
Fine-Grained and Controlled Rewriting in
Blockchains: Chameleon-Hashing Gone

Attribute-Based

David Derler1, Kai Samelin2, Daniel Slamanig3, and Christoph Striecks3

1 DFINITY
david@dfinity.org

2 TÜV Rheinland i-sec GmbH
kaispapers@gmail.com

3 AIT Austrian Institute of Technology
{daniel.slamanig,christoph.striecks}@ait.ac.at

Abstract. Blockchain technologies recently received a considerable am-
ount of attention. While the initial focus was mainly on the use of
blockchains in the context of cryptocurrencies such as Bitcoin, applica-
tion scenarios now go far beyond this. Most blockchains have the prop-
erty that once some object, e.g., a block or a transaction, has been reg-
istered to be included into the blockchain, it is persisted and there are
no means to modify it again. While this is an essential feature of most
blockchain scenarios, it is still often desirable—at times it may be even
legally required—to allow for breaking this immutability in a controlled
way.

Only recently, Ateniese et al. (EuroS&P 2017) proposed an elegant
solution to this problem on the block level. Thereby, the authors replace
standard hash functions with so-called chameleon-hashes (Krawczyk and
Rabin, NDSS 2000). While their work seems to offer a suitable solution to
the problem of controlled re-writing of blockchains, their approach is too
coarse-grained in that it only offers an all-or-nothing solution. We revisit
this idea and introduce the novel concept of policy-based chameleon-
hashes (PCH). PCHs generalize the notion of chameleon-hashes by giving
the party computing a hash the ability to associate access policies to the
generated hashes. Anyone who possesses enough privileges to satisfy the
policy can then find arbitrary collisions for a given hash. We then apply
this concept to transaction-level rewriting within blockchains, and thus
support fine-grained and controlled modifiability of blockchain objects.
Besides modeling PCHs, we present a generic construction of PCHs (using
a strengthened version of chameleon-hashes with ephemeral trapdoors
which we also introduce), rigorously prove its security, and instantiate it
with efficient building blocks. We report first implementation results.

Author list in alphabetical order. See https://www.ams.org/profession/leaders/

culture/CultureStatement04.pdf. This is the full version of a paper which appears
in NDSS 2019, 26th Network and Distributed System Security Symposium, San
Diego, USA, CA, Feb 24 - Feb 27, 2019. The Internet Society 2019. The proceedings
version is available online at https://dx.doi.org/10.14722/ndss.2019.23066

mailto:david@dfinity.org?subject=Question About Your Paper 'Fine-Grained and Controlled Rewriting in Blockchains: Chameleon-Hashing Gone Attribute-Based'
mailto:kaispapers@gmail.com?subject=Question About Your Paper 'Fine-Grained and Controlled Rewriting in Blockchains: Chameleon-Hashing Gone Attribute-Based'
mailto:daniel.slamanig@ait.ac.at?subject=Question About Your Paper 'Fine-Grained and Controlled Rewriting in Blockchains: Chameleon-Hashing Gone Attribute-Based'
mailto:christoph.striecks@ait.ac.at?subject=Question About Your Paper 'Fine-Grained and Controlled Rewriting in Blockchains: Chameleon-Hashing Gone Attribute-Based'
https://www.ams.org/profession/leaders/ culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/ culture/CultureStatement04.pdf
https://dx.doi.org/10.14722/ndss.2019.23066

1 Introduction

Blockchains technologies have attracted a tremendous amount of atten-
tion. This increase in interest was mainly triggered by the first large-scale
application of blockchains, i.e., the decentralized cryptocurrency Bitcoin.
Meanwhile applications go far beyond their use in cryptocurrencies. Ex-
amples include application domains such as supply chains, digital twins,
insurance, healthcare, or energy.4 In a nutshell, a blockchain is a decentral-
ized, distributed, potentially public, and immutable log of objects such as
transactions. It is created by establishing consensus between the chain’s
participants and can be thought of as a hash-chain which links blocks
together. That is, each block includes the hash of the previous block as
a reference to link them. Each block typically also includes some other
information and a set of valid transactions, which, in turn, are usually
accumulated into a single hash value by means of a Merkle tree [Mer89].
A transaction can be a monetary transaction (as in cryptocurrencies) or
include any other object of interest which needs to be recorded, e.g., data
related to smart contracts.

Blockchains can be of different types. They can be public as for ex-
ample used within Bitcoin or Ethereum, where the consensus protocol is
executed between many pseudonymous participants. Here, the blockchain
can be read and written by everyone. In such blockchains, the consen-
sus finding is typically either implemented via proofs of work (PoW),
or proofs of stake (PoS) combined with some alternative, less resource
intensive consensus finding algorithm (e.g., byzantine fault tolerance al-
gorithms [LSP82]). Such public blockchains can also be viewed as per-
missionless, because everyone can join the system, can participate in the
consensus protocol, and can also establish smart contracts. Blockchains,
however, can also be private (also called enterprise or permissioned block-
chains) like Hyperlegder, Ethereum Enterprise, Ripple, or Quorum. Here,
all the participants and their (digital) identities are known to one or more
trusted organizations. Actors have (policy-based) write and read permis-
sions, and reading and writing usually requires consensus of several partic-
ipants. Such private blockchains can thus be viewed as permissioned, be-
cause they restrict the actors who can contribute to the consensus on the
system state to validate the block transactions. Hyperledger [ABB+18]
for instance uses so-called endorsement policies in the form of monotone
Boolean formulas, e.g., (A AND D) OR C to determine which peers are

4 http://www.businessinsider.de/blockchain-technology-applications-use-

cases-2017-9?r=US&IR=T

http://www.businessinsider.de/blockchain-technology-applications-use-cases-2017-9?r=US&IR=T
http://www.businessinsider.de/blockchain-technology-applications-use-cases-2017-9?r=US&IR=T

required to endorse a transaction. Moreover, among others, they allow
also to restrict access to approved actors who can create smart contracts.

Problem and Motivation. One particular issue that is of interest in
this work is that once some object has been registered in the blockchain
(be it private or public), the object is persisted as is and there is no
means to alter it ever again. While this is one of the crucial properties
of blockchains, it is often desirable—at times even legally required—to
introduce features which allow to “break” the immutability of objects
in the blockchain, preferably in a fine-grained and controlled way. While
this might sound dangerous at first glance, there are surprisingly many
scenarios which do benefit or even crucially require such a functionality.

With the increasing number of application of blockchains already
listed, which may include sensitive information into blockchains, features
to redact or correct objects in blockchains might evolve to an impor-
tant requirement and may often be even legally obliged. For example,
the upcoming general data protection regulation (GDPR)5 of the Euro-
pean Union imposes the Right to be Forgotten as a key Data Subject
Right. In light of this regulation, it is no longer legally possible to use im-
mutable blockchains in processes where personal data are recorded within
blockchains. Also various other legal regulations such as the United States
Fair Credit Reporting Act, the Gramm-Leach-Bliley Act, and the Secu-
rities and Exchange Commission’s Regulation S-P are relevant here.6

Mitigation Strategies. To mitigate this problem, there are different
strategies that can be used. Central to the problem are thereby the ques-
tions of (1) who is allowed to perform these modifications and (2) what
data can be modified. Thereby it seems desirable that (1) the person who
introduces an object into the blockchain should be able to determine who
will be able to modify the object if required and (2) only the object, i.e.,
the transaction, can be modified, while the blockchain (i.e., the chaining
of the blocks) does not need to be touched. As we will discuss below, some
straight-forward solutions do not satisfactorily address these issues.

A first strategy is to simply create new objects, i.e., a new version
of a transaction or smart contract, to be integrated into the next block
of the blockchain. This new object points to the old one and invalidates
it. However, this keeps a history of all modification which is not always
desired. Moreover, this may also infringe laws, e.g., EU privacy laws, and
in particular the Right to be Forgotten, when the objects include sensitive

5 https://www.eugdpr.org
6 https://www.nytimes.com/2016/09/10/business/dealbook/downside-of-

virtual-currencies-a-ledger-that-cant-be-corrected.html

https://www.eugdpr.org
https://www.nytimes.com/2016/09/10/business/dealbook/downside-of-virtual-currencies-a-ledger-that-cant-be-corrected.html
https://www.nytimes.com/2016/09/10/business/dealbook/downside-of-virtual-currencies-a-ledger-that-cant-be-corrected.html

and/or person related data, as in this case, the content does effectively
not disappear from the blockchain.

Another strategy could be to simply perform a hard-fork whenever
transactions in some block require to be edited or fixed, and to develop
the new blockchain from there. Apart from being not oblivious to the
users, i.e., it requires every user to download new client software which
accepts the new chain, this is a significant intervention in the blockchain
ecosystem on every correction. In particular, one needs to invalidate all
confirmed later blocks including the modified one. The impractically of
the method, for example, becomes apparent when thinking of a block from
years ago, which needs to be removed due to data protection reasons.

Another solution is to rewind and replay the blockchain to the point
where the modification needs to take place and to recompute everything
from this point including a new consensus finding for all already computed
blocks. For the same reasons as discussed above, this is highly inefficient,
does not scale, and—likewise to the hard-fork strategy—is not oblivious
to the users.

Arguably all the above strategies, besides their inefficiency, neither
allow to control who will be able to modify nor what can be modified.
A more desirable strategy is one which is controlled by the users in a
fine-grained way, oblivious to the other users, highly efficient, and only
requires changes that are local to the point where a transaction needs
to be edited. A solution providing those properties may seem too good
to be true, especially because the hash function involved in the block
computation (or transaction aggregation) prevents any modification, i.e.,
any alteration of a transaction will change the hash value and break the
link to the following block.

Existing Solution. Recently, Ateniese et al. [AMVA17] came up with
a clever idea and showed that the problem of rewriting entire blocks in
a blockchain can be efficiently solved by means of chameleon-hash func-
tions [KR00]. A chameleon-hash (CH) is a hash function, where hashing
is parametrized by a public key pk. It behaves like a collision resistant
hash function as long as the trapdoor (the secret key sk corresponding
to pk) is not known. Conversely, if the trapdoor sk is known, arbitrary
collisions can be found. Using such hash functions as a replacement for
collision resistant ones in blockchains allows to introduce some entity that
possesses the trapdoor. By computing collisions in the hash function, this
entity can efficiently edit the blockchain. This solution has recently seen
practical adoption by Accenture.7

7 https://www.accenture.com/us-en/service-blockchain-financial-services

https://www.accenture.com/us-en/service-blockchain-financial-services

Although very elegant, the approach by Ateniese et al. is rather lim-
ited. Firstly, it considers rewriting of a blockchain on the block level, i.e.,
to replace the hash of an entire block, which seems to be far too coarse-
grained and powerful and rewriting on a transaction level seems more
reasonable. Secondly, it can only be decided in a coarse-grained way who
can compute collisions. This is because one always hashes with respect
to a single fixed public key. Consequently, a single fixed secret key is
useful to find collisions. Furthermore, the party who computes the hash
is totally oblivious about who is later able to compute collisions in the
chameleon-hash. This means that the party who computes the hash does
not know who is allowed to rewrite the blockchain (apart from the en-
tity behind pk). However, when an object should be included into the
blockchain, the party performing this operation should be able to specify
who is able to perform editing on this object in a fine-grained way. For
example, for every transaction, one should be able to separately specify
the identities of the user or roles of users within an organization (e.g., a
data protection officer or a member of the board), which is required to
later update/correct the respective object.

Our Envisioned Improved Solution. Our starting point is attribute-
based access control (ABAC) [HFK+14], where users are tagged by (ad-
hoc) attributes and there are policies that express (potentially complex)
Boolean formulas over attributes. On a very high level, access decisions
are made by evaluating the respective access policies on the set of at-
tributes associated to a user. For instance, assume that a user has as-
sociated attributes {A,B,C} out of the attribute set {A,B,C,D} and
access to a resource, protected by a policy (A AND D) OR C, then ac-
cess for this user would be granted. Note that attributes can also di-
rectly describe users’ identities {user1,user2,user3, . . . } and restricting
the Boolean formulas to OR’s allows for specifying the set of authorized
users, e.g., user1 OR user2 OR user3.

In addition, we consider a decentralized setting, where, in general, ev-
ery entity can play the role of an attribute authority and tag other users
with attributes (in our realization this will amount to issuing keys for
corresponding attributes to those users). Then, when some user decides
that some object should be integrated into the blockchain, the user can
“tag” the object with an access policy corresponding to an attribute au-
thority (managed by some other user) of it’s choice (in our realization this
amounts to hashing the object with a novel type of chameleon-hash). If at
some later point in time the objects needs to be modified, every user that
satisfies the associated policy can perform the update (in our realization

this amounts to computing a collision in the novel type of chameleon-
hash). An important property that we want to achieve thereby is that
original and modified objects cannot be told apart (are indistinguishable)
and that even if user keys associated to attributes leak, no information
about the history of an object can be reconstructed (e.g., its previous
state).

1.1 Contribution

In this work, we introduce a cryptographic solution to the scenario out-
lined above, i.e., the scenario of rewriting objects in blockchains in a flex-
ible, controlled, and fine-grained way. To achieve this goal, we introduce
the notion of policy-based chameleon-hashes (PCHs), which generalizes
chameleon-hashes in the sense that hashing additionally takes an access
policy as input and collision finding is much more fine-grained than in
existing chameleon-hashing, i.e., a collision can only be found by users
satisfying the policy specified during hashing. In particular, when com-
puting a hash, an access policy can be included so that only entities that
possess secret keys corresponding to attributes satisfying the access pol-
icy can find collisions. We rigorously model the security one would expect
from such a primitive.

A cryptographic primitive that allows for elegantly modeling the acc-
ess-control requirements in such a setting is ciphertext-policy attribute-
based encryption (CP-ABE) which was first envisioned by Goyal, Pandey,
Sahai, and Waters [GPSW06] and later efficiently instantiated by Bethen-
court, Sahai, and Waters [BSW07]. Here, one specifies access policies over
attributes upon computing ciphertexts, and secret keys are associated to
attributes. Only someone who possesses a secret key whose correspond-
ing attributes satisfy the access policy is able to decrypt. The important
feature thereby is that the encrypting party does not even need to know
the entities who will later be able to decrypt, but only needs to specify
an access policy.

However, it turns out to be non-trivial to achieve a similar function-
ality in the context of chameleon-hashes, e.g., by extending the approach
of Ateniese et al. [AMVA17]. The main technical hurdle, when going for a
naive integration of the functionality of CP-ABE into chameleon-hashes,
is that the party who computes a hash somehow needs to encrypt a trap-
door which will later be useful to compute collisions. Now, in conventional
chameleon-hashes, the trapdoor, which enables computing collisions, is
essentially the secret key corresponding to the public hashing key being
fixed in the system parameters. This trapdoor remains the same for all

hashes computed with respect to one public hashing key. Consequently,
after computing one collision, one could compute a collision for any other
chameleon-hash. Moreover, with such a naive solution, the hashing party
(although it might not be authorized at all) could then compute arbitrary
collisions. We, however, strive for a solution which allows us to have a sep-
arate trapdoor per hash, so that we are able to implement fine-grained
access control. Conventional chameleon-hashes provide no security guar-
antees in such a setting.

