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Abstract. For cryptocurrency payments to be truly private, transactions have to have two
properties: confidentiality, i.e., hiding the transferred amounts, and anonymity, i.e. hiding the
identities of the sender and/or receiver in a transaction.
In this paper, we propose Lelantus, a new decentralized anonymous payment (DAP) protocol
that ensures confidential and anonymous blockchain transactions with small transaction sizes,
short verification times, and without requiring a trusted setup. It efficiently supports large
anonymity sets of size hundred thousand and beyond by providing logarithmic proof sizes and
efficient sub-linear verification time of the transactions. We implement Lelantus to measure
its performance and show that it is very efficient to support scalable privacy cryptocurrencies.
We also formally prove the security of the proposed protocol characterized by three security
properties referred to as ledger indistinguishability, transaction non-malleability, and balance.
Lelantus design concepts can be used in combination with the MimbleWimble and Confidential
Transactions protocols, two other popular blockchain privacy schemes for confidential trans-
actions. A hybrid scheme of Lelantus-MimbleWimble has been developed and implemented
into a fully-fledged privacy cryptocurrency in order to provide both confidentiality and strong
anonymity of blockchain payments.
As part of our protocol, we also introduce an extension of one-out-of-many proofs for general-
ized Pedersen commitments and provide formal security proofs for the proposed design, which
may be of own interest.

1 Introduction

The goal of this paper is to provide a novel practical transaction scheme which is based only on
standard cryptographic assumptions and does not require any trusted setup procedures, at the same
time efficiently supports strong anonymity and confidentiality properties for direct blockchain pay-
ments. We start by achieving transaction anonymity with a Zerocoin-like setup which is implemented
through one-out-of-many proofs as is discussed in [4]. Zerocoin is strictly limited to work with fixed
denominated coins which can be spend anonymously but without any ability of merging, splitting or
partially redeeming multiple coins in a confidential way. We extend this fundamental construction
in a few significant ways.
First, we extend Zerocoin coins with secret balances enabling the user to mint coins of arbitrary
values and later spent them anonymously into fresh new outputs of arbitrary values. Then we de-
velop a proprietary zero-knowledge balance proof mechanism to ensure that the transaction’s input
and output values sum up. The transaction balance proof leverages specific design properties of the
modified one-out-of-many protocol construction discussed in this paper. These properties enable to
extract encoded information about the spent inputs values necessary for proving the balance without
revealing the inputs origins. Our construction admits an arbitrary number of transaction inputs and
outputs without limitations. Next we introduce shielded addresses and enable the user to perform



direct anonymous payments where the transaction outputs can be spent only by the intended recip-
ient.
Further, we discuss a highly-efficient batch verification method that enables the network validators
verifying hundreds or even thousands of different transactions simultaneously by significantly low-
ering the average cost of a single transaction verification.
The resulting scheme has numerous advantages over the alternative secure payments protocols,
namely:

• It does not require any trusted setup processes and the protocol security is relying only on
standard and time-tested cryptographic assumptions.

• Provides strong anonymity of blockchain transactions by efficiently supporting large anonymity
sets of size 65536 and higher.

• Transactions support direct anonymous payments and an arbitrary number of input and output
coins. Shielded coins can be merged, split or redeemed in an anonymous and confidential way.

• The transaction communication complexity is logarithmic in the anonymity set size. The com-
putational complexity of transaction verification is sub-linear due to efficient batch verification
methods.

We also analyze and provide formal security proofs for our decentralized anonymous payment sys-
tem by using a robust security framework introduced by Zerocash[3]. Our paper discusses a novel
modification of a one-out-of-many proof system that works with generalized Pedersen commitments
and can be of independent interest. We provide complete formal security proofs of this construction’s
soundness, zero-knowledge and completeness properties.
Two major privacy cryptocurrency projects Zcoin[33] and Beam[36] have announced transition to
Lelantus and Lelantus-MW.

1.1 Overview and Intuition

Lelantus can be integrated with any blockchain-based currency, such as Bitcoin. To give a sense of
how Lelantus works, we outline our construction in four incremental steps starting from the original
Zerocoin construction.

Step 1: Transaction anonymity with fixed-value coins. Zerocoin, designed as an extension
to Bitcoin and similar cryptocurrencies[27], was one of the first anonymous cryptocurrency propos-
als to ensure high anonymity for the blockchain transactions. It enables users to transform their
base layer coins(e.g. Bitcoin) into shielded coins and later spend the shielded coin without revealing
its origin. When spent, a special zero-knowledge proof is generated convincing that the spent coin
is one of the previously minted shielded coins which was not already spent before. The set of all
shielded coins that the spent coin belongs to is referred to as an anonymity set. Intuitively, the size
of the anonymity set defines how strong is the guaranteed transaction anonymity. The bigger is the
anonymity set size, the stronger anonymity is archived for each spent coin. The original Zerocoin
construction[27] was based on the RSA accumulators and was not efficient from the communication
standpoint as each proof consisted of ∼25KB. It also required a trust toward the exploited RSA
parameters. In [4] authors presented a novel one-out-of-many proof protocol and also proposed an
efficient Zerocoin construction which does not require any trusted setup operations, supports signifi-
cantly smaller proof sizes and efficient computations compared to the original construction. Zerocoin
protocol consists of four algorithms (Setup, Mint, Spend, Verify) and can be implemented with help
of one-out-of-many proofs over the homomorphic Pedersen commitments [8] as described below.
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1. Setup: Generates the public parameters of the underlying commitment scheme by specifying
the group G and fixing two generators g and h with no known discrete logarithm relation.

2. Mint: For minting a new coin, the user generates a unique coin serial number secret sn, and
then commits to sn using the Pedersen commitment scheme and a fresh blinding factor r: The
resulted coin C = Com(sn, r) is published to the blockchain and is added to the pool of all
previously minted coins {C0, C1, ...CN−1}. The coin serial number sn and the opening value r
are used later to spend the coin C.

3. Spend: The user parses the set of all previously minted coins {C0, C1, ...CN−1} and homomor-
phically substracts the serial number value sn from all these coins. This results in a new set of
commitments where one will obviously be opening to 0. Next the user generates a one-out-of-N
proof of knowledge of this secret commitment opening to 0 without revealing its index in the
referred set. The proof transcript and the coin’s serial number sn are published to the blockchain.

4. Verify: All network participants can take the revealed serial number sn and check that it does
not appear in any previous spend transaction. Next they can homomorphically subtract this
serial number from all coins in the pool and and then check the validity of the provided one-
out-of-N proof against this new composed set of commitments.

Step 2: Enabling to mint, merge, split and redeem coins of arbitrary values. As discussed,
Zerocoin makes transaction history private, but does not support payments of arbitrary values and
also can not enable direct anonymous payments. For ensuring both transaction confidentiality and
anonymity, our first step is to represent coins with generalized Pedersen commitments which commit
simultaneously to the coin’s serial number and its value. Next we support generic Spend transac-
tions which can spend multiple inputs anonymously and output multiple outputs by providing a
zero-knowledge balance proof that the transaction inputs and outputs sum up without revealing the
input coins origins or the coins amount.

Step 3: Enabling direct anonymous payments. We extend the protocol to support direct
anonymous payments which enable users to transfer a value confidentially to the targeted recipients
without any future ability for tracing the transferred coins. We introduce shielded addresses, which
are generated by the recipient and used by the sender for generating the output coins. Usage of
the shielded addresses helps to keep the serial number of the newly created coin private for the
sender and enables the recipient to spend the received coin anonymously. We prevent malleability
attacks on a spend transaction (e.g., malicious assignment by re-targeting the recipient address of
the transaction public output) by generating the coin serial numbers as public keys and require each
spend transaction to be signed with the corresponding witness.

Step 4: Performing batch verification of transaction proofs.The communication and com-
putational complexity of transactions are of extreme importance for the practicality and scalability
of the payment system. In our system, each spent coin requires a separate one-out-of-many proof
to be generated, in which communication complexity is only logarithmic of the anonymity set size
N and is highly efficient but the verification complexity is linear. It may take hundreds of millisec-
onds to verify a single spend proof within a set of a few dozen thousand commitments. In this
paper, we will illustrate important batch verification techniques that enable us to verify multiple
proofs in batches and lower the average cost of a single proof verification to dozens of milliseconds
within significantly large commitment sets. This makes our scheme performance very competitive
with other cutting-edge privacy payment approaches. The Table 1 illustrates how Lelantus compares
with other confidential payments protocols such as Monero, QuisQuis, Zerocoin and Zerocash. As
will be discussed in the Section 5, the reported performance can still be significantly improved, but
even the current implementation shows that for a typical 2-input, 2-output transaction our scheme
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Table 1. Security properties and efficiency considerations for different privacy solutions. The Lelantus proof
sizes and performance numbers are measured for 2-inputs-2-output transactions computed by batch verifying
100 proofs.

Anonymity Trusted Security Proof Proving Verification
Set Size Setup Assumptions Size(Kb) Time(S) Time(ms)

Monero 11 No Well Studied 2.1 0.9 47
QuisQuis 16 No Well Studied 13 0.47 71
Zerocash 232 Yes Relatively New 1 1-10 8
Zerocoin 10000 Yes Well Studied 25 0.2 200
Lelantus1024 1024 No Well Studied 2.7 0.27 6.8*
Lelantus16384 16384 No Well Studied 3.9 2.35 10.2*
Lelantus65536 65536 No Well Studied 5.6 4.8 52*

provides much stronger anonymity than Monero or QuisQuis at the comparable computational and
communication cost. The proof sizes and verification times of SNARK-based constructions are hard
to beat but this unmatched performance, however, is expensively bought with having to require a
trusted setup and reliance on knowledge of exponent cryptographic assumptions. Lelantus provides
strong privacy and competitive performance while still relying on standard cryptographic assump-
tions and without requiring a trusted setup. At the same time, it offers orders of magnitude stronger
anonymity properties than Monero or QuisQuis while being also more efficient due to the smaller
transaction sizes and shorter verification times.

1.2 Related Works and Comparison

There are many cryptographic constructions which do offer blockchain payment privacy in the UTXO
model, such as Zerocash [3], Monero [34], QuisQuis,[10] and Zerocoin [27]. Zerocoin is one of the
pioneer technologies providing strong anonymity for Bitcoin transactions but this scheme was com-
putationally not efficient and supported only limited functionality without hiding the transaction
amounts and working only with fixed denominated coins. Monero and QuisQuis both enable direct
anonymous payments of arbitrary amounts, but they provide relatively weak anonymity guaranties.
The anonymity set size in Monero and QuisQuis transactions are 11 and 16 accordingly which is
small enough to make different tracking analysis attacks possible[40, 9]. Recent work [11–13] dis-
cusses efficient ring signature schemes which aim to improve both the anonymity and complexity of
Monero transactions. Unlike Monero or Quisquis, Zerocash supports large anonymity set in a very
efficient way, but this hard-to-beat efficiency and advanced privacy features come at the price of
reliance on relatively new cryptographic security assumption and a trusted setup procedure, which
necessitate the user’s trust in the correctness of this setup.
There is a significant amount of active research on the development of efficient zero-knowledge proof
systems. Currently numerous constructions achieve different tradeoffs between transaction proof
sizes, proving and verification times under different trust models and cryptographic assumptions.
From the verification complexity standpoint the most efficient proof systems to date are zk-SNARKs
[25, 26] which require a trusted setup processing, although the recent work in this direction can sup-
port universal and continually updateable trusted setup processes[18]. There have been also designed
powerful transparent zero-knowledge proof systems such are Bulletproofs [7], zk-STARKS [16], Au-
rora [17], Supersonic[19] and Halo[20]. Bulletproofs are ubiquitously used in private digital currency
systems[33, 36, 35, 34] for generating efficient range-proofs, but the computational or communication
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complexity of these transparent schemes still seems to be beyond the practicality limit when applied
to the large-scale confidential payment applications.

