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Abstract

Let q be a power of an odd prime p. Denote the finite field of q elements

by Fq. We present a simple algorithm for Miller inversion for the reduced

Tate pairing on certain supersingular elliptic curve defined over Fq with em-

bedding degree 2 or 3. Let d be an embedding degree. Assume we precom-

puted a generator of the d-Sylow subgroup of Fq
×
, which depends only on q

and d. Then our algorithm runs deterministically with O(( logq)
3
) bit

operations.

1. Introduction

Difficulty of pairing inversion is a fundamental assumption in pairing based

cryptography. Duc and Jetchev[6, Sect. 5.2] gives explicit description how pairing in-

versions break Boneh-Franklin’s IBE, Hess’ IBS and Joux’s tripartite key agreement

protocol. More interestingly, Verheul[17] proved that the computational Diffie-Hellman

problem is reduced to pairing inversion. The result is extended to asymmetric pairings

by Karabina, Knapp and Menezes[12].

Galbraith, Hess and Vercauteren[9] proposed a two step pairing inversion

framework. The first step is called final exponentiation inversion (FEI), while the

second step is called Miller inversion (MI). In general, both steps are considered to

be difficult. However, [9, Sect. 6] proposes a family of pairing friendly elliptic curves

whose MI are easy. Akagi and Nogami[1] proved that MI are easy for Barreto-

Naehrig curves[3] of embedding degree 12, Brezing-Weng[5] curves of embedding degree

8 and Freeman curve[7] of embedding degree 10. Assuming Bateman and Horn

conjecture[4] which is plausible but unproved, we see that these families consists of in-

finitely many elliptic curves. The purpose of this short note is to prove that MI is

easy on supersingular curves with embedding degree two or three, which form a family

consisting of infinitely many curves.

Another importance of supersingular curves is as follows: Let p be a prime. Let

G be a prime order subgroup of the unit group of the algebraic closure of Fp and let

k be the smallest positive integer satisfying G ⊂Fpk. Assume 3|k and p ≡ 5 mod 6.

Then the computational Diffie-Hellman problem is reduced to the reduced Tate pairing

inversion problem of some supersingular curves E of embedding degree 3 over a finite

extension of Fp, provided if such E exists. Sufficient conditions for existence of such

E and its construction are described in Section 2. Here we observe that a property of

a single embedding degree for supersingular curves is applicable to infinitely many k.

A similar property holds for the case 2|k and p ≡ 3 mod 4.
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Our algorithm and its computational complexity is described in Sections 3 and 4.

For the embedding degree three case, we utilize the fact that the Frobenius endomor-

phism acts trivially on the Y -coordinate of some points, which keeps our algorithm

simple. Similar technique is applicable to the embedding degree two case. However,

we use a property of the Ate pairing due to Granger et al.[10, Theorem 2], which

seems more essential.

If we exclude side-channel attacks (and use of quantum computers), FEI seems to

be a very hard problem. See Vercauteren[16]. If FEI is actually a hard problem, our

result has probably no impact to real world cryptography. However, Lashermes,

Fournier and Goubin[13] gives a fault attack method for FEI. Although their method

is intended for ordinary curves, it is also applicable to supersingular curves. Indeed,

the method described in Section 4.2 of [13] is sufficient for the embedding degree two

case. Thus, if one has concerns about fault attacks, final exponentiation must be so

implemented that it is immune to such attacks.

Notation.

Throughout this note, an elliptic curve E is given by the Weierstrass form. The X

and Y coordinate functions are denoted by ξ and η, respectively. We use τ :=,ξ/η as a

local parameter at the point O at the infinity of E. For a rational function f on E,

we denote by lc(f ) the leading coefficient of Laurent series expansion of f at O w.r.t.

τ, i.e.,

f = lc(f )τm+O(τm+1)

where m is a order of zero of f at O (negative if f has a pole at O). A rational

function f is said to be normalized if lc(f ) = 1. For ρÎEnd(E), we define lc(ρ) := lc(τ◦ρ).
Note that lc(f ) depends on a choice of a local parameter at O, whereas lc(ρ) does not.

