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Abstract. The end-users communicating over a network path currently have no control
over the path. For a better quality of service, the source node often opts for a superior
(or premium) network path in order to send packets to the destination node. However,
the current Internet architecture provides no assurance that the packets indeed follow the
designated path. Network path validation schemes address this issue and enable each node
present on a network path to validate whether each packet has followed the specific path so
far. In this work, we introduce two notions of privacy – path privacy and index privacy –
in the context of network path validation. We show that, in case a network path validation
scheme does not satisfy these two properties, the scheme is vulnerable to certain practical
attacks (that affect the reliability, neutrality and quality of service offered by the underlying
network). To the best of our knowledge, ours is the first work that addresses privacy issues
related to network path validation. We design PrivNPV, a privacy-preserving network path
validation protocol, that satisfies both path privacy and index privacy. We discuss several
attacks related to network path validation and how PrivNPV defends against these attacks.
Finally, we discuss the practicality of PrivNPV based on relevant parameters.
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1 Introduction

Next-generation networks aim to provide more control over network paths to the
end-users and service providers. More command over network paths not only enables
the end-users to select paths themselves in order to get uninterrupted services, but
also lets the service providers serve their users in a more reliable manner. This helps
to build a robust communication network where packets traverse across the network
in a fast and secure way.

Although higher control over network paths is desirable, the current Internet
architecture does not support such control over paths. For example, an end-user
(source) may decide a superior (e.g., high-speed) network path for communicating
with a service provider (destination), and she wishes to pay higher for availing this
path as per the service level agreement (SLA) with the corresponding Internet ser-
vice providers (ISPs). However, the current Internet provides no guarantees that the
packets would follow the same path as specified. Specifically, once a packet leaves
the source node, it is beyond the control of the source. So, the (possibly malicious)
intermediate nodes can forward the packets along a completely different (and infe-
rior) path to reach the destination node. Upon receiving the packets, the destination
node has no means to verify whether the packets have traversed through the spec-
ified superior path. On the other hand, in order to run their business smoothly,
honest intermediate nodes present on the network path would try to maintain a
better quality of service and detect a deviation from the correct execution of the
protocol. To be precise, every honest on-path node has a stake in enforcing the



specified path to be followed by the packets and discarding corrupted packets in
order not to waste downstream resources further.

In order to verify whether packets have followed the network path specified by
the source node, network path validation (or path validation) schemes come into
play [26,18]. In a path validation protocol, the source node enforces the network
path to be followed by all the nodes present on the path in order to forward packets.
Moreover, every on-path node can check whether the packets have traversed through
the specified path so far. This is typically achieved by enabling on-path nodes to
embed proofs in a packet such that downstream nodes can verify these proofs to
validate the path. On the other hand, a malicious on-path node can inject packets
of its choice (with the spoofed source) into the path. In a routing protocol with
source authentication, every node present on a network path can validate whether
a packet propagated along that path originates from the designated source node.
We note that path validation schemes require modifications in the existing Internet
routing logic for packets. However, they are essential for the next-generation Internet
architectures like SCION [42,29], NEBULA [2] and others [11].

In a path validation scheme, the source node and the destination node do not
trust all the intermediate nodes present on the path (otherwise, path validation
would not be required at all), and thus they do not want to leak additional in-
formation available from the network path (e.g., their personal preferences while
selecting the path) to these nodes. Existing path validation schemes do not hide
the network path from the intermediate nodes. As we will see shortly, revealing the
path to the (possibly malicious) intermediate nodes makes these schemes vulnerable
to various attacks. In this work, we introduce two privacy notions relevant to path
validation: path privacy and index privacy. The notion of path privacy states that an
intermediate node cannot have knowledge about other nodes present on the path.
We note that a node can always identify its neighbor nodes as a packet comes from
one of them and the node has to forward the packet to the other. So, the notion of
path privacy described in this work does not include the privacy of neighbor nodes.
However, our notion of path privacy preserves the privacy of all other on-path nodes
(including the anonymity of the source and destination nodes). On the other hand,
the notion of index privacy states that an intermediate node cannot learn its own
index (or position) on the path.

Why are path privacy and index privacy important? We note that path
privacy does not guarantee index privacy in general. To be precise, we can find
some cases where, in spite of achieving path privacy, a path validation scheme leaks
the index of an intermediate node to the node itself. For example, we consider an
n-hop network path where neighbor information of all n nodes are encrypted and
stored sequentially in the path variable (say, PATH). The source node shares a
secret key with Ni that helps it to identify Ni−1 and Ni+1 by decrypting only the
i-th ciphertext of the sequence embedded in PATH. It is not hard to see that path
privacy is protected in such a scheme. However, the node Ni can easily identify
its own index i from the sequence — which prevents the scheme from satisfying
index privacy. We now discuss some practical situations where both path privacy
and index privacy are crucial.



Fig. 1: A network path between the source node S and the destination node D.

– Preserving source anonymity: In mobile crowd sensing [13], mobile nodes
(e.g., smartphones) collect various types of data with the help of embedded
sensors and send the data to a server for analysis (e.g., measuring air pollution
level, sensing traffic congestion in an area). Similarly, in the eMbedded-Gateway-
Cloud (MGC) model [23,24], a smartphone acts as a gateway and sends the data
collected from IoT devices to a cloud server. In these situations, path validation
without path privacy may reveal sensitive information (e.g., physical location)
of the source node to possibly malicious on-path nodes.

