of global privacy guarantees such as value privacy and rela-
tionship anonymity. As demonstrated in AMHL, it is possible to achieve privacy
guarantees and backwards compatibility with most existing blockchains. State
channels and commit-chains demonstrate interesting functionalities based on the
expressiveness of rich scripting languages. These protocols, however, to date do
not aim at providing anonymity and privacy guarantees from the commit-chain
operator. Instead, privacy is considered an orthogonal research problem. Recent
work [44,45] demonstrates that including additional verification functionality to
the consensus layer opens the door for hiding contract activity in state channels.

8 Security

This section provides an overview of layer-two security concepts.
The consensus [1,124] and network [125] security of blockchains has been ex-

tensively investigated. Security is fundamental to distributed ledgers, as the shift
of trust assumptions from a single custodian to a decentralized non-custodial
network only prevents the loss of funds if the system’s security properties are
sound. Layer-two research benefits from this body of literature, but necessitates
the introduction of new requirements, trust assumptions and adversarial models.

8.1 Layer-Two Security Notions

While experimental studies so far focus on the connectivity of PCNs [126], for-
mal security studies focus on the notion of balance security, both in the payment
hub [39,41] and multi-hop payment [78] settings, as well as provably secure off-
chain protocols for multi-party computation [127]. Balance security intuitively
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defines that layer-two protocols must achieve two properties: (i) the adversary
cannot extract more funds than previously allocated in the channel’s funding;
(ii) honest users do not lose funds even when other parties collude. As with pri-
vacy, this security concept has been formalized in both paradigms: cryptographic
games and the UC framework. BOLT, A2L and TumbleBit are the payment hub
systems with formal security guarantees, while Rayo & Fulgor, AMHL and Pe-
run provide formal security guarantees in the multi-hop setting. While previous
work assumes a somewhat ideal model for the underlying blockchain to high-
light the security and privacy properties at layer-two, recent work [128] shows
a security analysis of the Lighting Network, tracing how its security proper-
ties build upon a blockchain model that faithfully represents Bitcoin at present.
However, the work [128] does not model aspects such as fees, privacy, or coop-
erative channel closure. NOCUST provides a thorough study of balance security
for commit-chains.

Consistency Proofs. Many layer-two protocols rely on challenge-response pro-
tocols to detect and prove misbehavior using the blockchain as a recourse for
disputes. An alternative strategy to enforce consistency of an off-chain protocol
is to let the blockchain verify a succinct proof attesting to consistency of the sec-
ond layer’s state. While ZKPs [129] suffer from expensive on-chain verification
costs (approximately 650k gas on Ethereum) per proof [130], they can attest
to potentially large state transitions which otherwise would require significant
on-chain resources. For commit-chains, zkSNARKS were shown to enforce con-
sistent checkpoints [26], leaving data availability of the external ledger as the
remaining challenge vector.

8.2 Layer-Two Security Threats

There are security threats idiosyncratic to layer-two, detailed in Appendix E, as
follows.

Hot Wallets: Channels’ requirement of unanimous agreement for state up-
dates, and therefore that all involved parties need to be online with access
to their signing keys, makes it critical to keep keys online in a hot wallet.
These wallets make parties prime targets for adversaries.

Online Assumption: Parties are required to remain online and fully synchro-
nized with the PCN and blockchain. Therefore if a party goes offline, they
become vulnerable to an adversary.

Blockchain Reliability and Mass Exits: Layer-two designs assume that the
underlying blockchain accepts transactions eventually; however, under con-
gestion, parties may fail to meet deadlines to settle disputes.

Security of Synchronizing Protocols: such as the wormhole attack [79], where
transaction fees can be stolen, and the American Call Option Attack [131],
where an adversary sets up a multi-hop payment but does not release the
trigger to finalize the payment.
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8.3 Summary

The security guarantees of layer-two transactions rely not only on the parent
chain’s consensus guarantees and on-chain security collateral data availability
concerns and blockchain congestion threats introduce a new dimension of game-
theoretic challenges that are not considered by current formal definitions. For
instance, current UC definitions consider the blockchain as ideal components,
which disregards the mass-exit concern.

9 Conclusion

This SoK systematizes the rich literature that has emerged on layer-two transac-
tions since the inception of cryptocurrencies in 2009, categorizing the work into
three main approaches: payment and state channels, commit-chains and proto-
cols for refereed delegation. In addition to presenting the central aspect of the
protocols in these three categories, we review in detail their anonymity, privacy
and security aspects. Our over-arching aim in this paper is to lower the barrier
to entry to the study of layer-two protocols.

We observe, overall, that layer-two protocols enable blockchains to scale with-
out modification on the base layer but that the performance improvement results
in different security guarantees for off-chain payments than on-chain transac-
tions. We also observe a likely inherent trade-off between collateral and transac-
tion finality at layer-two. In the context of channel constructions, instant finality
requires full collateralization. For commit-chains, the requirements for full on-
chain collateralization is reduced but in exchange for eventual finality. Notably,
commit-chains enable secure off-chain transactions without collateralizing the
full off-chain transaction volume. We present a series of open challenges for
layer-two blockchain protocols in Appendix F.

