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Abstract. We propose a generic construction that adds linkability to
any ring signature scheme with one-time signature scheme. Our con-
struction has both theoretical and practical interest. In theory, the con-
struction gives a formal and cleaner description for constructing linkable
ring signature from ring signature directly. In practice, the transforma-
tion incurs a tiny overhead in size and running time. By instantiating
our construction using the ring signature scheme [13] and the one-time
signature scheme [12], we obtain a lattice-based linkable ring signature
scheme whose signature size is logarithmic in the number of ring mem-
bers. This scheme is practical, especially the signature size is very short:
for 230 ring members and 100 bit security, our signature size is only 4
MB.
In addition, when proving the linkability we develop a new proof tech-
nique in the random oracle model, which might be of independent inter-
est.

Keywords: ring signature, linkable ring signature, generic construction,
lattice-based

1 Introduction

Ring signature (RS) was first proposed by Rivest et al. [22], which allows a
signer to sign a message on behalf of a self-formed group. RS provides not only
unforgeability but also anonymity. Unforgeability requires an adversary cannot
forge a signature on behalf of a ring which he does not know any secret key of
ring members. Anonymity requires signatures do not leak any information about
the identity of the signer, which can be categorized into two types: anonymity
against probabilistic polynomial adversary and anonymity against unbounded
adversary.
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As an extension of RS, Liu et al. [18] first proposed the concept of linkable
ring signature (LRS). LRS requires three properties: anonymity, linkability and
nonslanderability. Anonymity is the same as that of RS. Linkability requires
that if a signer signs twice, then a public procedure can link the two signatures
to the same signer. Nonslanderability requires a user should not be entrapped
that he has signed twice. Due to the security of LRS, it is widely used in many
privacy-preserving scenarios which require accountable anonymity. For instance,
LRS can be applied in e-voting system [26] to ensure that the voters can vote
anonymously and will not repeat their votes. In a more popular setting, cryp-
tocurrency, LRS plays a crucial role in providing anonymity of spenders while
defeating the double-spending attack, and hence LRS has received much atten-
tion with the rise of Monero [21] and other cryptocurrencies based on CryptoNote
protocol [23].

The richer functionality of LRS makes it suited for a wide range of privacy-
preserving applications, but also renders it relatively complicated to realize. The
only known generic construction of LRS is proposed by Franklin and Zhang [14],
but the linkability of their work is restricted to the same message, which may
not be suited for cryptocurrency. In addition, there are some existing works that
proposed a RS scheme firstly and then extended it to the linkable version, such
as [26,19,3], but these transformations are not generic. In light of the state of
affairs described above, we are motivated to consider the generic construction
of LRS, in particular, whether LRS can be built from RS. From a theoretical
point of view, one is interested in the weakest assumptions needed for LRS.
From a practical point of view, it is highly desirable to obtain general methods
for constructing LRS rather than designing from scratch each time.

1.1 Our Contributions

In this paper, we give an affirmative answer to the above question. The contri-
bution of this paper is threefold:

– We give a generic construction that adds linkability to any RS scheme with
one-time signature (OTS) scheme. The construction achieves a lower bound
of the complexity that constructing LRS scheme since RS is an arguably
weaker primitive compared to chameleon hash plus function (CH+) which
is used as the underlying primitive by a recent generic construction of LRS
[19]. In particular, the requirement for the underlying RS schemes is mild:
the space of public keys ˆPK has some group structure ( ˆPK,�) (e.g. additive
group with +) and the distribution of public keys generated by the key gener-
ation algorithm should be statistically close to the uniform distribution over

ˆPK, which are naturally satisfied by most of RS schemes [1,15,5,6,16,13].
Moreover, almost all the known RS schemes [22,10,9,8,6,15,5,16] provide
the anonymity against unbounded adversaries but LRS schemes with the
anonymity against unbounded adversaries are only given in [18,17,25] re-
cently. Our transformation preserves the same anonymity of the underly-
ing RS schemes and hence it can be used to enrich LRS schemes with the



anonymity against unbounded adversaries. Finally, our transformation in-
troduces a small overhead on the size and running time compared to the
underlying RS schemes.

– We develop a new proof approach to reduce the linkability of LRS to the un-
forgeability of RS, which can bridge the gap between all public keys must be
generated honestly in security definition of RS and generated by adversaries
in reduction. Although this approach may do not help in proving many other
existing LRS schemes, it gives inspiration for designing other LRS schemes
from RS schemes with other primitives. In addition, we believe the new proof
approach might be of independent interest in the random oracle model.

– By instantiating our generic transformation based on the RS scheme in [13]
and the OTS scheme Dilithium5 [12] , we obtain a lattice-based LRS scheme
whose signature size is logarithmic in the number of ring members. Com-
pared with the underlying primitive CH+ of [19], which only can be used to
construct LRS scheme with linear signature size, RS schemes can be instan-
tiated with logarithmic signature size and transformed to LRS schemes with
the same size by our construction. Hence, the signature size of our scheme
is very short even for a large ring, for 230 ring members and 100 bit secu-
rity, our signature size is only 4 MB comparing to 166 MB6 in the prior
shortest lattice-based LRS scheme [27]. In addition, the experimental results
demonstrate the concrete scheme is practical.

1.2 Technique Overview

To describe our construction, it is instructive to recall the generic construction
of LRS in [19], which is called Raptor. In [19], they introduced the concept of
CH+ and gave a generic construction of LRS based on CH+ and OTS. In the
key generation procedure, the signer generates a hash key hk and its trapdoor
td, and a key pair (ovk, osk) of OTS. Then, the user computes the public key
pk by masking hk with the hash value H(ovk), and sets the secret key sk =
(td, ovk, osk). In the signing procedure, the signer s firstly reconstructs a new
set of hash keys {hk′i = pki ⊕ H(ovks)}i∈[N ], where N is the number of ring
members and s is the index of the signer, then runs the signing algorithm of RS
on the set of public keys {hk′i}i∈[N ] to get the ring signature σ̂. Finally, the signer
runs the signing algorithm of OTS to sign the message (σ̂, {hk′i}i∈[N ], ovks) with
the secret key osks and gets the one-time signature σ̃. The final signature σ is set
as (σ̂, σ̃, ovk). In the security proof, the anonymity and linkability are reduced
to the associated properties of CH+ and the nonslanderability is reduced to the
unforgeability of OTS. However, there is a gap in the proof of linkability. The
linkability is based on the collision-resistance of CH+, but the proof fails to
embed the challenge hkc of collision-resistance into the output of the linkability
game. See Appendix A for details on these issues.