To this end, we pursue a different path and carefully integrate the
CP-ABE functionality with the recent concept of chameleon-hashes with
ephemeral trapdoors (CHETs) [CDK+17] and present a generic construc-
tion of PCHs. For access policies representing the class of monotone
Boolean formulas (which is well suited for access control), we can ad-
ditionally take advantage of recent progress in very efficient CP-ABE
schemes due to Agrawal and Chase [AC17]. Along the lines, we also in-
troduce a novel CHET which is more efficient than the most practical
known instantiation proposed by Camenisch et al. [CDK+17]. Putting all
together, we obtain a very efficient concrete instantiation of a PCH. We
support this claim with first implementation results of our primitive.

We discuss the application of PCHs for transaction-level rewriting of
blockchains (cf. Section 5). Another application that comes to mind is the
usage of PCHs instead of conventional chameleon-hashes in sanitizable
signatures [ACdT05] to achieve more expressive delegations of editing
rights. We leave a concrete and formal treatment open for future work.
Moreover, we believe that PCHs will find many other applications.

1.2 Related Work

We already briefly discussed the work due to Ateniese et al. [AMVA17]
which inspired our work. In another work Puddu et al. [PDC17] present
mutable transactions for blockchains, where in their system all transac-
tions are encrypted and mutation means that the respective decryption
key is not provided anymore by validators. Mutations are subject to ac-
cess control policies, but all the mechanisms are not cryptographic in
nature.

Ferrara et al. [FFW13] discuss cryptographically enforced role-based
access control (cRBAC) with the aim of introducing a precise syntax for
a computational version of RBAC as well as rigorous definitions for cryp-
tographic policy enforcement of a large class of RBAC security policies.
They also show that an implementation of RBAC based on key-policy and

ciphertext-policy attribute-based encryption (KP-ABE and CP-ABE, re-
spectively) meets their security notions. Although their work has a to-
tally different focus than ours, it shows that the use of attribute-based
encryption is a good choice in realizing secure access control that meets
real-world needs.

Damg̊ard et al. [DHO16] introduced a primitive denoted as Access
Control Encryption (ACE), which was later extended in [BMM17,KW17].
It allows a central party (called the sanitizer) to control for a set of parties
which party is allowed to receive and send which message to other parties.
This sanitizer processes all the messages and thereby enforces access-
control policies. Although related (in that access-control policies need to
be enforced), this primitive is not helpful in our setting.

Concurrent and Independent Work. In a concurrent and indepen-
dent work Deuber et al. [DMT19] also propose a novel mechanism for
editable (redactable) blockchains. Their goal is to avoid advanced cryp-
tographic schemes and instead an edit operation in their setting can be
proposed by any user and there is then a voting in the blockchain through
a consensus, i.e., edits are only performed if approved by the blockchain
policy (e.g., voted by the majority). If a proposed edit obtains enough
votes, then the respective block is replaced by its new version in the
blockchain (and the old state of the block needs to be kept available for
validation - but the redacted data does not need to be kept for verifica-
tion). Like Ateniese et al. [AMVA17], Deuber et al. [DMT19] exclusively
focus on rewriting complete blocks, whereas our approach is more flexible
as it also enables rewriting on the transaction level.

1.3 Preliminaries and Notation

We use κ to denote the security parameter and we use sans-serif letters,
e.g., A, B, to denote algorithms. If not stated otherwise, all algorithms are
required to run in probabilistic polynomial time (PPT), i.e., their running
time can be bounded by a polynomial in their input length. Furthermore,
all algorithms return a special symbol ⊥ on error. By y ← A(1κ, x), we
denote that y is assigned the output of the potentially probabilistic al-
gorithm A on input x and and fresh random coins. We assume 1κ to
be an implicit input to all algorithms. If ∀c∃κ0∀κ ≥ κ0 : |f(κ)| ≤ 1/κc

for a function f , then we say f is negligible. For algorithms representing
adversaries in the security experiments we use calligraphic letters, e.g.,
A. Furthermore, we assume that all oracles defined within security ex-
periments return ⊥, as soon as any of the internally executed algorithms

returns ⊥. This allows for a more compact notation. Finally, similar to our
notation in the context of algorithms, we use y ←r S to denote that an
element is sampled uniformly at random from a finite set S and assigned
to y.

2 Cryptographic Building Blocks

In this section, we provide some background including collision resistant
hashing, ciphertext-policy attribute-based encryption (CP-ABE), intro-
duce the notion of access structures that are associated to ciphertexts
in CP-ABE formally and discuss how to encode such access structures.
Then, we recall (and strengthen) chameleon-hashes with ephemeral trap-
doors, which we require as an ingredient to our main construction.

Definition 1 (Access Structure). Let U denote the universe of at-
tributes. A collection A ∈ 2U \ {∅} of non-empty sets is an access struc-
ture on U. The sets in A are called the authorized sets, and the sets not
in A are called the unauthorized sets. A collection A ∈ 2U \ {∅} is called
monotone if ∀ B,C ∈ A : if B ∈ A and B ⊆ C, then C ∈ A.

Attribute-Based Encryption. Let us recall the description of a CP-
ABE scheme.

Definition 2 (CP-ABE). A ciphertext-policy attribute-based encryp-
tion (CP-ABE) scheme is a tuple (SetupABE,KGenABE,EncABE,DecABE)
of PPT algorithms defined as follows:

SetupABE(1κ) : Takes as input a security parameter κ in unary and out-
puts a master secret and public key (mskABE,mpkABE). We assume
that all subsequent algorithms will implicitly receive the master public
key mpkABE as input which implicitly fixes a message and attribute
space M and U, respectively.

KGenABE(mskABE,S) : Takes as input the master secret key mskABE and
a set of attributes S ⊆ U and outputs a secret key skS.

EncABE(M,A) : Takes as input a message M ∈ M and an access struc-
ture A and outputs a ciphertext C.

DecABE(skS, C) : Takes as input a secret key skS and a ciphertext C and
outputs a message M or ⊥ in case decryption does not work.

Correctness of CP-ABE requires that for all κ, for all access struc-
tures A, all (msk,mpk) ← Setup(1κ), all M ∈ M, all S ∈ U, all skS ←
KGen(msk, S) we have that Pr[Dec(skS,Enc(M,A)) = M] = 1.

ExpIND-CCA2
A,ABE (κ):

(mskABE,mpkABE)← SetupABE(1κ)
b← {0, 1}
Q,S ← ∅, i← 0
(m0,m1,A∗, state)← AO(mpkABE)

where O ← {KGen′ABE(mskABE, ·),KGen′′ABE(mskABE, ·),
Dec′ABE(·, ·)}

and KGen′ABE(mskABE, ·) on input S:
return KGenABE(mskABE, S) and set S ← S ∪ S

and KGen′′ABE(mskABE, ·) on input S:
ssk← KGenABE(mskABE, S) and set Q ← Q∪ {(i, ssk)}
i← i+ 1

and Dec′ABE(·, ·) on input j, c:
return ⊥, if (j, ssk) /∈ Q for some ssk
return DecABE(ssk, c)

if m0,m1 /∈M ∨ |m0| 6= |m1| ∨ A∗ ∩ S 6= ∅, let c∗ ← ⊥
else c∗ ← EncABE(mb,A∗)

b∗ ← AKGen′′′ABE(mskABE,·),KGen′′′′ABE(mskABE,·),Dec′′ABE(·,·)(c∗, state)
where KGen′′′ABE(mskABE, ·) on input S:

return ⊥, if S ∈ A∗
return KGenABE(mskABE, S)

and KGen′′′′ABE(mskABE, ·) on input S:
let ssk← KGenABE(mskABE, S) and set Q ← Q∪ {(i, ssk)}
i← i+ 1

and Dec′′ABE(·, ·) on input j, c:
return ⊥, if (j, ssk) /∈ Q for some ssk ∨ c = c∗

return DecABE(ssk, c)
if b∗ = b return 1, else return 0

Fig. 1: ABE IND-CCA2 Security

Security of CP-ABE. In the following, we recall IND-CCA2 security for
CP-ABE (where we explicitly model key handles, cf. [KW18]).

Definition 3 (IND-CCA2-Security of CP-ABE). Let the advantage of
an adversary A in the IND-CCA2 experiment ExpIND-CCA2

A,ABE (κ) be:

AdvIND-CCA2
A,ABE (κ) :=

∣∣∣Pr
[
ExpIND-CCA2

A,ABE (κ) = 1
]
− 1/2

∣∣∣ .
We call a CP-ABE scheme ABE is IND-CCA2 secure if AdvIND-CCA2

A,ABE (κ)
is a negligible function in κ for all PPT adversaries A.

Monotone Span Programs. Monotone span programs (MSP) [KW93]
(or, essentially linear secret-sharing schemes (LSSS) [Bei96]) consist of
an integer matrix M which encodes monotone access structures. Mono-
tone access structures are often represented as Boolean formulas over
attributes with AND and OR operators and input attributes satisfy the
formula if it evaluates to 1. Another way of representing such formulas is
to think of access trees. In such a tree, the leafs form the input attributes
while inner nodes are associated with the operators AND and OR. In the
full version [LW10, Appendix G] of [LW11], Lewko and Waters describe
an easy way to transform Boolean formulas with AND and OR operators
into MSP (or, LSSS) matrices M (this transform is also used in the ABE
scheme FAME by Agrawal and Chase [AC17] that we chose as a core
building block for our instantiation in Section 4.4). Essentially, the en-
coding is as follows. The sharing vector of the LSSS matrix is (1, 0, . . . , 0)
and the root of the tree is labeled with vector (1). Further, let l be a
counter variable set to 0 in the beginning. We now go recursively down
the tree levels. If the node is an AND operator, label one of the two chil-
dren with (v||1), where v is the label of the AND node padded with 0s to
length l and || denotes the concatenation. The other children is labeled
with length-(l+1) vector (0, . . . , 0,−1) and l is increased afterwards. If the
node is an OR operator, label both children with v and do not increase l.
Next, go on to the next node. Once labeling is completed, we now collect
the labels of the leaf (i.e., attribute) nodes one-by-one to form the rows
of the matrix M. If there are empty matrix entries, fill them with 0s. The
rows of M are associated with a function π that maps the row number to
the corresponding attribute. The output of the encoding is (M, π). Note
that we assume a canonical encoding of the access structure A and the
tree s.t. computing M from a given A is deterministic. Decoding (M, π)
works as follows. Let S be a set of attributes. For π(i) ∈ S there exist co-
efficients λi ∈ {0, 1,−1} such that

∑
π(i)∈S λi(M)i = (1, 0, . . . , 0), where

(M)i is the i-th row of M. The output of decoding is the list (λi)π(i)∈S.

Chameleon-Hashes. Subsequently, we recall chameleon-hashes using
the notion from Camenisch et al. [CDK+17].

Definition 4 (Chameleon-Hashes). A chameleon-hash CH with mes-
sage spaceM is a tuple (PPGenCH,KGenCH,HashCH,VerifyCH,AdaptCH) of
potentially probabilistic polynomial time algorithms, which are defined as
follows:

PPGenCH(1κ). The algorithm PPGenCH, on input security parameter κ in
unary, outputs public parameters PPch. For brevity, we assume that
PPch is an implicit input to all other algorithms.

KGenCH(PPch). The algorithm KGenCH, given the public parameters PPch,
outputs the secret and public key (skCH, pkCH).

HashCH(pkCH,m). The algorithm HashCH gets as input the public key pkCH
and a message m ∈M, and outputs a hash h and randomness r.

VerifyCH(pkCH,m, r, h). The deterministic algorithm VerifyCH gets as in-
put the public key pkCH, a message m, randomness r, and hash h. It
outputs a decision d ∈ {0, 1} indicating whether the hash h is valid.

AdaptCH(skCH,m,m
′, r, h). The algorithm AdaptCH, on input of the secret

key skCH, message m, randomness r, hash h, and a additional message
m′, outputs randomness r′.

Note that we assume that the AdaptCH algorithm always verifies if the
hash it is given is valid, and outputs ⊥ otherwise.

Correctness. For a CH we require the correctness property to hold. In
particular, we require that for all κ ∈ N, for all PPch ← PPGenCH(1κ),
for all (skCH, pkCH) ← KGenCH(PPch), for all m ∈ M, for all (h, r) ←
HashCH(pkCH,m), for all m′ ∈ M, we have for all for all r′ ← AdaptCH(
skCH,m,m

′, r, h), that 1 = VerifyCH(pkCH,m, r, h) = VerifyCH(pkCH,m
′,

r′, h). This definition captures perfect correctness.
Note that the randomness is drawn by HashCH, and not outside. The

intention is to capture “private-coin” constructions [AMVA17]. We pro-
vide the security notions in Appendix B.1 and stress that we rely on the
notions from [CDK+17] with the exception that we provide a stronger
form of indistinguishability, where the adversary is even allowed to know
the secret key.

CHs with Ephemeral Trapdoors. We recall the notion of chameleon-
hashes with ephemeral trapdoors (CHET) from [CDK+17]. This primitive
is a variant of a chameleon-hash where, in addition to the long-term trap-
door, another ephemeral trapdoor (chosen during hashing) is required to
compute collisions.

Definition 5 (Chameleon-Hashes with Ephemeral Trapdoors).
A chameleon-hash with ephemeral trapdoors CHET for message space M
is a tuple of five algorithms (PPGenCHET,KGenCHET,HashCHET,VerifyCHET,
AdaptCHET), such that:

PPGenCHET(1κ) : On input security parameter κ in unary, this algorithm
outputs the public parameters PP. We assume that they implicitly de-
fine the message space M.

KGenCHET(PP) : On input the public parameters PP, this algorithm outputs
the long-term key pair (skCHET, pkCHET).

HashCHET(pkCHET,m) : On input the public key pkCHET and a message m,
this algorithm outputs a hash h, corresponding randomness r, as well
as the ephemeral trapdoor etd.

VerifyCHET(pkCHET,m, h, r) : On input the public key pkCHET, a message
m, a hash h, and randomness r, this algorithm outputs a bit b.

AdaptCHET(skCHET, etd,m,m′, h, r) : On input secret key skCHET, ephe-
meral trapdoor etd, a message m, a message m′, hash h, randomness
r, and trapdoor information etd, this algorithm outputs randomness
r′.

Note that we assume that the AdaptCHET algorithm always verifies if the
hash it is given is valid, and outputs ⊥ otherwise.