– Protecting neutrality: Suppose the destination node D is a service provider,
and there are two consumer nodes S1 and S2 that send service-requests to D.
Let there be a malicious node (say, N) which is present on both paths S1 ∼ D
and S2 ∼ D. Without path privacy, N has the complete knowledge of both
paths, and it can thus identify the service provider D. Now, N sharing strong
business relations with S1 (or S2) can intentionally drop the requests sent by S2

(or S1) in order to favor S1 (or S2) with undue advantages (e.g., better service
quality). Similarly, an ISP can favor a particular destination (e.g., a website
for online shopping) by dropping packets destined to other nodes that provide
similar services — which makes many end-users leave slow websites and switch
to the fast one [39,22,19].

– Hiding business strategies: Without path privacy, it is hard to protect
business strategies of the ISPs involved in a network path. For example, if an
ISP (say, P1), that is connected to another ISP (say, P2), knows which other
ISPs are connected to P2, then P1 may reach some of P2’s partners for doing
business directly (without P2 as an intermediary) — which can result in a loss
in P2’s business. Thus, an ISP would require the path to be private in order to
hide its business strategies from its competitors.

– Preventing attacks that exploit index-information: In a path valida-
tion scheme without index privacy, an intermediate node can derive non-trivial
information from the knowledge of its own index on the path. We consider the
following example. Given the path-length n (including the source and destina-



tion nodes), if the (n − 1)-th on-path node (say, N) knows its own index, then
N easily derives an additional piece of information that it is the pre-destination
node (i.e., its next-hop on the path is the destination node) — which does not
protect anonymity of the destination node D. Moreover, if N happens to be the
pre-destination node for two or more network paths ending at D (but originating
from different source nodes), then N can selectively forward the packets sent by
a particular source node only (similar to the example described above).

– Defending against an attacker having control over a small fraction of
nodes: In a network, multiple nodes can be compromised by a network at-
tacker (or adversary), and they can collude with each other to mount certain
attacks [1,16]. Given that the attacker can control a small fraction of on-path
nodes in a path validation scheme with path privacy, the whole path may be
revealed to the attacker if the protocol does not satisfy index privacy. For exam-
ple, an attacker, having control over only three nodes (N3, N6 and N9) as shown
in Figure 1, can identify all nodes present on the network path S ∼ D (we note
that each on-path node knows its neighbors which the node receives a packet
from or sends a packet to).

Our contribution: We summarize our major contributions to privacy-preserving
path validation as follows.

– We introduce, for the first time, two notions of privacy in the context of path
validation: path privacy and index privacy. Path privacy ensures that an inter-
mediate node cannot identify other on-path nodes (except its neighbors). This
notion also includes the anonymity of the source and destination nodes. On the
other hand, index privacy guarantees that an intermediate node cannot learn
its node-index on the path. These two notions are crucial for path validation in
order to prevent certain attacks as discussed above.

– We construct PrivNPV, a privacy-preserving network path validation protocol
satisfying both path privacy and index privacy. Moreover, the destination node
in PrivNPV can check whether the packets originate from the designated source
node.

– Once the network path and keys are set up for a PrivNPV session, an on-path
node has to perform only (lightweight) symmetric-key cryptographic operations
in order to validate and process subsequent payload-packets.

– We analyze the security of PrivNPV based on various attacks. In addition to
the attacks relevant to path validation protocols (in general), we consider other
possible attacks specific to a privacy-preserving path validation protocol.

– Finally, we discuss the practicality of PrivNPV based on relevant parameters.

Organization: The rest of the paper is organized as follows. Section 2 describes
the problem and background related to this work. In Section 3, we discuss the chal-
lenges in constructing a privacy-preserving path validation protocol and the tech-
niques we employ to address these challenges. We provide the detailed construction
of PrivNPV, our privacy-preserving network path validation protocol, and discuss
its properties in Section 4. In Section 5, we analyze the security of PrivNPV. We
describe the practicality of PrivNPV in Section 6 and conclude the paper in Sec-
tion 7.



2 Problem Definition and Background

2.1 Definition

A network path (or path) of length n between a source node S and a destination
node D is an ordered collection of nodes N1 = S,N2, N3, . . . , Nn−1, Nn = D such
that packets sent by S traverse the intermediate nodes N2, N3, . . . , Nn−1 in the same
order to reach D. The i-th on-path node is identified by its node-identifier Ni. We
denote such a network path either by N1 − N2 − · · · − Nn or simply by S ∼ D
(omitting the intermediate nodes). For 2 ≤ i ≤ n − 1, the intermediate node Ni

has a left neighbor Ni−1 (the node which Ni receives a packet from) and a right
neighbor Ni+1 (the node which Ni sends a packet to) along the path. The source
(or destination) node has only a right (or left) neighbor along the path. The source
node S decides the network path and lets D know the same. We describe some
notions related to a privacy-preserving path validation protocol as follows.

Definition 1 (Path validation [26,18,4]). A network path validation (or path
validation) protocol must satisfy both path enforcement and path verification defined
as follows.

1. A network routing protocol satisfies path enforcement if every node present on
a network path S ∼ D is directed to follow the specific path in order to send
packets from S to D.

2. A network routing protocol satisfies path verification if every node present on
a network path S ∼ D can verify whether a packet has traversed along that
specified path so far.

Path validation schemes assume that the source node knows the exact path
a packet should traverse in order to reach the designated destination node. For
example, Kim et al. [18] assume that the source node has access to the information
of each node (along with the information of the autonomous system it belongs to)
present on the path. The source node also knows which intermediate nodes along
the path may opt for validating the path. They argue that the routing information
can be obtained from the Border Gateway Protocol (BGP), or the source node
can be provided with this information by the respective ISPs. We rely on similar
assumptions in this work.

Definition 2 (Source authentication [18]). A path validation protocol satisfies
source authentication if every node present on a network path S ∼ D can validate
whether a packet propagated along that path originates from the designated source
node S.

Definition 3 (Path privacy). A path validation protocol with source authentica-
tion satisfies path privacy if any intermediate node present on a network path S ∼ D
cannot identify other nodes (except its neighbors) along the path.