5 Dilithium is a signature scheme, we use it as a OTS scheme.
6 The signature size is from [16], the RS scheme in [16] is the major component of [27]

and they have the same asymptotic size.



Inspired by the idea in [19], we give a generic construction of LRS from RS
directly, rather than from CH+. The security proof of our scheme is not trivial,
especially it is difficult to reduce the linkability of LRS to the unforgeability
of RS. The reason is that in the security definition of unforgeability, a valid
signature forgery must be generated with respect to a ring of which the adversary
does not have any associated secret keys, but this condition is hard to achieve
by the forgery contained in the output of linkability game for our construction.
We resolve it by developing a new proof approach.

Construction Sketch. In the key generation procedure, the user firstly gener-
ates the key pair (p̂k, ŝk) and (ovk, osk) of LRS and OTS respectively. Then,

he computes the public key pk = p̂k � H(ovk) and sets the secret key sk =

(ŝk, osk, ovk). In the signing procedure, if the signer signs a message m on the

ring T = {pki}i∈[N ], he firstly reconstructs a new ring T̂ ′ = { ˆpk′i}i∈[N ], where
ˆpk′i is equal to pki � (H(ovks))

−1, where (H(ovks))
−1 is the inverse element of

H(ovks) in the group ˆPK. It is easy to see that p̂ki = ˆpk′i only when i = s

and hence the signer knows the associated secret key ŝks of ˆpk′s. Then, he runs

RS.Sign on T̂ ′ with ŝks to get the ring signature σ̂. Finally, the signer runs
OTS.Sign on the message (σ̂, T, ovks) with the secret key osks, then he gets the
one-time signature σ̃ and sets the final signature σ = (σ̂, σ̃, ovks), where ovks
acts as the linkability tag.

Proof Sketch. We will omit the proofs of anonymity and nonslanderability and
just sketch the new proof approach here. As described above, the linkability
of our construction is reduced to the unforgeability of underlying RS schemes.
Suppose there exists an adversary A that breaks the linkability of our LRS
scheme. Then, we construct an adversary B that breaks the unforgeability of
underlying RS scheme by using A. If A succeeds, i.e., A outputs N + 1 unlinked
valid signatures for the same ring whose size is N , then at least one of the
signatures, denoted as σ∗, contains the linkability tag which is not used in the
key generation procedure. σ̂∗ contained in σ∗ is set as the output of B. The
core problem that we face in reduction is how to simulate the public key for
A to make σ̂∗ is generated on the ring T̂ ′ which B does not know the secret
keys. At a high level, we resolve this problem by fixing every p̂k′ ∈ T̂ ′ for B
in advance instead of making it generated by A. More specifically, A and B
have access to the joining oracle Ojoin and Ôjoin respectively, where Ojoin and

Ôjoin output public keys of LRS and RS at random. For every query to Ojoin

made by A, B should query Ôjoin twice to get two public keys p̂k, ˆpk′′. p̂k is

used to simulate the response of Ojoin, and ˆpk′′ is used to fix the elements in

T̂ ′. By the programmability of H, we generate pk in two different ways using
p̂k, ˆpk′′ respectively: pk = p̂k � h = ˆpk′′ � h′, where h′ is chosen randomly
and programmed as the output of the Ith H-query, h is computed by the above
equation and programmed as the output of theH-query whose input is associated
ovk. If the input of the Ith H-query is ovks, then the forgery of RS contained
in the output of A is generated on the public keys output by Ôjoin which B does



not know the secret keys. The real execution of Ojoin is depicted in Fig.1 and
the simulation of Ojoin is depicted in Fig.2.

Ôjoin pki = p̂ki �H(ovki)

Ojoin

pkiquery i query i p̂ki

Fig. 1. real Ojoin

Ôjoin pki = p̂ki � hi

pki = ˆpk′′i � h
′

hi = pki � p̂k
−1

i

program h′ = H(ovkI) program hi = H(ovki)

Ojoin

hi

pki

Ith query of H

query i query i p̂ki

ˆpk′′i
pki

choose h′ randomly

Fig. 2. Simulation of Ojoin

1.3 Related Work

Ring Signature. Abe et al. [1] showed how to construct a RS scheme from a
three-move sigma protocol based signature scheme and presented the first RS
scheme under the discrete-logarithm assumption whose public keys are group
elements. Groth and Kohlweiss [15] proposed a RS scheme whose signature size
grows logarithmically in the number of ring members from a sigma protocol for a
homomorphic commitment. They instantiated their scheme with Pedersen com-
mitment and set the public keys as the commitments to 0. Bose et al. [5] gave
a generic technique to convert a compatible signature scheme to a RS scheme
whose signature size is independent of the number of ring members and instan-
tiated it from Full Boneh-Boyen signature. Brakerski and Kalai [6] proposed the
first lattice-based RS scheme from ring trapdoor functions whose public keys
are matrices over a group. Libert et al. [16] proposed the first lattice-based RS



scheme whose signature size is logarithmic in the number of ring members. The
scheme is from zero-knowledge arguments for lattice-based accumulators and the
public keys of it are binary strings. We show that all of the above RS schemes
satisfy the requirements of our transformation, and hence they can be extended
to the LRS schemes directly by using our generic construction.