Correctness. For correctness, we require that for all κ ∈ N, all PP ←
PPGenCH(1κ), all (skCHET, pkCHET) ← KGenCH(PP), all m,m′ ∈ M, all
(h, r, etd) ← Hash(pkCHET,m), all r′ ← AdaptCH(skCHET, etd,m,m′, h, r),
we have that VerifyCHET(pkCHET,m, h, r) = 1 ∧ VerifyCHET(pkCHET,m

′,
h, r′) = 1.

For security, chameleon-hashes with ephemeral trapdoors are required
to be indistinguishable, publicly collision resistant, and privately collision
resistant. We postpone the formal definitions of these properties to Ap-
pendix B.3. In a nutshell, indistinguishability requires that an adversary
cannot decide whether randomness was created through hashing or adap-
tion. Public collision resistance requires that an outsider cannot find any
collisions by itself, while private collision resistance enforces that even the
holder of the long-term trapdoor cannot find collisions, if the ephemeral
secret key is not known.8

3 Policy-Based Chameleon-Hashing

In this section, we introduce and define a novel primitive which we term
policy-based chameleon-hash. In Section 3.1, we formally define policy-
based chameleon-hashes. In Section 3.2, we show how to generically con-
struct policy-based chameleon-hashes from a combination of the relatively
recent concept of chameleon-hashes with ephemeral trapdoors (CHET)
and ciphertext-policy attribute-based encryption (CP-ABE) schemes and
rigorously prove the security of this generic construction. Later in Sec-
tion 4.4, after having discussed the selection of the underlying primitives,

8 Actually, we require some stronger definitions, which we also introduce.

we present a practically efficient instantiation of our generic construction
for the class of policies represented by monotone access structures. The
efficiency of this concrete instantiation is supported by first implementa-
tion results in Section 4.5.

3.1 Definitions

We define policy-based chameleon-hashes and their security.

Definition 6 (Policy-Based Chameleon-Hashes). A policy-based ch-
ameleon-hash PCH with message space M consists of five algorithms
(PPGenPCH,KGenPCH,HashPCH,VerifyPCH,AdaptPCH) which are defined as
follows.

PPGenPCH(1κ) : On input a security parameter κ in unary, this algorithm
outputs the secret and public key (skPCH, pkPCH) where pkPCH is im-
plicitly available to all algorithms and determines M.

KGenPCH(skPCH,S) : On input a secret key skPCH and a set of attributes
S ⊆ U, key generation outputs a secret key skS.

HashPCH(pkPCH,m,A): On input a public key pkPCH, access structure A ⊆
2U, and a message m ∈ M, the hash algorithm outputs a hash h and
randomness r.

VerifyPCH(pk,m, h, r): On input public key pkPCH, message m, hash h,
and randomness r, the verification outputs a bit b.

AdaptPCH(skS,m,m
′, h, r): On input a secret key skS, messages m and

m′, hash h, and randomness r, the adaptation algorithm outputs ran-
domness r′.

Note that we assume that the KGenPCH outputs ⊥ if S is not contained
in U and the AdaptPCH algorithm always verifies if the hash it is given is
valid, and output ⊥ otherwise.

Correctness. For correctness, we require that for all κ ∈ N, for all A ⊆
2U, for all S ∈ A, for all (skPCH, pkPCH) ← PPGenPCH(1κ), for all skS ←
KGenPCH(skPCH,S), for all m ∈M, for all (h, r)← HashPCH(pkPCH,m,A),
for all m′ ∈ M, for all r′ ← AdaptPCH(skS,m,m

′, h, r), we have that 1 =
VerifyPCH(pkPCH,m, h, r) = VerifyPCH(pkPCH,m

′, h, r′).
Furthermore, we require the following security properties.

Indistinguishability. Informally, indistinguishability requires that it be
intractable to decide whether for a chameleon-hash its randomness is
fresh or was created using the adaption algorithm even if the secret key is
known. While such a property was not required in the work by Ateniese

et al. [AMVA17], we believe that it could be useful in the blockchain con-
text, because it helps to prevent outsiders (which later become insiders)
from learning whether adaptations of certain objects, e.g., transactions,
in the blockchain have taken place, when seeing the respective hashes and
randomness. The security experiment grants the adversary access to the
secret key and a left-or-right style HashOrAdapt oracle. It requires that the
randomnesses r does not reveal whether it was obtained through HashPCH

or AdaptPCH. The messages are adaptively chosen by the adversary.

ExpInd
A,PCH(κ)

(skPCH, pkPCH)← PPGenPCH(1κ)
b← {0, 1}
b∗ ← AHashOrAdaptPCH(sk,·,·,·,·,b)(skPCH, pkPCH)

where HashOrAdaptPCH(sk, ·, ·, ·, ·, b) on input m,m′, S,A:
(h0, r0)← HashPCH(pkPCH,m

′,A)
(h1, r1)← HashPCH(pkPCH,m,A)
skS ← KGenPCH(sk, S)
r1 ← AdaptPCH(skS,m,m

′, h1, r1)
return (hb, rb)

return 1, if b = b∗

return 0

Fig. 2: PCH Indistinguishability

Definition 7 (Indistinguishability). We define the advantage of an
adversary A in the Ind experiment ExpInd

A,PCH(κ) as

AdvInd
A,PCH(κ) :=

∣∣∣Pr
[
ExpInd

A,PCH(κ) = 1
]
− 1/2

∣∣∣ .
We say a PCH scheme is indistinguishable, if AdvInd

A,PCH(κ) is a negligible
function in κ for all PPT adversaries A.

Outsider Collision Resistance. Outsider collision resistance essen-
tially addresses, to some extent, the same requirements as covered by
“enhanced collision resistance” in the work by Ateniese et al. [AMVA17].
That is, it grants the adversary A adaptive access to an AdaptPCH oracle,
and requires that it be intractable to find collisions for messages which
were not queried to AdaptPCH. We note that this definition, analogous

to [CDK+17], is even stronger than key-exposure freeness [AdM04,CZK04].9

ExpCROut
A,PCH(κ)

(skPCH, pkPCH)← PPGenPCH(1κ)
Q,M← ∅, i← 0

(m∗, r∗,m′∗, r′∗, h∗)← AKGen′PCH(skPCH,·),Adapt
′
PCH(·,·,·,·,·)(pkPCH)

where KGen′PCH(skPCH, ·) on input S:
skS ← KGenPCH(sk, S)
Q ← Q∪ {(i, skS)}
i← i+ 1

and Adapt′PCH(·, ·, ·, ·, ·) on input j,m,m′, h, r :
return ⊥, if VerifyPCH(pkPCH,m, h, r) 6= 1 ∨
(j, skS) /∈ Q for some skS
r′ ← AdaptPCH(pkPCH, skS,m,m

′, h, r)
M←M∪ {m,m′}
return r′

return 1, if
VerifyPCH(pkPCH,m

∗, h∗, r∗) = 1 ∧
VerifyPCH(pkPCH,m

′∗, h∗, r′∗) = 1 ∧
m∗ /∈M ∧ m∗ 6= m′∗

return 0

Fig. 3: PCH Outsider Collision Resistance

Definition 8 (Outsider Collision Resistance). We define the advan-
tage of an adversary A in the CRout experiment ExpSCRout

A,PCH (κ) as

AdvSCRout
A,PCH (κ) := Pr

[
ExpSCRout

A,PCH (κ) = 1
]
.

We say that a PCH scheme is outsider collision resistant, if AdvSCRout
A,PCH (κ)

is a negligible function in κ for all PPT adversaries A.

Insider Collision Resistance. Insider collision resistance addresses the
requirement that not even insiders who possess secret keys with respect to
some attributes can find collisions for hashes which were computed with
respect to policies which are not satisfied by their keys (oracle KGen′PCH).

9 Key-exposure only means that once a collision is made public, anyone can extract
the secret key.

Intuitively, this notion enforces the attribute-based access-control poli-
cies, even if the adversary sees collisions for arbitrary attributes (oracles
KGen′′PCH and Adapt′PCH).

ExpCRIns
A,PCH(κ)

(skPCH, pkPCH)← PPGenPCH(1κ)
S,H,Q ← ∅, i← 0
(m∗, r∗,m′∗, r′∗, h∗)← AO(pkPCH)

where O ← {KGen′PCH(skPCH, ·),KGen′′PCH(skPCH, ·),
Hash′PCH(pkPCH, ·, ·),Adapt′PCH(pkPCH, ·, ·, ·, ·)}

and KGen′PCH(skPCH, ·) on input S:
skS ← KGenPCH(sk, S)
S ← S ∪ {S}
return skS

and KGen′′PCH(skPCH, ·) on input S:
skS ← KGenPCH(sk, S)
Q∪ {(i, skS)}
i← i+ 1

and Hash′PCH(pkPCH, ·, ·) on input m,A:
(h, r)← HashPCH(pkPCH,m,A)
H ← H∪ {(h,A,m)}
return (h, r)

and Adapt′PCH(pkPCH, ·, ·, ·, ·, ·) on input m,m′, h, r, j:
return ⊥, if (j, skS) /∈ Q for some skS
r′ ← AdaptPCH(pkPCH, skS,m,m

′, h, r)
if (h,A,m) ∈ H for some A, let H ← H∪ {(h,A,m′)}
return r′

return 1, if
VerifyPCH(pk,m∗, h∗, r∗) = VerifyPCH(pk,m′∗, h∗, r′∗) = 1 ∧
(h∗,A, ·) ∈ H, for some A ∧ m∗ 6= m′∗ ∧ A ∩ S = ∅ ∧
(h∗, ·,m∗) /∈ H

return 0

Fig. 4: PCH Insider Collision Resistance

Definition 9 (Insider Collision Resistance). We define the advan-
tage of an adversary A in the SCRin experiment ExpSCRin

A,PCH(κ) as

AdvSCRin
A,PCH(κ) := Pr

[
ExpSCRin

A,PCH(κ) = 1
]
.

We say that a PCH scheme is insider collision resistant, if the function
AdvSCRin

A,PCH(κ) is a negligible function in κ for all PPT adversaries A.

3.2 Generic Construction

Our PCH construction is based on an IND-CCA2-secure CP-ABE scheme
and a chameleon-hash with ephemeral trapdoors (CHET). We will sketch
the overall idea first. The PCH setup runs the setup and the key genera-
tion of the CHET scheme as well as the key generation of the CP-ABE.
Every participant obtains a secret key of the CHET and a secret key
for the CP-ABE associated to a set of attributes. Hashing a message m
to an access structure A means computing a CHET to the message m
and encrypting the ephemeral trapdoor under A using the encryption
algorithm of the CP-ABE. Collision-finding is possible if the AdaptPCH
algorithm has access to the secret key of the CP-ABE for attributes S
such that S ∈ A is satisfied. This allows reconstructing the ephemeral
trapdoor which in turn allows computing a collision in the CHET. The
construction is depicted in Scheme 1.

PPGenPCH(1κ) : Return skPCH ← (mskABE, skchet) and pkPCH ← (mpkABE, pkchet), where

PPchet ← PPGenCHET(1κ),
(skchet, pkchet)← KGenCHET(PPchet), and
(mskABE,mpkABE)← SetupABE(1κ).

KGenPCH(skPCH, S) : Parse skPCH as (mskABE, skchet) and return skS ← (skchet, ssk
′), where

ssk′ ← KGenABE(mskABE, S).

HashPCH(pkPCH,m,A) : Parse pkPCH as (mpkABE, pkchet) and return (h, r)← ((hchet, C),
rchet), where

(hchet, rchet, etd)← HashCHET(pkchet,m), and
and C ← EncABE(etd,A).

VerifyPCH(pkPCH,m, h, r) : Parse pkPCH as (mpkABE, pkchet), h as (hchet, C), and r as rchet.
Return 1 if the following check holds and 0 otherwise:

CHET.Verify(pkchet,m, hchet, rchet) = 1.

AdaptPCH(skS,m,m
′, h, r) : Parse skS as (skchet, ssk

′) and h as (hchet, C), and r as rchet.
Check whether VerifyPCH(pk,m, h, r) = 1 and return ⊥ otherwise. Compute etd←
DecABE(ssk′, C) and return ⊥ if etd = ⊥. Let r′ ← r′chet, where

r′chet ← AdaptCHET(skchet, etd,m,m
′, h, rchet).

Return ⊥, if VerifyPCH(pkPCH,m
′, h, r′) = 0 and r′ otherwise.

Scheme 1: Black-box construction of a PCH scheme

Remark 1. In Scheme 1, a hash and also its verification does not allow to
decide whether decrypting the ABE ciphertext will actually allow to com-
pute a collision. We believe that many application scenarios do not require
this. For instance, in the (permissioned) blockchain setting, when a party
inserts a transaction, it is in the parties’ best interest that this happens
correctly and that its transaction could be rewritten if required. While
one could clearly make the construction (as well as the model of PBCH)
stronger, e.g., by requiring a non-interactive zero-knowledge (NIZK) proof
that the CP-ABE ciphertext encrypts a valid CHET trapdoor, this would
add a significant performance penalty. Obtaining an efficient construction
in such a strong model, is a valuable avenue for future work.

Remark 2. We have based our construction on conventional CP-ABE, but
to support multiple attribute authorities per policy, one could instead use
a multi-authority CP-ABE scheme [Cha07,LW11]. We leave this for future
work.

Now, we investigate the security of the PCH in Scheme 1.

Theorem 1. If the PCH scheme in Scheme 1 is based on a strongly in-
distinguishable CHET, then the PCH scheme is strongly indistinguishable.

Proof. We prove the theorem by constructing an efficient adversary B
against ExpSInd

B,CHET(κ), who uses an adversary A against ExpInd
A,PCH(κ),

with

AdvInd
B,CHET(κ) ≥ AdvInd

A,PCH(κ).

We let B proceed as follows:

– B obtains (pkchet, skchet) from the indistinguishability challenger and
completes Setup by running (msk,mpk)← ΠABE.Setup(1κ) and setting
sk← (msk, skchet), and pk← (mpk, pkchet). Finally, it starts A on pk.

– For the HashOrAdapt oracle for A, B internally uses the HashOrAdapt
oracle provided by the challenger to obtain (hchet, rchet, etd). Then it
computes C ← ΠABE.Enc(etd,A) and returns ((hchet, C), rchet).

– As soon as A outputs its guess b, B forwards b to the challenger.

Now we observe that all oracles are simulated perfectly, and B wins with
the same probability as A wins.

Theorem 2. If the PCH scheme in Scheme 1 is based on a publicly colli-
sion resistant CHET, then the PCH scheme is outsider collision resistant.

Proof. We prove the theorem by constructing an efficient adversary B
against ExpCRpub

B,CHET(κ), who uses an adversary A against ExpSCRout
A,PCH (κ),

with

AdvCRpub
B,CHET(κ) ≥ AdvSCRout

A,PCH (κ).

In particular, B proceeds as follows:

– B obtains pkchet from the indistinguishability challenger and completes
Setup by running (msk,mpk) ← ΠABE.Setup(1κ) and setting sk ←
(msk,⊥), and pk← (mpk, pkchet). Finally, it starts A on pk.