1.3 Lelantus and MimbleWimble

MimbleWimble is another popular blockchain privacy protocol implemented by few privacy cryp-
tocurrency projects including Beam[36] and Grin[35]. In MimbleWimble design, the transaction
inputs and outputs are introduced through Pedersen commitments and this protocol uses the com-
mitment blinding factors of transaction inputs and outputs as private keys. Sender and receiver
must interact to construct a joint signature to authorize a transfer of funds. MimbleWimble enables
to aggregate all transactions within the block into one giant transaction resulting to significantly
smaller ledger. It also provides cut-through methods, in which all spent outputs cancel against cor-
responding inputs across the blockchain and helps to erase most of the blockchain history and shrink
the ledger size. However this design enables network observers to easily link the transaction inputs
and outputs and break the anonymity of users. This remains a major privacy drawback and in order
to overcome this limitation, Beam has designed a hybrid scheme of Lelantus and MimbleWimble
[37] which provides strong anonymity to MimbleWimble transactions by enabling transactions with
hidden origins. In this hybrid approach, users can create coins as generalized Pedersen commitments
which hide both the coin value and a unique serial number. These coins are added into the shielded
pool and can be spent anonymously using one-out-of-many proofs. The Spend process of the shielded
coin first reveals the coin’s serial number and outputs a fresh coin represented through a regular Ped-
ersen commitment. The provided zero-knowledge proof shows that the output coin encodes the same
value as the spent shielded coin without revealing its origin. This output coin can later participate
into a MimbleWimble-style transaction which spends regular coins and outputs either regular or
shielded coins by proving that the transaction is still balanced. This hybrid scheme will be deployed
by Beam[37]. Provided hybrid design simultaneously ensures strong anonymity and MimbleWim-
ble balance proofs, but still requires interaction between the sender and recipient for finalizing the
transaction. Beam also created a Mimblewimble Confidential Lelantus Asset scheme [38] similar to
the Confidential Assets proposal by Blockstream [39]. For more details on these constructions we
refer to the original papers [37, 38].

2 Cryptographic Background

We denote R = {x;w | LR} to be a binary relation for instances x and witnesses w where LR defines
the corresponding language; i.e LR = {x|w : (x,w) ∈ R}. A zero-knowledge proof for the relation R
means that the prover knows secret witness w, so that (x,w) ∈ LR where x is a public value. We
use x←−R T for sampling an element x uniformly at random from a set T . Let G be a cyclic group
of prime order p where the discrete logarithm problem is hard, and let Zp be its scalar field.

Generalized Pedersen Commitments: Let g and h be random generators of G whose dis-
crete logarithm relationship is unknown. A Pedersen commitment scheme [8] enables to commit
to m ∈ Zp by picking a random blinding factor r ∈ Zp and computing Com(m, r) = gmhr. Ped-
ersen commitment scheme is perfectly hiding which means it does not leak any information about
the committed value. It is also computationally strongly binding under the discrete logarithm as-
sumption which means the commitment can only be opened in one way. For more formal definitions
of these security properties and their security proofs we refer to [8]. The Pedersen commitment
scheme can be generalized for multiple messages, i.e. given n messages m1,m2, ...,mn and n + 1
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independent generator points g1, g2, . . . , gn and h, one can create a commitment of the following
form Com(m1,m2, · · ·mn; r) = gm1

1 gm2
2 · · · gmn

n hr Generalized Pedersen commitment scheme is also
computationally strongly binding, perfectly hiding and retains cryptographic homomorphic proper-
ties. In our protocol design, we use a private case of generalized Pedersen commitment scheme which
is utilizes three different group generators g, h, f to commit to the given messages s and t by using
the blinding factor r as Commck(s, t, r) = gshtfr. For sake of simplicity we refer to this private case
of generalized Pedersen commitment scheme as double-blinded commitment.
Note: We will henceforth denote the Pedersen commitment for value m using randomness r as
Com(m, r). A double-blinded commitment using the values s, t and r is denoted as Comm(s, t, r).

One-out-of-many proofs for a commitment opening to zero: One-out-of-many proof is a
three step interactive proof of knowledge that one out of N public commitments {C0, . . . , CN−1} is
opening to 0. It has been first introduced in [4] and more efficient construction has been proposed in
[5] which significantly reduces the proof sizes and improves the proving complexity. In this paper we
introduce a modified version of one-out-of-many proofs for double-blinded commitments described
by three algorithms (Setupooon,Proveooon,Verooon) which is a proof of knowledge that the public list
of N double-blinded commitments {C0, . . . , CN−1} includes some Comm(0, v, r) which is a commit-
ment to 0. In the Appendix A, we provide the full description of our scheme and formally prove its
security in the same framework used in [4]. In Lelantus design we will use the non-interactive variant
of one-out-of-many proofs obtained through Fiat-Shamir heuristic [4] and the proof transcript of non-
interactive one-out-of-many proof with respect to the public list of commitments {C0, . . . , CN−1} is
denoted by πooon(C0, . . . , CN−1).

Bulletproofs: Bulletproofs are a zero-knowledge interactive proof systems defined by three al-
gorithms (Setupbp,Provebp,Verbp) for providing short and aggregatable range proofs [7]. Formally,
let v ∈ Zp and let C ∈ G be a Pedersen commitment to v using the randomness r. Then the proof
system will convince the verifier that the committed value v ∈ [0, 2n − 1]. We will denote the tran-
script of non-interactive range-proofs for the commitment C with respect to the generators g and h
and the specified range [0, 2n − 1] by πrange(C; g, h, n).

Proof of knowledge of discrete logarithm representation: A group element can be expressed
as the product of powers of certain generators which is called the DL representation of the el-
ement with respect to that generators [21]. A discrete logarithm representation (or DL-REP for
short) of h ∈ G with respect to the generators g1, . . . , gl ∈ G is the tuple (a1, . . . , al) ∈ Zlp where
h = ga11 · · · g

al
l . Note that when l = 1, h is represented as h = ga11 . In this case finding the a1 having

only g1 and h is the discrete logarithm problem. Thus the discrete logarithm problem can be regarded
as the special case of the DL representation which contains only one term and it is easy to show
that finding a DL representation of h ∈ G with respect to the generators g1, . . . , gl ∈ G is at least as
hard as the DL problem[21]. Finding two different representations for some h ∈ G with respect to
the same generator points g1, . . . , gl is also at least as hard as the DL problem [21].An interactive
proof of knowledge of representation (also referred as generalized Schnorr proof of knowledge) is a

zero-knowledge argument for the relation R = {g1, . . . , gk ∈ G, y; a1, . . . , ak ∈ Zp | y =
∏k
i=1 g

ai
i }. It

satisfies to the completeness, special honest verifier zero-knowledge and special soundness properties
as is discussed in [21, 4]. We will denote the transcript of non-interactive proof of representation of
the value y with respect to given generators g1, . . . , gl πdlrep(y; g1, . . . , gk).

One-time strongly-unforgeable digital signatures: We use a digital signature scheme Sig =
(Setup,Ksig,SSig,VSig) described as follows.
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• Setupsig(1λ) −→ ppsig. Given a security parameter λ, Setup samples public parameters ppsig.
• Ksig(ppsig) −→ (pksig, sksig) Given ppsig, Ksig samples a pair of verification and signing keys.
• Ssig(sksig,m) −→ σ. Given the key sksig, Ssig signs the message m to obtain a signature σ.
• Vsig(pksig,m, σ) −→ b. Given the verification key pksig, message m, and signature σ, Vsig outputs
b = 1 if the signature is valid for message m or b = 0 otherwise.

We require the signature scheme Sig to satisfy the security property of one-time strong unforgeabil-
ity against chosen-message attacks(SUF-1CMA security) [41].

Key-private public key encryptionWe also use a public-key encryption scheme defined as a
tuple of four algorithms Enc = (Setup,Kenc, Eenc,Denc) as follows.

• Setupenc(1λ) −→ ppenc. Given a security parameter λ, Setup samples public parameters ppenc..
• Kenc(ppenc) −→ (pkenc, skenc) Given ppenc, Kenc returns a pair of public and secret key.
• Eenc(pkenc,m) −→ σ. Given pkenc and a message m, Eenc encrypts m with the public key pkenc

to obtain a ciphertext c.
• Denc(skenc, c) −→ m. Given the secret key skenc and the ciphertext c encrypted under the corre-

sponding public key pkenc, Denc outputs m if decryption succeeds or null otherwise.

We require the encryption scheme Enc to be both IND-CCA and IK-CCA secure[24].

3 Lelantus Construction

Lelantus is a decentralized anonymous payment system allowing direct blockchain transactions with
hidden origins and amounts. In this section we provide overview of the underlying building blocks,
data structures and algorithms used in the proposed design, and also discuss its security properties.

3.1 Data Structures and Algorithms

Lelantus is exploiting the following data structures and algorithms.

Basecoin Ledger. Lelantus can be integrated with any blockchain-based currency (e.g. Bitcoin)
which is referred as the basecoin currency. The basecoin currency ledger L is the only data storage
used over the system to record both the basecoin and the confidential Mint and Spend transactions
introduced by Lelantus.

Addresses. Apart of the basecoin ledger addresses, Lelantus exploits special shielded addresses
to power direct anonymous payments. Each user can generate arbitrary number of new shielded ad-
dress pairs (addrsk, addrpk). For each address, the addrpk is the public component used for receiving
funds privately, and the addrsk is the private address used only by the address owner to spend the
received funds.

Coins. Coin encodes the abstract monetary value which is transferred through the private transac-
tions. Each coin is associated with

• A coin value v which is measured in basecoins and can be any integer from the system specified
range [0, vmax).

• A coin public address addrpk which indicates the coin transfer destination. The recipient proves
his ownership over the received coins through the corresponding secret address addrsk.
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• A coin unique serial number sn. The serial number sn is revealed when the coin is spent and it
prevents possible double-spending of the coin.

• A coin commitment denoted as C. This is a double-blinded commitment encoding the coin serial
number sn and the coin value v and blinded by a randomly generated blinding factor r. The
coin commitment is published and stored on the ledger when the coin is created either through
the Mint or Spend transaction.