Linkable Ring Signature. Tsang and Wei [26] extended the generic RS construc-
tions in [10] to their linkable version, but their schemes are under a weak security
model which does not consider the nonslanderability. Chow et al. [7] proposed
escrowed linkability of RS which can be used in spontaneous traceable signa-
ture and anonymous verifiably encrypted signature. Yuen et al. [28] proposed a
LRS scheme whose signature size is square root of the number of ring members.
Sun et al. [24] presented an accumulator-based LRS scheme whose signature
size is independent of the number of ring members. Yang et al. [27] presented
a construction of weak-PRF from LWR and designed a LRS scheme based on
lattice by combining with an accumulator scheme in [16] and the supporting
ZKAoKs. Zhang et al. [29] proposed an anonymous post-quantum cryptocash
which contains an ideal lattice-based LRS scheme. Baum et al. [4] proposed
a LRS scheme based on module lattice, which is mainly constructed from a
lattice-based collision-resistant hash function. At the same time, Torres et al.
[25] proposed a post-quantum one-time LRS scheme, which generalized a practi-
cal lattice-based digital signature BLISS [11] to LRS and is successfully applied
to the privacy protection protocol which is called lattice ringCT v1.0. Recently,
Backes et al. [3] proposed the first construction of logarithmic-size ring signa-
tures which do not rely on a trusted setup or the random oracle heuristic and
extended their scheme to the setting of linkable ring signatures.

Note 1. The issues we discovered about Raptor exist in the previous eprint ver-
sion, available at https://eprint.iacr.org/2018/857 (version: 20180921:135633).
We have communicated with the authors of Raptor, they confirmed our findings
and the issues have been discovered independently by them as well. They shared
with us their revised version which does not have the same flaws.

2 Preliminary

2.1 Notations

We use N, Z and R to denote the set of natural numbers, integers and real num-
bers respectively. For N ∈ N, we define [N ] as shorthand for the set {1, ..., N}. If
S is a set then s← S denotes the operation of uniformly sampling an element s
from S at random. We use the same notation to sample s from a distribution S.
If S is an algorithm, the same notation is used to denote the algorithm outputs
s. We denote a negligible function by negl(λ), which is a function g(λ) = O(λc)
for some constant c. We use lower-case bold letters and upper-case bold letters
to denote vectors and matrices (e.g. x and A). We denote the Euclidean norm of
a vector x = (x0, ..., xn−1) and a polynomial f(x) = a0 + a1X + · · ·+ an−1X

n−1

https://eprint.iacr.org/2018/857


in variable X as ||x|| =
√∑n−1

i=0 x
2
i and ||f || =

√∑n=1
i=0 a

2
i . For a vector f =

(f0, · · · , fn−1) of polynomials, ||f || =
√∑n−1

i=0 ||fi||2. The infinity norm of f is

||f ||∞ = maxi|ai|. Let q be an odd prime integer and assume q ≡ 5 mod 8. We
define the rings R = Z[X]/〈Xd + 1〉 and Rq = Zq[X]/〈Xd + 1〉, where d > 1 is
a power of 2. We denote the set of integers {a, a + 1, · · · , b − 1, b} by [a, b]. We
use Dv,σ to denote the discrete normal distribution centered at v with standard
deviation σ. We write Dσ as shorthand for v = 0.

2.2 Ring Signature

A RS scheme consists of four algorithms (Setup, KeyGen, Sign, Vrfy):

– Setup(1λ): On input the security parameter 1λ, outputs public parameter
pp. We assume pp is an implicit input to all the algorithms listed below.

– KeyGen(pp): On input the public parameter pp, outputs secret key sk and
public key pk.

– Sign(sk,m, T ): On input the secret key sk, a signing message m and a set of
public keys T , outputs a signature σ.

– Vrfy(T,m, σ): On input the set of public keys T , signing message m and
signature σ, outputs accept/reject.

Correctness. For any security parameter λ, any {pki, ski}i∈[N ] output by KeyGen,
any s ∈ [N ], and any message m, we have Vrfy(T,m,Sign(sks,m, T )) = accept,
where T = {pki}i∈[N ].

Before introducing the security definitions of RS, we first assume there are
three oracles as following:

– Joining oracle pk ← Ojoin(⊥): Ojoin generates a new user and returns the
public key pk of the new user.

– Corruption oracle sk ← Ocorrupt(pk): On input a public key pk which is a
output of Ojoin, returns the associated secret key sk.

– Signing oracle σ ← Osign(T,m, pks): On input a set of public keys T , message
m and the public key of the signer pks ∈ T , returns a valid signature σ on
m and T .

Anonymity. Anonymity can be defined by the following game between an ad-
versary A and a challenger CH:

1. Setup: CH runs Setup with security parameter 1λ and sends the public pa-
rameter pp to A.

2. Query: A is allowed to make queries to Ojoin according to any adaptive
strategy.

3. Challenge: A picks a set of public keys T = {pki}i∈[N ] and a message m. A
sends (T,m) to CH. CH picks s ∈ [N ] and runs σ ← Sign(sks,m, T ). CH
sends σ to A.

4. Output: A outputs a guess s∗ ∈ [N ].



A wins if s∗ = s. The advantage ofA is defined by AdvanonA = |Pr[s∗ = s]− 1
N |.

Definition 1. A RS scheme is said to be anonymous (resp.anonymous against
unbounded adversaries) if for any PPT adversary (unbounded adversary) A,
AdvanonA is negligible in λ.

Unforgeability. Unforgeability is defined by the following game between an ad-
versary A and a challenger CH.

1. Setup: CH runs Setup with security parameter 1λ and sends the public pa-
rameter pp to A.

2. Query: A is allowed to make queries to Ojoin,Ocorrupt and Osign according
to any adaptive strategy.

3. Output: A outputs a forgery (m∗, σ∗, T ∗).

A wins if

– Vrfy(m∗, σ∗, T ∗) = accept;
– all of the public keys in T ∗ are query outputs of Ojoin;
– no public key in T ∗ has been input to Ocorrupt; and
– (m∗, T ∗) has not been queried to Osign.