Both payment channels and commit-chains face privacy challenges. Our dis-
cussion highlights clearly that not publishing transactions on a public blockchain
is not sufficient for solving the privacy issues experienced in blockchain systems.
Privacy in off-chain transactions requires common definitions and new protocols.

We explicitly lay out the shift in transaction costs from transaction size
(in bytes) to transaction value. It stands to reason that such a shift entails
economic consequences. In particular, the relation between on-chain and off-
chain fees raises interesting game-theoretical questions for a rational actor aiming
to minimize the fees they pay or maximize the fees they gain.
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Appendix A Channels

A.1 Payment Channels

Here we present in detail the evolution of payment channel designs.

Replace by Incentive Spilman [132] presented the first major step towards
secure (unidirectional) payment channels based on the RbI mechanism, imple-
mented in Bitcoinj [22,23]. This channel allows a sender to issue payments to a
recipient, but the recipient cannot send the funds back through the same chan-
nel. To create a channel, the sender locks a deposit on-chain. The deposit can be
refunded (i.e. the channel closed) if one of the following two conditions are met:
(i) the sender retrieves their deposit after time t or (ii) both the sender and
receiver authorize the release of the deposit. The channel state is represented
as the balance of funds of both parties within the channel. To issue a payment,
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the sender signs a new state that monotonically decrements the sender’s balance
and monotonically increments the receiver’s balance. The signature and the new
state are sent to the receiver who can either (i) immediately sign and publish
on-chain the new state to claim the payment, or (ii) wait for a new state from
the sender that pays more coins. For the recipient, it is safe to wait for new states
from the sender, because the on-chain deposit cannot be refunded to the sender
until time t is reached15. The sender can continuously send new payments to
the receiver until either the sender’s balance is depleted or the receiver decides
to close the channel before time t. When closing the channel, a rational receiver
publishes the latest received state to settle with the highest amount of coins.
To our knowledge, unidirectional payment channels are the only type of channel
that allow the sender to remain safely offline, without the risk of losing funds.
The throughput (number of transactions) of a unidirectional payment channel
is limited by the size of the sender’s deposit and the smallest denomination of
the cryptocurrency asset. A deposit of e.g. 1 coin allows at most 108 transfers
assuming a minimum denomination of 10−8.

A pair of RbI channels can be combined to support bidirectional payments [27].
Unlike single RbI channels, the sender increments coins owed to the receiver and
the value can go beyond the sender’s deposit. When the channel is closed, the
smart contract computes the offset of the coins owed in both RbI channels before
sending each party their final balance.

Replace by Time Lock In a UTXO-based blockchain, RbT allows the con-
struction of bidirectional payment channels. Each state update is associated with
a time lock, which prevents the transaction’s acceptance into the blockchain, un-
til some predefined time in the future. When the payment direction within the
channel changes, the time lock associated to the new state update is decremented
by an amount ∆, the safety time gap (cf. Figure 4). While RbT enables rapid
micro-payments, this mechanism suffers from notable limitations. The party re-
ceiving the final state update must be online at precisely time t to claim and
publish the latest payment on the blockchain. If the latest state does not get
accepted within ∆ time (i.e. due to blockchain congestion), the counterparty has
an opportunity to broadcast an older state update, attempting to reverse the
final payment. The choice of ∆ and the number of payment direction changes
limit the channel’s transaction throughput ceiling.

To alleviate these concerns, Decker and Wattenhofer [24] propose Invalida-
tion Trees combining RbI and RbT , known as Duplex Micropayment Channels
(DMC). Bidirectional payments (or duplex payments) are processed via a pair
of RbI payment channels. When one channel exhausts its supply of coins, the
channels can be reset by destroying the current state and re-creating a suitable
state update for the pair of one-way payment channels in an off-chain manner
via an invalidation tree. Each node in the tree has a time lock, and the branch
with the lowest time lock is first accepted into the blockchain before the other
branches. An alternative version of DMC [37] proposes to remove the channel’s

15 Note that the blockchain acts as coarse time-stamping service.
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fixed expiry time and support n parties. There exists an inherent trade-off be-
tween the number of channel resets and the branch nodes required to broadcast
in the event of a dispute. The worst-case dispute requires the entire branch to
be published with n + 2 states, given n nodes in the invalidation tree and two
RbI channels. Parties must be online during the safety time gap to ensure the
latest branch is written to the blockchain.

Fig. 4. Time lock-based payment
channels in an UTXO model. Low-
est time lock transactions are in-
cluded on-chain first.