Private Transactions: Lelantus is introducing two new confidential transaction types to the ledger:

• Mint Transactions. A Mint transaction enables to move base layer coins into the shielded
layer where they can be further spend anonymously. Mint transaction creates a transaction
data txmint and records it on the ledger. The transaction data contains the new created coin
commitment associated with the provided basecoin value and the recipient public address among
other cryptographic information.

• Spend Transactions. A Spend transaction enables to merge, split or redeem previously generated
coins in an anonymous and confidential way. The transaction creates the transaction data txspend

and records it on the ledger. txspend contains the new created transaction output coins and all
required zero-knowledge cryptographic proofs.

Algorithms: Lelantus is a decentralized anonymous payment(DAP) system defined as a tuple of
polynomial-time algorithms:

∏
=(Setup, CreateAddress, Mint, Spend, Receive, Verify).

• Setup: This algorithm takes the security parameter λ and outputs all public parameters used
by different building blocks of the protocol including the commitment scheme, range proofs, one-
out-of-many proofs, public key encryption and digital signature algorithms. The setup process
does not require any trusted procedures.

• CreateAddress: This algorithm takes as input the public parameters pp and generates a new
shielded address pair (addrsk, addrpk).

• Mint: This algorithm takes as input the given public value and basecoin UTXOs which should
be minted and creates the mint transaction txmint.

• Spend: This algorithm takes the input coins which should be spent, the public recipient ad-
dresses and output coin values and generates the spend transaction txspend.

• Verify: This algorithm is used by network validators to check the validity of the txmint and
txspend transactions.

• Receive: This algorithm takes as input a secret address addrsk and scans the ledger to retrieve
all unspent coins sent to the corresponding public address.

We will give the detailed description of all algorithms in Section 4.

Anonymity Sets and List of Serial Numbers: For any given moment

• C-Pool denotes the list of all coin commitments generated by the Mint and Spend transactions.
In practice the set of all coin commitments can be logically split into multiple enumerated
anonymity sets of certain fixed length and each such set can be referred unambiguously by the
private transactions.

• S-Pool denotes the public list of all serial numbers which are revealed when coins are spent.

3.2 Security

For our design we use multiple cryptographic protocols including the proprietary one-out-of-many
proof scheme for double-blinded commitments and the transaction balance proof protocol. Following
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to the security framework used to prove the security of the original one-out-of-many proof construc-
tion[4], we show that our proposed design for one-out-of-many proofs has perfect completeness,
perfect special-honest zero-knowledge and (m+ 1)-soundness in the sense defined and proven in the
Appendix A. For proving the knowledge soundness property of the transaction balance proof we use
the computational witness-extended emulation model as defined in [22] and used for example in [7].
Informally witness-extended emulation implies that whenever an adversary produces an accepting
proof transcript, then there exists an emulator producing an identically distributed proof with the
same probability of acceptance, but also the corresponding witness. We build a witness-extend em-
ulator for the transaction balance proof in the Appendix B.
In the Appendix C we discuss the security properties of our proposed DAP scheme with respect to
the security framework introduced by Zerocash [3]. This framework captures a realistic threat model
with powerful adversaries who are permitted to include malicious commitments into the commitment
pool, control the choice of transaction inputs or obtain the transactions data in advance. According
to [3], a decentralized anonymous payment system

∏
=(Setup, CreateAddress, Mint, Spend, Receive,

Verify) is secure, if it is Complete and satisfies the Ledger-Indistinguishability, Transaction
Non-Malleability and Balance properties. We will give precise definitions of these security prop-
erties and provide formal proof sketches for all three security properties in the Appendix C.

4 Algorithm Constructions

In this section we provide detailed description of the DAP scheme algorithms.

Setup: In our setup the public parameters pp are comprised of the corresponding public parameters
of the commitment scheme, range proof, one-out-of-many proof, the key-private public key encryp-
tion and digital signatures schemes. All this algorithms operate in the specified prime-order group G
with a scalar field Zp. Setup also samples a cryptographically secure hash function H : {0, 1}∗ −→ Zp.

Setup Algorithm
Inputs: Security parameter λ.
Outputs: Public parameters pp, a cryptographic hash function H .

1. Choose a cryptographically secure hash function H : {0, 1}∗ → Zp and sample a prime order
group G with a scalar field Zp

2. Compute ppck = (g, h, f) as a tuple of three independent generators of G.
3. Compute the setup parameters of all cryptographic primitives used as design components:
pprp = Setupbp, ppooon = Setupooon, ppenc = Setupenc, ppsig = Setupsig.

4. Output pp = (G,Zp, ppck, pprp, ppooon, ppenc, ppsig) and H.

Note that one-out-of-many proofs are working with commitments generated with respect to ppck.
Also g is used as the fixed generator point in the ppsig and ppenc.

CreateAddress: In our setup we skip the description of the base layer addresses which are used to
transparently exchange base coins (e.g. Bitcoin) and only discuss how the shielded layer addresses
are generated and used for the confidential payments.

CreateAddress Algorithm
Inputs: Security parameter λ, public parameters pp
Outputs: Address key pair (addrpk, addrsk)
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1. Compute (P, k) = Kenc(ppenc)
2. Generate s, r ←−R Zp and compute Q = gsfr

3. Compute a proof of representation of the value Q with respect to the generators g and f :
πQ = πdlrep(Q; g, f)

4. Set addrpk = (P,Q, πQ) and addrsk = (k, s, r)
5. Output (addrpk , addrsk)

Mint: This algorithm generates the transaction data txmint which is used to initiate a Mint trans-
action.

Mint Algorithm
Inputs: Public parameters pp, coin value v ∈ [0, vmax), recipient public address addrpk
Outputs: Mint transaction data txmint.

1. Parse the addrpk as (P,Q, πQ)
2. Generates x←−R Zp
3. Computes the coin commitment as C = Qxhv

4. Computes D = Eenc(P ;x)
5. Set ∗ = (v, C,D, addrpk)
6. Computes a Schnorr signature σ = Ssign(x; ∗) which can be verified by the public key Qx.
7. Outputs txmint = (∗, σ)

As Q = gsfr, where s and r are part of the secret address, the output coin commitment will be a dou-
ble blinded commitment with respect to the generators g, h and f : C = gxshvfxr = Comm(xs, v, xr).
The blinding component fxr ensures it is computationally unfeasible to identify the commitment
given the values gxs and v. The minted value v can be a sum of one or more transparent inputs
from the blockchain base layer. Each base layer input spending should be associated with a valid
proof of ownership for the spent assets, e.g. with a digital signature which can be verified through
the corresponding UTXO’s public key. With current design we support only mint transactions with
a single output, but it is possible to support generation of multiple output coins as well. Note that
all network participants can check if the output coin C is opening to the public value v by comput-
ing the value C ·h−v = Qx and using the result as a verification key to check the provided signature σ.

Spend: Spend algorithm generates the txspend data for the Spend transaction, which spends
old ≥ 1 coins Ci1, . . . , C

i
old anonymously and creates new ≥ 0 fresh output coins Co1 , . . . , C

o
new. Here

Cik = gs
i
khv

i
kfr

i
k and Col = gs

o
l hv

o
l fr

o
l . Spend also outputs a public net value vout ≥ 0 and is associ-

ated with a public transaction fee fee. The transaction legitimacy proof should ensure all network
parties that the following holds:

• All old spent input coins are valid spends and owned by the sender. Proving this should not
reveal any information about the spent coin value or its origin.

• The transaction is balanced which means vi1 + . . . + viold = vo1 + . . . + vonew + vout + fee and
∀j ∈ 1, . . . , new : voj ≥ 0.

Our Spend algorithm leverages the modified one-out-of-many proofs for double-blinded commit-
ments to generate the anonymous spending and balance proofs. The one-out-of-many proof con-
struction for double-blinded commitments is discussed in full details in the Appendix A. For each
spent coin the user first reveals the coin’s serial number sn, next computes a novel set of com-
mitments by subtracting sn from all coin commitments in corresponding anonymity set C-Pool.
Then the user generates a zero-knowledge proof of a knowledge of one double-blinded commitment
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in this novel set of commitments opening to zero. Below we describe the Spend algorithm in details.

Spend Algorithm

Inputs: Transaction input coins {Ci1, . . . , Ciold} and their corresponding witnesses {(l1, Si1, vi1, Ri1), . . . ,
(lold, S

i
old, v

i
old, R

i
old)} (here each lk is the k-th input coin’s index in the anonymity set C-Pool), the

net output value vout and the transaction fee fee, the output coin values vo1, . . . , v
o
new and their

corresponding output public addresses addrpk1
, . . . , addrpknew

.
Outputs:Spend transaction data txspend:

1. Parse addrpki
= (Pi, Qi, πQi

) for each i ∈ 1, . . . , new.

2. Sample x1, . . . , xnew ←−R Zp and compute the output coins: Co1 = Qx1
1 h

vo1 , . . . , Conew = Qxnew
new hv

o
new .

3. Compute D1 = Eenc(P1;x1||vo1), . . . , Dnew = Eenc(Pnew;xnew||vonew). These ciphertexts enable
the intended recipients to receive coin secrets directly from the ledger.

4. Compute a separate range proof for each output: πrange1 = πrange(C
o
1 ;Q1, h), . . . , πrangenew =

πrange(C
o
new;Qnew, h)

5. For each input coin Ci1, . . . , C
i
old:

(a) Publish the coin serial number computed as snk = gS
i
k .

(b) Compute C-Poolk = (C ′0, C
′
1, . . . , C

′
N−1) by homomorphically subtracting the revealed serial

number snk from all coin commitments in the original anonymity set C-Pool:
C ′j = Cj · Comm(sn−1k , 0, 0) ∀j ∈ {0, . . . , N − 1}.

(c) Generate non-interactive πooonk
-proof of knowledge of one double-blinded commitment from

the set C-Poolk is opening to zero. All non-interactive proofs πooon1
, . . . , πooonold

are using
a common verifier challenge x which is computed through Fiat-Shamir heuristic by hashing
all initial statements of old proofs and the output coin commitments, range proofs and
ciphertexts computed at steps 2, 3, and 4 of Spend algorithm.

6. Compute the transaction balance proof πbalance = πdlrep

(
A
B ;Q1, . . . , Qnew, h

)
as a non-interactive

proof of representation of a specific value A
B with respect to the generators Q1, . . . , Qnew and f .

The elements A and B are computed over public transaction data will be detailed below.
7. Set

∗ =
{
{(sn1, πooon1) . . . , (snold, πooonold

)},πbalance, vout, fee, (addrpk1
, Co1 , D1, πrange1),

. . . , (addrpknew
, Conew, Dnew, πrangenew)

}
8. For each k ∈ 1, . . . , old computes σk = Ssign(Sik; ∗). Note that each signature σk can be verified

with the corresponding public key snk = gS
i
k which is part of the public transaction data txspend.