For an object over a field of characteristic p, we write pn-th power Frobenius as ϕpn.

Finally, for P Î E and nÎN, we denote by hn,P the normalized n-th Miller function for

P, i.e., the normalized rational function satisfying divhn,P =n[P],[nP],(n,1)[O].

2. Supersingular Curves

We construct some supersingular elliptic curves used in reducing certain computational

Diffie-Hellman problems to pairing inversion problems. Their construction is well

known or easily derived from well known results. Let p be a prime. For an integer

n which is co-prime to p, we denote by µn the group of n-th roots of unity in Fp
a

where Fp
a

is an algebraic closure of Fp. Let k be a finite extension of Fp and put

K := k(µn). Let E/k be an elliptic curve. For P Î E(K )[n] and QÎ E(K ), the n-th re-

duced Tate pairing is defined by

〈P, Q〉n := hn,P(Q)
#
(K

×
)/n

.

In our application, E[n]⊂ E(K ) and it induces a bilinear pairing E[n]×E[n]→µn. Let

G ⊂Fp
a×

be a finite subgroup of a prime order l ≥ 5

Lemma 2.1. Assume p ≡ 5 mod 6. Let k be the smallest positive integer satisfying
G ⊂Fpk

×
. Assume that k is divisible by 3. Put
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q¢ :=
èç
çí
çç
æ

pk/3

pk/6

(k/3 is odd),

(k/3 is even),

and q := q¢2. Then there exists a supersingular curve E/Fq satisfying the followings.

(1) l|
#
E(Fq).

(2) E[l]⊂ E(Fq3).

(3) µl ⊂Fq3

×
.

(4) j(E) = 0.

Proof. First we prove (1)−(3) in case that k/3 is odd. The assertion (3) is obvious

since q3 = p2k. Put t :=,q¢ and N := q,t+1. Since l is prime, either l|q¢,1 or

l|q+q¢+1 = N . By the minimality of k, we see l|N . By Waterhouse[18, Theorem 4.1],

there exists a supersingular curve E/Fq whose trace of the q-th power Frobenius ϕq is

t. Hence
#
E(Fq) = N , which proves (1). Suppose l|q,1. Then, we have

l|gcd(q,1, q+ q¢+ 1) = gcd(q,1, q¢+ 2) = gcd(q,1,(q¢2 , 4), q¢+ 2) = gcd(3, q¢+ 2) = 1,

a contradiction. By Balasubramanian and Koblitz[2, Theorem 1], we see (2) holds.

Next, we prove (1)−(3) in case that k/3 is even. Again, the assertion (3) is ob-

vious since q3 = pk. Put t := q and N := q,t+1. We see l divides one of q¢,1, q¢+1,

q+t+1, N . However l|q+t+1 implies G ⊂Fpk/2

×
which contradicts the minimality of k.

Similarly, we see l|/ q¢±1. Thus l|N . The existence of E and the assertion (1) follow

from the same argument as above. The assertion (2) holds because

gcd(q,1, q, q¢+ 1) = gcd(q,1,, q¢+ 2) = gcd(q,1, (q¢2 , 4), q¢, 2)|3

implies l|/ q,1.

Finally, we prove (4). Let t and N be as above. Since [q¢] is purely

inseparable, there exists ωÎAut(E) satisfying [q¢] =ωϕq. Then ϕq
2,tϕq+q = 0 in End(E)

implies that

ω2 , sgn(t)ω+ 1 = 0. (2.1)

This shows that sgn(t) lc(ω) (ÎFq
×
) is a primitive 6th root of unity. Therefore

#
Aut(E) = 6, which proves j(E) = 0 (see e.g. Silverman[15, Sect. III.10]). ÷

Lemma 2.2. Assume p ≡ 3 mod 4. Let k be the smallest positive integer satisfying
G ⊂Fpk

×
. Assume that k is divisible by 2. Put q := pk/2. Then there exists a supersin-

gular curve E/Fq satisfying the followings.