Replace by Revocation Poon and Dryja
propose Lightning channels to overcome
the previous state replacement channel
throughput limitations and to remove expiry
times [25, 133] (cf. Figure 5). We refer to
Lightning channels as RbR, because both par-
ties agree on the channel’s new state be-
fore revoking the old state. To revoke, both
parties exchange revocation secrets (i.e. a
preimage of a hash) and retain those during
the channel’s lifetime. A penalty mechanism
discourages parties from broadcasting older
states. If one party broadcasts a revoked state,
the blockchain accepts within a time-window
proofs of maleficence from the other party. A

successful dispute grants the winning party all coins of the channel. RbR is the
first channel design to require both parties to remain online and fully synchro-
nized with the blockchain to observe malicious closure attempts. Unfortunately,
RbR introduces unfavorable implications for third-party watching services (cf.
Section 8). With N being the number of channel updates, RbR entails O(N)
storage as the watching service must store evidence for every in-channel update
to prove an authorized state as revoked.

Replace by Version (UTXO-blockchains) Decker et al. propose Eltoo [134]
to support RbV for UTXO-based blockchains through the use of floating trans-
actions, i.e. transactions attachable to an output of any preceding transaction.
With the possibility of linking established updates, the Eltoo technique utilizes
state numbers to impose time ordering on the updates and supports the storing
of temporary state. As with Lightning channels, there is no expiry time and no
limitation on the channel’s throughput. Its closure dispute process is similar to
that of state channels (cf. next Section) and there is no penalty for publishing
replaced states. Watching services can verify a newly received state with O(1)
storage costs, requiring only the state with the largest state number.

A.2 State Channels

State channels extend the payment channel concept towards the execution of
arbitrary applications (e.g. [135]) and typically involve two smart contracts: one
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Fig. 5. Payment channel construction based on a punishment scheme [25]. If a malicious
channel party (1) attempts to close the channel with an outdated state, the other
channel party can (2) dispute the closure, and (3) reject the fraudulent closure. The
honest party (4) receives the total channel balance.

for the state channel itself and one for the to be executed application. Known
state channels rely upon RbV as the state replacement technique and thus entail
O(1) storage requirements for watching services. To the best of our knowledge,
only Sprites [28] and Perun [29, 82] offer formal security proofs. We distinguish
between closure disputes and command disputes.

Closure Disputes In a closure dispute, one party triggers a dispute to close
the channel and to continue the application’s execution exclusively on layer-one.
Perun proposes two-party state channels that support installing/uninstalling ap-
plication smart contracts off-chain [29]. Its dispute process focuses on a single
application and enforces a fixed time window for involved parties to submit
collectively authorized states for the application with the largest version (i.e.
RbV). After the time window, any party can resolve the dispute. This re-deploys
and continues the application’s smart contract with its current state on the
blockchain [29]. To install an application, both parties collectively sign the ap-
plication’s new state, the number of coins allocated to it, and its initial version.
To uninstall the application, both parties authorize a state that terminates it
and de-allocates the coins. The coins are only unlocked based on the outcome
of the conditional application smart contract. Kitsune [136] relies on the same
closure dispute process but is designed to support n parties and relies on an
existing smart contract on the blockchain.
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Command Disputes A command dispute aims to execute a specific com-
mand on the parent-chain, and then resume execution off-chain. The channel
thus does not close and can continue its off-chain execution after the command
executes [28]. The blockchain grants a pre-determined time window to collect
commands from each party and all commands execute after the dispute process
expires. After the dispute, the state version increments, and the new state tran-
sition is considered the newest channel state. Note that a state with a newer
RbV version can cancel the dispute process.

PISA [68] reduces Sprite’s [28] dispute costs by allowing parties to submit
a hash of the state. Arbitrum [44] removes the overhead for an honest party to
send the full state to the blockchain, instead the honest party can assert the hash
of a new state alongside the command and its input. Counterfactual’s [76] (and
others [137]) command dispute process allows the execution of multiple com-
mands by extending the dispute process expiry time depending on the number
of commands [76]. While Counterfactual allows parties to install and uninstall
multiple applications off the chain, it is restricted to two parties and turn-based
applications.

Appendix B Channel synchronization

Hashed Time-Locked Contracts (HTLCs). HTLC [24, 138, 139] enable cross-
channel synchronization by allowing A to lock x coins from A and B’s channel
that are only redeemable if the contract’s conditions are fulfilled. The conditions
of the contract HTLC(A, B, y, x, t) rely on a collision-resistant hash function
H, a hash value y = H(S), where S is chosen uniformly at random, the amount
of coins x and a timeout t. If B produces a value S such that H(S) = y before
timeout t expires, B gets the locked x coins. Otherwise, if timeout t expires, the
locked x coins go back to A. Let’s assume that A wants to send a payment to C
using B as intermediary and there exist channels between A, B and B, C. The
receiver C generates a secret S and provides the initial sender, A, with the hash
of the secret H(S). A can then establish a HTLC with B, the next hop, which B
may spend under the condition that he can provide A with the preimage of H(S)
before a set expiry date, generally expressed in number of blocks. Should B fail
to provide the requested input in time, A is able to commit a refund transaction
on-chain. B then constructs a similar HTLC with C with two main differences:
(i) the lock period of the HTLC output is reduced, thereby ensuring that B has
enough time to claim the funds from the previous hop; and (ii) the amount of
coins locked in this HTLC is reduced. The difference in locked coins corresponds
to the service fee charged by B for the forwarding of the payment. As C is the
final receiver, C can safely reveal S to B, who then has a sufficient period of time
to reveal a pre-image. HTLCs can be used for paths of an arbitrary number of
channels and are integrated in Lightning [25] and DMCs [24].