9. Set txspend = (∗, σ1, . . . , σold)

The values A and B used at Step 6 of the Spend algorithm to construct the balance proof are
computed as follows: Given the public output coins Co1 , . . . , C

o
new, the transparent output value vout

and the transaction fee fee, and also the verifier challenge variable x used for constructing all old
non-interactive πooon-proofs, the element A is computed as

A := (Co1 · . . . · Conew)x
m

h(vout+fee)x
m

= (Qx1
1 · . . . ·Qxnew

new )x
m

h(vout+v
o
1+...+v

o
new+fee)xm

(1)

For each transaction data txspend, the provided (πooon1
, . . . , πooonold

) proofs can be parsed to extract
special elements (zv1 , zR1 , G

1
0, . . . , G

1
m−1), . . . , (zvold , zRold

, Gold0 , . . . , Goldm−1) where, according to the

Fig. 1 of the Appendix A, each zvt = vit · xm−
∑m−1
k=0 ρ

t
kx

k and zRt
= Rit · xm−

∑m−1
k=0 τ

t
kx

k for each
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t ∈ {1, ..., old} and Gtk = Comm(0, ρtk, γ
t
k+ τ tk) for all t, k ∈ {1, ..., old}, {0, ...,m−1}. B is computed

as follows:

B =Comm(0;

old∑
t=1

zvt ,

old∑
t=1

zRt
) ·

old∏
t=1

m−1∏
k=0

(Gtk)x
k

=

Comm(0;

old∑
t=1

(vit · xm −
m−1∑
k=0

ρtkx
k),

old∑
t=1

(Rit · xm −
m−1∑
k=0

τ tkx
k) ·

old∏
t=1

m−1∏
k=0

Comm(0; ρtk, γ
t
k + τ tk)x

k

=h(v
i
1+···v

i
old)x

m

f
∑old

t=1(R
I
t ·x

m+
∑m−1

k=0 γt
k·x

k)

(2)

All network participants can independently compute A and B based on the public ledger data. Here,

A

B
=
h(vout+v

o
1+...+v

o
new+fee)xm ·Q(x1·xm)

1 · · · · ·Q(xnew·xm)
new

h(v
i
1+···+viold)xm · f

∑old
t=1

(
RI

t ·xm+
∑m−1

k=0 γt
k·xk

) (3)

If the transaction balance holds, the output values and the transaction fee sum up with the spent in-
puts values. In this case the h exponents in the equation (3) will cancel each other out and the value
A
B will be represented only with respect to the generators Q1, . . . , Qnew and f . Hence, for providing
a balance proof, it is sufficient for the transaction owner to provide a proof of representation of the
value A

B with respect to the generators (Q1, . . . , Qnew, f) which is done at step (6) of the Spend
algorithm.

Verify Algorithm: This algorithm enables the network participants to verify legitimacy of any
Mint or Spend transaction published on the ledger. It returns a Boolean value indicating the veri-
fication success.

Verify Algorithm
Inputs: A transaction data tx.
Outputs: A Boolean value. 1 means successful verification and 0 will indicate failure.

1. If tx = txmint then
• Parse the transaction payload txmint = (∗, σ) = (C, v,D, addrpk = (Q,P, πQ), σ))
• Compute pksig = C · h−v and output b = Vsig(pksig; ∗, σ)

If the minted coin value matches to the input v, then according to the Step (3) of the Mint
algorithm, the value pksig will be equal to Qx and can be used as a verification public key to
check the signature generated with the witness x.

2. If tx = txspend then parse the transaction payload

txspend =
{
{(sn1, πooon1) . . . , (snold, πooonold

)}, πbalance, vout, fee, (addrpk1
, Co1 , D1, πrange1),

. . . , (addrpknew
, Conew, Dnew, πrangenew), (σ1, . . . , σold)

}
= (∗, σ1, . . . , σold)

• For all k ∈ {1, . . . , old}
(a) Compute C-Poolk = { C0

snk
, . . . , CN−1

snk
} and verify the πooonk

proof validity with respect
to the list of commitments C-Poolk. Output 0, if the verification fails.

(b) Use sni as the verification public key to check the signature Vsig(sni, ∗, σk). Output 0
and halt, if the verification fails.
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• For all j ∈ {1, . . . , new}
(a) Check if the recipient address addrpkj

= (Qj , PJ , πQj
) is well formed by verifying the

corresponding Schnorr proof πQj
. Output 0, if the verification fails.

(b) Check if the output coin Coj contains a non-negative value by verifying the provided
range proof πrangej with respect to the generator points Qj and h. Output 0 and halt,
if the verification fails.

• Check if the transaction is balanced as follow:
(a) Compute the values A and B as defined by the Equations 1 and 2.
(b) Check the provided proof of representation πbalance for the value A

B with respect to the
generator points (Q1, . . . , Qnew, h). Output 0, if the verification fails.

• Output 1.

Receive Algorithm: This algorithm enables users to scan the ledger and recover all coin informa-
tion sent to their public addresses.

Receive Algorithm
Inputs: The blockchain ledger L, a public and private address pair addrpk, addrsk.
Outputs: A set of new received coins
Coins = {lt, St, vt, Rt}t=0....

1. Parse the public address addrpk = (Pu, Qu, πQu) and addrsk = (ku, su, ru).
2. Parse the anonymity set C-Pool = (C0, C1, . . . , CN−1) and set Coins = {}.
3. For each txmint on the ledger check if its output coin commitment is addressed to Qu. If so, then

(a) Parse the transaction data txmint = (∗, σ) = (C, v,D, P,Qu, πQ, σ))
(b) Identify the C’s index l in the anonymity set C-Pool. This can be done by a simple search

of C in the C-Pool.
(c) Decrypt x = Denc(ku, D) and check if C = Qxhv = gxsufxruhv. If so, add the extracted coin

data to the set of received coins: Coins = Coins ∪ (l, xsu, v, xru).
4. For each txspend on the ledger, check if it contains an output coin commitment addressed to Qu.

If it does, then
(a) Extract the identified coin data (P,Qu, πQ, C,D) from the txspend.
(b) Identify the coin index l in the anonymity set C-Pool.
(c) Compute Dend(k,D) and parse the result as (x, v) to extract the encrypted values v and x.
(d) If C = Qxhv = gxsufxruhv then add the extracted coin data to the set of received coins:

Coins = Coins ∪ (l, S, v, R) to the list of received coins where S = xsu and R = xru.
5. Output the list of all received coins Coins.

The user can later spend any received coin using the corresponding private coin data (l, S, v, R).

5 Batch Verification and Performance

The Spend transaction validation process is dominated by the verification of one-out-of-many proofs,
which complexity is linear of the referred anonymity set size. This is serious computational drawback
for large-scale use cases when thousands of anonymous blockchain transactions should be verified
with respect to large anonymity sets of size hundred thousand or beyond. In this section we describe
an important batch verification mechanism for one-out-of-many proofs in the Lelantus setup which
results to an efficient sub-linear verification complexity for each proof.
Assume that M different spent proofs should be verified with respect to the same anonymity set
(C0, C1, . . . .CN−1). According to the Spend algorithm, each spent coin reveals its serial number
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snt and a corresponding proof πtooon. For each proof πtooon the verifier computes the reference com-
mitments set {Cti = Ci

snt
}N−1i=0 and then checks the validity of the associated one-out-of-many proof

with respect to this set (Ct0, C
t
1, . . . , C

t
N−1). As can be seen from the Fig 1 in the Appendix A,

the verification of a single one-out-of-many proof πooon boils down to a large multi-exponentiation
operation over the entire anonymity set.

N−1∏
i=0

Ct
∏m−1

j=0
ft
j,ij

i ·
m−1∏
k=0

(Gtk ·Qtk)−x
k

≡ Comm(0, ztv, z
t
R)

This operation requires N group exponentiation with respect to the base points (Ct0, C
t
1, . . . , C

t
N−1)

which differ for each proof. Taking into account the fact that each Cti = Ci

snt
and the reference serial

number snt = gSt is part of the public proof transcript txspend, we can rewrite the above equation
as

N−1∏
i=0

C
ft
i
i ≡

Et
Dt
· sn

∑N−1
i=0 ft

i
t

Here we denote f ti :=
∏m−1
j=0 f tj,ij ;Dt :=

∏m−1
k=0 (Gtk ·Qtk)−x

k

;Et := Comm(0, ztv, z
t
R) for brevity. This

observation allows the verification of multiple spent proofs to be computed through a single multi-
exponentiation operation with common based points and results in huge computational gain. For
verifying M different spend proofs simultaneously, the verifier generates M random values y1, . . . , yM
and computes the following product

M∏
t=1

( N∏
i=0

C
ft
i
i

)yt
=

N−1∏
i=0

C
∑M

t=1 yt·f
t
i

i =

M∏
t=1

(Et
Dt
· sn

∑N
i=0 f

t
i

t

)yt
which requires only O(N) group exponentiation operations.

Table 2. Performance characteristics of one-out-of-many proofs with respect to various anonymity sets

|A| Batch Proof Proving Verif. Avg.
Size Size Time Time Time(ms)

16384 1 1412 1199 234
5 291 58
10 461 46
50 649 13
100 1070 10

65536 1 2456 2378 882
5 975 195
10 1104 110
50 2006 40
100 2993 29
1000 22366 22

|A| Batch Proof Proving Verif Avg.
Size Size Time Time Time(ms)

262144 1 2016 14098 3542
5 3989 800
10 4531 450
50 8970 180
100 13979 139

100000 1 2044 4416 1366
5 1504 300
10 1683 168
50 3129 62
100 4947 45
1000 37798 34

We have created a reference C++ implementation of Lelantus over the elliptic curve group secp256k1
using the popular library libsecp256k1. Table 2 reports the proof sizes and performance parameters
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for one-out-of-many proofs with respect to different anonymity set sizes. All our experiments were
performed on an Intel I7-4870HQ system with a 2.50 GHz processor. Table 2 illustrates how the
average cost of a single spend verification can be as low as 30ms with respect to a large anonymity
set of size 100.000 which provides significantly stronger anonymity than Monero at the comparable
performance. In practice, both Zcoin and Beam are using anonymity sets of size 65536.
It is worth noting that there is still a large room for further optimizations. Particularly, one important
aspect is the computation of the coefficients f ti :=

∏m−1
j=0 f tj,ij which requires m scalar multiplica-

tions. For large batches, the additional verification cost of each proof in a batch is dominated by
the effort of computing these coefficients. Using a Gray coded numbers instead of n-ary coded as
discussed in the Appendix A allows to compute these coefficients significantly faster. Since Gray
code guarantees only one position will change between each integer representation in the sequence,
it enables each coefficient to be computed with a single multiplication and a single division on the
previous coefficient instead of requiring m multiplications. As shown in [42], this optimizations re-
sults in 60% improvement in the verification performance making the average verification time for
a single proof over an anonymity set of size 65525 less than 10ms.
Except of the one-out-of-many proofs, other parts of the transaction validity proofs also could take
advantage of batch verification. Discrete logarithm representation proofs and range proofs all are
relying on multi-exponentiation operations. These proofs can be concatenated together and checked
simultaneously through a larger multi-exponentiation operation in a more efficient way.
Our protocol works over any homomorphic group and presumably a RUST implementation over
the Ristretto points may result in better performance [43]. It is worth mentioning that the proving
complexity of one-out-of-many proofs also can be significantly lowered by techniques described in
[14].