(1) l|
#
E(Fq).

(2) E[l]⊂ E(Fq2).

(3) µl ⊂Fq2

×
.

(4) j(E) = 1728.

Proof. Assertions (1)−(3) are proved by a similar (in fact easier) method to the proof

of Lemma 2.1. We prove (4). In case that k/2 is odd, any elliptic curve E defined

over Fq satisfying j(E) = 1728 is supersingular. We choose such a curve as E. In

case that k/2 is even, the unique automorphism ω satisfying [Ö
]]
q] =ωϕq satisfies

ω2+1 = 0 in End(E). Hence
#
Aut(E) = 4 and j(E) = 1728. ÷
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Once we have proved j(E) = 0 or j(E) = 1728, we can easily construct an explicit Weier-

strass model for E and its distortion map from Galbraith[8, Table IX.1] with some

modifications. Just for completeness, we list them. For a field K and nÎN, we put

K
¬n

:= K ,{xn:xÎ K }.

k p Weierstrass model distortion map

3|k 5 mod 6 Y
2 = X

3+c, c ÎFq
¬3

. (γξp
, c,( p,1)/2ηp), γÎFq3

×
s.t. γ3 = c,( p,1).

k ≡ 2 mod 4 3 mod 4 Y
2 = X

3,cX , c ÎFq
×
. (,ξ, γη), γÎFq2

×
s.t. γ2 =,1.

4|k 3 mod 4 Y
2 = X

3,cX , c ÎFq
¬2

. (c,( p,1)/2ξp
, γηp), γÎFq2

×
s.t. γ2 = c,3( p,1)/2.

Note that γ Î/ Fq
×

in the all cases. Note also that powering is not a q-th power but a

p-th power in the first and the third case. In the first case, the followings are

equivalent: Tr(ϕq) = q¢, 3|
#
E(Fq), E[3](Fq) ≠ {O}, c is square in Fq (consider the third divi-

sion polynomial).

The above table and Karabina, Knapp and Menezes[12, Theorem 3] summarizes to

the following statement.

Proposition 2.3. Let p, G, k and E be as above. Assume that 2|k and p ≡ 3 mod 4

or that 3|k and p ≡ 5 mod 6. Then, the computational Diffie-Hellman problem on G is

reduced to the reduced Tate pairing inversion on E in probabilistic polynomial time

with respect to
#
G.

3. The case of Embedding Degree Three

In this section, we consider the Miller inversion for the case that embedding degree is

three. Let p be a prime satisfying p ≡ 5 mod 6 and let q be an even power of p. We

put q¢ := Ö
]]
qÎN. Let t be either q¢ or ,q¢. Let E/Fq be a supersingular elliptic curve

of Tr(ϕq) = t, given by the short Weierstrass form. Define ωÎAut(E) by [q¢] =ωϕq, as

in Lemma 2.1. Note j(E) = 0 and

ω = ( lc(ω)
,2ξ, lc(ω)

,3η) (3.1)

(see Silverman[15, Sect. III.10] for example). Put N := q,t+1 and r := q3. By

Schoof[14, Lemma 4.8], E(Fq) ≅Z/NZ. The embedding degree for E[N ] is 3. However

we note that in case of t =,q¢, the minimal embedding field in the sense of Hitt[11]

is not Fr but Fq¢3.