– To simulate the Adapt′ oracle for A, B internally decrypts etd and
then uses the Adapt oracle provided by the challenger.

– Whenever A outputs a collision being of the form (m∗, r∗chet,m
′∗, r′∗chet,

(h∗chet, C
∗)), then B outputs (m∗, r∗chet,m

′∗, r′∗chet, h
∗
chet) as a public col-

lision for the CHET.

Now we observe that all oracles are simulated perfectly, and B wins with
the same probability as A wins.

Theorem 3. If the PCH scheme in Scheme 1 is based on a strongly pri-
vately collision resistant CHET and an IND-CCA2-secure ABE, then the
PCH scheme is insider collision resistant.

Proof. We prove the theorem above in a sequence of games, where we use
Pr[Si] to denote the success probability of the adversary in Game i. In
addition we let the number of queries to the oracle Hash′ be denoted by
q.

Game 0. This is the original CRin security experiment from Figure 4
played with Scheme 1.

Game 1. As Game 0, but we guess the index i∗ corresponding to the
query to Hash′ which returns the hash h∗ which will be attacked by the
adversary. We store the hash h∗ = (h∗CHET, C

∗) as well as the correspond-
ing randomness r∗ and the ephemeral trapdoor etd∗. If we detect that our
guess is wrong at some point during the simulation, we abort.

The winning probability in Game 1 is the same as in Game 0, unless
an abort happens. Therefore we have that Pr[S1] = Pr[S0] · 1/q.
Game 2. As Game 1, but whenever we receive an adapt query for a
hash h = (hCHET, C), where C = C∗ we do not decrypt, but directly
adapt using etd∗.

The winning probability in Game 2 is the same as in Game 1 under
the perfect correctness of the encryption scheme, i.e., Pr[S2] = Pr[S1].

Game 3. As Game 2, but we change the simulation of the Hash algorithm
within the i∗-th query to the Hash′CHET oracle: instead of running C ←
ΠABE.Enc(etd,A), we run C ← ΠABE.Enc(0|etd|,A) and locally store etd.

We claim that Game 2 and Game 3 are indistinguishable under the
IND-CCA2 security of ΠABE, i.e., |Pr[S3] − Pr[S2]| ≤ AdvIND-CCA2

B,ABE (κ). To
prove the claim, we show that we can use an adaptive IND-CCA chal-
lenger to effectively interpolate between Game 2 and Game 3. In par-
ticular, consider the following hybrid game: Upon setup we obtain mpk
from an IND-CCA challenger, set msk ← ⊥ and complete the remainder
of the setup honestly. To simulate queries to the key generation ora-
cles we use the respective oracles provided by the challenger. Decryption
within the adapt oracle is done by using the decryption oracle provided
by the challenger. Furthermore, upon the i∗-th query to Hash′, we out-
put (etd, 0|etd|,A, state) to the challenger to obtain (C∗, state) and set
C ← C∗. For adapt queries with respect to the hash returned upon the
i∗-th query to Hash′, we directly adapt using etd without prior decryp-
tion. Now, observe that aborting as soon as we detect that our guess of
index i∗ is wrong ensures that we will never have to answer queries which
involve queries to the challenger’s oracle which would not be answered.
This, in turn, means that if the bit b of the challenger is 0 we perfectly
simulate Game 2, whereas we perfectly simulate Game 3 if b = 1. This
proves the claim.

Reduction to Strong Private Collision Resistance. Now we are
ready to describe the reduction to private collision resistance. In partic-
ular, we obtain PPCHET from a private collision resistance challenger C
and honestly complete the setup. Then we simulate all oracles except
the hash and the adapt oracle as in Game 3. In particular, we can in-
ternally simulate KGenCHET and all queries to the Hash′CHET oracle up
to the i∗-th query. In the i∗-th query to the Hash′CHET oracle, we use
the Hash′ oracle provided by the private collision resistance challenger to
obtain (hchet, rchet). As the ciphertext C already encrypts 0|etd| instead
of etd we do not require to know etd. Likewise, for the adaption ora-
cle, we only modify the simulation for queries with respect to the etd
returned upon the i∗-th query to Hash′CHET in that we use the adaption
oracle provided by the challenger to compute the adapted hashes. If the
adversary eventually outputs a collision (m∗, r∗chet,m

′∗, r′∗chet, (h
∗
chet, C

∗)),
we output (m∗, r∗chet,m

′∗, r′∗chet, h
∗
chet) as a private collision for the CHET.

Consequently, we have that AdvSCRpriv
C,CHET(κ) ≥ Pr[S3].

Overall Bound. As we have shown above, the advantage of any ad-
versary in the final game is bounded by the advantage of any adver-
sary in the private collision freeness game, i.e., Pr[S3] ≤ AdvSCRpriv

C,CHET(κ).

This yields the following bound for the original game AdvsCRin
A,PCH(κ) ≤

q · (AdvIND-CCA2
B,ABE (κ) + AdvSCRpriv

C,CHET(κ)), which concludes the proof.

3.3 On the Choice of Access Policies

The policy expressiveness of our PCH construction is given by the policy
expressiveness of the underlying CP-ABE scheme. In general, the most
basic and reasonable access policies offer at least monotonic operators
such as AND and OR. Basically, a monotone access policy for CP-ABE
ensures that adding an attribute to the secret key does not lead to the case
where the access policy cannot be satisfied anymore under that updated
secret key (assuming that the secret key has satisfied the policy before of
course). If we speak of access policies in this work, we refer to monotone
access policies. Often, access policies can directly be represented in a
tree-based fashion, i.e., see for example [GPSW06]. In many cases also
threshold gates can be used. Usually, the underlying building block for
encoding access policies are monotone span programs (MSP) [KW93].
Those techniques offer more generality than encoding the access policy
as boolean formula and are the de-facto standard in the cryptographic
literature for encoding policies in ABE schemes. For access policies, we use
monotone span programs (MSPs) as described in Section 2 for encoding
the access policy.

More expressive policies are known in the cryptographic literature,
e.g., ones that allow for NOT-gates to be present within an access policy.
However, the provided ABE schemes are often not as efficient compared
to their monotonic counterparts in a practical sense. In [GPSW06], Goyal
et al. describe an inefficient way of realizing more general access policies
to allow the NOT operator. Furthermore, we can allow even for access
policies that are represented as general circuits as described by the work
of Gorbunov et al. [GVW13] based on lattices and by the work of Garg
et al. [GGH+13] based on multilinear maps. However, those scheme are
not at all efficient yet. Hence, for practical considerations, schemes in the
bilinear group setting supporting monotone access policies (i.e., monotone
span programs) currently seem to be the optimal choice.

4 Instantiation and Evaluation

In this section, we start with discussing the choice of primitives to come
up with an efficient instantiation of our generic approach to PCHs. We
then present our construction and report on the evaluation of first imple-
mentation results of our concrete PCH.

4.1 Selecting a CP-ABE Scheme

In terms of practical CP-ABE instantiations, we consider the recent work
by Agrawal and Chase on a very efficient CP-ABE scheme they dubbed
FAME [AC17]. FAME supports unbounded ABE universes, has no re-
strictions on the monotone policies used, is based on efficient Type-III
pairings, has constant-time decryption, and is adaptively secure under a
standard assumption. Those features make FAME very versatile in prac-
tical environments as used in our context. The only restriction is that
FAME does not support multiple attributes in a ciphertext policy (which
is commonly referred to as one-use restriction). However, FAME can be
adapted to allow up to a constant number of the repeating attributes
within a policy by increasing the ciphertext and keys by a small factor.

The CP-ABE scheme by Waters [Wat11] yields a good candidate for
our scenario as well; in particular, since his construction does not have
the one-use restriction. However, Waters’ scheme is only selectively secure
and requires a q-type (i.e., non-standard and non-static) assumption. In
a selective security model, the adversary has to output the target ac-
cess policy before receiving the public parameters of the system which is
clearly not a realistic scenario and too weak for the security required by
PCHs. Furthermore, encryption and decryption is less efficient compared
to FAME [AC17].

We also considered the state-of-the-art adaptively secure CP-ABE
scheme from the literature, i.e., the work by Chen, Gay, and Wee [CGW15].
Their scheme is fairly efficient (see [AC17] for comparisons); however, not
suitable for our scenario due to the restriction of a bounded universe of
attributes.

Finally, we end up with selecting FAME [AC17]. Since FAME only
provides IND-CPA security, but we require IND-CCA2 security, we ap-
ply a variant of the well known Fujisaki-Okamoto transform [FO99] (see
[KW18]) to FAME. Basically, the encryption algorithm will encrypt as its
message (m, r) with m the original message and r a sufficiently large ran-
domly sampled bitstring (this requires to injectively encode (m, r) into
the message space of ABE). The ABE encryption is derandomized and

uses as the random coins H(r,A) where H is a hash function modeled as
a random oracle and A the used access policy to obtain the ciphertext C.
The decryption algorithm applies the original decryption algorithm from
IND-CPA-secure ABE to receive (m′, r′). Then, it re-encrypts (m′, r′) us-
ing random coins H(r,A) to obtain ciphertext C ′. If it holds that C = C ′,
it outputs m′ and otherwise it outputs ⊥. Note that if we want to use the
resulting scheme as an IND-CCA2-secure KEM, we can simply sample a
random (say ` bit) key k and use (k, r) as the message to be encrypted
with the ABE and k as the key (and also need to include k as input to
H). Observe, that clearly for the transformation to work, A needs to be
known to the decryption algorithm. We can safely assume that this can
be inferred from a given ciphertext (of the IND-CPA-secure variant of
ABE), i.e., by simply appending a canonical representation of A to the
ciphertext.

4.2 Modified CHET

Camenisch et al. in [CDK+17] provide, among others, a generic construc-
tion of a CHET by combining two chameleon-hashes, both requiring colli-
sion resistance even in presence of a collision-finding oracle. The keys for
the second chameleon-hash are drawn freshly for each new hash. Thus,
the secret key for the second chameleon-hash is the ephemeral trapdoor.
In this section, we provide a construction which is essentially the one
given by Camenisch et al. [CDK+17], but we additionally check whether
a hash h is valid after adaption and add the two public keys to the hash-
computation, as already done by Krenn et al. [KPSS18], but in a slightly
different context. This allows us to prove our stronger notion of private
collision resistance required in this work. The formal definitions are given
in Appendix B while our generic construction is given in Scheme 2.

Theorem 4 (Security of Scheme 2). If CH is strongly indistinguish-
able, collision resistant, and correct, then the construction of a CHET
given in Construction 2 is strongly indistinguishable, publicly collision
resistant, strongly privately collision resistant, and correct.

We provide a proof of this theorem in Appendix B.4.

Concrete Instantiation. For our concrete instantiation of the CHET,
we use the RSA-based CH from [CDK+17] which builds upon the one
presented by Brzuska et al. [BFF+09]. We recall this construction in Ap-
pendix B.2 and show its security in our stronger model.

PPGenCHET(1κ) : On input a security parameter κ, let PPCH ← PPGenCH(1κ). Return
PPCHET ← PPCH.

KGenCHET(PPCHET) : On input PPCHET = PPCH, return (sk1CH, pk
1
CH)← KGenCH(PPCH).

HashCHET(pkCHET,m) : On input of pkCHET = pk1CH and m, return ((h1, h2, pk1CH, pk
2
CH),

(r1, r2)), where

(etd, pk2CH)← KGenCH(PPCH)
(h1, r1)← HashCH(pk1CH, (m, pk

1
CH, pk

2
CH))

(h2, r2)← HashCH(pk2CH, (m, pk
1
CH, pk

2
CH))

VerifyCHET(pkCHET,m, h, r) : On input of pkCHET = pk1CH, m, h = (h1, h2, pk1CH, pk
2
CH)

and r = (r1, r2), return 1, if:

VerifyCH(pk1CH, (m, pk
1
CH, pk

2
CH), h1, r1) = 1 ∧

VerifyCH(pk2CH, (m, pk
1
CH, pk

2
CH), h2, r2) = 1

Otherwise, return 0.
AdaptCHET(skCHET, etd,m,m

′, h, r) : On input a secret key skCHET = sk1CH, etd, mes-

sages m and m′, a hash h = (h1, h2, pk1CH, pk
2
CH) and r = (r1, r1), first

check that VerifyCHET(pkCHET,m, h, r) = 1. Otherwise, return ⊥. Return r′, if
VerifyCHET(pkCHET,m

′, h, r′) = 1 where

r′1 ← AdaptCH(sk1CHET, (m, pk
1
CH, pk

2
CH), (m′, pk1CH, pk

2
CH), r1, h1)

r′2 ← AdaptCH(etd, (m, pk1CH, pk
2
CH), (m′, pk1CH, pk

2
CH), r2, h2)

r′ ← (r′1, r′2)

Otherwise, return ⊥.

Scheme 2: Construction of a CHET

4.3 Selection of Suitable Parameters

Subsequently, we discuss the selection of parameters for the required cryp-
tographic building blocks considering the cryptanalytic state-of-the-art.

Bilinear Groups. In the sequel, let BilGen be an algorithm that, on input
a security parameter 1κ, outputs (p, ê,G1,G2,GT , g1, g2) ← BilGen(1κ),
where G1, G2, GT are groups of prime order p with bilinear map ê :
G1 × G2 → GT and generators gi ∈ Gi for i ∈ {1, 2}. We choose to
use Type-III bilinear groups as they represent the state-of-the-art regard-
ing efficiency and similarity of the security levels of the base and target
groups. Thereby, we need to cope with recent advances for computing
discrete logarithms in finite extension fields [KB16], which apply to the
target group GT of state-of-the-art pairing-friendly elliptic curve groups.
This impact is assessed by Menezes et al. [MSS16] as well as Barbulescu
and Duquesne [BD18], whereas former estimates are less conservative.
Regarding a concrete choice of a curve family, we choose the popular BN

curve family [BN06] and in particular the BN254 curve, which gives us
around 100 bits of security. If one wants to go for a larger security level
with comparable performance, one can follow the same lines as Zcash10

and choose the BLS curve family [BLS03] and in particular the curve
BLS12-381 giving roughly 120 bits of security.11

RSA. To have a security level of RSA parameters that is comparable to
the one for our chosen bilinear groups, we selected moduli of 2048 bits in
size.

4.4 A Concrete PBCH

We now present an efficient instantiation of a PCH. In particular, we
instantiate our PCH using the concrete CHET introduced in Section 4.2.
We stress that although we end up in a construction that instantiates
one component based on the RSA setting and the other one in a prime
order group, neither influences the other regarding choice of the security
parameters and it is a compromise to obtain a good overall efficiency.