The advantage of A, denoted as AdvforgeA , is defined by the probability that
A wins in the above game.

Definition 2. A RS scheme is said to be unforgeable if for any PPT adversary
A, AdvforgeA is negligible in λ.

2.3 Linkable Ring Signature

A LRS scheme consists of five algorithms (Setup, KeyGen, Sign, Vrfy, Link):

– Setup(1λ): On input the security parameter 1λ, outputs public parameter
pp. We assume pp is an implicit input to all the algorithms listed below.

– KeyGen(pp): On input the public parameter pp, outputs secret key sk and
public key pk.

– Sign(sk,m, T ): On input the secret key sk, a signing message m and a set of
public keys T , outputs a signature σ.

– Vrfy(T,m, σ): On input the set of public keys T , the signing message m and
the signature σ, outputs accept/reject.

– Link(m1,m2, σ1, σ2, T1, T2): On input two sets of public keys T1, T2, two sign-
ing messages m1,m2 and their signatures σ1, σ2, outputs linked/unlinked.

Correctness. For any security parameter 1λ, any {pki, ski}i∈[N ] output by KeyGen,
any s ∈ [N ], and any message m, we have Vrfy(T,m, Sign(sks,m, T )) = accept
where T = {pki}i∈[N ].

Anonymity. Anonymity of LRS is the same as that of RS.



Linkability. The linkability of LRS is used to go against the dishonest signers.
The intuition of linkability is that a signer cannot generate two valid unlinked
signatures. It can be translated into that the users in a ring with size N cannot
produce N + 1 valid signatures and any two of them are unlinkable. Linkability
can be defined by the following game between an adversary A and a challenger
CH:

1. Setup: CH runs Setup with security parameter 1λ and sends the public pa-
rameter pp to A.

2. Query: A is allowed to make queries to Ojoin, Ocorrupt, Osign according to
any adaptive strategy.

3. Output: A outputs N+1 messages/signature pairs {T,mi, σi}i∈[N+1], where
T is a set of public keys with size N .

A wins if

– all public keys in T are query outputs of Ojoin;
– Vrfy(mi, σi, T ) = accept for all i ∈ [N + 1];
– Link(mi,mj , σi, σj) = unlinked for all i, j ∈ [N + 1] and i 6= j.

The advantage of A, denoted as AdvlinkA , is defined by the probability that A
wins in the above game.

Definition 3. A LRS scheme is said to be linkable if for any PPT adversary
A, AdvlinkA is negligible in λ.

Nonslanderability. Nonsladerabiliy can be defined by the following game between
an adversary A and a challenger CH:

1. Setup: CH runs Setup with security parameter 1λ and sends the public pa-
rameter pp to A.

2. Query: A is allowed to make queries to Ojoin, Ocorrupt, Osign according to
any adaptive strategy.

3. Challenge: A gives CH a set of public keys T , a message m and a public key
pks ∈ T . CH runs Sign(sks,m, T ) and returns the signature σ to A.

4. Output: A outputs a messages/signature pair (m∗, σ∗, T ∗).

A wins if

– Vrfy(m∗, σ∗, T ∗) = accept;
– pks is not queried by A to Ocorrupt and as an ring member to Osign;
– all public keys in T and T ∗ are query outputs of Ojoin; and
– Link(m,m∗, σ, σ∗) = linked.

The advantage of A, denoted as AdvslanderA , is defined by the probability that
A wins in the above game.

Definition 4 (Nonslanderability). A LRS scheme is said to be nonslander-
able if for any PPT adversary A, AdvslanderA is negligible in λ.



We adopt the same definitions of linkability and nonslanderability as in [2]. Typ-
ically, the linkability definition in [2] allows the adversary to make polynomially
many queries to Ocorrupt which is necessary because in the definition of unforge-
ability the adversary has the same ability.

Hence, the unforgeability of LRS can be implied by the linkability and the
nonslanderability according to [2].

2.4 Assumption and Rejection Sampling

For the sake of completeness, we state the following lattice assumption, commit-
ment scheme in [13] and rejection sampling lemma.

Definition 5 (Module-SISn,m,q,θ). Let Rq = Zq[X]/〈Xd + 1〉. Given A ←
Rn×mq , find x ∈ Rmq such that Ax = 0 mod q and 0 < ||x|| ≤ θ.

Lemma 1 ([20]). Let V be a subset of Zd where all the elements have norms less
T , and h be a probability distribution over V . Define the following algorithms:

A: v← h; z← Dd
v,σ; output (z,v) with probability min{ Ddσ(z)

MDdv,σ(z)
, 1}

F : v← h; z← Dd
σ; output (z,v) with probability 1

M ,

where σ = 12T and M = e1+
1

288 . Then the output of algorithm A is within
statistical distance 2−100/M of the output of F . Moreover, the probability that

A outputs something is more than 1−2−100

M .

2.5 Commitment Scheme

Definition 6. Let Rq = Zq[X]/〈Xd + 1〉, Sr(εr) = {r ∈ Rmq : ||r||∞ ≤ εr}
be the randomness domain with χ as the probability distribution of r on Sr(εr)
for a positive real number εr, and SM (εM ) = {m ∈ Rvq : ||m||∞ ≤ εM} be the
message domain for a positive real number εM for m, v ∈ Z+. The commitment
of a message vector m = (m1, ...,mv) ∈ SM (εM ) using a randomness r ∈ Sr is
given as

Comck(m; r) = G · (r;m1, · · · ,mv)
T ∈ Rnq

where ck = G← R
n×(m+v)
q and it is used as the commitment key.

3 Generic Construction of Linkable Ring Signature

3.1 Construction

The generic construction is based on two primitives: (1) a ring signature scheme
RS=(Setup,KeyGen, Sign,Vrfy); (2) a one-time signature scheme OTS=(KeyGen,
Sign,Vrfy).



– Setup(1λ): On input the security parameter 1λ, this algorithm runs p̂p ←
RS.Setup(1λ). It also chooses a hash function H : OVK → ˆPK, where
OVK and ˆPK are public key spaces of OTS and RS respectively. Finally, it
outputs public parameter pp = p̂p. We assume pp is an implicit input to all
the algorithms listed below.