Let l be an divisor of N , which is not necessarily a prime in this section. In

case of t ≡ 2 mod 3, we further assume that l is not divisible by 3. Put

G1 := E[l]ÇE(Fq) and G0 := { P Î E[l] : ϕqP = qP }. Then G1ÇG0 = {O} and E[l] =G1⊕G0 since

gcd(q,1, l)|gcd(3, t,2) (cf. proof of Lemma 2.1). In particular, G0 is also a cyclic

group of order l. For AÎG0, observe [q¢]A =ωϕqA = qωA, hence ω,1A = [q¢]A and

ω,2A = qA = ϕqA. (3.2)

Observe that lc(ω)
,2

is a primitive cubic root of the unity (cf. (2.1) and below). Then

(3.1) and (3.2) imply

η◦ω,2 = η, (3.3)

η(A) Î Fq for A Î G0 , {O} (3.4)
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and

ξ(ω,2A) ≠ ξ(A) for A Î G0 , {O}. (3.5)

(Otherwise, (1,lc(ω)
4
)ξ(A) = 0. Hence ξ(A) = 0 and AÎ E(Fq), which contradicts to

G0ÇG1 = {O}). Let ζ be a primitive 3rd root of the unity. Now we state our

algorithm.

Algorithm 3.1.

Input: vÎFr, AÎG0,{O}. // Note that A may not be a generator.

Output: QÎG1,{O} satisfying hN,A(Q) = v if such Q exists. Otherwise, nil.

Procedure:

1: u := v(1+q+q
2
)(2+t)/3 ;

2: if uÎ/ Fq then return nil ;

3: yi := η(A),ζi
u for i = 1, 2, 3.

4: Build a set Li := { QÎ E(Fq) : η(Q) = yi } for i = 1, 2, 3. // Note 0 ≤ #
Li ≤ 3.

5: for each QÎ L1ÈL2ÈL3

6: if lQ =O and hN,A(Q) = v then return Q ;

7: return nil ;

Before we evaluate computational complexity of our algorithm, we clarify assump-

tions on time complexities for operations on elements of Fq or Fr. We assume that Fq

and Fr are so realized that one arithmetic operation in Fq or Fr amounts to O(( logq)
2
)

bit operations. We also assume that a generator g of 3-Sylow subgroup of Fq
×

is

precomputed. This is achieved by a probabilistic algorithm which needs O(( logq)
3
) bit

operations in average. Using g, we can deterministically compute a cubic root of a

cubic element of Fq
×

with O(( logq)
3
) bit operations.

Theorem 3.2. Algorithm 3.1 returns a correct result with O(( logq)
3
) bit operations.

Proof. First, we prove correctness. Suppose there exists QÎG1,{O} satisfying

hN,A(Q) = v. By the definition of the Miller function,

divhN,A = N ([A], [O]),

divhN,ω,2A = N ([ω,2A], [O]),

divhN,ω,4A = N ([ω,4A], [O]).

(3.6)

Observe that A+ω,2A+ω,4A =O. For A, BÎ E, let, as usual, LA,B be the normalized

rational function on E whose divisor is [A]+[B]+[,(A+B)],3[O]. Summing up both

sides of (3.6), we obtain

div(hN,AhN,ω,2AhN,ω,4A) = N ([A]+ [ω,2A]+ [ω,4A], 3[O]) = N div LA,ω,2A.

Since both functions hN,AhN,ω,2AhN,ω,4A and LA,ω,2A are normalized,

hN,AhN,ω,2AhN,ω,4A = LA,ω,2A
N

.

By (3.5),

LA,ω,2A = , η+ ξ(ω,2A),ξ(A)

η(ω,2A),η(A)]]]]]]]]]]]]](ξ , ξ(A))+ η(A).

The term containing ξ(A) vanishes by (3.3). Therefore

hN,AhN,ω,2AhN,ω,4A = (, η+ y)
N
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where y := η(A) = η(ω,2A) = η(ω,4A). Since E is defined over Fq,

ϕq(hN,A(Q)) = hN,ϕqA(ϕqQ) = hN,ω,2A(Q)

while by definition ϕqhN,A(Q) =hN,A(Q)
q
. Taking (3.4) and η(Q)ÎFq into consideration,

we obtain

hN,A(Q)
1+q+q2

= (η(A), η(Q))
q,t+1 = (η(A), η(Q))

2,t

v(1+q+q2)(2+t) = (η(A), η(Q))
(2,t)(2+t) = (η(A), η(Q))

4,q = (η(A), η(Q))
3
.