Our Construction. In Scheme 3, 4, and 5 we present our concrete in-
stantiation. Likewise to the abstract algorithmic definition of PCHs, we
assume that all algorithms implicitly have access to pk. Note that we use
the CP-ABE scheme, which is made IND-CCA2 secure as discussed in
Section 4.1. This scheme is used as a CCA secure KEM and combined with
an IND-CCA2 secure symmetric encryption scheme to obtain a CCA2 se-
cure hybrid encryption scheme (using the compiler formalized in [CS03]).
Consequently, we encrypt the ephemeral trapdoor using the symmetric
scheme (denoted by (KGenSE,EncSE,DecSE) in our construction). It is easy
to show that this modification preserves the adaptive IND-CCA2 secu-
rity of the modified CP-ABE scheme. We note that the hash functions
H1, H2, H3, H4 are modeled as a random oracles (ROs) [BR93]12 and let
enc : {0, 1}`+κ → GT be in injective encoding function and ` be the max-
imum length of keys output by KGenSE(1κ). Combining the results in
Theorems 1-3, 4, and Theorem 1 from [CDK+17], we obtain the follow-
ing.

Corollary 1. The construction in Scheme 3, 4, and 5 is an indistin-
guishable, outsider and insider collision resistant PCH.

10 https://z.cash/blog/new-snark-curve.html
11 Estimates from a personal communication with Razvan Barbulescu.
12 We note that any practical ABE scheme in literature that support an unlimited

number of attributes from an unbounded domain are proven secure in the Random
Oracle Model.

https://z.cash/blog/new-snark-curve.html

PPGenPCH(1κ) : On input security parameter κ run

1. Choose prime e1 s.t. e1 > N ′ with N ′ = maxr{(N, ·, ·, ·, ·)← RSAKGen(1κ; r)}.
2. Run (N1, p1, q1, ·, ·) ← RSAKGen(1κ), choose a hash function H1 : {0, 1} → Z∗N1

.

Compute d1 s.t. ed1 ≡ 1 mod (p1 − 1)(q1 − 1), set skCHET ← (d1) pkCHET ←
(κ,N1, e,H1).

3. Run (p, ê,G1,G2,GT , g1, g2) ← BilGen(1κ). Pick a1, a2, b1, b2 ←r Z∗p and

w1, w2, w3 ←r Zp, hash functions H3 : {0, 1}∗ → G1 and H4 : {0, 1}∗ → (Zp)2,
an encryption scheme (KGenSE,EncSE,DecSE), and set

mpkABE ← (g2, q1 ← ga12 , q2 ← ga22 , T1 ← ê(g1, g2)w1a1+w3 , T2 ← ê(g1, g2)w2a2+w3 ,

H3, H4, (KGenSE, ,EncSE,DecSE)), and

mskABE ← (a1, a2, b1, b2, g2, g
w1
1 , gw2

1 , gw3
1)

and return skPCH ← (mskABE, skCHET) and pkPCH ← (mpkABE, pkCHET).
KGenPCH(skPCH, S) : On input skPCH = (mskABE, skCHET) and attribute set S, parse msk as

(a1, a2, b1, b2, g2, g
w1
1 , gw2

1 , gw3
1), pick ρ1, ρ2 ←r Zp and compute

sk0 = (sk0,1, sk0,2, sk0,3)← (gb1ρ12 , gb2ρ22 , gρ1+ρ22).

For all s ∈ S and t = 1, 2 compute

sks,t ← H3(y‖1‖t)
b1ρ1
at ·H3(y‖2‖t)

b2ρ2
at ·H3(y‖3‖t)

ρ1+ρ2
at · g

σs
at
1 ,

where σs ←r Zp and set sks ← (sks,1, sks,2, g
−σs
1). Moreover, for t = 1, 2 compute

sk′t ← gwt1 ·H3(011‖t)
b1ρ1
at ·H3(012‖t)

b2ρ2
at ·H3(013‖t)

ρ1+ρ2
at · g

σ′
at
1 ,

where σ′ ←r Zp and set sk′ ← (sk′1, sk
′
2.g

d3
1 · g

−σ′

1). Set skS,ABE ← (sk0, {sks}s∈S, sk′) and
return (skCHET, skS,ABE).

Scheme 3: Concrete PCH construction: parameter and key generation

4.5 Performance Evaluation

To demonstrate the practicality of our scheme, we implemented our con-
struction in Python 3.5.3 and base our implementation on the Charm
framework [AGM+13] version 0.5013, the implementation of FAME from
the authors of [AC17]14, whereas we use our own implementation of CH.
We stress that we do not implement the IND-CCA2-secure variant of
FAME, but use the IND-CPA-secure one. This is because our implemen-
tation is only intended to be used for evaluation purposes and we do not
expect notable differences due to using the IND-CPA-variant. The mea-
surements were performed on a laptop with an Intel Core i7-7600U CPU
@ 2.80GHz with 16GB RAM running Ubuntu 18.04. For our benchmarks,
we use access policies with n ∈ {8, 16, 32, 64} attributes, where the poli-

13 https://github.com/JHUISI/charm
14 https://github.com/sagrawal87/ABE

https://github.com/JHUISI/charm
https://github.com/sagrawal87/ABE

HashPCH(pkPCH,m,M) : On input public key pk = (mpkABE, pkCHET), a message m and a

matrix encoding M of access structure A, parse pkCHET = (κ,N1, e,H1) and:
1. Run (N2, p2, q2, ·, ·) ← RSAKGen(1κ), fix a hash function H2 : {0, 1} → Z∗N2

. Com-

pute d2 s.t. ed2 ≡ 1 mod (p2 − 1)(q2 − 1).
2. Choose r1 ←r Z∗N1

, r2 ←r Z∗N2
, compute h1 ← H1((m,N1, H1, N2, H2))re1 mod N

and h2 ← H2((m,N1, H1, N2, H2))re2. Set h′ ← (h1, h2) and r′ ← (r1, r2).
3. Choose r ←r {0, 1}κ, k ←r KGenSE(1κ) compute (u1, u2) ← H4((r,A)) and ct0 ←

(qu1
1 , qu2

2 , gu1+u2
2). Assuming M has ` rows and k columns, then for i ∈ [`] and

z = 1, 2, 3 compute

cti,z ← H3(π(i)‖z‖1)u1 ·H3(π(i)‖z‖2)u2 ·
k∏
j=1

[
H3(0‖j‖z‖1)u1 ·H3(0‖j‖z‖2)u2

](M)i,j .

Set cti ← (cti,1, cti,2, cti,3), K ← encode(k, r), compute ĉt ← Tu1
1 · Tu2

2 ·K, c̃t ←r

EncSE(k, d2), and set ct← (ct0, ct1, . . . , ct`, ĉt, c̃t).
Return (h, r)← ((h′, N2, H2, ct), r′).

VerifyPCH(pkPCH,m, h, r) : On input public parameters pk = (mpkABE, pkCHET), message

m, hash value h = (h′, N2, H2, ct), and randomness r = (r1, r2), parse pkCHET =
(κ,N1, e,H1), check if r1 ∈ Z∗N1

, r2 ∈ Z∗N2
, and if h1 = H1((m,N1, H1, N2, H2))re1

mod N1 and h2 = H2((m,N1, H1, N2, H2))re2 mod N2. If all checks hold, return 1 and 0
otherwise.

Scheme 4: Concrete PCH construction: hashing and verification

cies always consist of two OR clauses with n/2 attributes connected via
AND. This is a rather pessimistic choice as for FAME, AND gates are
more expensive than OR gates.

PBCH Algorithm 8 Att. 16 Att. 32 Att. 64 Att.

Setup 438 477 457 474

KGen 87 170 302 596

Hash 235 314 386 597

Verify 46 48 45 46

Adapt 286 403 379 385

Table 1: Performance evaluation: runtimes in [ms]

We examine that most runtimes of the algorithms are dominated by
the operations related to the underlying primitives of our CHET. Algo-
rithm Setup, which needs to generate a large prime e > 2048 bit, an
2048-bit RSA modulus N and a suitable prime-order group, is a one-time
operation and independent of the number of attributes, and is therefore
irrelevant from a practical perspective. The Hash and Adapt operations
are also dominated by the modular exponentiations. Similar to Setup,
Hash and Adapt are infrequent operations and in particular in the con-

AdaptPCH(skS,m,m
′, h, r) : On input skS = (skCHET, skS,ABE) messages m and m′, hash value

h = (h′, N2, H2, ct) and randomness r = (r1, r2), assuming that S satisfies access policy
A used for the hash (otherwise return ⊥), parse skCHET = (d1) and:

1. Compute coefficients {λi}π(i)∈S for the MSP (M, π) associated to A as discussed in
Section 2, compute

A← ĉt · ê(
∏
i∈I

ctλii,1, sk0,1) · ê(
∏
i∈I

ctλii,2, sk0,2) · ê(
∏
i∈I

ctλii,3, sk0,3),

B ← ê(sk′1 ·
∏
i∈I

skλi
π(i),1

, ct0,1) · ê(sk′2 ·
∏
i∈I

skλi
π(i),2

, ct0,2) · ê(sk′3 ·
∏
i∈I

skλi
π(i),3

, ct0,3),

K′ ← A ·B−1 and set (k′, r′)← encode−1(K′).

2. Compute (u′1, u
′
2) ← H4((r′,A)) and ct′0 ← (q

u′
1

1 , q
u′
2

2 , g
u′
1+u

′
2

2). Assuming M has `
rows and k columns, then for i ∈ [`] and z = 1, 2, 3 compute

ct′i,z ← H3(π(i)‖z‖1)u
′
1 ·H3(π(i)‖z‖2)u

′
2 ·

k∏
j=1

[
H3(0‖j‖z‖1)u

′
1 ·H3(0‖j‖z‖2)u

′
2
](M)i,j .

Set ct′i ← (ct′i,1, ct
′
i,2, ct

′
i,3), compute ĉt

′ ← T
u′
1

1 · Tu
′
2

2 · K′, and set ct′ ←
(ct′0, ct

′
1, . . . , ct

′
`, ĉt
′
). If ct 6= ct′ return ⊥. Otherwise compute d′2 ← DecSE(k′, c̃t′)

and return ⊥ if d′2 = ⊥.
3. Check if h1 = H1((m,N1, H1, N2, H2))re1 mod N1 and h2 =

H2((m,N1, H1, N2, H2))re2 mod N2 and return ⊥, if any of the checks fails. Other-
wise, let x1 ← H1((m,N1, H1, N2, H2)), x′1 ← H1((m′, N1, H1, N2, H2)), y1 ← x1re1
mod N1 as well as x2 ← H2((m,N1, H1, N2, H2)), x′2 ← H2((m′, N1, H1, N2, H2)),

y2 ← x2re2 mod N2, compute r′1 ← (y1(x′−1
1))d1 mod N1, and finally

r′2 ← (y2(x′−1
2))d2 mod N2.

4. Return ⊥ if h1 6= H1((m′, N1, H1, N2, H2))r′e1 mod N1 or h2 6=
H2((m′, N1, H1, N2, H2))r′e2 mod N2.

Finally, return r′ ← (r′1, r
′
2).

Scheme 5: Concrete PCH construction: adaptation

text of blockchains are totally acceptable. The operation that is most
time critical, as it is required whenever verifying the transactions within
a blockchain is the Verify algorithm, which is very efficient and also con-
stant. A more detailed evaluation is presented in Appendix A.

5 Blockchain Transaction-Level Rewriting

In this section, we come back to the application of policy-based chameleon-
hash functions (PCHs) to rewriting objects in blockchains, where we use
the syntax of the Bitcoin blockchain for our discussion. We recall that
while Ateniese et al. [AMVA17] target rewriting entire blocks within a
blockchain, we propose transaction-level rewriting. Here, blocks in the
blockchain remain intact but only specific transactions inside a block can
be rewritten. We deem this application much more important than when

focusing on blocks as it is much more fine-grained and keeps the overall
blockchain intact.

Fig. 5: Using a PCH for transaction-level rewrites

We recall that each block in a blockchain stores a compact repre-
sentation of a set of transactions, i.e., the root hash of a Merkle tree
(denoted TX ROOT) which accumulates all transactions associated to
a block. Now, one way to integrate transaction-level rewriting capabili-
ties into blockchains by means of PCHs is as follows. Every participant
who engages in the role of an attribute authority includes pk using a
transaction signed under the key corresponding to the public key of an
address owner (we stress that there are various other ways of distributing
the pk’s in a way that they can be verified). The attribute authority can
then issue PCH secret keys to other users. If a user wants to include a
modifiable transaction the transaction needs to be hashed using the PCH.
In Figure 5, we consider a toy example of a block (Bi) which accumu-
lates four transactions Ti,1, . . . , Ti,4. Let us assume that transaction Ti,1
should be rewritable by users that satisfy access policy A. Then the last
three transactions (Ti,2 to Ti,4) are processed as usual, i.e., input to the
hash computation based on H, but the first transaction is preprocessed
by means of the PCH and the hash value A is input in the Merkle tree.
Observe that the randomness ri is not included in the hash computation
of the aggregation and is provided as non-hashed part of the transac-
tion/block. When the transaction needs to be updated, everyone with
a secret key satisfying A can compute a collision for hash value A and
provide the new randomness r′i. Note that in contrast to the scenario of
Ateniese et al. [AMVA17], the hash function used to chain blocks remains
to be a conventional collision resistant hash function and the PREV H
values are never updated.

Let us briefly recall how the security properties of the PCH come into
play. Indistinguishability guarantees that it is not detectable whether a
hash computed by means of the PCH has been adapted, i.e., whether a
rewrite happened. We stress that this even holds if PCH secret keys that
would allow to compute a collision are leaked. More importantly, the
properties insider and outsider collision resistance guarantee that only
someone in possession of a secret key (trapdoor) whose attributes satisfy
the access policy used upon computing the hash is able to perform editing.

6 Conclusion

We tackle the problem of rewriting objects in blockchains in a way, flex-
ible enough for real-world needs regarding the granularity of who can
perform such an operation. With our challenging goal, to realize this
functionality entirely by means of cryptography, in mind, we introduce
the notion of policy-based chameleon-hashes (PCHs). This notion gen-
eralizes chameleon-hashes in the sense that hashing additionally takes a
policy as input and collision finding is much more fine-grained than in
existing chameleon-hashing, i.e., a collision can only be found by users
satisfying the policy used during hashing. We rigorously model the secu-
rity and present a generic construction of this primitive from a CP-ABE
scheme and a modified CHET, and provide first implementation results.

Acknowledgments. We thank the anonymous reviewers for their helpful
comments. Daniel Slamanig and Christoph Striecks have been supported
by EU’s Horizon 2020 ECSEL Joint Undertaking project SECREDAS
under grant agreement No 783119.

References

ABB+18. Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-
stantinos Christidis, Angelo De Caro, David Enyeart, Christopher Fer-
ris, Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet
Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro
Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed Cocco,
and Jason Yellick. Hyperledger fabric: A distributed operating system for
permissioned blockchains. CoRR, 2018.