– KeyGen(pp): On input the public parameter pp, runs (p̂k, ŝk)← RS.KeyGen(p̂p).
Then, the algorithm runs (ovk, osk) ← OTS.KeyGen. It returns public key

pk = p̂k �H(ovk) and secret key sk = (ŝk, osk, ovk).
– Sign(sks,m, T ): On input the secret key sks, a signing message m and a set

of public keys T = {pki}i∈[N ], computes ˆpk′i = pki� (H(ovks))
−1 for i ∈ [N ]

and sets T̂ ′ = { ˆpk′i}i∈[N ]. Next, the algorithm runs

σ̂ ← RS.Sign(ŝks,m, T̂
′),

σ̃ ← OTS.Sign(osks, σ̂, T, ovks).

Finally, it returns the signature σ = (σ̂, σ̃, ovks).
– Vrfy(T,m, σ): On input the set of public keys T , a signing message m and

the signature σ, this algorithm first parses σ as σ = (σ̂, σ̃, ovk) and com-

putes ˆpk′i = pki � (H(ovk))−1 for i ∈ [N ]. Next, it runs RS.Vrfy(T̂ ′ =

{ ˆpk′i}i∈[N ],m, σ̂) and OTS.Vrfy(ovk, (σ̂, T, ovk), σ̃). Finally, it outputs accept
if RS.Vrfy returns accept and OTS.Vrfy returns accept ; otherwise outputs re-
ject.

– Link(m1,m2, σ1, σ2, T1, T2): On input two sets of public keys T1, T2, two sign-
ing messages m1,m2 and their signatures σ1, σ2, runs Vrfy(m1, σ1, T1) and
Vrfy(m2, σ2, T2). If Vrfy(m1, σ1, T1) = reject or Vrfy(m2, σ2, T2) = reject,
it aborts. Otherwise, the algorithm parses σ1 and σ2 as σ1 = (σ̂1, σ̃1, ovk1)
and σ2 = (σ̂2, σ̃2, ovk2), and compares ovk1 and ovk2. If ovk1 = ovk2, then
outputs linked ; otherwise outputs unlinked.

3.2 Security

Theorem 1. Our LRS scheme is anonymous (resp. anonymous against un-
bounded adversary) if the underlying RS scheme is anonymous (resp. anonymous
against unbounded adversary).

Proof. If there exists an adversary A with oracle access to Ojoin can break the
anonymity of LRS, then we can construct an adversary B with oracles access to
Ôjoin, Ôsign to break the anonymity of RS with the same advantage, where Ôjoin

and Ôsign are oracles in security games of RS.
Given a signature σ̂ on the set of public keys T and a message m chosen by

B, B interacts with A with the aim to guess the signer s.

1. Setup: Given the public parameter p̂p, B selects a hash function H : OVK →
ˆPK, where H is modeled as random oracle and OVK and ˆPK are public

key spaces of OTS and RS respectively. B then sends pp = p̂p to A.



2. Oracle simulation: A is allowed to access the joining oracle Ojoin: B runs
(ovk, osk)←OTS. KeyGen at first. Upon receiving a joining query, B queries

Ôjoin to obtain a public key p̂k of RS, computes pk = p̂k �H(ovk). B then
sends pk to A.
The only difference between this simulation and the real game is that in
this simulation, every pk is generated by the same ovk. This simulation is
indistinguishable from the real game. According to the distribution of p̂k is
close to the uniform distribution over ˆPK, we can get that p̂k �H(ovk) is
also close to the uniform distribution no matter which ovk is chosen since
p̂k ∈ ˆPK. Hence, pk generated in two games are both close to the uniform
distribution over ˆPK.

3. Challenge: Received (T = {pki}i∈[N ],m) from A, B computes ˆpk′i = pki �
(H(ovk))−1 for all i ∈ [N ] and sets T̂ ′ = { ˆpk′i}i∈[N ]. B then sends (T̂ ′,m) to

CH and received a signature σ̂ (signed by p̂ks ∈ T̂ which is chosen by CH).
B runs σ̃ ←OTS.Sign(osk, σ̂, T, ovk) and sends σ = (σ̂, σ̃, ovk) to A.

4. Output: A outputs the index s∗.

Finally, B forwards s∗ to CH. A essentially guesses which index is used to gen-
erate σ̂ since σ̃, ovk are identical no matter which index CH has chosen. If A
succeeds, B also succeeds due to B is also aim to guess which index is used to
generate σ̂. We have AdvanonA =AdvanonB .

Theorem 2. Our LRS scheme is linkable in the random oracle model if the
underlying RS is unforgeable .

Proof. We proceed via a sequence of games. Let Si be the event that A succeeds
in Game i.

Game 0. This is the standard linkability game for LRS. CH interacts with A
as below:

1. Setup: CH runs p̂p←RS.Setup(1λ), selects a hash function H : OVK → ˆPK,

where H is modeled as random oracle and OVK and ˆPK are public key
spaces of OTS and RS respectively. CH then sends pp = p̂p to A.

2. Oracle simulation: A is allowed to access the following four oracles:

Random oracle H: To make our proof explicit, we separate the queries of
H as two categories: querying directly and querying in Ojoin and Osign. CH
initializes an empty set RO. Upon receiving a random oracle query i, if it has
been queried, CH returns associated output in RO; else, CH picks hi ← ˆPK
at random, sends hi to A and stores the pair of (i, hi) in RO.
Joining oracle Ojoin: CH initializes an empty set JO. Upon receiving a join-

ing query, CH runs (p̂k, ŝk) ←RS.KeyGen and (ovk, osk) ←OTS.KeyGen,

computes pk = p̂k �H(ovk), sets sk = (ŝk, osk, ovk). CH then sends pk to
A and stores pk in JO.
Corruption oracle Ocorrupt: Upon receiving a corruption query pk, CH sends
associated sk to A if pk ∈ JO; else, CH return ⊥.