Therefore η(Q) is either y1, y2 or y3. If η(Q) = yi then QÎ Li by the definition of Li.

Let R be any point in L1ÈL2ÈL3. A priori RÎ E(Fq). The tests in Step 6 ensures

that the algorithm terminates with an output R whenever RÎG1,{O} and hN,A(R) = v.

(Note that R may be different from Q.) This also implies that the algorithm reaches

Step 7 only if there is no element Q in G1 satisfying hq+1,A(Q) = v.

Next, we evaluate computational complexity of Algorithm 3.1. Since
3

1+q+q2
]]]]]]]] ÎN,

Step 1 needs O( logq) multiplications in Fr. For each i, we obtain Li with O(1) arith-

metic operations and one cubic root computation in Fq (not in Fr, which is ensured by

Step 2). At Step 6, we have a point QÎ E(Fq). Since G0ÇE(Fq) = {O} by the condition

on l, no division by zero occurs during evaluation of hN,A(Q) by the Miller algorithm.

Hence we obtain the value of hN,A(Q) with O( logq) arithmetic operations over Fr.

Thus the algorithm terminates with O( logq) arithmetic operations over Fr or Fq and at

most nine cubic root computations in Fq. By our assumptions, they amount to

O(( logq)
3
) bit operations. ÷

Example 3.3. We consider the case p := 11, t := 11, q := p2, N := q,t+1 = 111 and l := 37.

Let θ be the class of T in Fp[T ]/〈T6+T +2〉 and put i := 5θ5+9θ4+8θ3+7θ2+θ+6. We see

i
2 =,1. So, we use Fp(θ) and its subfield Fp(i) as Fq3 and Fq, respectively. One of

the primitive third roots of unity is ζ := 8i+5. Consider E:Y
2 = X

3+8i+4/Fq. We see
#
E(Fq) = N . Put A := (8θ5+θ4+4θ3+8θ2+6θ+3, 7i)ÎG0 and v := θ5,θ4,2θ2,θ,1. Then

u := v63973 = 6+6iÎFq and we obtain y1 := 6i+7, y2 := 3i,1, y3 := i+5. Then L1 =∅, L2 =∅,

and L3 = { (1+i, y3), (2i+8, y3), (8i+2, y3) }. The Miller algorithm gives

hN,A(1+i, y3) = 2θ4 + θ3 + 8θ2 + 6θ,

hN,A(2i+8, y3) = 10θ5 + 10θ4 + 10θ3 + 5θ2 + 6θ + 1,

hN,A(8i+2, y3) = θ5 , θ4 , 2θ2 , θ, 1.

Therefore we obtain the desired answer Q := (8i+2, i+5).

4. The case of Embedding Degree Two

Since the Miller inversion itself does not use a distortion map, we consider any

odd prime p in this section. Let q be a power of p and put r := q2. Let E be a

supersingular elliptic curve over Fq satisfying Tr(ϕq) = 0 and defined by the Weierstrass

model. Such a curve exits if p ≡ 3 mod 4 or 2|/ [Fq:Fp] by Waterhouse[18, Theorem 4.1].

We assume that we precomputed a generator of 2-Sylow subgroup of Fq
×
. Let l be an

odd number dividing q+1. Put G1 := E[l]ÇE(Fq) and G0 := { P Î E[l] : ϕq(P) = qP }. By

Schoof[14, Lemma 4.8], E(Fr) = E[q+1] and E(Fq) is isomorphic to either Z/(q+1)Z or
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Z/
èç
çç
æ

2

q+1]]]]
øç
çç
ö
Z⊕Z/2Z. We have G0ÇG1 = {O} since l is odd. In stead of (3.2), we have

ϕqA = ,A

which implies ξ(A)ÎFq for AÎG0 in the embedding degree two case. Our algorithm

for embedding degree two curves is as follows:

Algorithm 4.1.