A key concern for HTLCs is whether sufficient collateral is available when
setting up a path. Every hop along the path includes an additional time-delay
to ensure the hop can always retrieve their coins from the previous hop after

33



sending their coins to the next hop. The longer the payment path, the more
collateral must be reserved. In the worst-case, the collateral cost is θ(l2X∆),
where l is the number of channels, X is the payment amount and ∆ is the time
that an on-chain transaction takes longer than an off-chain exchange.

Global Preimage Manager. Miller et al. [28] introduce a PreimageManager smart
contract that allows a single dispute to atomically finalize the synchronized
transfer for all hops along the path. This reduces the collateral lock up time
for synchronizing a payment across l channels to θ(lX∆). The smart contract
accepts the preimage of a hash and stores it alongside a timestamp. All parties
along the path introduce a new conditional transfer that asserts the transfer is
only considered complete if the preimage x of hash h = H(x) was published in the
PreimageManager before time t. A single dispute at any position along the path
can use the published value x before time t to reach an agreement about the new
state. In contrast to HTLCs, all channels along the payment route can re-use the
same condition for their transfer without waiting for each other. Sprites converts
disputes as local events in each channel to a single global event, guaranteeing
that all channels share the same worst-case expiry time.

Scriptless Multi-Hop Locks. HTLC-based synchronization protocols are limited
to connect channel constructions with the same hash function (e.g. SHA256).
HTLCs also suffer from the severe wormhole attack, which prevents users from
successfully executing the synchronization protocol and allows an adversary to
steal the synchronization reward [79].

A Multi-Hop Lock (MHL) [79] is an alternative synchronization mechanism
that enables cross-channel synchronization. Like a HTLC, a MHL allows A to
lock x coins in A and B’s channel that can only be released if a set of conditions
are fulfilled. The crux of MHL is that the cryptographic hardness condition is
no longer encoded in the underlying blockchain’s scripting language (and thus
it is called scriptless in the blockchain folklore). The scriptless locks stem from
Poelstra [140] who provided a way to embed certain contracts into Schnorr sig-
natures. Malavolta et al. [79] formalized this construction, proposed alternative
constructions relying on ECDSA signatures and one-way homomorphic functions
and enabled the combination of locks with different signatures in one payment
path. This approach enables interoperable [141] locks across all blockchains that
support a digital signature scheme such as ECDSA or Schnorr to authorize trans-
actions. Moreover, this approach provides provable security, privacy guarantees
and solves the wormhole attack (cf. Section 8). The conditions of MHL(A, B, x,
m, pk, t) depend on a message m, a public key pk of a given signature scheme
and a timeout t. If B produces a valid signature σ of m under pk before time-
out t expires, B receives the locked x coins. Otherwise, if timeout t expires, the
locked x coins are returned to A. Recent work [142] shows how to build the MHL
contract leveraging linkable ring signatures, the digital signature scheme used in
the Monero cryptocurrency.
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Appendix C Routing Algorithms

In the following, we describe each algorithm in detail and focus on the aspects
of effectiveness, efficiency, and scalability. As outlined in Appendix G Table A2,
only one algorithm class explicitly considers cost-effectiveness. While others like
SpeedyMurmurs [31] implicitly achieve low fees by selecting short paths if fees
are homogeneous, the algorithm design and evaluation do not include this aspect.
Similarly, only SilentWhispers [30] and SpeedyMurmurs [31] introduce concrete
notions of privacy (cf. Section 7). Some algorithms involve the use of onion
routing [27, 32, 34], which requires the random selection of nodes in a path to
achieve its anonymity guarantees [143]. As routing algorithms do not select nodes
randomly, it remains unclear if onion routing provides privacy in the context of
payment channels (cf. Section 7 for our privacy observations).

Global View. Lightning [25] and Raiden [27] use Source Routing [33], in which
the source of a payment specifies the complete route for the payment. If the
global view of all nodes is accurate, source routing is highly effective because it
finds all paths between pairs of nodes. However, by default source routing does
not consider channel balances, and routing decisions might contain channels with
low balances or implicitly turn bidirectional channels into unidirectional ones,
reducing the available routes over time in a dynamic PCN.

SpiderNetwork [32] improves the effectiveness of source routing in a dynamic
PCN by introducing three key modifications: i) the choice of the routes includes
a bias towards routes that optimize the balance, ii) routing includes on-chain
rebalancing, meaning that nodes deposit additional coins to improve the balance,
and iii) routing relies on a packet-switched network, i.e. instead of routing a
complete payment, the algorithm splits the payment into constant-size units
and routes each of them individually. SpiderNetwork is therefore highly effective
even when balances are constantly changing, at the cost of higher latencies if
on-chain rebalancing is used.