An intermediate node has to identify its neighbor nodes in order to forward (or
receive) packets correctly. Thus, the notion of path privacy defined above does not
include the privacy of neighbor nodes. However, the notion of path privacy preserves
the privacy of all other nodes (including the anonymity of the source node S and
the destination node D).



Definition 4 (Index privacy). A path validation protocol with source authenti-
cation satisfies index privacy if any intermediate node present on a network path
S ∼ D cannot learn its node-index on the path.

Definition 5 (Privacy-preserving path validation). A path validation protocol
with source authentication is privacy-preserving if it satisfies both path privacy and
index privacy.

2.2 Related Work

Researchers have proposed various solutions to secure and verify network paths. We
hereby discuss key solutions and refer interested readers to a recent survey on path
validation [4] for more details.

Secure routing protocols [17,14] are designed to find the best path (e.g., the shortest
path) between a source node and a destination node such that the path finding pro-
cess is secure against certain attacks. However, these protocols do not ensure that
the path thus selected is actually followed by the packets sent later. In source rout-
ing, the source node embeds the path in packet headers such that the intermediate
nodes know the exact path to be followed [35,38]. However, the intermediate nodes
are assumed to be honest and follow the path correctly — this assumption does
not suffice in practice where nodes present on the path can be malicious. Traceroute
enables the intermediate nodes either to mark a passing packet with their respective
identifiers (packet marking) or to store a packet-digest locally (packet logging). For
packet marking, an intermediate node marks packets either probabilistically [31,33]
or deterministically [7,37] — these marks are later checked by the destination node.
In case of packet logging, the destination node asks for digests from the intermediate
nodes in order to retrieve the path followed [32]. However, these marks and digests
are not designed to be cryptographically secure — which makes them vulnerable
to forgery. Path enforcement enables the source node to embed the path directives
in packet headers such that every on-path node can forward those packets along
the specified path [3,30,9]. Unlike source routing, path directives are secure against
malicious tampering. Path verification protocols [28,40] are similar to traceroute
protocols, except that the packet-marks (or packet-digests) in a path verification
protocol are cryptographically secure in that a malicious node cannot forge them.

Path validation protocols achieve both path enforcement and path verification.
There exist a few path validation schemes in the literature. All of them ensure path
enforcement by including path directives in the packets. ICING [26] embeds, in
a packet, a verification field for each intermediate node. The source node initially
populates these verification fields with authenticators. As the packet passes through
each intermediate node, the node verifies the proofs (that were computed by its
upstream nodes) present in its verification field. It also inserts proofs into each of
the verification fields corresponding to its downstream nodes. Thus, every on-path
node can verify whether a packet has traversed the path specified by the source
node. In the origin and path trace (OPT) protocol [18,41], each intermediate node
lets the source and destination nodes know a secret key generated for a session.
Based on these keys, the source node later computes message authentication codes



(MACs)3 and embeds them in the corresponding verification fields present in a
packet-header. Each on-path node can check, using its verification field and a proof
sent by its left neighbor, if the packet has followed the designated path so far.
These proofs form a chain of MACs, and the destination node validates the path by
verifying the proof sent by its left neighbor. The design of the orthogonal sequence
verification (OSV) [5,6] protocol is similar to that of OPT, except that OSV uses
orthogonal sequences to make the generation of the verification fields and proofs
faster.

Unlike the path validation schemes described above, alibi routing [21] addresses
avoidance routing, where it is validated if the packets have avoided traversing
through certain forbidden nodes (or a geographic region). The idea is to select
a trusted node located far from a forbidden node and enforce the packets traverse
through this trusted node. If a packet passes through both of the nodes, it encoun-
ters much higher latency compared to when it traverses through the trusted node
only — this difference in latency can be detected by the destination node.

Changes required in the current Internet architecture to incorporate
path validation: Path validation requires modifications in the existing Internet
routing logic for packets, that are necessary to achieve stronger security guaran-
tees, i.e., path enforcement and path verification. Path validation schemes demand
more computational logic on routers which is required for parsing packet headers
and performing cryptographic operations. However, this computational logic can be
efficiently implemented in both software [26,18] and hardware [26]. On the other
hand, the routing protocol also needs to be updated — which can be done through
firmware/software upgrade on routers. In OPT [18], an autonomous system (AS)
can announce its path validation functionality within BGP update messages —
which enables end-hosts to get the information required for deciding a path.

On the possibility of extending similar protocols to achieve path/index
privacy: We now discuss whether the existing path validation schemes (or appar-
ently similar protocols) can be extended incrementally in order to design a path
validation protocol with path/index privacy.
Extending ICING : In ICING [26], apart from the path variable (say, PATH) con-
taining the whole network path, a verification field is embedded in the packet for
each on-path node. An intermediate node (say, Ni) identifies each of its downstream
nodes (i.e., Ni+1, Ni+2, . . .) from PATH and inserts proofs πi,i+1, πi,i+2, . . . into the
verification fields Vi+1, Vi+2, . . ., respectively. We note that πi,i+1, πi,i+2, . . . are com-
puted using the public keys of the corresponding downstream nodes Ni+1, Ni+2, . . .
— which requires Ni to identify these nodes. Similarly, the node Ni has to identify
its upstream nodes N1, N2, . . . , Ni−1 in order to verify the proofs π1,i, π2,i, . . . , πi−1,i
present in the verification field Vi. As each node has to know every other node
present on the path, path/index privacy cannot be achieved without making non-
trivial changes in the design of ICING.