6 Conclusion

In this paper we have presented a new decentralized anonymous payment system which provides
confidentiality and high anonymity in a scalable way. Our proposal relies only on standard crypto-
graphic assumptions, does not require any trusted setup and is relatively easy to both implement and
test. We have also provided complete formal security proofs for the proposed DAP design including
formal proofs for its separate cryptographic building blocks, which can be of their own interest.
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Appendix A One-out-of-many proofs for double-blinded commitments

In this section we provide the detailed description of one-out-of-many proofs for double-blinded
commitments and also give formal security proofs for the proposed design. The protocol is defined
by three algorithms (Setupooon,Proveooon,Verooon) and is a zero-knowledge proof of knowledge for
the following relation:

R ={(ck, (C0, . . . , CN−1); (l, v, r)| ∀i : Ci ∈ Cck ∧ v, r ∈ Zp
∧ l ∈ {0, . . . , N − 1} ∧ Cl = Commck(0, v, r))}

For proving the security of our scheme we show that the proposed design is perfectly complete,
special honest verifier zero-knowledge, and has n-special soundness as is discussed in [4]. Informally,
these security properties are defined as follows:

• Perfect Completeness: If the prover knows a witness w for the statement s then they should
be able to convince the verifier which also means that the verifier will accept all valid transcripts.
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• Special honest verifier zero-knowledge (SHVZK): The Σ-protocol should not reveal any-
thing about the Prover’s witness. This is formalized as saying that given any verifier challenge x
it is possible to simulate a valid protocol transcript which will be indistinguishable from a valid
transcript generated by the owner of the witness.

• n-Special Soundness: If the prover does not know a witness w for the statement, they should
not be able to convince the verifier. This is formalized as saying that if the prover can answer
n different challenges satisfactorily, then it is possible to extract a witness from the provided n
different accepting transcripts.

P (gk, crs, (C0, . . . , CN−1), l, v, R) v(gk, crs, (C0, . . . , CN−1))
Compute Accept if and only if
rA, rB , rC , rD, aj,1, . . . , aj,n−1 ←R Zp
for j ∈ [0, · · · ,m− 1]

aj,0 = −
∑n−1
i=1 aj,i

B := Comck(σl0,0, . . . , σlm−1,n−1; rB)
A := Comck(a0,0, . . . , am−1,n−1; rA)

C := Comck({aj,i(1− 2σlj ,i)}
m−1,n−1
j,i=0 ; rC)

D := Comck(−a20,0, . . . ,−a2m−1,n−1; rD) A,B,C,D,
For k ∈ 0, ...,m− 1

ρk, τk, γk ←R Zp {GK , QK}m−1
k=0

Qk =
∏N−1
i=0 C

pi,k
i · f−γk −−−−−−−−−−−→

computing pi,k as is described above The values

Gk = fγk · Comm(0, ρk, τk) x← {0, 1}λ A,B,C,D,G0, Q0 . . . , Gm−1, Qm−1 ∈ G
←−−−−−−− {fj,i}m−1,n−1

j,i=0,1 , zA, zC , zv, zR ∈ Zp
∀j ∈ [0,m− 1], i ∈ [1, n− 1]

fj,i = σljix+ aj,i ∀j : fj,0 = x−
∑n−1
i=1 fj,i

zA = rB · x+ rA
zC = rC · x+ rD f0,1, . . . fm−1,n−1 BxA = Com(f0,0, . . . , . . . fm−1,n−1; zA)

zv = v · xm −
∑m−1
k=0 ρk · xk zA, zC , zv, zR CxD = Com({fj,i(x− fj,i)}m−1,n−1

j,i=0 ; zC)

zR = R · xm −
∑m−1
k=0 τk · xk −−−−−−−→ ∏N−1

i=0 C

∏m−1
j=0 fj,ij

i ·
∏m−1
k=0 (Gk ·Qk)−x

k

=
= Comm(0, zv, zR)

Fig. 1. One-out-of-many proof for double-blinded commitments

Our construction builds upon the one-out-of-many proof construction introduced in [5]. Assuming
that N = nm, the idea behind the protocol is to prove knowledge of an index l for which the
product

∏N
i=0 C

σl,i

i is a double-blinded commitment to 0. Here σl,i = 1 when i = l and σl,i = 0

otherwise. Observe that σl,i =
∏m−1
j=0 σlj ,ij where l =

∑m−1
j=0 ljn

j and i =
∑m−1
j=0 ijn

j are the n-ary
representations of l and i respectively. In the protocol, the prover first commits to m sequences of n
bits (σlj ,0, · · · , σlj ,n−1) and then proves that each sequence contains exactly one 1. On receiving the
challenge x, the prover discloses the elements fj,i = σlj ,ix+ aj,i where aj,i are randomly generated

and committed by the prover. For each i ∈ {0, · · · , N − 1} the product
∏m−1
j=0 fj,ij is the evaluation
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at x of the polynomial pi(x) =
∏m−1
j=0 (σlj ,ijx+ aj,ij ). So for 0 ≤ i ≤ N − 1 we have

pi(x) =

m−1∏
j=0

σlj ,ijx+

m−1∑
k=0

pi,kx
k = σl,ix

m +

m−1∑
k=0

pi,kx
k

The coefficients pi,k are depending on the l and aj,i and can be computed by the prover indepen-
dently of the challenge value x.All polynomials p0(x), · · · , pN−1(x) are of degree m− 1 except pl(x).
The full protocol is described in details in Figure 1.
Technically, this novel construction of one-out-of-many proofs for double-blinded commitments dif-
fers from the original protocol described in [5] in a few ways. First, it exploits double-blinded
commitments, and the proof transcript reveals two different values zv and zR for the two ran-
dom values used in the commitment. This construction could be similarly extended for Generalized
Pedersen commitments of any size. The next major difference is instead of outputting the product∏N−1
i=0 C

pi,k
i ·Comm(0, ρk, τk) as a single element Gk, we split this product and output a pair of two

values Gk =
∏N−1
i=0 C

pi,k
i and Qk = Comm(0, ρk, τk) indeed. Note that the outputted elements Gk

and Qk in turn are blinded via extra random factors fγk and f−γk which will be neutralized in the
product Gk · Qk during the proof verification process. Revealing Gk and Qk separately instead of
outputting their product increases the proof size, but is vital for generating the transaction balance
proof. In other use cases of one-out-of-many proofs for generalized Pedersen Commitment proofs the
proof transcript could safely output the product of Gk and Qk as a single element.
Next, we formally proof the following lemma.

Lemma 1: The Σ-protocol for knowledge of one-out-of-many double-blinded commitments open-
ing to 0 is perfectly complete. It is (m+ 1)-special sound if the commitment scheme is binding. It is
(perfect) special honest verifier zero-knowledge if the commitment scheme is (perfectly) hiding.

Perfect Completeness:. By the perfect completeness of the sigma protocol of Fig. 1 we have
that the verifier always accepts the valid proofs. To see that the protocol is perfectly complete
observe that the correctness of the equations

BxA = Com(f0,0, . . . , . . . fm−1,n−1; zA)

and
CxD = Com({fj,i(x− fj,i)}m−1,n−1j,i=0 ; zC)

follows by inspection.
The correctness of the last verification equation can be proven as follow:

N∏
i=0

C

∏m−1
j=0 fj,ij

i ·
m−1∏
k=0

(Gk ·Qk)−x
k

=

N∏
i=0

C
pi(x)
i

m−1∏
k=0

(
h
−γk
2

N−1∏
i=0

C
pi,k
i · hγk2 Comm(0, ρk, τk)

)−xk
=

N∏
i=0

C
pi(x)
i

m−1∏
k=0

(N−1∏
i=0

C
−pi,k·xk

i Comm(0,−ρkxk,−τkxk)
)

=

N∏
i=0

C
pi(x)
i

N−1∏
i=0

C
−

∑m−1
k=0

pi,k·xk

i · Comm0,−
m−1∑
k=0

ρkx
k,−

m−1∑
k=0

τkx
k
)

=

N∏
i=0

C
σl,ix

m

i · Comm
(

0,−
m−1∑
k=0

ρkx
k,−

m−1∑
k=0

τkx
k
)

=

Cx
m

l · Comm(0,−
m−1∑
k=0

ρkx
k,−

m−1∑
k=0

τkx
k)
)

= Comm(0, v · xm, R · xm) · Comm(0,−
m−1∑
k=0

ρkx
k,−

m−1∑
k=0

τkx
k)
)

=

Comm(0, v · xm −
m−1∑
k=0

ρkx
k, R · xm −

m−1∑
k=0

τkx
k) = Comm(0, zv, zR)
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Perfect Special-Honest Verifier Zero-Knowledge: Next we describe a special honest verifier
zero-knowledge simulator that is given a challenge x ∈ {0, 1}λ. It starts by picking the elements of
the response uniformly at random:

B,C,G1, . . . Gm−1;Q0, Q1, . . . Qm−1 ←R G

f0,1, . . . fm−1,n−1, zA, zC , zv, zR ← Zq

. Next it computes

fj,0 = x−
n−1∑
i=1

fj,i ∀j ∈ {0, . . . ,m− 1}

A = Comck(f0,0, . . . , fm−1,n−1, zA)B−x, D = Comck(fi,j(x− fi,j), zC)C−x

The simulator computes G0 from the last verification equation as

G0 =
Q−10 · Comm(0, zv, zR)∏N

i=0 C
∏m−1

j=0 fj,ij
i ·

∏m−1
k=1 (Gk ·Qk)−xk

By the DDH assumption and due to the random factors used for generating the values Q0, . . . Qm−1,
G1, . . . Gm−1 in a real proof, these elements are indistinguishable from picking random group el-
ements as was done in the simulation. We also get independent, uniformly random B, zv and
zR in both real proofs and simulations. Also in both simulations and real proofs, the elements
f0,1, . . . fm−1,n−1, zA, zC and C are independent, uniformly random and uniquely determine the val-
ues A,D and {f0,j}m−1j=0 . Finally, G0 is uniquely determined by the last verification equation in
both real proofs and in simulations, so the two are indistinguishable. Observe that two different
valid answers f0,1, . . . fm−1,n−1, zA, zC and f ′0,1, . . . f

′
m−1,n−1, z

′
A, z

′
C to one challenge would break

the binding property of BxA and CxD so the simulation is correct.