Similarly, Di Stasi et al. [86] model multi-path source routing as an optimiza-
tion problem but focus on minimizing fees. Furthermore, they define fee policies
that improve the balance. Their simulations based on a network of only 200 nodes
indicate that their algorithm provides lower fees and a better balance than Light-
ning’s source routing. However, the authors do not consider any metrics apart
from fees and balance. We do not include the paper in Appendix G Table A2
as i) the evaluation lacks the necessary information and ii) being a source rout-
ing algorithm, the approach shares the properties of Lightning’s algorithm but
achieves higher effectiveness. By pre-computing paths locally, algorithms based
on a global view exhibit low latencies and communication overheads. However,
the local memory costs of storing the ever-complete snapshot and computation
costs for finding paths (and solving an optimization problem cf. SpiderNetwork)
are high. The same holds for the overhead resulting from opening or closing a
channel on-chain, and these overheads increase super-linearly in the number of
nodes and limit scalability.
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Local View. Algorithms based on local information use well studied concepts: (i)
distributed hash tables (DHTs) [144], (ii) flow algorithms [145], (iii) (ad-hoc on-
demand) distance vector routing, (iv) landmark routing [146] and (v) network
embeddings [147].

Flare [35] leverages the Kademlia DHT [144]. Kademlia in its original form
opens new channels between strategically chosen nodes, which is expensive in
terms of latency and on-chain fees. Flare, therefore, uses a modified Kademlia
version that replaces direct channels with multi-hop paths, which does not re-
quire opening new channels. This modification results in longer routes, higher la-
tencies and communication overheads compared to traditional DHTs. The likely
most significant limitation of Flare is its inability to support topology changes.
We did not include Flare in Appendix G Table A2 as the algorithm lacks the
ability to consider dynamics adequately and hence does not constitute a full
solution.

There are two algorithms based on flow algorithms: Celer [148] and Flash [149].
Flash differentiates payments based on the payment value. If a payment has a
high transaction value, Flash uses a modification of the EdmondsKarp algo-
rithm for computing an approximation of the maximal flow that finds at most k
paths for a constant k. The modification decreases the communication complex-
ity from |V | |E | to k |E | for a channel network of |V | nodes and |E | channels. As
the algorithm executes k distributed breath-first searches, it has a high latency.
Otherwise, if a payment has a low transaction value, Flash routes the payment
based on local routing table and hence avoids an expensive flow algorithm. Nev-
ertheless, assuming that the fraction of payments with large transaction values
is constant, the algorithm scales linearly in the number of channels rather than
logarithmically like other algorithms.

Celer’s routing relies on a flow algorithm, cRoute. An optimization problem
is formulated based on local congestion with solutions guided by the conges-
tion gradients. The algorithm is effective and keeps channels balanced. As the
evaluation of cRoute only considers 77 nodes [148], we cannot make conclusive
statements about its scalability, related work indicates problems with efficiency
and scalability [31,145].

In a distance vector routing protocol, each node maintains a routing table
to all other nodes, meaning that any update requires changes to all routing
tables. Ad-hoc on-demand distance vector (AODV) routing reduces this cost by
only filling routing tables when searching for a route. Hoenisch and Weber [150]
explore ad-hoc on-demand distance vector routing for payment networks but
limit their evaluation to the random graphs of maximally 5,000 nodes. The
results indicate a high effectiveness both in regard to successful path discovery
and cost. However, even for those comparable small graphs, the communication
overhead is high, so that scalability is unlikely. We did not include AODV in the
table as there is no evaluation in comparison to alternative algorithms available
and it is hence unclear how to judge the reported performance.

SilentWhispers [30] implements landmark routing, where landmarks are ded-
icated nodes. Each node keeps track of the neighbor to contact to reach all land-
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marks. A payment between two nodes first traverses the path from the sender to
the landmark and then from the landmark to the receiver. Using multiple land-
marks in combination with multi-party computation enables payments to be split
over multiple paths in a privacy-preserving manner. Each node periodically re-
computes how to reach the landmarks to account for topology changes. However,
as recomputation is not necessary for every topology change, the costs of updates
are lower than source routing. The evaluation of SilentWhispers on a real-world
dataset reveals low effectiveness and moderate latencies in comparison to other
algorithms [31]. Multi-party computation, required for each transaction, involves
computation costs and results in low scalability when increasing the number of
transactions.

Aiming to overcome the drawbacks of SilentWhispers, SpeedyMurmurs [31]
uses embedding-based routing and a protocol for handling topology updates lo-
cally. Nodes express their position in a rooted spanning tree through coordinates
and locally choose the next node in a payment path by considering all adjacent
channels with sufficient balance. Among these channels, nodes then select the
channel to the node with the coordinate closest to the recipient’s coordinate.
While the coordinate assignment results from the underlying spanning tree, the
path can contain channels that are not part of the spanning tree. In this manner,
SpeedyMurmurs exhibits high effectiveness and low latencies for a static PCN.
As SpeedyMurmurs blocks funds while conducting payments, high transaction
frequencies might be affected due to locked funds. If a channel opens or closes,
only descendants in the underlying spanning tree have to adjust their coordi-
nates, which typically results in an overhead that is logarithmic in the network
size [151]. However, SpeedyMurmurs does not consider balances, which results
in low effectiveness due to insufficient balances in a dynamic PCN [32,148].