Extending OPT/OSV : OPT [18,41] involves a key setup phase where a special
packet P circulates along the path. In order to enable all nodes to identify their

3 Given a message and a secret key, a MAC scheme outputs a “digest” for the message. A MAC scheme
is secure if it is computationally hard to produce the digest for a message m, given that the digest for
m is not available already.



neighbors, P embeds the whole path (in a variable PATH) in clear — thus neither
path privacy nor index privacy is achieved in OPT. To achieve path privacy, the
whole path must not be given in clear, but there should be some mechanism such
that each node knows its right neighbor to forward packets. Let us consider the
scenario if PATH were not embedded in P . Even then, an intermediate node could
learn its index as follows. Each node in OPT appends its (encrypted and authenti-
cated) secret key to P . So, a node can simply count the number of such secret keys
already appended to P in order to get its own index. Lastly, in the OPT protocol,
origin-path-verification (OPV) fields are included in the header of a packet in order
to enable validation. These fields are ordered according to the node-indices, so that
a node can identify and validate the corresponding OPV value — this reveals re-
spective indices of the nodes. In order to extend OPT to achieve path/index privacy,
these issues must be addressed — which requires substantial changes in the OPT
design. We note that similar issues arise in the orthogonal sequence verification
(OSV) [5,6] protocol which borrows similar design from OPT.

Using onion routing/Tor : In onion routing [36] and Tor [12], the source node
encrypts packets in a specific order (using several layers) such that each intermediate
node can decrypt only one layer and pass this partially decrypted packet to its next
hop (information of the next node is obtained from this partially decrypted packet).
Finally, when the packet reaches the destination node, the destination node decrypts
the last layer of encryption to retrieve the original payload. These techniques appear
to be probable solutions for privacy-preserving network path validation. However,
onion routing/Tor provides neither path verification nor source authentication. In
order to achieve path verification, each intermediate node must generate a proof
and attach the proof with the packet such that any downstream node can verify
the proof. However, it is not straightforward to design such a privacy-preserving
path validation protocol without revealing the mapping between a proof and the
node that generates it (and still enabling a downstream node to verify whether the
proof has been generated by that node). The key setup phase for transmitting a
packet through the Tor network is expensive due to O(n2) rounds of communication
with n Tor-routers (in order to set up a key with each Tor-router Ni, it requires
communication between pairs N1 − N2, N2 − N3, . . . , Ni−1 − Ni). As the number
of routers in a typical Tor-circuit is quite small (e.g., 3), this cost is not too high.
However, this technique is not suitable for privacy-preserving path validation where
the number of on-path nodes can be large (say, 40). We note that Catalano et al. [8]
later reduced the number of communication rounds required for setup to O(n).
Along with other techniques, we exploit the anonymous key-agreement technique
of [8] for our privacy-preserving path validation scheme.

3 Challenges for Constructing a Path Validation Protocol
with Path/Index Privacy

In this section, we first discuss the challenges for constructing a path validation pro-
tocol with path/index privacy. Then, we describe the techniques we use to address
these challenges.

Challenges: We mention the design challenges as follows.



– The main challenge is to hide the path from the intermediate nodes with an
assurance that these nodes still can validate the path (without knowing it) and
forward packets correctly.

– One possible way to achieve path privacy is to encrypt the path so that an
intermediate node can decrypt only the ciphertext intended for it (to obtain val-
idation and forwarding information). This requires the source node to establish
a secure channel for each intermediate node in order to set up the corresponding
session key — which demands much communication overhead (especially, for
a path with a large number of nodes). Moreover, establishing a secure channel
with an intermediate node does not preserve source anonymity as such a channel
requires the credentials (e.g., node-identifier, public key) of the source node to
be known to the intermediate node.

– In order to achieve index privacy, a path validation scheme with path privacy
must be designed in such a way that intermediate nodes cannot learn their
respective node-indices. To be precise, the order of the ciphertexts must not
reveal node-indices on the path.

Our approach to address the challenges: We adopt the following techniques
to address the preceding challenges.

– Shared key generation between the source node S and the intermediate nodes
is done during the setup phase, such that S need not form a dedicated secure
channel for each intermediate node to communicate the corresponding shared
session key. Moreover, in order to not reveal the identity of S to the intermediate
nodes, we use a one-way anonymous key-agreement protocol [8], where S picks
a random pseudonym for a session and computes the session keys based on a
secret associated with this pseudonym and the respective public keys of the
intermediate nodes. S embeds this pseudonym in a setup-packet and sends it
along the network path. An intermediate node can compute the same session
key using its secret key and the pseudonym embedded in the setup-packet. In
addition, the source node and the destination node agree upon another (non-
anonymous) session key that enables the destination node to authenticate the
source node.

– The source node encrypts each node present on the path. The next-node infor-
mation for an intermediate node N is encrypted in such a way that only N can
decrypt its corresponding ciphertext (on the other hand, N cannot decrypt the
ciphertexts intended for other nodes).

– Message authentication codes (MACs) are employed in a chained fashion [18],
such that a single incorrect MAC makes all the subsequent MACs in the chain
invalid. Thus, an intermediate node can validate all MACs (computed by its
upstream nodes) by verifying only the MAC sent by its left neighbor.

– For each intermediate node N , the source node S embeds a verification field
in the packet such that N can check if all the upstream nodes have followed
the protocol correctly. However, in order to preserve index privacy, N must not
learn its index from the list of verification fields. To address this concern, we
use a pseudo-random permutation4 (PRP) to shuffle the verification fields. This

4 A pseudo-random permutation over a domain D is computationally indistinguishable from a random
permutation over D.



shuffling is done by S using its secret key. Moreover, in order to let N correctly
identify its verification field, S encrypts N ’s permuted index using the key shared
with N . This can be done in a similar way as described above for encrypting
the next-node information. In fact, both of them are encrypted together in our
scheme.