AC17. Shashank Agrawal and Melissa Chase. FAME: Fast attribute-based mes-
sage encryption. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 17, pages 665–682. ACM Press, Oc-
tober / November 2017.

ACdT05. Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik.
Sanitizable signatures. In Sabrina De Capitani di Vimercati, Paul F. Syver-
son, and Dieter Gollmann, editors, ESORICS 2005, volume 3679 of LNCS,
pages 159–177. Springer, Heidelberg, September 2005.

AdM04. Giuseppe Ateniese and Breno de Medeiros. On the key exposure problem
in chameleon hashes. In Security in Communication Networks, 4th Inter-
national Conference, SCN 2004, 2004.

AGM+13. Joseph A. Akinyele, Christina Garman, Ian Miers, Matthew W. Pagano,
Michael Rushanan, Matthew Green, and Aviel D. Rubin. Charm: a frame-
work for rapidly prototyping cryptosystems. Journal of Cryptographic En-
gineering, 3(2):111–128, 2013.

AMVA17. Giuseppe Ateniese, Bernardo Magri, Daniele Venturi, and Ewerton R. An-
drade. Redactable blockchain - or - rewriting history in bitcoin and friends.
In 2017 IEEE European Symposium on Security and Privacy, EuroS&P
2017, 2017.

BCD+17. Michael Till Beck, Jan Camenisch, David Derler, Stephan Krenn, Hen-
rich C. Pöhls, Kai Samelin, and Daniel Slamanig. Practical strongly invisi-
ble and strongly accountable sanitizable signatures. In Josef Pieprzyk and
Suriadi Suriadi, editors, ACISP 17, Part I, volume 10342 of LNCS, pages
437–452. Springer, Heidelberg, July 2017.

BD18. Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations
for pairings. Journal of Cryptology, 2018.

Bei96. Amos Beimel. Secure schemes for secret sharing and key distribution. In
PhD thesis, 1996.

BFF+09. Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann,
Marcus Page, Jakob Schelbert, Dominique Schröder, and Florian Volk. Se-
curity of sanitizable signatures revisited. In Stanislaw Jarecki and Gene
Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 317–336. Springer,
Heidelberg, March 2009.

BLS03. Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing elliptic
curves with prescribed embedding degrees. In Stelvio Cimato, Clemente
Galdi, and Giuseppe Persiano, editors, SCN 02, volume 2576 of LNCS,
pages 257–267. Springer, Heidelberg, September 2003.

BMM17. Christian Badertscher, Christian Matt, and Ueli Maurer. Strengthening
access control encryption. In Tsuyoshi Takagi and Thomas Peyrin, edi-
tors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages 502–532.
Springer, Heidelberg, December 2017.

BN06. Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves
of prime order. In Bart Preneel and Stafford Tavares, editors, SAC 2005,
volume 3897 of LNCS, pages 319–331. Springer, Heidelberg, August 2006.

BNPS03. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Se-
manko. The one-more-RSA-inversion problems and the security of Chaum’s
blind signature scheme. Journal of Cryptology, 16(3):185–215, June 2003.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In V. Ashby, editor, ACM CCS
93, pages 62–73. ACM Press, November 1993.

BSW07. John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy
attribute-based encryption. In 2007 IEEE Symposium on Security and Pri-
vacy, pages 321–334. IEEE Computer Society Press, May 2007.

CDK+17. Jan Camenisch, David Derler, Stephan Krenn, Henrich C. Pöhls, Kai
Samelin, and Daniel Slamanig. Chameleon-hashes with ephemeral trap-
doors - and applications to invisible sanitizable signatures. In Public-Key
Cryptography - PKC 2017., 2017.

CGW15. Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in
prime-order groups via predicate encodings. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
595–624. Springer, Heidelberg, April 2015.

Cha07. Melissa Chase. Multi-authority attribute based encryption. In Salil P.
Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 515–534. Springer,
Heidelberg, February 2007.

CS03. Ronald Cramer and Victor Shoup. Design and analysis of practical public-
key encryption schemes secure against adaptive chosen ciphertext attack.
SIAM Journal on Computing, 33(1):167–226, 2003.

CZK04. Xiaofeng Chen, Fangguo Zhang, and Kwangjo Kim. Chameleon hashing
without key exposure. In ISC, pages 87–98, 2004.

DHO16. Ivan Damg̊ard, Helene Haagh, and Claudio Orlandi. Access control en-
cryption: Enforcing information flow with cryptography. In Martin Hirt
and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS,
pages 547–576. Springer, Heidelberg, October / November 2016.

DMT19. Dominic Deuber, Bernardo Magri, and Sri Aravinda Krishnan Thyagarajan.
Redactable blockchain in the permissionless setting. In IEEE Symposium
on Security and Privacy (SP), pages 645–659, 2019.

FFW13. Anna Lisa Ferrara, Georg Fuchsbauer, and Bogdan Warinschi. Crypto-
graphically enforced RBAC. In 2013 IEEE 26th Computer Security Foun-
dations Symposium, pages 115–129, 2013.

FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmet-
ric and symmetric encryption schemes. In Michael J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 537–554. Springer, Heidelberg,
August 1999.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters.
Attribute-based encryption for circuits from multilinear maps. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043
of LNCS, pages 479–499. Springer, Heidelberg, August 2013.

GPSW06. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-
based encryption for fine-grained access control of encrypted data. In Ari
Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors,
ACM CCS 06, pages 89–98. ACM Press, October / November 2006. Avail-
able as Cryptology ePrint Archive Report 2006/309.

GVW13. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-
based encryption for circuits. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, 45th ACM STOC, pages 545–554. ACM Press, June
2013.

HFK+14. Vincent C. Hu, David Ferraiolo, Rick Kuhn, Adam Schnitzer, Kenneth San-
dlin, Robert Miller, and Karen Scarfone. Guide to attribute based access
control (abac) definition and considerations. Technical report, NIST Special
Publication 800-162, 2014.

KB16. Taechan Kim and Razvan Barbulescu. Extended tower number field sieve:
A new complexity for the medium prime case. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 543–571. Springer, Heidelberg, August 2016.

KPSS18. Stephan Krenn, Henrich C. Pöhls, Kai Samelin, and Daniel Slamanig.
Chameleon-hashes with dual long-term trapdoors and their applications.
In AfricaCrypt, 2018.

KR00. Hugo Krawczyk and Tal Rabin. Chameleon signatures. In Proceedings of
the Network and Distributed System Security Symposium, NDSS 2000, San
Diego, California, USA, 2000.

KW93. Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings
of Structures in Complexity Theory, pages 102–111, 1993.

KW17. Sam Kim and David J. Wu. Access control encryption for general policies
from standard assumptions. In Tsuyoshi Takagi and Thomas Peyrin, ed-
itors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages 471–501.
Springer, Heidelberg, December 2017.

KW18. Venkata Koppula and Brent Waters. Realizing chosen ciphertext security
generically in attribute-based encryption and predicate encryption. Cryp-
tology ePrint Archive, Report 2018/847, 2018. https://eprint.iacr.org/
2018/847.

LSP82. Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine
generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

LW10. Allison Lewko and Brent Waters. Decentralizing attribute-based encryp-
tion. Cryptology ePrint Archive, Report 2010/351, 2010. http://eprint.

iacr.org/2010/351.
LW11. Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryp-

tion. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of
LNCS, pages 568–588. Springer, Heidelberg, May 2011.

Mer89. Ralph C. Merkle. A certified digital signature. In Advances in Cryptology
- CRYPTO ’89, 1989.

MSS16. Alfred Menezes, Palash Sarkar, and Shashank Singh. Challenges with as-
sessing the impact of NFS advances on the security of pairing-based cryp-
tography. In Paradigms in Cryptology - Mycrypt 2016., 2016.

PDC17. Ivan Puddu, Alexandra Dmitrienko, and Srdjan Capkun. µchain: How to
forget without hard forks. IACR Cryptology ePrint Archive, 2017:106, 2017.

Wat11. Brent Waters. Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization. In Dario Catalano, Nelly Fazio,
Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011, volume 6571
of LNCS, pages 53–70. Springer, Heidelberg, March 2011.

https://eprint.iacr.org/2018/847
https://eprint.iacr.org/2018/847
http://eprint.iacr.org/2010/351
http://eprint.iacr.org/2010/351

A Detailed Evaluation

We now present a more detailed evaluation of our implementation. In
particular, Figure 6 provides a first overview (average), while Table 2
contains the bare numbers for our implementation. We omit setup in
Figure 6, as this procedure is only executed once. The corresponding
boxplots for each algorithm are given in Figure 7-Figure 9.

8 Att. 16 Att. 32 Att. 64 Att.

200 ms

400 ms

600 ms

#Attributes

A
v
er

a
g
e

R
u
n
ti

m
e

PPGenPCH
KGenPCH
HashPCH
VerifyPCH
AdaptPCH

Fig. 6: Performance evaluation (runtimes in ms) with an IND-CPA-secure
variant of FAME

8 Att. 16 Att. 32 Att. 64 Att.

1,000ms

2,000ms

3,000ms

Algorithms

R
u
n
ti

m
e

(a) Setup

8 Att. 16 Att. 32 Att. 64 Att.

200ms

400ms

600ms

800ms

Algorithms

R
u
n
ti

m
e

(b) Kgen

Fig. 7: Box-Plots of the measurements in ms for our protocol

8 Att. 16 Att. 32 Att. 64 Att.

150ms

300ms

450ms

600ms

Algorithms

R
u
n
ti

m
e

(a) Hash

8 Att. 16 Att. 32 Att. 64 Att.

16ms

32ms

48ms

64ms

80ms

Algorithms

R
u
n
ti

m
e

(b) Verify

Fig. 8: Box-Plots of the measurements in ms for our protocol

8 Att. 16 Att. 32 Att. 64 Att.

100ms

200ms

300ms

400ms

500ms

Algorithms

R
u
n
ti

m
e

Fig. 9: Box-Plots of the Adapt measurements in ms for our protocol

This shows that setup is constant, regardless how many attributes
are involved, which is also true for verification and adaption. However,
things change for hashing and key-generation, which grow linearly with
the amount of attributes. This, however, is easily explainable due to the
used ABE scheme.

B Security Properties of CHs and CHETs

We now present the formal security definitions for CHs and CHETs.

B.1 Security of CHs

Below we present security notions of chameleon-hashes.

Strong Indistinguishability. Indistinguishability requires that the ran-
domnesses r does not reveal if it was obtained through HashCH or AdaptCH.
The messages are chosen by the adversary. We, however, relax the per-
fect indistinguishability definition of Brzuska et al. [BFF+09] to a com-
putational version, which is enough for most use-cases, including ours.
Compared to the existing definition in [BCD+17,CDK+17,KPSS18], the
adversary is also allowed to know the secret key sk, but cannot generate
it.

ExpSInd
A,CH(κ)

PPch ← PPGenCH(1κ)
(skCH, pkCH)← KGenCH(PPch)
b← {0, 1}
a← AHashOrAdaptCH(skCH,·,·,b)(skCH, pkCH)

where HashOrAdaptCH(skCH, ·, ·, b) on input m,m′:
(h, r)← HashCH(pkCH,m

′)
(h′, r′)← HashCH(pkCH,m)
r′′ ← AdaptCH(skCH,m,m

′, r′, h′)
if b = 0:

return (h, r)
if b = 1:

return (h′, r′′)
return 1, if a = b
return 0

Fig. 10: CH Strong Indistinguishability

Note that we need to implicitly return ⊥ in the HashOrAdapt oracle
(in case of an error), as the adversary may try to enter a message m /∈M,
even if M = {0, 1}∗, which makes the algorithm output ⊥. If we would
not do this, the adversary could trivially decide which case it sees. For
similar reasons these checks are also included in other definitions.

Definition 10 (Strong Indistinguishability). We define the advan-
tage of an adversary A in the Ind experiment ExpInd

A,PCH(κ) as

AdvInd
A,CH(κ) :=

∣∣∣Pr
[
ExpSInd

A,CH(κ) = 1
]
− 1/2

∣∣∣ .
We say a CH scheme is indistinguishable, if AdvInd

A,CH(κ) is a negligible
function in κ for all PPT adversaries A.

Collision Resistance. Collision resistance says, that even if an ad-
versary has access to an adapt oracle, it cannot find any collisions for
messages other than the ones queried to the adapt oracle. Note, this
is an even stronger definition than key-exposure freeness [AdM04]: key-
exposure freeness only requires that one cannot find a collision for some
new “tag”, i.e., for some auxiliary value for which the adversary has never
seen a collision.

ExpCR
A,CH(κ)

PPch ← PPGenCH(1κ)
(skCH, pkCH)← KGenCH(PPch)
Q ← ∅
(m∗, r∗,m′∗, r′∗, h∗)← AAdapt′CH(skCH,·,·,·,·)(pkCH)

where Adapt′CH(skCH, ·, ·, ·, ·) on input m,m′, r, h:
r′ ← AdaptCH(skCH,m,m

′, r, h)
return ⊥, if r′ = ⊥
Q ← Q∪ {m,m′}
return r′

return 1, if VerifyCH(pkCH,m
∗, h∗, r∗) = VerifyCH(pkCH,m

′∗,
r′∗, h∗) = 1 ∧ m′∗ /∈ Q ∧ m∗ 6= m′∗

return 0

Fig. 11: CH Collision Resistance

Definition 11 (Collision Resistance). We define the advantage of an
adversary A in the CR experiment ExpCR

A,CH(κ) as

AdvCR
A,CH(κ) := Pr

[
ExpCR

A,CH(κ) = 1
]
.

We say that a CH scheme is collision resistant, if the function AdvCR
A,CH(κ)

is a negligible function in κ for all PPT adversaries A.

Weak Collision Resistance. Weak collision resistance is essentially the
same as collision resistance, but the adversary does not get access to a
collision-finding oracle. Thus, schemes which suffer from the key-exposure
problem fall under this category.

ExpwCR
A,CH(κ)

PPch ← PPGenCH(1κ)
(sk, pk)← KGenCH(PPch)
(m∗, r∗,m′∗, r′∗, h∗)← A(pk)
return 1, if Verify(pk,m∗, h∗, r∗) = Verify(pk,m′∗, h∗, r′∗) = 1 ∧
m∗ 6= m′∗

return 0

Fig. 12: CH Weak Collision resistance

Definition 12 (Weak Collision Resistance). We define the advan-
tage of an adversary A in the wCR experiment ExpwCR

A,CH(κ) as

AdvwCR
A,CH(κ) := Pr

[
ExpwCR

A,CH(κ) = 1
]
.

We say that a CH scheme is weakly collision resistant, if the function
AdvwCR

A,CH(κ) is a negligible function in κ for all PPT adversaries A.

Uniqueness. Uniqueness requires that it be hard to come up with two
different randomness values for the same message m∗ such that the hashes
are equal, for the same adversarially chosen pk∗.