Deadlocks. Deadlocks may arise on concurrent payments that proactively block
deposits on channels [152]. For instance, assume that A and B conduct con-
current payments and both choose paths that contain the channels c1 and c2.
Furthermore, c1 and c2 have sufficient collateral to complete either but not both
payments. Now, if A’s payment blocks funds of c1 before B’s payment does and
B’s blocks funds of c2 first, both payments fail. In the context of source rout-
ing, a suggested solution [152] is to design a global partial order < on the set
of channels, while it is unclear how to adapt the proposal to routing protocols
relying on a local view.

Multi-path Routing. Networks typically spawn multiple paths from a node A to
a node B that routing may find. Existing algorithms fall under the following
categories: (i) single-path routing algorithm [25] where the success of a pay-
ment is subject to the credit available on a single path, (ii) multi-path rout-
ing that explicitly split the payment amount into multiple smaller concurrent
transfers [30,31,153]) thereby reducing the capacity required on each path; and
(iii) packet-switched routing that routes each unit of payment individually and
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incrementally transfers the funds (i.e., an approach known as streaming micro-
payments) [32,154]16.

A partial evaluation indicates that packet-switched networks provide the
best performance with regard to effectiveness [155]. The evaluation is limited
to source routing and does not evaluate packet-switching for alternative routing
algorithms. These results indicate that packet-switched routing algorithms is a
promising direction of future research.

To our knowledge, no routing algorithm fulfills all desired criteria. Algorithms
requiring a global view have inherent scalability issues. Algorithms based on a
local view are scalable but are bound to provide lower effectiveness and efficiency.
While the existing algorithms exhibit low performance or lack in-depth evalua-
tions, they represent the first application of key routing concepts to payment and
state channels. In particular, there is no inherent reason why coordinate-based
routing algorithms cannot achieve high effectiveness in dynamic PCN settings.
Future research accounting for channel balances may have the potential to over-
come such issues. Rebalancing algorithms that transfer funds along circular paths
are also an approach worth further investigation [36].

Appendix D Commit-chains

D.1 NOCUST

NOCUST [26] is an account-based commit-chain where an on-chain address is
associated to a commit-chain account. The NOCUST on-chain contract expects
to periodically receive a constant-sized commitment to the state of the commit-
chain ledger from the operator, containing each user’s account in the collateral
pool. The commitment to this (potentially) large state is constructed such that
it is efficient to prove and verify in the smart contract that a user’s commit-chain
account was updated correctly by the operator, such that transfers, withdrawals
and deposits can be securely enacted. Users can deposit any amount of coins
within the contract, and perform commit-chain payments of any denomination
towards other users. TEX extends NOCUST to support atomic commit-chain
swaps [156].

Efficient lightweight clients in NOCUST only need to verify their respective
account balance. NOCUST proposes free establishment, wherein a user can join
the commit-chain without on-chain transaction and immediately receive commit-
chain transactions. Regarding agreed transition, a transaction within NOCUST
is enacted with the signature of the sender and the operator to deter poten-
tial double-spend scenarios. NOCUST provides balance security towards honest
users, even if the operator and all other commit-chain users collude. A transac-
tion is considered final when the sender and operator agree to the payment, and
the payment is committed within the periodic on-chain checkpoint. NOCUST

16 Interledger [154] is not strictly a layer-two protocol, since as a protocol it is not
necessarily tethered to a layer-one blockchain, instead seeking to operate on top of
’ledgers’ construed more broadly, to include traditional custodial bank ledgers.
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only offers state progression if the operator stakes collateral towards the recipi-
ent. To this end, NOCUST specifies a mechanism to allocate collateral towards
all commit-chain users within a constant-sized on-chain commitment, enabling
instant transaction finality for the specified amounts. The allocated collateral
is re-usable after each checkpoint. The transaction throughput is only limited
by the operator’s bandwidth and computational throughput, and independent
of the checkpoint commitment interval. While NOCUST users are not required
to be constantly online, they are expected to monitor the blockchain at regular
time intervals to observe the checkpoint commitments for commitment integrity.
Each user is only required to verify their respective balance proof by requesting
data directly from the operator and comparing it to the locally stored state. In
the case of any misbehavior, a user can always issue a challenge using the NO-
CUST smart contract to force the operator to promptly answer this challenge
with valid information. If the operator responds to the challenge with invalid
information (or does not respond), users have an accountable and public proof
of misbehavior on-chain. To strengthen the operator’s integrity, NOCUST sup-
ports a provably consistent mode of operation through the use of zkSNARKS.
As such, the underlying smart contract validates layer-two state transitions and
the operator is not able to commit to invalid state transitions, without being
halted by the smart contract.