Signing oracleOsign: Upon receiving a signing query (T = {pki}i∈[N ],m, pks ∈
T ), CH computes ˆpk′i = pki � (H(ovks))

−1 for i ∈ [N ], sets T̂ ′ = { ˆpk′i}i∈[N ],

runs σ̂ ←RS.Sign(ŝks,m, T̂
′) and σ̃ ←OTS.Sign(osks, σ̂, T, ovks). CH then

sends σ = (σ̂, σ̃, ovks) to A.

3. Outputs: A outputs N + 1 message/signature pairs {mi, σi}i∈[N+1] on the
same set of public keys T = {pki}i∈[N ].

According to the definition, we have AdvlinkA = Pr[S0].
Game 1. Same as Game 0 except that in Ojoin of oracle simulation stage, CH
additionally choose h′ ← ˆPK at first before receiving queries. This change is
purely conceptual and thus we have Pr[S1] = Pr[S0].
Game 2. Same as Game 1 except that in H of oracle simulation stage, CH
chooses a index I ← [1, ..., qh], where qh is the maximum number of times A
directly queries H, then CH programs the output of the Ith query as h′.

By the programmability of H, and h′ is chosen uniformly and independently,
we have Pr[S2] = Pr[S1].
Game 3. Same as Game 2 except that in Ojoin of oracle simulation stage, CH
additionally runs ( ˆpk′′, ˆsk′′) ← RS.KeyGen and computes h such that p̂k � h =
ˆpk′′ � h′ upon receiving a joining query. CH then sends pk = p̂k � h to A. Due

to the distribution of p̂k is close to the uniform distribution over ˆPK, hence
Pr[S3] = Pr[S2].
Game 4. Same as Game 3 except that in H of oracle simulation stage, CH
programs the output of the query on ovk (querying in Ojoin) as corresponding h
which is computed in Game 3. By the programmability of H, we have Pr[S4] =
Pr[S3].

Lemma 2. If the RS is unforgeable, then the probability that any adversary wins
in Game 4 is negligible in λ.

If A wins in Game 4, then we can construct an adversary B with oracles access
to Ôjoin, Ôcorrupt and Ôsign to break the unforgeability of RS with the advantage

qh · AdvforgeA , implying Pr[S4] must be negligible, where Ôjoin, Ôcorrupt and Ôsign

are oracles in security games of RS.
B interacts with A in Game 4 with the aim to output (m∗, σ∗, T̂ ∗) satisfying

the conditions in Definition 4.

1. Setup: Given the public parameter p̂p, B selects a hash function H : OVK →
ˆPK, where H is modeled as random oracle and OVK and ˆPK are public

key spaces of OTS and RS respectively. B then sends pp = p̂p to A.
2. Oracle simulation:

Random oracle H: To make our proof explicit, we separate the queries of
H as two categories: querying directly and querying in Ojoin and Osign. B
initializes an empty set RO, chooses a index I ← [1, ..., qh], where qh is
the maximum number of times A directly queries H. A then programs the
output of the Ith query as h′ and stores them in RO. On receiving a random



oracle query i, if it has been queried, A returns associated output in RO;
otherwise, B programs the output as associated h if it is the query on ovk
(querying in Ojoin), else B picks hi ← ˆPK, sends hi to A and stores the pair
(i, hi) in RO.

Joining oracle Ojoin: B initializes an empty set JO and chooses h′ ← ˆPK.

Upon receiving a joining query fromA, B queries Ôjoin twice to get two public

keys p̂k, ˆpk′′, computes h such that p̂k � h = ˆpk′′ � h′, runs (ovk, osk) ←
OTS.KeyGen. B then sends pk = p̂k � h to A and stores pk in JO.

Corruption oracle Ocorrupt: Upon receiving a corruption query pk, B queries

the oracle Ôcorrupt on input p̂k to obtain ŝk if pk ∈ JO; else B returns ⊥. B
then sends sk = (ŝk, ovk, osk) to A.

Signing oracleOsign: Upon receiving a signing query (T = {pki}i∈[N ],m, pks ∈
T ), B queries the oracle Ôsign on input (T̂ ′ = { ˆpk′i = pki�h−1i }i∈[N ],m, p̂ks ∈
T̂ ′) to get a signature σ̂, runs σ̃ ←OTS.Sign(osks, σ̂, T, ovks). B then sends
σ = (σ̂, σ̃, ovks) to A.

3. Output: A outputs N + 1 message/signature pairs {mi, σi}i∈[N+1] on the
same set of public keys T = {pki}i∈[N ] and wins in Game 4.

Upon receiving {mi, σi, T = {pkj}j∈[N ]}i∈[N+1], B parses every signature σi as
σi = (σ̂i, σ̃i, ovki). Since A outputs N + 1 unlinked signatures on N public
keys, so there exits at least one of ovki in σi which is not produced by Ojoin.

We assume it is ovk∗. Hence, the probability of p̂k
∗
j = pkj � (H(ovk∗))−1 has

been input to Ôcorrupt and Ôsign is negligible for all j ∈ [N ]. Furthermore, if
ovk∗ is the Ith query of H, which happens with probability at least 1

qh
, then

{p̂k
∗
j}j∈[N ] are all query outputs of Ôjoin. Hence, B can outputs a successful

forgery (m∗, σ̂∗, T̂ ∗ = {p̂k
∗
j}j∈[N ]) if H(ovk∗) = h′; else it returns ⊥.

It is straightforward to verify that B’s simulation for Game 4 is perfect, we
can conclude Pr[S4] = qh · AdvforgeB . Putting all the above together, the theorem
immediately follows.

Theorem 3. Our LRS is nonslanderable in the random oracle model if the un-
derlying one-time signature is unforgeable .