ExpUniq
A,CH(κ)

PPch ← PPGenCH(1κ)
(pk∗,m∗, r∗, r′∗, h∗)← A(PPch)
return 1, if Verify(pk∗,m∗, h∗, r∗) = Verify(pk∗,m∗, h∗, r′∗) = 1
∧ r∗ 6= r′∗

return 0

Fig. 13: CH Uniqueness

Definition 13 (Uniqueness). We define the advantage of an adversary

A in the Uniqu experiment ExpUniq
A,CH(κ) as

AdvUniq
A,CH(κ) := Pr

[
ExpUniq

A,CH(κ) = 1
]
.

We say that a CH scheme is unique, if the function AdvUniq
A,CH(κ) is a

negligible function in κ for all PPT adversaries A.

Definition 14 (Secure Chameleon-Hashes). We call a chameleon-
hash CH (weakly) secure, if it is correct, indistinguishable, and (weakly)
collision resistant.

Note that we do not require the uniqueness property [CDK+17] in the
context of this paper.

B.2 Instantiation of a Secure CH.

We recall a construction from [CDK+17] in Scheme 6 after recalling an
RSA key generator.

RSA Key-Generator. Let (N, p, q, e, d)← RSAKGen(1κ) be an instance
generator which returns an RSA modulus N = pq, where p and q are
distinct primes, e > 1 an integer co-prime to ϕ(n), and de ≡ 1 mod ϕ(n).
We require that RSAKGen always outputs moduli with the same bit-
length, based on κ.

PPGenCH(1κ) : On input a security parameter κ it outputs the public parameters PP←
(1κ, e), where e is prime and e > N ′ with N ′ = maxr{N ∈ N : (N, ·, ·, ·, ·) ←
RSAKGen(1κ; r)}.

KGenCH(PP) : On input PP = (1κ, e) run (N, p, q, ·, ·) ← RSAKGen(1κ), choose a hash
function H : {0, 1}∗ → Z∗N (modeled as a random-oracle), compute d s.t. ed ≡ 1
mod ϕ(N), set sk← d, pk← (N,H), and return (sk, pk).

HashCH(pk,m) : On input a public key pk = (N,H) and a message m, choose r ←r Z∗N ,
compute h← H(m)re mod N and output (h, r).

VerifyCH(pk,m, h, r) : On input public key pk = (N,H), a message m, a hash h, and a

randomness r ∈ Z∗N , it computes h′ ← H(m)re mod N and outputs 1 if h′ = h
and 0 otherwise.

AdaptCH(sk,m,m′, h, r) : On input a secret key sk = d, messages m and m′, a

hash h, and randomness values r and r′, the adaptation algorithm outputs ⊥ if
VerifyCH(pk,m, h, r) 6= 1. Otherwise, let x← H(m), x′ ← H(m′), y ← xre mod N
and return r′ ← (y(x′−1))d mod N .

Scheme 6: RSA-based Chameleon-Hash

In [CDK+17] Camenisch et al. show that the chameleon-hash in Scheme 6
is secure under the one-more RSA inversion assumption [BNPS03] in the
random oracle model (ROM) [BR93].

Theorem 5 (cf. [CDK+17]). If the one-more RSA-inversion assump-
tion holds, then the chameleon-hash in Scheme 6 is correct, indistinguish-
able, collision resistant (and unique) in the random oracle model.

We argue that the CH restated in Scheme 6 remains secure in our
strengthened model. All properties, but strong indistinguishability, have
already been proven by Camenisch et al. [CDK+17]. Thus, it remains to
prove strong indistinguishability.

Proof. We prove strong indistinguishability by a sequence of games.

Game 0: The original strong indistinguishability game in the case b = 0.
Game 1: As Game 0, but we now make the transition to b = 1.
Transition - Game 0 → Game 1: As there is exactly one secret key (up

to the group order, which can be ignored), which makes adaption work
correctly, which we explicitly check, while r is always chosen randomly,
the distributions are exactly equal and thus |Pr[S0] − Pr[S1]| = 0
follows.

In Game 0, we simulate the first distribution of the strong indistinguisha-
bility game, in Game 1 the second one. Both games are indistinguishable
which concludes the proof.

B.3 Security of CHETs.

Subsequently we restate the security properties of CHET s from [CDK+17],
where we adapt the notation to ours and also strengthen indistinguisha-
bility to what we call strong indistinguishability and private collision
resistance to what we call strong private collision resistance. We note
that [CDK+17] additionally define uniqueness of CHET schemes. How-
ever, in our case this notion is not required.

Strong Indistinguishability. Strong Indistinguishability requires that
it be intractable for outsiders to distinguish whether a given randomness
corresponds to an output of HashCHET or AdaptCHET. Note that, when
compared to the definitions in [CDK+17,BCD+17], the adversary addi-
tionally receives the secret key sk, but cannot generate it.

Definition 15 (Strong Indistinguishability). We define the advan-
tage of an adversary A in the strong indistinguishability experiment as

AdvInd
A,CHET(κ) :=

∣∣∣Pr
[
ExpSInd

A,CHET(κ) = 1
]
− 1/2

∣∣∣ .
We say that a CHET scheme is strongly indistinguishable, if AdvInd

A,CHET(κ)
is a negligible function in κ for all PPT adversaries.

ExpSInd
A,CHET(κ)

PPCHET ← PPGenCHET(1κ)
(skCHET, pkCHET)← KGenCHET(PPCHET)
b←r {0, 1}
b∗ ← AHashOrAdaptCHET(skCHET,·,·,b)(skCHET, pkCHET)

where HashOrAdaptCHET(sk, ·, ·, b) on input m,m′:
let (h0, r0, etd0)← HashCHET(pkCHET,m

′)
let (h1, r1, etd1)← HashCHET(pkCHET,m)
let r1 ← AdaptCHET(skCHET, etd1,m,m

′, h1, r1)
return (hb, rb, etdb)

return b = b∗

Fig. 14: CHET Strong Indistinguishability

Public Collision Resistance. Public collision resistance grants the ad-
versary access to an AdaptCH oracle. It requires that it is intractable to
produce collisions, other than the ones produced by the AdaptCH oracle.

Definition 16 (Public Collision Resistance). We define the advan-
tage of an adversary A in the public collision resistance experiment as

AdvCRpub
A,CHET(κ) := Pr

[
ExpCRpub

A,CHET(κ) = 1
]
.

We say that a CHET scheme is publicly collision resistant, if AdvCRpub
A,CHET(κ)

is a negligible function in κ for all PPT adversaries.

Private Collision Resistance. Private collision resistance requires that
it is even intractable for the holder of the secret key sk to find collisions
without knowledge of etd.

Definition 17 (Private Collision Resistance). We define the advan-
tage of an adversary A in the private collision resistance experiment as

AdvCRpriv
A,CHET(κ) := Pr

[
ExpCRpriv

A,CHET(κ) = 1
]
.

We say that a CHET scheme is privately collision resistant, if AdvCRpriv
A,CHET(κ)

is a negligible function in κ for all PPT adversaries.

Strong Private Collision Resistance. Strong private collision resis-
tance requires that it is even intractable for the holder of the secret key

ExpCRpub
A,CHET(κ)

PPCHET ← PPGenCHET(1κ)
(skCHET, pkCHET)← KGenCHET(PPCHET)
Q ← ∅
(m∗, r∗,m′∗, r′∗, h∗)← AAdapt′CHET(skCHET,·,·,·,·,·)(pk)

where Adapt′CHET(skCHET, ·, ·, ·, ·, ·) on input etd,m,m′, h, r:
r′ ← AdaptCHET(skCHET, etd,m,m

′, h, r)
if r′ 6= ⊥, let Q ← Q∪ {m,m′}
return r′

return 1, if VerifyCHET(pkCHET,m
∗, h∗, r∗) = 1 ∧

VerifyCHET(pkCHET,m
′∗, h∗, r′∗) = 1 ∧

m′∗ /∈ Q ∧ m∗ 6= m′∗

return 0

Fig. 15: CHET Public Collision Resistance

sk to find collisions without knowledge of etd. Compared to the definition
by Camenisch et al. [CDK+17], however, we also allow the adversary to
request arbitrary collisions; the ephemeral trapdoor to use is indexed by
the handle. This allows for a completely stateless primitive.

Definition 18 (Strong Private Collision Resistance). We define
the advantage of an adversary A in the strong private collision resistance
experiment as

AdvSCRpriv
A,CHET(κ) := Pr

[
ExpSCRpriv

A,CHET(κ) = 1
]
.

We say that a CHET scheme is strongly privately collision resistant, if
AdvSCRpriv

A,CHET(κ) is a negligible function in κ for all PPT adversaries.

Uniqueness. Uniqueness requires that it be hard to come up with two
different randomness values for the same message m∗ such that the hashes
are equal, for the same adversarially chosen pk∗.

Definition 19 (Uniqueness). We define the advantage of an adversary
A in the uniqueness experiment as

AdvUniq
A,CHET(κ) := Pr

[
ExpUniq

A,CHET(κ) = 1
]
.

We say that a CHET scheme provides uniqueness, if AdvUniq
A,CHET(κ) is a

negligible function in κ for all PPT adversaries.

ExpCRpriv
A,CHET(κ)

PPCHET ← PPGenCHET(1κ)
Q ← ∅
i← 0

(pk∗,m∗, r∗,m′∗, r′∗, h∗)← AHash′CHET(·,·)(PPCHET)
where Hash′CHET on input pk, m:

(h, r, etd)← HashCHET(pk,m)
return ⊥, if r = ⊥
i← i+ 1
let Q ← Q∪ {(pk, h,m, etd, i)}
return (h, r)

return 1, if VerifyCHET(pk∗,m∗, r∗, h∗) = 1 ∧
VerifyCHET(pk∗,m′∗, r′∗, h∗) = 1 ∧ m∗ 6= m′∗ ∧
(pk∗, h∗,m∗, ·, ·) /∈ Q ∧ (pk∗, h∗, ·, ·, ·) ∈ Q

return 0

Fig. 16: CHET Private Collision Resistance

Definition 20 (Secure CHET). We say that a CHET is secure if it is
correct and provides strong indistinguishability, public collision resistance,
and strong private collision resistance. We say that a CHET is weakly
secure it is correct and provides strong indistinguishability, public collision
resistance, and private collision resistance.

B.4 Proofs for CHET

Theorem 6. If CH is collision resistant, then the construction of a CHET
given in Scheme 2 offers strong private collision resistance.

Proof. Assume an adversary A who can break strong private collision re-
sistance. We can then construct an adversary B which breaks the collision
resistance of CH.

In particular, the reduction works as follows. B receives pkch = pkch
′

as its own challenge. Note that PPch is implicit in pkch and let q be an
upper bound on the number of queries to the Hash′CHET-oracle. Our re-
duction draws a random index i ← {1, 2, . . . , q}. It then initializes the
adversary A by supplying PPchet = PPch. For every adaption query j 6= i,
B generates a new key pair for a CH and proceeds honestly, storing the
corresponding secret and public keys. This does not change the view of
the adversary so far. For the ith query, however, B embeds pkch

′ as the

ExpSCRpriv
A,CHET(κ)

PPCHET ← PPGenCHET(1κ)
Q ← ∅
i← 0

(pk∗,m∗, r∗,m′∗, r′∗, h∗)← AHash′CHET(·,·),Adapt
′
CHET(·,·,·,·,·,·)(PPCHET)

where Hash′CHET on input pk, m:
(h, r, etd)← HashCHET(pk,m)
return ⊥, if r = ⊥
i← i+ 1
let Q ← Q∪ {(pk, h,m, etd, i)}
return (h, r)

and Adapt′CHET on input sk, h, r, m, m′, i:
return ⊥, if (pk, h′,m′′, etd, i) /∈ Q for some h′, m′′, etd, pk
r′ ← AdaptCHET(sk, etd,m,m′, h, r)
if r′ 6= ⊥, let Q ← Q∪ {(pk, h′,m, etd, i), (pk, h′,m′, etd, i)}
return r′

return 1, if VerifyCHET(pk∗,m∗, r∗, h∗) = 1 ∧
VerifyCHET(pk∗,m′∗, r′∗, h∗) = 1 ∧ m∗ 6= m′∗ ∧
(pk∗, h∗,m∗, ·, ·) /∈ Q ∧ (pk∗, h∗, ·, ·, ·) ∈ Q

return 0

Fig. 17: CHET Strong Private Collision Resistance

public key of the second CH and for the respective query to the colli-
sion finding oracle Adapt′CHET, B proceeds as follows if a collision is to
be found for the embedded challenge: B uses its own oracle to find the
collisions for h2, while h1 can be calculated honestly, as for that the ad-
versary supplies the secret key. If this case happens can easily be identi-
fied due to the supplied handle. Note, we always check whether adaption
was successful. Clearly, this simulation does not change the view of the
adversary. Then, after the adversary A outputs (pk∗,m∗, r∗,m′∗, r′∗, h∗),
where r∗ = (r∗1, r

∗
2), r′∗ = (r′∗1 , r

′∗
2) and h∗ = (h∗1, h

∗
2, pk∗, pkch

′′), B can
return ((m∗, pk∗, pkch

′), r∗1, (m
′∗, pk∗, pkch

′), r′∗1 , h
∗
1) as its own forgery at-

tempt, if pkch
′ = pkch

′′. In all other cases, B must abort. Assuming that
pkch

′ = pkch
′′ holds, we already know that m∗ or pk∗ must be “fresh”,

and thus (m∗, pk∗, pkch
′) is fresh as well. This concludes the proof.

ExpUniq
A,CHET(κ)

PP← PPGenCH(1κ)
(pk∗,m∗, r∗, r′∗, h∗)← A(PP)
return 1, if Verify(pk∗,m∗, h∗, r∗) = Verify(pk∗,m∗, h∗, r′∗) = 1
∧ r∗ 6= r′∗

return 0

Fig. 18: CHET Uniqueness

C A Weakly Secure CHET

Camenisch et al. in [CDK+17] provide, among others, a generic construc-
tion of a CHET by combining two chameleon-hashes, both requiring colli-
sion resistance even in presence of a collision-finding oracle. The keys for
the second chameleon-hash are drawn freshly for each new hash. Thus,
the secret key for the second chameleon-hash is the ephemeral trapdoor.
In this section, we show a black-box construction along the same lines, but
we prove that the second chameleon-hash is not required to be collision
resistant w.r.t. to the collision-finding oracle. Thus, the second chameleon-
hash can be constructed from simpler primitives and in particular leads to
more efficient instantiations. In more detail, the second chameleon-hash
can even suffer from the key-exposure problem [AdM04,CZK04], while
the final construction remains secure. In particular, the first chameleon-
hash (CHs) needs to be fully secure while the second one, i.e., CHw, is
only required to be weakly secure.

Theorem 7. If CHs is secure, CHw is weakly secure, then Scheme 7 is a
weakly secure CHET.