Soundness: Assuming that N = nm, we will show our sigma protocol is (m + 1)-special sound.
Suppose an adversary can produce (m+ 1) different accepting responses(

(f
(0)
j,i , z

(0)
v , z

(0)
R ), . . . , (f

(m)
j,i , z

(m)
v , z

(m)
R )

)
with respect to the same initial message and m+ 1 different challenges x(0), . . . , x(m) where m > 1.
As described in the original paper [5], it is possible to extract the openings σlj ,i, aj,i for B and A

with σlj ,i ∈ {0, 1} and
∑n−1
i=0 σlj ,i = 1 with just two different responses. This opening will define the

index l =
∑n−1
j=0 ljn

j , where lj is the index of the only 1 in the sequence σlj ,0, . . . , σlj ,n−1. Following

the proof, all answers satisfy f
(e)
j,i = σlj ,ix(e) + aj,i for 0 ≤ e ≤ m with overwhelming probability due

to the binding property of the commitment scheme.

Next, given the values σlj ,i and aj,i we can compute the polynomials pi(x) =
∏m−1
j=0

(
σlj ,i + aj,i

)
.

Here the value pl(x) is the only polynomial with degree m in x and we can write the last equation
of the protocol as

c
xm
(e)

l ·
m−1∏
k=0

(
Gk ·Qk

)−xk
(e) = Comm(0, zev, z

e
R)

The equation holds for all xe ∈ x(0), . . . , x(m) where the values Gk are derived from the initial state-

ment. Consider the Vandermonde matrix with the e-th row specified as
(

1, x(e), . . . , (x(e))
m
)

. As
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all x(e) are district, this matrix is invertible and we can obtain a linear combination θ0, . . . , θn of

the rows producing the vector (0, . . . , 0, 1). This will enable to deduce cl =
∏m
e=0

(
c
xm
(e)

l ·
∏m−1
k=1

(
Gk ·

Qk
)xk

(e)

)θe
= Comm

(
0,
∑m
e=0 θez

e
v,
∑m
e=0 θez

e
R

)
, which provides an opening of double-blinded com-

mitment cl to the 0 using the blinding factors v =
∑m
e=0 θez

e
v and R =

∑m
e=0 θez

e
R.

Appendix B Security Properties of the Transaction Balance Proof

The transaction balance proof shows that for each transaction the amount of all output coins sum
up with the input coin values. We want this proof to be Complete in a sense that if the prover
knows the witness for the balance statement and follows to the proof generation steps correctly, then
he always succeeds to convince the verifier. We also require the transaction balance proof to be Spe-
cial honest verifier zero-knowledge: so it does not reveal anything about the prover’s witness
including the input and output coin values or other secrets which may reveal the input coin origins.
It is relatively straightforward to show that the proposed transaction balance proof is complete and
special honest verifier zero-knowledge and we leave the formal proofs for the the full paper. In this
section we provide a sketch that the the proposed proof is also Special sound, which implies that
unless the prover does not know the transaction balance proof witness, he should not be able to
convince the verifier. We use the witness-extended emulation to define the soundness property of
the transaction balance proof as is defined in [22] and used for example in [7].
Informally witness-extended emulation implies that whenever an adversary produces an proof which
satisfies the verifier with some probability, then there exists an emulator producing an identically
distributed proof with the same probability of acceptance, but also the corresponding witness. The
emulator is permitted to rewind the interaction between the prover and verifier to any move, and
resume with the same internal state for the prover, but with fresh randomness for the verifier. We
leverage the soundness properties of the one-out-of-many proofs, Schnorr’s proof of representation
and bulletproofs to show how the emulator can extract the balance proof witness and generate an
associated valid proof.

Note that according Spend algorithm description and the equation (3), the balance proof witness
is comprised of the following elements:

{vit, Rit, {ρtk, τ tk, γtk}m−1k=0 , (x1, . . . , xnew), (vo1, . . . , v
o
new)}

where vit and Rit are the t-th input coin amount and blinding factor accordingly for all t ∈ 1, ..., old,
{ρtk, τ tk, γtk}

m−1
k=0 are the random values used to generate the one-out-of-many proof for the t-th spent

coin, vol and xl are the l-th output coin value and blinding factor. For each t ∈ 1, ..., old the spend
proof outputs the values

zvt = vit · xm −
m−1∑
k=0

ρtkx
k, zRt

= Rit · xm −
m−1∑
k=0

τ tkx
k

and

Gt0 = Comm(0, ρt0, γ
t
0 + τ t0), · · · ,

Gtm−1 = Comm(0, ρtm−1, γ
t
m−1 + τ tm−1)

Next we briefly describe how to build an emulator which extracts all witness elements. We leave the
full argument description to the full paper.
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1. Step 1: Extracting the values vit, R
i
t, {ρtk, τ tk}

m−1
k=0 : We use the (m + 1) special-soundness

property of one-out-of-many proofs to extract all secret values used to generate the elements zvt
and zRt

. For the given transaction, when the prover submits the initial statements of all one-
out-of-many proofs for each input coin, the emulator rewinds the prover with (m+ 1) different
randomnesses x(0), x(1), . . . , x(m) and gets (m+ 1) different one-out-of-many proof responses for
each initial statement. At the end of this loop, for any spent coin the emulator can construct
the following system of linear equations:

z0vt = vit · xm(0) −
m−1∑
k=0

ρtkx
k
(0)

z1vt = vit · xm(1) −
m−1∑
k=0

ρtkx
k
(1)

...

zmvt = vit · xm(m) −
m−1∑
k=0

ρtkx
k
(m)

As all x(i) are unique, the system of linear equations will have an invertible matrix of coefficients.
Therefor the emulator can solve the system and find all (m+ 1) unknowns vit, ρ

t
0, ρ

t
1, . . . , ρ

t
m−1.

Similarly the emulator can extract the unknownsRit, τ
t
0, τ

t
1, . . . , τ

t
m−1 from the values z0Rt

, z1Rt
, . . . , zmRt

.

2. Step 2: Extracting the values γt0, γ
t
1, ...γ

t
m−1. Using the 3-special-soundness property of the

Shnorr’s proofs of representation, the emulator can extract the witness of the Schnorr’s proofs
provided for the balance proof equation by rewinding the prover with 3 fresh random values:

A

B
=
h(vout+v

o
1+...+v

o
new+fee)xm ·Q(x1·xm)

1 · · · · ·Q(xnew·xm)
new

h(v
i
1+···+viold)xm · f

∑old
t=1

(
RI

t ·xm+
∑m−1

k=0 γt
k·xk

)
The witness of the Schnorr’s proof of representation is comprised of the values (x1·xm), . . . , (xnew·
xm) and T =

∑old
t=1

(
Rit ·xm+

∑m−1
k=0 γ

t
k ·xk

)
and as the challenge variable x is fixed, the extraction

of x1 · xm, x2 · xm and xnew · xm will immediately reveal the values x1, x2, . . . , xnew .
In order to extract all l = t ·m values γtk, the emulator restarts rewinding the prover l = t ·m
times with different challenge variables x(1), x(2), . . . , x(t·m) and generates the Shnorr’s proof

of representation for all different computations A
B . Next, also running the soundness proof of

Schnorr’s proof of representation the emulator will be able to eventually extract t ·m different
values

Ti =

old∑
t=1

(
RIt · xm(i) +

m−1∑
k=0

γtk · x(i)k
)

for each i ∈ {1, . . . , tm} and obtain a system of linear equations

T1 −
old∑
t=1

(
Rt · xm(1)

)
=

old∑
t=1

m−1∑
k=0

γtk · xk(i)
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T2 −
old∑
t=1

(
Rt · xm(2)

)
=

old∑
t=1

m−1∑
k=0

γtk · xk(2)

...

Tl −
old∑
t=1

(
Rt · xm(l)

)
=

old∑
t=1

m−1∑
k=0

γtk · xk(l)

where we assume the value RT is extracted during the previous round of emulation. As all x(i) are
different, the coefficient matrix will be invertible with an overwhelming probability and the emu-
lator can solve the system to extract the unknowns {γtk} for all t ∈ 1, . . . , old and k ∈ 0, . . . ,m−1.

At the next step we can extend the emulation process by using the witness-extended emula-
tion for bulletproofs to also extract the output coin values. Importantly, as the solution of the
linear equation system of size m or t·m can be found in a polynomial time, and also the emulator
for the bulletproofs will work in the expected polynomial time, than our emulator will work in
the expected polynomial time.
Soundness of the balance proof implies that for any accepting proof all input values including the
elements Gk used by the prover are formed correctly and the prover possesses the corresponding
witness. This soundness property of the transaction balance proof is used to prove the Balance
property of the DAP scheme as defined in the Appendix C.

Appendix C DAP scheme security

In this section we formally discuss the security of our decentralized anonymous payment scheme
within the DAP scheme security framework introduced by Zerocash[3] and recall all corresponding
definitions and notations below for the sake of paper integrity.

Definition C.1 A DAP scheme Π=(Setup, CreateAddress, Mint, Spend, Receive, Verify) is secure,
if it is Complete and satisfies the Ledger Indistinguishability, Transaction Non-Malleability
and Balance properties.

Completeness implies that any unspent coin on the ledger can be spent by the respective owner
which means that if the coin commitment C appears on the ledger L but the coin’s serial number sn
does not appear in the list S-Pool, then the coin C can be spent using a valid Spend transaction. It
is easy to check that for our scheme this property immediately follows from the completeness prop-
erty of the one-out-of-many proof construction and the fact that all coin’s serial numbers are unique.

The next security properties are formalized as a game between a polynomial-time adversary A
and a challenger C, and in each game the behavior of honest parties is simulated via a oracle ODAP .
The oracle ODAP maintains a ledger L and provides an interface for executing CreateAddress,
Mint, Spend and Receive algorithms for honest parties. To simulate behavior from honest parties,
A passes a query to C, which makes sanity checks and then proxies the queries to ODAP . For the
Mint or Spend queries A is allowed to specify the identities of previous transactions, input coins and
recipient addresses. The A learns the resulting transaction but not any of the secrets or trapdoors
involved in producing the transaction. The oracle ODAP also provides an Insert query that allows
A to directly insert arbitrary and potentially malicious transactions to the L.
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Balance: This property requires that no bounded adversary A can own more money than what
he has minted or received via payments from others. Balance is formalized by the following BAL
experiment. The A adaptively interacts with ODAP and at the end of the interaction outputs a set
of coins Scoin. Letting ADDR be set of all addresses of honest users generated by CreateAddress
queries, A wins the game if vunspent + vbasecoin + vA−→ADDR > vmint + vADDR−→A which means the
total value he can spend or has spent already is greater than the value he has minted or received,
where

1. vunspent is the total value of unspent coins in the Scoin.
2. vbasecoin is the total value of public outputs of Spend transactions inserted by A on the ledger.
3. vmint is the total value of A′s mint transactions.
4. vADDR−→A is the total value of payment received by A from addresses in ADDR
5. vA−→ADDR is the total value of payments sent by the adversary to the addresses in ADDR.