D.2 Plasma

Plasma [38] is a high-level specification of a UTXO-based commit-chain. Fol-
lowing the initial proposal, a variety of alternatives are informally discussed [67,
157–160]. We only discuss Plasma Cash [87] as it is the most comprehensive
working draft. In this system, all coins are represented as serial numbers and
every transfer allocates a new owner for the respective coin. A coin is minted
with an on-chain deposit and cannot be merged or splitted with another coin on
the commit-chain. This limitation reduces the practical applicability as a pay-
ment system (but is helpful for non-fungible tokens) and several coins may be
required to facilitate a single transfer. Plasma Cash therefore resembles classical
e-cash protocols [161–163] with fixed coin denomination.

In terms of agreed transition, a transfer is incomplete until the recipient has
verified the entire coin transaction history (which needs to be transmitted off-
chain), the transaction is included in a hash commitment in the parent-chain and
the hash commitment’s pre-image is shared with the user. Plasma Cash supports
free establishment as coins can simply be assigned a new owner. While there is no
mechanism to challenge the integrity of a hash commitment by the operator to
achieve commitment integrity, all users can detect invalid commitments and it is
expected that they eventually withdraw their coins from the commit-chain. If an
operator commits to an invalid coin transfer and tries to withdraw it, the coin’s
owner can also issue a withdrawal for the same serial number based on a previous
hash commitment. If the operator cannot prove to the parent-chain that the coin
was spent, then their invalid transfer withdrawal is cancelled, and the rightful
owner receives the coins. In addition, if a party tries to withdraw an already
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spent coin, then the coin’s current owner can prove to the blockchain that it was
already spent. Thus, it appears that Plasma Cash achieves balance security as
an honest party can always withdraw their coins from the commit-chain, even
if an invalid commitment is posted. In addition, the owner must keep the entire
transaction history for each coin and confirm all transactions are confirmed in
the commit-chain. Finally, each commitment can only include a single transfer
per coin as the operator is not trusted to prevent double-spends and thus the
transaction throughput relies on the on-chain commitment frequency. A Plasma
Cash transaction can be sent to any (parent-chain) address, without particular
registration requirements. If the recipient has not yet installed a compatible
plasma wallet, the sender is assumed to notify the recipient to watch out for
their commit-chain funds. Note that a transfer is not considered confirmed or
secure until the recipient has verified the coin’s entire transaction history within
the commit-chain. Plasma Cash does not specify a method to provide state
progression.

Appendix E Security Threats

Hot Wallets. Channels require unanimous agreement for state updates and thus
need all involved parties to be online with access to their signing keys. Keeping
keys online in a hot wallet, i.e. a list of private signing keys, is critical — parties
become prime targets for adversaries. This may potentially limit the capacity
of PCN as channel operators must exercise caution about the number of coins
they are willing to risk. While parties in commit-chains face similar challenges,
the commit-chain operator is not required to stake assets to facilitate payments
(when providing delayed transaction finality) — and receivers in e.g. NOCUST
can moreover remain offline at the time of payment.

Online Assumption. One concern for layer-two protocols is the assumption that
parties remain online and fully synchronized with the PCN and blockchain. With
the exception of RbI and RbT , channel designs require parties to watch for malice
closures with outdated states. For commit-chains, users are required to either
surface online in periodic intervals (i.e. each eon in NOCUST) or to watch the
blockchain continuously for malicious exits [67]. If parties fail to monitor the
layer-two protocol, the commit-chain operator can perform execution forks [68]
to steal the offline user’s assets. Watching services alleviate the online assumption
(cf. Section 3.3).

Blockchain Reliability and Mass Exits. Layer-two designs assume that the un-
derlying blockchain accepts transactions eventually. Miners include transactions
based on fees and under network congestion, transaction fees can grow from
several cents to $50 [164]. Under congestion, parties may fail to meet deadlines
to settle disputes and for PCN/PCH this might result in unfairly closed chan-
nel states. Under a mass exit (e.g. when many users close channels), blockchain
users might enter in a bidding-war for their on-chain exit transactions to confirm.
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Commit-chain operators are single points of availability failure and require, if
halted, all users to withdraw their assets. Contrary to PCN, commit-chains do
not require a deadline for users to withdraw their coins, mitigating the transac-
tion fee bidding war. A NOCUST operator is forced by the smart contract to
halt given one successful dispute by a user, allowing all users to exit fairly. A
Plasma Cash operator is not halted, even if operator’s misbehavior is provably
reported.

Security of Synchronizing Protocols. One concern with HTLCs-based protocols
is the wormhole attack [79] that allows an adversary situated in a multi-hop
payment path to steal transaction fees by excluding the honest users from the
successful completion of a payment. The adversary thereby forces the honest
user to lock coins during the payment commit and bypasses the user during
the release phase of a payment. The Lightning Network is currently vulnerable
and the AMHL protocol is being considered to mitigate this issue [165]. Recent
work [80] shows how to achieve the atomicity property for a PCH [81] and for
Bitcoin-compatible PCNs while reducing the collateral required in multi-hop
payments.