– Pseudo-random permutations (PRPs) are typically defined for large domains
(e.g., 128-bit AES). On the other hand, the number of nodes present on a net-
work path is comparatively much small (15–20, on an average). Thus, PRPs
with small domains are suitable for our path validation scheme. There exist
a few small-domain PRP constructions in the relevant literature. Such a PRP
(e.g., FastPRP [34] — which is efficient and can be applied to arbitrarily small
domains) is suitable for our scheme.

4 PrivNPV: A Privacy-Preserving Network Path
Validation Protocol

In this section, we describe PrivNPV, the first privacy-preserving network path
validation protocol. We assume that a source node S sets up a session with a
destination node D, where S decides the path and lets D know the specified path.

Long-Term Keys for Node-Identifiers: In order to achieve source anonymity
in PrivNPV, we use a certificateless anonymous key-agreement protocol [8] between
nodes present in a network. In this protocol, a node is associated with an identity
(say, ID), and a trusted party, called the Key Generation Center (KGC), issues a
partial secret key pID associated with ID to the node. In a one-way anonymous
key-agreement protocol, a node is allowed to authenticate itself, without revealing
its identity, to another node. However, the former node is able to identify the latter
node that it authenticates itself to. Moreover, in order to enable a pair of nodes
to establish a (non-anonymous) shared key, the KGC issues another secret key to
each node in the network. We use this non-anonymous key-agreement between the
source node S and the destination node D. The long-term keys corresponding to
the node-identifiers (or identities) are set up as follows.

Let G = 〈g〉 be a multiplicative group of prime order q, where g is a generator
of the group, and H : {0, 1}∗ → Zq and H ′ : {0, 1}∗ → K be two hash functions,
where K is the output space of H ′. We describe G as a multiplicative group for
ease of representation; however, G is later realized as an (additive) elliptic curve
group [20] over the finite field Fq. The KGC selects a random element x from Zq
and sets y = gx ∈ G; it outputs the master secret key MSK = x and the public
parameters MPK = (q,G, g, y,H,H ′).

For a node with identity ID, the KGC verifies ID, selects two random elements
aID, uID ∈ Zq and sets bID = gaID , vID = guID . The KGC uses the master secret
key MSK = x to compute cID = aID + H(ID||bID)x and sends the secret key
uID along with the partial secret key pID = (bID, cID) to the node. Once the node
gets uID and pID from the KGC, it selects a random element xID ∈ Zq and sets
yID = gxID . The node outputs the public key PKID = (bID, yID, vID) and the secret
key SKID = (cID, xID, uID).



We note that the identities and the corresponding public keys of all nodes are
maintained in a public list so that any node in the network can search for the creden-
tials of another node in order to establish a shared key anonymously. The secret key-
public key pair ((cID, xID), (bID, yID)) are used for anonymous key-agreement, and
the secret key-public key pair (uID, vID) are used for non-anonymous key-agreement.
For a PrivNPV session, the source node performs anonymous key-agreement with
each intermediate node using a pseudonym. The shared session keys thus obtained
are later used to authenticate the setup-packet and payload-packets.

4.1 Setup Phase for Path and Keys

Suppose a source node selects a network pathN1−N2−· · ·−Nn to communicate with
a destination node, where Ni is the publicly known identity associated with the i-th
on-path node. We have S = N1 as the source node, D = Nn as the destination node
and N2, N3, . . . , Nn−1 as the intermediate nodes. Let E = (KeyGene,Enc,Dec) be a
secure symmetric-key encryption scheme and MAC = (KeyGenm,MACS,MACV) be a
secure message authentication code. Let Π be a secure pseudo-random permutation
(PRP) over the set of node-indices [1, n]. The schemes E ,MAC and Π share the same
key space K which is equal to the output space of H ′. Let S be the space of session-
identifiers. Let H1 : {0, 1}∗ → S and H2 : {0, 1}∗ →M be collision-resistant hash
functions,5 whereM is the output space of H2. We refer to Section 6.1 for possible
realization of these cryptographic primitives.

Processing at the source node: Let T be the current timestamp. We assume
that on-path nodes in a session are loosely time synchronized (e.g., using the network
time protocol (NTP) [25]). The source node S selects a random element w ∈ Zq and
sets P = gw as its pseudonym. S selects a random element rD ∈ {0, 1}128 for the
destination node D and computes a session-identifier ids = H1(P||T ||rD) for the
current session. The random element rD serves the purpose of generating different
session-identifiers for different destination nodes. S performs the following steps.

– For each i ∈ [2, n], S establishes a shared session key with the i-th on-path node
Ni. It searches Ni in the public list of identities in order to obtain Ni’s public
key PKi = (bi, yi). Given ids, the source node S computes the following session
keys

ski ← H ′(zi,1||zi,2||ids) for each i ∈ [2, n],

sk1 ← skn, sk ← H ′(vu1n ||ids),
(1)

where zi,1 = (biy
H(Ni||bi))w and zi,2 = ywi for i ∈ [2, n]. The session key shared

between S and Ni for the particular session ids is ski. We note that S and D
share two session keys skn (using anonymous agreement) and sk (using non-
anonymous agreement).