Proof. The proof of nonslanderability is trivial. Due to the page limitation, we
omit the details of this proof and just provide a brief sketch here. We embedded
the challenge ovk of unforgeability into the challenge σ = (σ̂, σ̃, ovk) of nonslan-
derability by querying the one-time signature σ̃ on input the message (σ̂, T, ovk)
and programming the random oracle H. If the unforgeability is broken, that
is the adversary outputs (T ∗,m∗, σ∗) which satisfies Link(σ∗, σ,m∗,m, T ∗, T ) =
linked. Then, ((σ̂∗, T ∗, ovk∗), σ̃∗) is a valid forgery of OTS, where σ̂∗, σ̃∗, ovk∗

are contained in σ∗ = (σ̂∗, σ̃∗, ovk∗).



4 Instantiation

We give an instantiation of our construction by using the RS in [13] and the
(one-time) signature Dilithium [12].

– Setup(1λ): On input 1λ, select the commitment key ck = G ← R
n×(m+kβ)
q ,

two hash functions H : {0, 1}∗ → C and H ′ : {0, 1}∗ → Rnq , where k =
logβN , C = {Xω : 0 ≤ ω ≤ 2d− 1} is the challenge space.

– KeyGen(pp): On input public parameter pp, select ri ← {−M, ...,M}d for
i ∈ [m] and set r = (r1, ..., rm), compute c = Comck(0; r), where 0 is the

all-zero vector, set p̂k = c, ŝk = r, run (ovk, osk) ← Dilithium.KeyGen(1λ).

Output pk = p̂k +H ′(ovk), sk = (ŝk, osk, ovk).
– Sign(sks,m, T ): On input the secret key sks, a signing message m and a set

of public keys T = {pki}i∈[N ]

1. Compute ˆpk′i = pki −H ′(ovks) for each i ∈ [N ] and set T̂ ′ = { ˆpk′i}i∈[N ].

2. Sample a0,1, ..., ak−1,β−1 ← Dd
12
√
k
, compute aj,0 = −

∑β−1
i=1 aj,i for

j = 0, ..., k − 1, select rb,i, rc,i ← {−M, ...,M}d for i ∈ [m] and set
rb = (rb,1, ..., rb,m), rc = (rc,1, ..., rc,m), sample ra,i, rd,i ← Dd

12M
√
2md

for

i ∈ [m] and set ra = (ra,1, ..., ra,m), rd = (rd,1, ..., rd,m), compute A =
Comck(a0,0, ..., ak−1,β−1; ra), B = Comck(δs0,0, ..., δsk−1,β−1; rb), C =

Comck({aj,i(1−2δj,i)}k−1,β−1j,i=0 ; rc),D = Comck(−a20,0, ...,−a2k−1,β−1; rd),
where δj,i is Kronecker’s delta, δj,i = 1 if j = i and δj,i = 0 otherwise.
Sample ρj,i ← Dmd

12M
√

3md/k
for i ∈ [m] and set ρj = (ρj,1, ..., ρj,m), com-

pute Ej =
∑N−1
i=0 pi,jci+Com(0; ρj) for j = 0, ..., k−1, where pi,j is com-

puted by pi(x) =
∏k−1
j=0 (x ·δsj ,ij +aj,ij ) =

∏k−1
j=0 x ·δsj ,ij +

∑k−1
j=0 pi,jx

j =

δs,ix
k +

∑k−1
j=0 pi,jx

j , i ∈ [N ]. Compute x = H ′(ck,m, T̂ ′, A,B,C,D,

{Ej}k−1j=0 ), fj,i = x ·δsj ,ij +aj,ij ,∀j,∀i 6= 0, zb = x ·rb+ra, zc = x ·rc+rd,

z = xk · ŝks −
∑k−1
j=0 x

j · ρj . Set CMT= (A,B,C,D, {Ej}j=k−1j=0 ) and

RSP = ({fj,i}k−1,β−1j=0,i=1 , z, zb, zc).
3. Repeat step 2 L times in parallel and get {CMTl}l∈[L], x = {xl}l∈[L]

and {RSPl}l∈[L]. If RSPl 6= ⊥ for all l ∈ [L], set σ̂ = ({CMTl}l∈[L],x,
{RSPl}l∈[L]). Otherwise, go to Step 2 (repeat at most −λ

log(1−1/M2) ).

4. Run σ̂ ← Dilithium.Sign(osk, (σ̂, T, ovks)).
5. Output σ = (σ̂, σ̃, ovks).

– Vrfy(T,m, σ): On input the set of public keys T = {pki}i∈[N ], a signing
message m and the signature σ, parse σ as σ = (σ̂, σ̃, ovk) and compute

p̂k
′
i = pki −H(ovk) for each i ∈ [N ], then

1. For every (CMTl, xl,RSPl), l ∈ [L] Check whether

- fj,0 = x−
∑β−1
i=1 fj,i for j = 0, ..., k − 1

- xB +A = Comck(f0,0, ..., fk−1,β−1; zb)
- xC +D = Comck(f0,0(x− f0,0), ..., fk−1,β−1(x− fk−1,β−1); zc)

- ||fj,i|| ≤ 60
√
dk,∀j,∀i 6= 0 and ||fj,0|| ≤ 60

√
dk(β − 1),∀j



- ||z||, ||zs||, ||zc|| ≤ 24
√

3Mmd

-
∑N−1
i=0 (

∏k−1
j=0 fj,ij )ci−

∑k−1
j=0 Ejx

j = Comck(0; z) for i = (i0, ..., ik−1)

if not, return reject.

2. Run accept/reject← Dilithium.Vrfy(ovk, (σ̂, T, p̂k)).

3. If neither 1 and 2 return reject, return accept.

– Link(m1,m2, σ1, σ2, T1, T2): On input two sets of public keys T1, T2, two
signing messages m1,m2 and their signatures σ1, σ2, run Vrfy(m1, σ1, T1)
and Vrfy(m2, σ2, T2). Parse σ1 and σ2 as σ1 = (σ̂1, σ̃1, ovk1) and σ2 =
(σ̂2, σ̃2, ovk2). Compare ovk1 and ovk2. Return linked if Vrfy(m1, σ1, T1) =
Vrfy(m2, σ2, T2) = accept and ovk1 = ovk2.