Input: vÎFr, AÎG0,{O}. // Note that A may not be a generator.

Output: QÎG1,{O} satisfying hq+1,A(Q) = v if such Q exists. Otherwise, nil.

Procedure:

1: u := v(q+1)/2 ;

2: if uÎ/ Fq then return nil ;

3: x1 := ξ(A)+u ; x2 := ξ(A),u ;

4: Build a set Li := { QÎ E(Fq) : ξ(Q) = xi } for i = 1, 2. // Note 0 ≤ #
Li ≤ 2.

5: for each QÎ L1ÈL2

6: if lQ =O and hq+1,A(Q) = v then return Q ;

7: return nil ;

Theorem 4.2. Algorithm 4.1 returns a correct result with O(( logq)
3
) bit operations.

Proof. First, we prove correctness. Suppose there exists QÎG1,{O} satisfying

hq+1,A(Q) = v. Recall that E is defined by the Weierstrass model. Since

AÎG0 ⊂ E[q+1], we have

hq+1,A = (ξ , ξ(A))hq,A. (4.1)

Now key observation of our algorithm is hq,A(Q)Îµl ⊂µq+1 by Granger et al.[10,

Theorem 2]. Thus evaluation of (4.1) at Q followed by q+1 powering yields

vq+1 = (ξ(Q), ξ(A))
q+1

. (4.2)

That is, we do not need the value hq,A(Q) at all. Since QÎ E(Fq),{O}, we have

ξ(Q)ÎFq. On the other hand AÎG0,{O} implies ξ(A) = ϕq(ξ(A)). Thus ξ(A)ÎFq.

Therefore ξ(Q),ξ(A)ÎFq and (ξ(Q),ξ(A))
q+1 = (ξ(Q),ξ(A))

2
. Substituting the right side of

(4.2), we obtain

vq+1 = (ξ(Q), ξ(A))
2
. (4.3)

Recall that q is odd. Hence

ξ(Q), ξ(A) = ± v(q+1)/2.

Therefore ξ(Q) is either x1 or x2. Since l is odd, G0ÇE(Fq) = {O}. The rest of proof of

correctness and a proof for computational complexity are similar to the proof of

Theorem 3.2. ÷

Remark 4.3. In case that q is a power of 2, the algorithm and its implementation

are in fact easier because (4.3) yields a unique candidate of Q. However in crypto-

graphic point of view, this case is irrelevant.

Example 4.4. Consider E : Y
2 = X

3,13X ,7 over F139 and take l := 35. Let θ be the

class of T in F139[T ]/〈T2+4〉. Then F
139

2 =F139(θ). Put A := (67,38θ) and v := 25θ+109.

Note that 〈A〉 =G0 and that v138 is a primitive 35-th root of unity. Then u := v70 = 131



− 8 −

and we obtain x1 := 59 and x2 := 75. Thus L1 := { (59,±54) } and L2 := { (75,±1) }. The

Miller algorithm gives h140,A((59, 54)) = 114θ+109, h140,A((59, ,54)) = 25θ+109,

h140,A((75, 1)) = 112θ+22 and h140,A((75, ,1)) = 27θ+22. Therefore we obtain the desired an-

swer Q := (59, ,54).

We observe an example for a non-generator. Put B := 5A and v := 56θ+55 whose

orders are both 7. There are five points Qn := (83, 55)+n(69, 11)ÎG1, where 0 ≤n < 5,

satisfying e140(B, Qn) = v. Although the paring values are equal, the algorithm requires

correct input from FEI, which are different for each n. For example, the algorithm

returns unique point Q0 for input (4θ+135, B), whereas it returns unique point Q1 for

input (98θ+41, B). It is a role of FEI to provide a correct value to Algorithm 4.1.
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