Proof. We prove each property on its own.

Correctness. Follows by the correctness from the underlying chameleon-
hashes.

Strong Indistinguishability. We prove strong indistinguishability by a
sequence of games. This follows by a simple argument, as given below.

Game 0. The original strong indistinguishability game, where b = 0.

Game 1. As Game 0, but instead of calculating the hash hs as in the
game, directly hash.

PPGenCH(1κ) : On input a security parameter κ, let PPchs ← CHs.PPGenCH(1κ) and
PPchw ← CHw.PPGenCH(1κ). Return PPch ← (PPchs, PPchw).

KGenCH(PPch) : On input PPch = (PPchs, PPchw) run and return (sk, pk) ← CHs.
KGenCH(PPchs).

Hash(pk,m) : On input of pk and m, let (etd, pkw) ← CHw.KGenCH(PPchw).
Let (hs, rs) ← CHs.Hash(pk,m) and (hw, rw) ← CHw.Hash(pkw,m). Return
((hs, hw, pkw), (rs, rw)).

Verify(pk,m, h, r) : On input of pk, m, h = (hs, hw, pkw) and r = (rs, rw), return 1,
if CHs.Verify(pk,m, hs, rs) = 1 and CHw.Verify(pkw,m, hw, rw) = 1. Otherwise,
return 0.

AdaptCH(sk, etd,m,m′, h, r) : On input a secret key sk, messages m and m′, a hash
h = (hs, hw, pkw) and r = (rs, rw), first check that Verify(pk,m, h, r) = 1.
Otherwise, return ⊥. Let r′s ← CHs.AdaptCH(sk,m,m′, rs, hs) and r′w ← CHs.
AdaptCH(etd,m,m′, rw, hw). Return (r′s, r

′
w).

Scheme 7: Construction of a Weakly Secure CHET

We claim that Game 0 and Game 1 are strongly indistinguishable
under the strong indistinguishability of the chameleon-hashes. More for-
mally, assume that the adversary can distinguish this hop. We can then
construct an adversary B which breaks the indistinguishability of CHs. In
particular, the reduction works as follows. B receives pkc and skc as its
own challenge, passing them through to A, and proceeds as in the prior
hop, with the exception that it uses the HashOrAdapt oracle to generate
h1. Then, whatever A outputs, is also output by B. Clearly, the simulation
is perfect from A’s point of view. |Pr[S0]−Pr[S1]| ≤ νCHs-ind(κ) follows.

Game 2. As Game 1, but instead of calculating the hash hw as in the
game, directly hash.

We claim that Game 1 and Game 2 are strongly indistinguishable
under the strong indistinguishability of the chameleon-hashes. More for-
mally, assume that the adversary can distinguish this hop. We can then
construct an adversary B which breaks the indistinguishability of the
chameleon-hashes. In particular, the reduction works exactly as before.
|Pr[S1]− Pr[S2]| ≤ νCHw-ind(κ) follows.

We are now in the case b = 1. As each hop changes the view only
negligibly, strong indistinguishability is proven. As each hop only changes
the view of the adversary negligibly, this proves that our construction is
strongly indistinguishable.

Public Collision Resistance. Assume, towards contradiction, that our
scheme is not publicly collision resistant. We can then construct an ad-
versary B which breaks the collision resistance of CHs. In particular,

the parameter received from B’s own challenger are embedded in PPchs,
while PPchw is generated honestly. Likewise, B receives the pk of CHs to
forge. The pk for CHw is generated honestly. All values are then given
to A. Then, for every query to the adaption oracle, B asks its own ora-
cle to generate the collision for CHs. The collision for CHw is generated
honestly. Then, r′ = (r′s, r

′
w) is returned to A. Eventually, A outputs

(m∗, r∗,m′∗, r′∗, h∗). As, by assumption, B has never asks its own oracle
to generate a collision for m∗ and m′∗, B can return (m∗, r∗s ,m

′∗, r′∗s , h
∗)

as its own forgery of CHs. The reduction is tight, i.e., νCHs-collres(κ).

Private Collision Resistance. Assume, towards contradiction, that our
scheme is not privately collision resistant. We can then construct an ad-
versary B which breaks the collision resistance of CHw. In particular, the
parameter received from B’s own challenger are embedded in PPchw, while
PPchs are generated honestly. Likewise, the reduction B receives pkw. All
values, but pkw, are given to A. A will then output pk∗. For the next
step, let q be an upper bound on the queries made to the hashing oracle.
The reduction draws a random index i ∈ {1, 2, . . . q}. At the ith query,
B hashes with pkw and returns all values to A. For all other queries, the
reduction draws pkw honestly. So far, the simulation is perfect from A’s
point of view. Eventually, A outputs (m∗, r∗,m′∗, r′∗, h∗). Assuming that
the hash value h∗ was returned from the hashing oracle, a collision for
pkw was found. Thus, B can return (m∗, r∗w,m

′∗, r′∗w , h
∗
w) as its own forgery,

where r′∗ = (r′∗s , r
′∗
w), h∗ = (h∗s, h

∗
w), and r∗ = (r∗s , r

∗
w). As, however, B

needs to guess where the adversary finds the collision, we have a loss of
qνCHw-collres(κ).

Uniqueness. We prove uniqueness using the following sequence of games,
where we let Si denote the event that the adversary wins Game i.

Game 0. The original uniqueness game.

Game 1. As Game 0, but we abort if the adversary output r∗ = (r∗s , r
∗
w)

and r′∗ = (r′∗s , r
′∗
w) such that r′∗s 6= r∗s but the winning conditions are met.

We claim that Game 0 and Game 1 are indistinguishable under the
uniqueness of CHs. Both games proceed identically, unless the abort event
Pr[E] happens, i.e., we have |Pr[S0]−Pr[S1]| ≤ Pr[E]. We bound Pr[E] by
presenting a reduction B, which works as follows. It receives PPchs and gen-
erates PPchw honestly. Both are given to the adversary. Once the adversary
A outputs (pk∗,m∗, r∗, r′∗, h∗), where pk∗ = (pk∗s, pk∗w) and h∗ = (h∗s, h

∗
w),

while r∗ and r′∗ are as before. B can simply return (pk∗s,m
∗, r∗s , r

′∗
s , h

∗
s) as

its own forgery. That is, Pr[E] ≤ νCHs-uni(κ).

Game 2. As Game 1, but we abort if the adversary outputs r∗ = (r∗s , r
∗
w)

and r′∗ = (r′∗s , r
′∗
w) such that r′∗w 6= r∗w but the winning conditions are met.

We claim that Game 1 and Game 2 are indistinguishable under the
uniqueness of CHw. Both games proceed identically, unless the abort event
Pr[E] happens, i.e., we have |Pr[S1] − Pr[S2]| ≤ Pr[E]. We bound Pr[E]
by presenting a reduction B, which works as follows. It receives PPchw

and generates PPchs honestly. Both are given to the adversary. Once
the adversary A outputs (pk∗,m∗, r∗, r′∗, h∗), where pk∗ = (pk∗s, pk∗w)
and h∗ = (h∗s, h

∗
w), while r∗ and r′∗ are as before. B can simply return

(pk∗w,m
∗, r∗w, r

′∗
w , h

∗
w) as its own forgery. That is, |Pr[E]| ≤ νCHw-uni(κ)

follows.

A Note on Tightness. In Scheme 7 we use both chameleon-hashes as
a black-box. This leads to a loss of a polynomial factor q in the proof of
the private collision resistance, as the reduction needs to guess for which
hash the adversary finds the collision. If, however, one is willing to use
the chameleon-hash restated in Scheme 8 as CHw, one can also get rid
of that factor q. Namely, as the challenge of the DL-challenger consists
of gx, one can use random self-reducibility to achieve a tight bound, i.e.,
by embedding gxxi for a random xi for each hash-query. If a collision is
found by the adversary, the reduction knows each xi and can thus still
extract x. However, clearly this is now a non black-box reduction.

Remark 3. We stress that Scheme 7 does not provide strong private collision-
resistance, i.e., is not useful in our PCH construction.

C.1 Instantiation of a (Weakly) Secure CH.

For completeness we include the initial CH construction by Krawczyk and
Rabin [KR00] in Scheme 8, which is a suitable scheme to instantiate CHw.
The description was slightly adjusted to fit out framework and made a bit
more general. In that scheme, (G, g, q)← GGen(1κ) is an instance gener-
ator which returns a prime-order, and multiplicatively written, group G
where the discrete logarithm problem is hard, along with a generator g
such that 〈g〉 = G. We stress that this CH is also secure in our strength-
ened model. In particular, as the randomness r is drawn uniformly, the
adapted randomness r′ still remains uniform, which is independent from
the question whether the adversary knows sk or not. Thus, the distribu-
tions are equal, and an adversary gains no advantage by knowing sk.

Collision Resistant Hash Function Families. In the scheme we also
require collision resistant hashing, which we formally define below.

Definition 21 (Collision Resistant Hash Functions). We say that
a family {Hk

R}k∈K of hash functions HkR : {0, 1}∗ → R indexed by key
k ∈ K is collision resistant if

AdvCollRes
A,H (κ) := Pr

[
k ← K,
(v, v′)← A(k)

:
Hk
R(v) = Hk

R(v′) ∧
v 6= v′

]
is negligible for all PPT adversaries A.

We sometimes write “pick a hash function H” and do not make the key
k and domains explicit, if clear from the context.

PPGenCH(1κ) : On input a security parameter κ it outputs the public parameters
(G, g, q,H), where (G, g, q) ← GGen(1κ) and H freshly chosen collision resistant
hash function H : {0, 1}∗ → Z∗q .

KGenCH(PPch) : On input PPch = (G, g, q,H), draw x ← Zq. Let pk ← gx. Return
(sk, pk) = (x, gx).

Hash(pk,m) : On input a public key pk = gx and a message m, choose r ←r Z∗q . Let

h← gH(m)pkr. Return (h, r).
Verify(pk,m, h, r) : On input public key pk = gx, a message m, a hash h, and a ran-

domness r ∈ Z∗q , compute h′ ← gH(m)pkr and output 1, if h′ = h and 0 otherwise.
AdaptCH(sk,m,m′, h, r) : On input a secret key sk = x, messages m and m′, a

hash h, and randomness values r and r′, the adaptation algorithm outputs ⊥
if Verify(pk,m, h, r) 6= 1. Return r′ ← H(m)+xr−H(m′)

x
.

Scheme 8: DL based chameleon-hash

In Scheme 8 we use the fact (shown by Krawczyk and Rabin [KR00])
that applying a collision-resistant hash-function prior to chameleon-hashing
can be used to extend the message space of the chameleon-hash. It can
also easily be seen that this construction is unique. Moreover, it is obvi-
ous that seeing a collision (if not stemming from the collision resistant
hash function) allows to easily extract the secret key x by computing

x← H(m)−H(m′)
r′−r .

T
ab

le
2:

P
er

ce
n
ti

le
s

in
m

s
fo

r
ou

r
p

ro
to

co
l

A
lg

.
S

et
u

p
K

G
en

H
a
sh

V
er

f
A

d
a
p

t

A
tt

.
8

1
6

3
2

6
4

8
1
6

3
2

6
4

8
1
6

3
2

6
4

8
1
6

3
2

6
4

8
1
6

3
2

6
4

M
in

.:
1
5
4

1
9
9

1
7
7

1
6
9

8
5

1
5
8

3
0
0

5
8
7

1
7
9

2
3
3

3
2
2

5
4
5

4
5

4
5

4
5

4
5

3
7
7

3
7
8

3
7
6

3
8
0

2
5
%

:
2
7
2

2
7
8

2
9
4

2
9
2

8
6

1
5
9

3
0
1

5
9
2

2
0
1

2
6
5

3
5
4

5
6
8

4
6

4
6

4
6

4
6

3
8
0

3
8
3

3
7
9

3
8
3

M
ed

.:
3
6
1

3
8
4

3
7
7

4
1
1

8
6

1
6
1

3
0
2

5
9
3

2
2
4

2
9
6

3
8
0

5
9
4

4
6

4
6

4
6

4
6

3
8
1

3
8
5

3
7
9

3
8
4

7
5
%

:
5
1
8

6
1
3

5
8
8

5
8
3

8
7

1
6
7

3
0
3

5
9
5

2
6
5

3
3
9

4
0
2

6
1
8

4
6

4
8

4
6

4
6

3
8
4

4
0
0

3
8
0

3
8
5

9
0
%

:
7
2
3

7
8
0

7
5
5

8
6
5

8
8

1
8
6

3
0
3

5
9
8

2
9
4

3
9
3

4
3
8

6
4
6

4
7

5
4

4
6

4
7

3
8
9

4
2
9

3
8
1

3
8
8

9
5
%

:
9
8
2

1
′ 0

2
1

9
2
3

9
4
7

9
9

2
2
8

3
0
4

6
0
5

3
0
2

4
3
9

4
6
9

6
6
0

4
7

5
9

4
6

4
8

3
9
5

4
7
3

3
8
2

3
9
7

M
a
x
.:

1
′ 5

7
8

1
′ 5

1
1

1
′ 5

3
8

1
′ 3

8
1

1
2
1

2
9
1

3
0
5

6
8
9

3
7
4

7
5
1

5
6
9

7
0
3

5
9

7
6

4
6

5
4

5
0
2

6
8
4

3
8
6

4
5
0

A
v
g
.:

4
3
8

4
7
7

4
5
7

4
7
4

8
7

1
7
0

3
0
2

5
9
6

2
3
5

3
1
4

3
8
6

5
9
7

4
6

4
8

4
5

4
6

2
8
6

4
0
3

3
7
9

3
8
5

S
D

:
2
6
4
.1

2
2
6
8
.5

6
2
4
0
.3

6
2
4
4
.7

9
5
.6

7
2
4
.9

7
1
.0

6
1
3
.9

2
4
1
.9

5
7
5
.2

7
4
3
.3

1
3
5
.5

7
1
.7

3
5
.2

7
0
.3

6
1
.2

4
1
7
.9

6
5
0
.8

9
1
.5

5
8
.9

8

	Fine-Grained and Controlled Rewriting in Blockchains: Chameleon-Hashing Gone Attribute-Based
	Introduction
	Contribution
	Related Work
	Preliminaries and Notation

	Cryptographic Building Blocks
	Policy-Based Chameleon-Hashing
	Definitions
	Generic Construction
	On the Choice of Access Policies

	Instantiation and Evaluation
	Selecting a CP-ABE Scheme
	Modified CHET
	Selection of Suitable Parameters
	A Concrete PBCH
	Performance Evaluation

	Blockchain Transaction-Level Rewriting
	Conclusion
	Detailed Evaluation
	Security Properties of CHs and CHETs
	Security of CHs
	Instantiation of a Secure CH.
	Security of CHETs.
	Proofs for CHET

	A Weakly Secure CHET
	Instantiation of a (Weakly) Secure CH.