– S encrypts the network path as pathE ← Encsk1(n||N1||N2|| · · · ||Nn−1||Nn). S
takes a bit-string σ1 = P||ids||T ||rD||pathE and computes the hash value σ2 =
H2(σ1). S computes the PRP Π over the set [1, n] (using the secret key sk)

5 For a collision-resistant hash function, it is computationally hard to find two inputs whose hash values
are equal.



σ1 CAF = CAF1
r′1 r′2 · · · r′n−1 r′n

A[1] A[2] · · · A[n− 1] A[n]

Fig. 2: Initial structure of setup-packet Ps.

in order to obtain the permuted indices Πsk(1), Πsk(2), . . . , Πsk(n). Then, S
encrypts individual nodes along the path as

ri ← Encski(σ2||Ni+1||Πsk(i)) for each i ∈ [1, n− 1],

rn ← Encskn(σ2||N1||Πsk(n)).
(2)

– S shuffles the sequence R1 = {r1, r2, . . . , rn} of ciphertexts using Π (and the
secret key sk) in order to form another sequence R2 = {r′1, r′2, . . . , r′n} such that
r′Πsk(i)

= ri for each 1 ≤ i ≤ n. We note that r′Πsk(i)
is the ciphertext intended

for the i-th on-path node.
– The source node S processes the setup-packet Ps as follows. S includes the

bit-string σ1, the sequence R2, an array A of verification fields and a chained
authentication field CAF in Ps (see Figure 2). S computes the initial CAF value
as CAF1 = MACSsk1(σ2). Then, it sets N0 = Nn and includes CAF = CAF1

and A[Πsk(1)] = MACSsk1(σ2||N0) in the packet Ps. For each index i ∈ [2, n −
1], S computes a CAF value CAFi = MACSski(CAFi−1) and sets A[Πsk(i)] =
MACSski(σ2||Ni−1||CAFi−1) in the setup-packet Ps. The source node S also sets
A[Πsk(n)] = MACSsk(σ2||Nn−1||CAFn−1) in Ps.

– Finally, S sends the setup-packet Ps to its right neighbor N2 on the path.

Processing at an intermediate node: The intermediate nodeNi (2 ≤ i ≤ n−1)
processes the incoming setup-packet Ps as follows.

– Ni parses the bit-string σ1 as P||ids||T ||rD||pathE and checks whether ids
?
=

H1(P||T ||rD). It also computes σ2 = H2(σ1).
– Given P and the secret key SKi = (ci, xi, ui), the node Ni computes the session

key
ski ← H ′(zi,1||zi,2||ids), (3)

where zi,1 = Pci and zi,2 = Pxi . We note that, as both S and Ni compute the
same values zi,1 = gwci and zi,2 = gwxi , the session key ski computed in Eqn. 3
is same as that in Eqn. 1.

– Ni uses the session key ski to decrypt the elements of R2 = {r′1, r′2, . . . , r′n} one
by one and checks whether the plaintext thus obtained begins with σ2. Among
these ciphertexts, only one r′j is decrypted correctly (for some j ∈ [1, n]).

– Ni obtains (Πsk(i), Ni+1) after decrypting r′j and checks if j
?
= Πsk(i). We note

that the ciphertext r′Πsk(i)
∈ R2 is same as ri ∈ R1.

– Let N ′i−1 be the node from which Ni has received the setup-packet Ps. Ni

computes tempi = MACSski(σ2||N ′i−1||CAF ) using the CAF value (which is
CAF = CAFi−1 currently) from Ps. If tempi = A[Πsk(i)], then Ni is con-
vinced that all previous CAF values have been computed correctly — which



enables path verification by Ni. If the path is verified to be correct, Ni computes
CAFi = MACSski(CAF ) and sets CAF = CAFi in the setup-packet Ps.
We note that if Ni and Ni−1 have followed the protocol correctly, then Ni−1 =
N ′i−1. Otherwise, the order of the node-sequence has not been followed properly,
and Ni computes MAC on an incorrect input N ′i−1 6= Ni−1 (which is detected by
the next honest node present on the path).

– If any preceding verification fails, the node Ni drops the setup-packet Ps. Oth-
erwise, Ni stores (ids, ski, Πsk(i), Ni−1, Ni+1) and sends the updated Ps to the
next on-path node Ni+1.

Processing at the destination node: The destination node D processes the
packet Ps as follows.

– D parses the bit-string σ1 as P||ids||T ||rD||pathE and checks whether ids
?
=

H1(P||T ||rD). It computes the hash value σ2 = H2(σ1).
– Given P and the secret key SKn = (cn, xn, un), D computes the session keys

skn ← H ′(zn,1||zn,2||ids), sk1 ← skn, (4)

where zn,1 = Pcn and zn,2 = Pxn . As both S and D essentially compute the
same values zn,1 = gwcn and zn,2 = gwxn , the session key skn computed in Eqn. 4
is same as that in Eqn. 1.

– D uses the session key sk1 to decrypt pathE to obtain the network path (and n).
Given the public key PK1 = (b1, y1, v1) of the source node N1 = S and its own
secret key SKn = (cn, xn, un), the destination node D computes the session key

sk ← H ′(vun1 ||ids). (5)

As vu1n = vun1 = gu1u2 , the session key sk computed in Eqn. 5 is same as that in
Eqn. 1.

– Let N ′n−1 be the node from which D has received Ps. D checks if Nn−1
?
= N ′n−1.

– D uses sk in order to compute Πsk(n) and temp = MACSsk(σ2||Nn−1||CAF ),
where the current CAF value present in Ps is CAF = CAFn−1. If temp =
A[Πsk(n)], thenD is convinced that all previous CAF values have been computed
correctly — which enables path verification by D.

– If any preceding verification fails, D drops the packet Ps. Otherwise, D stores
the tuple (ids, sk,Πsk(n), Nn−1).

4.2 Payload-Forwarding Phase

After the path and session keys are set up, S transmits payload-packets along the
same path.

Processing at the source node: Given ids, T and rD, the source node S pro-
ceeds as follows.

– S processes a payload-packet Pp as follows. It takes the bit-string σ = P||ids||T ||rD
and includes a short digest dp = H2(payload||σ) along with payload in Pp.
S includes an array A of verification fields and a chained authentication field
CAF in Pp (see Figure 3). S computes the initial CAF value as CAF1 =



dp
CAF = CAF1 A[1] A[2] · · · A[n− 1] A[n] payload

σ

Fig. 3: Initial structure of payload-packet Pp.