Definition C.2 A DAP scheme Π=(Setup, CreateAddress, Mint, Spend, Receive, verify) is BAL
secure if the adversary A wins the game BAL only with negligible probability.

Pr[BAL(Π,A, λ) = 1] ≤ negl(λ)

Ledger Indistinguishability: This property implies that no bounded adversary A will be able to
extract any other information from the ledger except what is already publicly revealed. Lelantus
transactions reveal the public values of new minted coins, the number of Spend transaction inputs
and outputs and also the recipient addresses. Note that the Ledger-indistinguishability property
includes the anonymity property defined for Zerocoin in the [4] as a special case. It is formalized
by the following experiment L-IND: First, a challenger samples a random bit b and initializes two
DAP scheme oracles ODAP0 and ODAP1 maintaining proprietary ledgers L0 and L1. Throughout,
the challenger allows A to issue queries to both oracles, thus controlling the behavior of honest
parties on L0 and L1. At each round of the experiment, the adversary issues queries in pairs Q,Q′

which are of the same query type. If the query type is CreateAddress, then the same address
is generated at both oracles. If it is either Mint, Spend or Receive, then Q is forwarded to L0

and Q′ to L1. For Insert queries, the query Q is forwarded to Lb and Q′ is forwarded to L1−b.
An important restriction is set that the adversary’s queries should maintain the public consistency
and the consistency of A’s view of both ledgers. For example, all public values for Mint and Spend
queries, also the number of inputs and outputs of Spend queries must be the same. The coin values
sent to addresses controlled by the adversary in both queries should match. After each round, the
challenger provides the adversary with the view of both ledgers, but in randomized order: Lleft := Lb
and Lright := L1−b. The adversary’s goal is to distinguish whether the view he sees corresponds to
(Lleft, Lright) = (L0, L1) or to (Lleft, Lright) = (L1, L0). At the conclusion of the experiment, A
outputs a guess b′ and wins if b′ = b. Ledger indistinguishability requires that A wins L-IND with
probability at most negligibly greater than 1/2.
Definition C.3 A DAP scheme Π=(Setup, CreateAddress, Mint, Spend, Receive, Verify) is L-IND
secure if the adversary A wins the game L-IND only with negligible probability.

Pr[L-IND(Π,A, λ) = 1]− 1

2
≤ negl(λ)

Transaction Non-Malleability: This property requires that no bounded adversary A can alter a
valid txspend transaction data. Transaction non-malleability prevents malicious attackers from modi-
fying others’ transactions by re-addressing the outputs of a Spend transaction before the transaction
is added to the ledger. Note, that the non-malleability property of the Mint transactions is assured
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with help of the basecoin layer signatures put on the UTXO spending transactions. Following to
the Zerocash definition, transaction non-malleability is formalized by an experiment TR-NM, in
which A adaptively interacts with the oracle ODAP and then outputs a spend transaction tx∗. Let-
ting T denote the set of all Spend transactions returned by ODAP, and L denote the final ledger,
ODAP wins the game if there exists tx ∈ T , such that (i) tx∗ 6= tx; (ii) tx∗ reveals the same serial
serial number contained in the tx; and (iii) both tx and tx∗ are valid transactions with respect
to the ledger L′ containing all transactions preceding tx on L. In other words, A wins the game
if tx∗ manages to modify some previous Spend transaction tx to spend the same coin in a differ-
ent way. Transaction non-malleability requires that A wins TR-NM with only negligible probability.

Definition C.4: A DAP scheme Π=(Setup, CreateAddress, Mint, Spend, Receive, verify) is
TR-NM secure if the adversary A wins the game TR-NM only with negligible probability.

Pr[TR-NM(Π,A, λ) = 1] ≤ negl(λ)

C.1 Proof of Transaction Non-Malleability

Let T be the set of all txspend transactions generated by the ODAP in response to the adversaries
Spend queries. Note that A does own any of the secrets or trapdoors involved in producing these
transactions or the relevant secret keys.The adversary A wins the TR-NM experiment described
above, whenever it outputs a valid transaction tx∗ such that for some tx ∈ T the following holds:

1. tx∗ 6= tx.
2. Verify(pp, tx∗, L′) = 1 where L′ is the part of the ledger preceding tx.
3. A serial number revealed in tx∗ is also revealed in tx.

Let’s define ε = Pr[TR-NM(Π,A, λ) = 1]. Our goal is to prove that the ε is negligible in λ.
Without loss of generality we can assume that both transactions tx∗ and tx spend a single input
coin. Let’s assume the tx∗ spends the coin C∗ sent to the public address addrpk∗ . Note that the
corresponding secret address is a tuple of three scalars addrsk = (ki, si, ri). Let’s define

tx =
{

(sn, πooon), (addrpk, C
o, D, πrange)

πbalance, vout, fee, σ
}

= (memo, σ)

and

tx∗ =
{

(sn, πooon∗), (addrpk∗ , C
o∗, D∗, π∗range)

π∗balance, v
∗
out, fee

∗, σ∗
}

= (memo∗, σ∗)

where memo is the transaction data without the signature. Assume by way of contradiction that ε
is not negligible. According to our construction, the coin spend through tx was computed as C =
hvQx = gsxhvfrx, where Q is part of the corresponding public address addrpk = (P = gk, Q = gsfr).
The serial number sn of the output coin Co revealed during the tx is of the form sn = gS which is
a valid public key with a witness S = sx and serves as a verification key for the signature σ. S is
the product of two secret values s and x, where s is a part of the secret address addrsk. Recall that
A does own any secret value involved in producing either the addrsk or C. Hence the following two
disjoint events may occur.

25



• The adversary knows the serial number witness S = sx. As s is part of the recipient’s secret
address and x is a blinding value both being chosen randomly, S will be indistinguishable from a
random number. The possibility of guessing the correct value of S without knowing both s and
x is negligible. Note that the public address component Q is a commitment to s via Pedersen
commitment scheme, and a ciphertext D = Eenc(x, P ) encrypts x with the public key P , which
appears on the ledger. Both Q and D appear on the ledger, but as long as the discrete logarithm
problem is hard and the public-key encryption scheme is IND-CCA secure, the attacker can
extract or guess the correct value of s and x only with a negligible probability.

• The adversary does not know the witness S. As the attacker A wins, we a have tx∗ 6= tx′ which
means (memo′, σ′) 6= (memo∗, σ∗). Next, as both transactions are valid we have Vsig(sn,memo∗, σ∗) =
1 and Vsig(sn,memo, σ) = 1. This means the adversary could generate a valid signature for the
given message under the verification key sn without possessing the signature key. If the proba-
bility of this event is non-negligible, then it will be possible to win the SUF-1CMA game against
the signature scheme Sig with non-negligible probability.

C.2 Proof of Balance

In this section we show that our DAP scheme satisfies to the BAL security property according to
the definition C.2. Assuming ε = Pr[BAL(Π,A, λ) = 1], we will prove that ε is negligible in λ. In
order to prove the balance security, first the BAL experiment is modified in a specific way that does
not affect the A’s view: For each spend transaction

txspend =
{
{(sn1, πooon1) . . . , (snold, πooonold

)},

πbalance, vout, fee, (addrpk1
, Co1 , D1, πrange1),

. . . , (addrpknew
, Conew, Dnew, πrangenew), σ1, . . . , σold

}
on the ledger L, the challenger C computes the transaction witness a =

(
l1, . . . , lold; (Si1, v

i
1, R

i
1),

. . . , (Siold, v
i
old, R

i
old); (So1 , v

o
1, R

o
1), . . . , (Sonew, v

o
new, R

o
new)

)
. Assuming a witness data is computed

for all Spend transactions inserted either by Spend or Insert queries, the challenger maintains an
augmented ledger (L,~a) where ai is the witness data for the i-th Spend transaction. The resulted
augmented ledger (L,~a) is balanced if the following holds.

1. Each (txspend, a) in (L,~a) contains openings of distinct coin commitments and each commitment
is an output of valid Mint or Spend transaction which precedes txspend on the ledger. This
requirement implies that all transactions spend only valid coins and no coin is spent more than
once within the same transaction.

2. No two inputs (txspend, a) and (tx′spend, a
′) in (L,~a) contain openings of the same coin commit-

ment. This implies no coin is spent through two different transactions. Together with the first
requirement this implies that each coin is spent only once.

3. For each (txspend, a) in (L,~a) which spends old input coins, and for each k ∈ 1, . . . , old the
following conditions hold:
• If the i-th input of the txspend transaction Cik is the output of some mint transaction txmint

on L, then the public value v in txmint is equal to vik.
• If Cik is an output of some Spend transaction tx∗spend on L, then the witness a∗ contains an

opening of that output coin commitment Co∗ to a value v∗ that is equal to vik.
This implies that no assets have been created out of thin air while spending a coin.
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4. Each (txspend, a) in (L,~a) contains openings of Ci1, . . . , C
i
old and Co1 , . . . , C

o
new to values vi1, . . . , v

i
old

and vo1, . . . , v
o
new so that the balance condition holds: vi1 + . . .+viold = vo1 + . . .+vonew+vout+fee.

This means the transaction balance is preserved by all Spend transactions and no assets have
been created out of thin air during new coins generation process.

5. For each (txspend, a) in (L,~a) where the txspend was inserted by A through an Insert query, it
holds that, for each k ∈ 1, . . . , old, if the Cik is the output of an earlier Mint or Spend transaction
tx′, then the public address addrpk associated with the coin Cik in the transaction tx′ is not
contained in ADDR, which is the set of addresses belonging to honest users and returned by a
CreateAddress queries.This means that the adversary can not spent a coin created by honest
parties.

If these five conditions jointly hold than obviously the A did not spend or control more money than
it was previously minted or paid to one of his addresses: vmint + vADDR−→A ≥ vUnspent + voutput +
vA−→ADDR. Therefore, in order to prove that the DAP scheme is BAL secure it suffices to prove
that the augmented ledger is balanced with all but negligible probability.
By way of contradiction let’s assume the the adversary A produces a non-balanced augmented ledger
(L,~a) with non-negligible probability which means that one or more of the five conditions described
above have been violated with non-negligible probability. We show how this leads to a contradiction.

A violates Condition 1: Suppose that Pr[A wins but violates the Condition 1] is non-negligible.
Each txspend generated by honest parties satisfies this condition by default thus the violation im-
plies there exist a pair (txspend, a) in (L,~a) where the txspend was inserted by the A. Assuming
txspend spends old coins then the following holds: (i) ∃j, k ∈ {1, . . . , old} s.t. Cij = Cik or (ii) there

∃k ∈ {1, . . . , old} such that the coin Cik has no corresponding output coin commitment in any Mint
or Spend transaction tx created before txspend. Either scenario leads to contradiction as shown
below.

• Let’s denote Cij = gS
i
jhv

i
jfR

i
j and Cik = gS

i
khv

i
kfR

i
k . As the txspend is a valid transaction, all

serial numbers revealed by the transaction are distinct so Sj 6= Sk. If the condition (i) holds,
this means the witness a contains two different openings (Sij , v

i
j , R

i
j) 6= (Sik, v

i
k, R

i
k) for the same

commitment Cij = Cik. This violates the binding property of the commitment scheme.