Another concern with synchronizing payments, the American Call Option
attack, is that an adversary can set up a multi-hop payment and not release
the trigger to finalize the payment. As a result, the coins are locked up until
the transfer’s expiry time and the adversary can perform this lock-up for free as
all coins are refunded. Thus there is a loss of opportunity cost as the coins are
locked up.
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Appendix F Open Challenges

In light of our holistic overview of the current layer-two literature, we identify
the following avenues of future research as open challenges.

Layer-Two Cost Quantification: A comprehensive study of the real economic
costs of layer-two transactions, ideally comparing different channel, synchro-
nization and commit-chain proposals. Only if the layer-two transaction fees
and security concerns are inferior to the offered on-chain, then it is rational
to perform layer-two transactions.

Layer-One Congestion: Existing work mostly ignores the threat of blockchain
congestion. One future avenue would be to design congestion-aware [136]
layer-two protocols.

Cross Commit-Chain Payments and Routing: We are not aware of work
covering atomic payments across a more decentralized network of commit-
chains.

Private Commit-Chain: Contrary to selected payment channel hubs [39,41],
existing commit-chains do not provide any privacy guarantees from the
commit-chain operator.

Quantification of Layer-Two Decentralization: While related work discusses
layer-one decentralization [166, 167], no work has yet covered layer-two de-
centralization.

Channel Factories on Commit-Chains: Commit-chains might enable to spawn
payment channels among their users (similar to the idea of virtual channels)
potentially foregoing costly channel initialization costs.

Compression-Chains: Compression-chain techniques such as Roll-up [168]
aim to reduce on-chain transaction footprint. A transaction only requires
9 bytes on-chain, while a ZKP certifies the validity of signatures. While
they might not be considered layer-two protocols and may not scale to the
same extent, they solve data-availability concerns and strengthen the security
properties. A thorough analysis of compression-chains is missing.

Formal Security/Privacy: A systematic method to develop security and pri-
vacy notions for layer-two protocols, faithfully including their interaction
with layer-one, constitutes an interesting direction for future research.

Transaction Fees: There is no existing study on how rational intermediaries
in channel networks would choose transaction fees and how these off-chain
transaction fees interplay with on-chain fees.

Routing Algorithm Design: At the moment, no routing algorithm fulfills all
requirements of interest. Future research may either develop such an algo-
rithm or show the impossibility of achieving all requirements concurrently.
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Appendix G Tables

Table A1. Overview of different channel design proposals.

Channel Throughput Dispute Watchtower Security
technique bottleneck mechanism storage proofs

RbI

Spilman [22,132] Payment Sender deposit Closure O(1) 5

Raiden [27] Payment Network Closure O(1) 5

RbI & RbT

DMC [24] Payment Channel resets Closure O(1) 5

RbR

Lightning [25] Payment Network Closure O(N) 5

RbV

Eltoo [134] Payment Network Closure O(1) 3

Sprites [28] State Network Command O(1) 3

PISA Sprites [68] State Network Command O(1) 5

Perun [29] State Network Closure O(1) 3

Counterfactual [76] State Network Command O(1) 5

Kitsune [136] State Network Closure O(1) 5
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Table A2. Routing Algorithms for Multi-Hop Payments.

Global View Local View

Lightning [25]/Raiden [27] SpiderNetwork [32] Flash [149] cRoute [148] SilentWhispers [30] SpeedyMurmurs [31]

Effectiveness Snapshot High High High High Medium High
Dynamic Medium High High High Low Low

Efficiency Latency Low Low/High1 Low/High2 High High Low
Communication Low Low/High1 Low/High2 High High Low

Computation High High Low Low High Low
Update High High Low Low High Low

Scalability Nodes Low Low Low ?4 High High
Transactions High High Low High Low Low

Cost-Effectiveness Considered X 5 X 5 5 5

Privacy Guarantees 5 5 5 5 X X

1 High for on-chain re-balancing, otherwise low. 2 High for high-value transactions,
otherwise low. 3 No evaluation, only tested for 77 nodes.

Table A3. Commit-chain properties and operational costs. Plasma data from discus-
sions with Konstantopoulos [87].

General properties Plasma Cash [87] NOCUST [26]

Security proofs 5 X
Offline transaction reception X X
Fungible payments 5 X
Clients can remain offline 5 5(online each eon)
Instant transaction finality 5 X(with collateral)
Token support X X
Non-Fungible tokens X 5

Provably Consistent State (ZKP) 5 X
Commit-Chain Swaps 5 X [156]

Costs

Parent-chain commit Low Low
Deposit (parent → commit-chain) Low Low
Withdraw (commit → parent-chain) Low Low
Dispute initiation Low Low
Dispute answer Low Low
User storage High Low
User verification High Low
User bandwidth Low Low
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