MACSsk1(dp). S sets N0 = Nn, and it includes CAF = CAF1 and A[Πsk(1)] =
MACSsk1(dp||N0) in the packet Pp. For each index i ∈ [2, n − 1], the source
node S computes a CAF value CAFi = MACSski(CAFi−1) and sets A[Πsk(i)] =
MACSski(dp||Ni−1||CAFi−1) in the payload-packet Pp. S also sets A[Πsk(n)] =
MACSsk(dp||Nn−1||CAFn−1) in Pp.

– Finally, S sends the payload-packet Pp to its right neighbor N2 on the path.

Processing at an intermediate node: The intermediate nodeNi (2 ≤ i ≤ n−1)
processes the incoming payload-packet Pp as follows.

– Ni parses σ as P||ids||T ||rD and checks whether dp
?
= H2(payload||σ).

– Ni stores the tuple (ski, Πsk(i), Ni−1, Ni+1) corresponding to ids (these values
were computed/obtained during the setup phase). Let N ′i−1 be the node from
which Ni has received the packet Pp. The intermediate node Ni checks whether

Ni−1
?
= N ′i−1. Ni takes the CAF value (which is CAF = CAFi−1 currently)

from the incoming packet Pp and computes tempi = MACSski(dp||Ni−1||CAF ).
If tempi = A[Πsk(i)], then Ni is convinced that all previous CAF values have
been computed correctly — which enables path verification by Ni. In that case,
Ni computes CAFi = MACSski(CAF ) and sets CAF = CAFi in the payload-
packet Pp.

– If any preceding verification fails, Ni drops Pp. Otherwise, Ni sends the updated
Pp to Ni+1.

Processing at the destination node: The destination node D processes the
packet Pp as follows.

– D parses σ as P||ids||T ||rD and checks if dp
?
= H2(payload||σ).

– We note that D stores (sk,Πsk(n), Nn−1) corresponding to ids (these values were
computed during the setup phase). Let N ′n−1 be the node from which D has re-

ceived the packet Pp. D checks whether Nn−1
?
= N ′n−1 and computes temp =

MACSsk(dp||Nn−1||CAF ) using the CAF value (which is CAF = CAFn−1 cur-
rently) from Pp. If temp = A[Πsk(n)], then D is convinced that all CAF values
have been computed correctly — which enables path verification by D.

– If any preceding verification fails, D drops the payload-packet Pp.

4.3 Properties of PrivNPV

We discuss the properties of PrivNPV as follows. Based on some of these properties,
a comparison among path validation schemes is given in Table 1.

– Path enforcement: During the setup phase, the source node enforces the
path by embedding, for each intermediate node Ni, the right neighbor Ni+1 in



Table 1: Properties of path validation schemes

Schemes
Path Path Index Source/destination Source

validation privacy privacy anonymity authentication

ICING [26] 3 7 7 7 3

OPT [18,41] 3 7 7 7 3

OSV [5,6] 3 7 7 7 3

PrivNPV 3 3 3 3 3†

† Source authentication is done by the destination node only.

the ciphertext ri intended for Ni (this encryption is done using the session key
shared with Ni).

– Path verification: Every i-th on-path node (i ∈ [2, n]) can check, using ski
(or sk), CAFi−1 and A[Πsk(i)], if a packet has traversed along the previous
nodes mentioned in the path. This is ensured by the chain of MACs computed
according to the node-sequence. A single malicious (incorrect or out-of-order)
MAC computation makes the subsequent MACs invalid. Such a mismatch in the
MAC can be easily detected by the next honest intermediate node and D. Path
verification is enabled in both setup and payload-forwarding phases.

– Path privacy: PrivNPV achieves path privacy in that each intermediate
node can identify its left and right neighbors only (instead of the whole path).
This is ensured by encrypting the neighbor information using that node’s session
key. On the other hand, an intermediate node cannot decrypt the ciphertexts
intended for other nodes.

– Index privacy: Due to the use of a pseudo-random permutation Π, the index
of any intermediate node present on the path is not revealed.

– Source anonymity: Due to path privacy and index privacy, source anonymity
is preserved in PrivNPV. For each session, S = N1 chooses a random pseudonym
P that is sufficient for an intermediate node to compute the shared session key.
However, the identity of S is not revealed to any intermediate node; even N2

cannot identify its left neighbor as the source node. The destination node D can
identify S and authenticate if a packet originates from S.

– Destination anonymity: The anonymity of the destination node D = Nn

is preserved in PrivNPV. As PrivNPV satisfies both path privacy and index
privacy, even the node Nn−1 cannot learn if its right neighbor is the destination
node or another intermediate node.

– Source authentication: The destination node D derives the shared key sk
using the public key of the source node. During the setup/payload-forwarding
phase, D validates the MAC value computed using sk and stored at A[Πsk(n)].
Therefore, source authentication is done implicitly by D. In case a malicious
node attempts to spoof a source, this MAC authentication fails.

– Symmetric-key cryptography: The payload-forwarding phase in PrivNPV
involves only (fast) symmetric-key primitives — that results in fast computation
at each node. The setup phase requires public-key primitives (for computing
shared session keys). However, we note that public-key operations are necessary
for two parties generating a shared key without establishing a dedicated channel
between them.



5 Security of PrivNPV

5.1 Security Assumptions

A computationally-bounded network attacker is considered to be an adversary A
in privacy-preserving path validation. We assume that A is Byzantine (i.e., it can
deviate from the protocol in an arbitrary and malicious fashion) and can corrupt
some intermediate nodes (these nodes can collude in order to mount certain attacks
collectively). The adversarial model and attacks are similar to those described in
the existing path validation schemes [26,18,4]. We assume that A has no control
over the end-hosts (i.e., S and D are considered to be honest). Otherwise, as both of
them have the complete knowledge of the path, A is always able to know the path —
which is not possible to prevent by any means. However, this assumption is rational
as the end-hosts may not want to reveal the path to intermediate nodes whom they
do not trust. Moreover, A may attempt to identify the honest on-path nodes or
to learn the index of a node it controls. We require the following assumptions for
PrivNPV to be secure.