• Assuming the transaction txspend spends an input Cik which does not appear on the ledger L
as an output of any preceding Mint or Spend transaction. The witness a contains an opening
(Sk, vk, Rk) of the commitment Cik and its secret index lk, which identifies the spent coin com-
mitment’s position in the set of all previously output coin commitments. As the txspend is a valid
transaction, it reveals a unique serial number snk and an one-out-of-many proof πooonk

which is
valid with respect to the anonymity set C-Pool. If the coin Cik does not appear on the C-Pool,
this violates the soundness property of the underlying one-out-of-many proof construction.

A violates Condition 2: Suppose that Pr[A wins but violates the Condition 2] is non-negligible.
This means the ledger L contains two valid transactions txspend and tx′spend which spend the same

coin commitment C but reveal distinct serial numbers sn = gS and sn′ = gS
′
. Similar to the ar-

gument above, this means the ~a contains two different openings (S, v,R) 6= (S′, v′, R′) of the same
coin commitment which violates the binding property of the commitment scheme.

A violates Condition 3: Suppose that Pr[A wins but violates the Condition 3] is non-negligible.
In this scenario the ledger L contains a transaction txspend in which an input coin commitment
C opens to a value v but it violates one of the (i) or (ii) requirements of the Condition 3 with
non-negligible probability.
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• Assuming the requirement (i) is violated, there is a txmint transaction, which outputs the the
coin commitment C opening to v, but its public input vin 6= v. As the txmint is valid, it contains
a proof of knowledge of the exponent value x of the element C

hvin
= Qx with respect to the base

point Q. The public address also contains a proof of representation πQ which proves that Q is
represented only with respect to the generators g and f and does not contain any h component.
In case C encodes a value v not equal to vin, this breaks the soundness property of the Schnorr’s
proof of knowledge.

• Assuming the requirement (ii) is violated, there is a tx′spend which outputs the coin commitment
C with different coin value v′ 6= v. In this situation the augmented ledger will contain two
different openings of the same commitment (S, v,R) 6= (S′, v′, R′) for the same commitment C.
Obviously this violates the binding property of the commitment scheme

.
A violates Condition 4: Suppose that Pr[A wins but violates the Condition 4] is non-negligible.
This means the ledger L contains a txspend transaction where vi1+ . . .+viold 6= vo1 + . . .+vonew+vout+
fee. As the transaction is considered valid and an accepting balance proof is provided, this violates
the soundness property of the transaction balance proof proved in the Appendix B and leads to a
contradiction.

A violates Condition 5 Suppose that Pr[A wins but violates the Condition 5] is non-negligible.
The violation of the Condition 5 means there exists a txspend inserted by A which spends a coin C
controlled by an honest party. Without loss of generality we can assume the txspend spends a single
input to a single output and is of the form

txspend =
{

(sn, πooon), (addropk, C
o, D, πrange)

πbalance, vout, fee, σ
}

= (memo∗, σ∗)

Let’s assume that addrpk = (P,Q, πQ) is the mentioned public address controlled by an honest party
which was used to generate the spent coin C. The corresponding secret address is addrsk = (k, s, r)
where Q = gsfr, P = gk. Assuming the coin C was computed as C = Qxhv = gxshvfxr. Based
on the soundness property of the one-out-of-many proof, the adversary can generate a valid spend
proof only after possessing the corresponding witness data (xs, v, xr). As we have shown in the
transaction non-malleability proof, the adversary can get the witness only by breaking the security
of the underlying public key encryption and commitment schemes. As long as the discrete logarithm
problem is hard, the adversary has nothing but a negligible chance to do this.

C.3 Proof of Ledger Indistinguishability

We will show that our DAP scheme satisfies to the L-IND security property according to the Defi-
nition C.3. Assuming ε = 2 ·Pr[L-IND(

∏
,A, λ) = 1]− 1, we will prove that ε is negligible in λ. We

define the L-IND experiment below.

Given the DAP scheme
∏

, the L-IND experiment is an interaction between the adversary A and
a challenger C which terminates with a binary output by C. As discussed in the Section 3.B, at
the beginning of the experiment, the C samples pp ←− Setup(1λ) and sends to A; next it samples
a random bit b ∈ {0, 1} and initializes two separate DAP oracles ODAP0 and ODAP1 each with own
separate ledger and internal state. At each consecutive step of the experiment
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1. C provides A two ledgers (Lleft = Lb, Lrigth = L1−b) where Lb and L1−b are the current ledgers
of the oracles ODAPb and ODAP1−b respectively.

2. A sends to C two queries Q,Q′ of the same type (i.e. one of CreateAddress, Mint, Spend,
Receive, Insert).
• If the query type is Insert or Mint, C forwards Q to Lb and Q′ to L1−b enabling the A to

insert own transactions or mint new coins directly in Lleft and Lright.
• For all queries of type CreateAddress, Spend or Receive, the C first checks if two queries
Q and Q′ are publicly consistent and then forwards Q to ODAP0 and Q′ to ODAP1 . It gets
the two oracle answers a0 and a1.

3. C replies to A with ab, a1−b.

As the adversary does not know the bit b and the mapping between (Lleft, Lright) and (L0, L1),
he can not learn weather he elicit the behavior of honest parties on (L0, L1) or on (L1, L0). At
the end of the experiment, A sends C a guess b′ ∈ {0, 1}. C outputs 1 if b = b′, and 0 otherwise.
In our experiment we assume no public address is used more than once for either Mint or Spend
transactions. We require the queries Q and Q′ be publicly consistent as follows: If the query type
of Q and Q′ is Receive,they are publicly consistent by default. If the query type of Q and Q′ is
CreateAddress, both oracles generate the same address. If the query type of Q and Q′ is Mint,
the minted values of both queries should be equal. If the query type of Q and Q′ is Spend then

• Both Q and Q′ should be well-formed and valid which means the referenced input coin com-
mitments must appear in the corresponding ledger’s C-Pool and be unspent. The transaction
balance equation must hold.
• The number of spent coins and output coins must equal. The Recipient address list should be

the same for both queries. The public values and the transaction strings in Q and Q′ must be
equal.
• If the i-th spent input in Q references a coin commitment in L0 posted by the A through an

INSERT query, then the corresponding index in Q′ must also reference a coin commitment in
L1 posted by A through an INSERT query and the coin values of these two coins must be equal
as well( and vice versa for Q′).
• For the j-th output coin in Q, if the corresponding recipient address is not in ADDR (i.e.,

belongs to A), then voj in both Q and Q′ must be equal and vice versa for Q′.

In order to prove that A’s advantage in the L-IND experiment is negligible, we first consider a
simulation experiment Dsim, in which A interacts with the C as in the L-IND experiment with the
following modifications.
The simulation experiment Dsim: Recalling the special honest-verifier zero-knowledge nature of
one-out-of-many proofs, Bulletproofs and proofs of discrete logarithm representation we can build
a honest verifier zero-knowledge simulator which, given a challenge x ∈ {0, 1}λ, can simulate the
validity proof of Spend transactions by simulating all its different building blocks.
The simulation. The simulation Dsim works as follows: As in the original experiment, the C samples
the system parameters pp = Setup(1λ) and a random bit b, next initializes two separate DAP oracles
ODAP

0 and ODAP
1 . Afterwards Dsim proceeds in steps. At each step it provides to A two ledgers

Lleft := Lb, Lright := L1−b after which A sends two publicly consistent queries (Q,Q′) of the same
type. Recall that the queries Q and Q′ are publicly consistent with respect to public information and
the information related to the addresses controlled by A. Depending on the Q’s type, the challenger
acts as follows:

• Answering CreateAddress, Mint, Receive, Insert queries: In these cases the answer to each
query proceeds as in the original L-IND experiment.
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• Answering Spend queries: In this case Q and Q′ have the form

(Spend, Ci1, addripk,1, . . . , C
i
old, addripk,old, v

o
1, . . . , v

o
new, addropk,1, addropk,new, vout)

. The challenger generate a simulated txspend as follows:

1. For j ∈ 1, . . . , old
• Samples a random snj = gsj .
• Simulates the proof πSimooonj

←− Sim(OOON, snj).
• If addropkj

is not generated by one of the previous CreateAddress queries and is obvi-

ously controlled by the adversary, the simulator calculates the values Coj and Do
j as in

the Spend algorithm.
• If addropkj

belongs to a honest party and is generated by a previous CreateAddress, C
∗ Samples a random coin commitment Coj = gr1hr2fr3

∗ Generates new public key encryption key pair (k′, P ′) ←− Kenc(ppenc) and computes
Do
j = Eenc(P ′, r) for a random r of an appropriate length.

2. Simulate the balance proof by using a zero-knowledge simulation for the Schnorr proof of
representation: πSimbalance ←− Sim(DLREP, {Co1 , . . . , C0

new, π
Sim
ooon1

, . . . , πSimooonold
})

C does the same for the second query Q′. We define AdvD the advantage of A’s to win the L-IND
game in the experiment D.
As can be seen from the simulation described above, all answers sent to A in Dsim are computed
independently of the bit b which makes AdvDsim = 0. We will prove that A’s advantage in the real
L-IND experiment Dreal is at most negligibly different than A’s advantage in Dsim. In order to prove
that let’s describe two intermediary experiments, in each of which C conducts a specific modification
of the Dreal experiment with A.

Experiment D1: This experiment modifies Dreal by simulating all one-out-of-many proofs, the
bulletproofs and the balance proof without using any witnesses. As all these protocols are perfect
zero-knowledge, the simulated proofs are indistinguishable from the real proofs generated in Dreal.
Hence the advantage AdvD1 −AdvDreal = 0.

Experiment D2: This experiment modifies D1 by replacing all ciphertexts corresponding to ad-
dresses of honest recipients, in the D1 experiment with encryption of random strings of appropriate
lengths. Assuming the underlying encryption scheme is IND-CCA and IK-CCA secure, we can get
that the adversaries advantage in the D2 experiment is negligibly different from its advantage in the
D1 experiment. The proof logic is identical to the proof of Lemma D.1 in [3]. As |AdvD2 −AdvD1 | ≤
negl(1λ) and AdvD1 −AdvDreal = 0, we can conclude that |AdvD2 −AdvDreal | ≤ negl(1λ).

Experiment Dsim: The Dsim experiment is already defined above and it differs from D2 by the fact
all output coin commitments corresponding to the public addresses of honest parties are replaced by
commitments to random values. We do not give the full argument here, but based on the perfectly
hiding property of the commitment scheme, the commitment to random values C = gr1hr2fr3 is
indistinguishable from a commitment to the given output value vo computed as C = Qxhv

o

. Hence
this replacement gives the adversary an extra zero advantage and |AdvDsim −AdvD2 | = 0.

This finalizes the proof by showing that |AdvDsim −AdvDreal | ≤ negl(1λ).
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