5 Implementation

5.1 Comparison

We compare the size of public key and signature of existing lattice-based LRS
in Table 1. Like [13], our scheme is able to adjust the base representations for
user indices and results in different asymptotic growths of signature length.

Table 1. Comparison of Lattice-Based Linkable Ring Signature

Scheme Public Key Size Signature Size Assumption

[27] nlogp 2m(logq)2 · logN SIS/LWR

[29] mdlogq m2dlogq · logN I(f)-SVPγ

[4] ndlogq mlog(2σ
√
d) · N M-SIS/M-LWE

[25] dlogq mlog(ησ
√
d) · N R-SIS

[19] dlogq (256 + 2dlogq) · N NTRU

Ours ndlogq (ndlogq + βdlog
√

144LlogβN)L · logβN M-SIS

1. Constant terms are omittd.
2. n and m denote the row and column of matrix on Zq or Rq, d denotes the
dimension of polynomials, β denotes the base representations, σ and L denote the
standard deviation of discrete normal distribution and the number of repetitions
in our scheme.

5.2 Experimental Analysis

In order to compare the size and running time of the LRS scheme and the
underlying RS scheme, we implement the instantiation of our scheme and the
RS scheme [13] based on the NTL library and the source code of Dilithium.



Parameter Setting and Experimental Results. We set the parameters in the part
of RS as in Table 2 and adopt the very high version of Dilithium.

Table 2. Experimental Parameter

Parameters M n q m d L k
Values 100 9 260 71 76 17 2

Table 3. Experimental Results

Size(KB) Time(ms)
Ring Size Public Key Signature Size KeyGen Sign Vrfy

26 5.13 1083 84.04 603.18 418.94
Ring 28 5.13 1100 84.04 1195.96 904.09

Signature 210 5.13 1135 84.04 2993.27 2524.47
212 5.13 1205 84.04 10310.9 9268.26
26 5.13 1088 84.89 604.94 421.47

Linkable 28 5.13 1105 84.89 1201.53 906.17
Ring Signature 210 5.13 1140 84.49 2995.47 2527.49

212 5.13 1210 84.49 10313.2 9272.20

As depicted in Table 3, the experimental results show the performance of the
LRS scheme is close to the performance of the underlying RS.

6 Discussion

In this paper, we adds linkability to any compatible ring signature scheme with
one-time signature scheme. Essentially, linkability in this paper is only one-time
linkability, which means the linkability tag is not bound to a general linkability
context such as the ring of possible signers nor the message being signed, but only
bound to a signer. Linkability with variable restrictions are available for different
applications. One-time linkability may not be applied to some scenarios such as
e-voting but it is vital in constructing cryptocurrencies, because a sum of money
can be spent by the owner only once no matter to any ring or any transaction.
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A Comment on [19]

Lu et al. [19] adopted the definitions of anonymity, linkability and nonslander-
ability from [17]. Then, they gave a theorem which shows that the unforgeability
is implied by linkability and nonslanderability. first review the definition of link-
ability and the theorem as follows:

The linkability in [19] is defined in terms of the following game between a
challenger CH and an adversary A:

1. Setup. CH runs pp← Setup(1λ) and sends pp to A.
2. Query. A is given access to Ojoin,Ocorrupt,Osign and may query the oracles

in an adaptive manner.
3. Output. A outputs two pairs {T1,m1, σ1} and {T2,m2, σ2}.
A wins the game if

– all public keys in T1 and T2 are query outputs of Ojoin;
– Vrfy(T1,m1, σ1) = Vrfy(T2,m2, σ2) = accept;
– A queried Ocorrupt less than two times; and
– Link(m1, σ1,m2, σ2) = unlinked.

The advantage of A, denoted as AdvlinkA , is defined by the probability that A
wins in the above game.

Definition 7 ([19], Definition 11). A LRS scheme is linkable if for any
polynomial-time adversary A, AdvlinkA is negligible in λ

Theorem 4 ([19], Theorem 2). If a LRS scheme is linkable and nonslander-
able, it is also unforgeable.
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Issue 1. Theorem 4 does not hold for the definition of linkability in [19]. The
content of theorem 4 was introduced in [2] which towards the security definitions
in [2]. However, the definition of linkability in [19] is different from the definition
in [2]. In [19], the adversary A against unforgeability is allowed to make polyno-
mially many Ocorrupt queries in the unforgeability game, whereas the adversary
B against linkability is restricted to make at most one Ocorrupt query in the link-
ability game. This means B cannot simulate Ocorrupt for A and thus B cannot
run A to break the linkability.

Issue 2. There is a gap in the proof of linkability. They reduced the linkabil-
ity of the LRS to the collision resistance of CH+ as follows: First, they em-
bedded the collision resistance challenge hkc into one of the public keys pkI
by computing pkI = hkc ⊕ H(ovkI). Second, the adversary A outputs two
signatures and they concluded that at least one of the signatures should be
generated from the secret key that A does not obtain because A is allowed
to make at most one Ocorrupt query. The signature is denoted as (m∗, σ∗, T ∗),
where σ∗ = ({(m∗i , r∗i )}i∈[N ], σ̃

∗, ovk∗). Finally, they assumed pkI ∈ T ∗ and used
(m∗, σ∗, T ∗) to find a collision of hkc according to the General Forking Lemma.

However, the collision resistance challenge may not be embedded into the
output signatures of A. This means that hkc is not used to generate the signature
(m∗, σ∗, T ∗) although pkI ∈ T ∗. The reason is that ovk∗ may not equal to ovkI
and thus hkc 6= hki = pki ⊕H(ovk∗) for every i ∈ [N ]. According to the signing
algorithm of the LRS in [19], we can conclude that hkc is independent of σ∗ if
ovk∗ 6= ovkI . Thus, the collision resistance of CH+ cannot be broken although
A has broken the linkability of the LRS.
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