– The hash functions H and H ′ used for key agreement are assumed to be random
functions [8]. The encryption scheme E , the MAC scheme MAC and the PRP
Π used in PrivNPV are secure. The hash functions H1 and H2 are collision-
resistant.

– Each node is identified by its identity/node-identifier (e.g., Ni), and the Key
Generation Center (KGC) issues a partial secret key to the node based on its
identity. The public key of each node is included in a public list available to
all nodes in the network. In PrivNPV, we consider G to be an elliptic-curve
group [20] over the finite field Fq, where q is a 160-bit prime. Thus, the size of
each secret key in Zq (and the corresponding public key in G) is 160 bits.

5.2 Security Analysis: Possible Attacks and Defenses

We discuss the possible attacks an adversary A can mount on a privacy-preserving
path validation scheme and how PrivNPV defends against them.

– Path-revealing attack: In a path-revealing attack, a malicious intermediate
node tries to identify the honest on-path nodes (other than its neighbors). For
example, it can try to identify the source/destination node and mount attacks
similar to that described in Section 1.
Defense: In PrivNPV, each intermediate node can have knowledge only of its
neighbors. A malicious intermediate node without having the secret session key
of an honest node cannot decrypt the ciphertext intended for that honest node.
Moreover, the ciphertexts are shuffled using the pseudo-random permutation Π
to prevent leakage of additional information of other on-path nodes (e.g., node-
indices of neighbors). We note that similar privacy holds for the destination node
as well. In addition, the random pseudonym P chosen by the source node S does
not reveal its identity to any intermediate node.

– Index-revealing attack: A malicious intermediate node can attempt to learn
its index on the network path to mount certain attacks (see Section 1 for exam-
ples).



Defense: The source node in PrivNPV shuffles the ciphertexts using the pseudo-
random permutation Π. As an intermediate node does not know the secret key
sk for Π, it cannot learn its node-index on the network path.

– Counterfeit attack: In a counterfeit attack, A aims to propagate an incorrect
packet so that the packet passes verification. This type of attacks includes packet-
alteration attacks (modifying a packet) and packet-injection attacks (injecting a
packet of A’s choice). Packet-injection attacks also include replay attacks where
A injects older packets into the path.

Defense: In a packet-alteration attack, a malicious intermediate node tries
to alter a packet without being noticed by the next honest on-path node. In
PrivNPV, these attacks are prevented by using short digests (σ2 in the setup
phase and dp in the payload-forwarding phase). The digest σ2 = H2(σ1) is used
as an input to the encryption operations (see Eqn. 2), and dp = H2(payload||σ)
is included in the packet itself (see Figure 3). These digests are computed using
a collision-resistant hash function — which ensures that tampering with the in-
put would produce a different digest. Moreover, these digests are fed as input
to MAC computations. Thus, an incorrect value of a digest would produce a
different MAC value (despite having the corresponding secret key) — an honest
node can easily detect this anomaly (as the MACs are chained) and drop the
packet. Similarly, as all MAC, encryption and PRP operations need secret keys,
it is hard for a malicious node to tamper with CAF , the verification fields of A
or the permuted ciphertexts (embedded in a packet) without being detected by
an honest node.

In a packet-injection attack, a malicious node S ′ in the network tries to imper-
sonate another node S as the source node and inject a packet (of its choice) along
a network path. In PrivNPV, the destination node D authenticates the source
node S using the shared session key derived from the public key of S. Therefore,
the only possibility of successfully mounting such an attack is to guess/compute
the secret key of S — which is hard for the malicious node S ′. Replay attacks
are prevented in PrivNPV by embedding the session-identifier and timestamp in
the packet (in an authenticated fashion) which can be validated by every node
on the path.

– Denial-of-service (DoS) attack: In a DoS attack, the adversary tries to
make the on-path nodes perform memory-intensive and/or computation-intensive
work. Replay attack (injecting older packets into the path) is one such exam-
ple which not only increases traffic in the network but also enhances redundant
computation (e.g., verification) for an honest node.

Defense: In the PrivNPV protocol, each intermediate node Ni stores only
the tuple (ids, ski, Πsk(i), Ni−1, Ni+1) corresponding to a session — this small
amount of storage rules out memory exhaustion of an intermediate node. In
terms of computational overhead, nodes in PrivNPV need to perform only a
small number of (mostly) symmetric-key cryptographic operations (see Table 2).
As these symmetric-key operations can be performed efficiently, the nodes have
to spend a little time while processing a packet. On the other hand, as we have
discussed earlier, replay attacks are hard to mount in PrivNPV.



– Coward attack: The adversary performs a coward attack when the attack
is less likely to be detected. For example, it can mount any attack mentioned
above when the path validation protocol is not being executed (e.g., when the
key setup is not done, or when packets are being sent without authentication in
order to achieve fast propagation).
Defense: Due to the additional computational burden needed for verification,
the path-validation procedure may be invoked only when there are anomalies
regarding packet loss (or delay), or when the source node and the destination
node set up a new network path to be followed for communication [4]. After these
issues are resolved (or the setup is done), every packet transmitted onwards is
not checked for validation — which the adversary can utilize to mount some of
the attacks mentioned above. In this scenario, it is hard to detect such attacks.
Among the existing path-validation schemes, only OPT [18] addresses this issue
by executing the path validation probabilistically. Thus, the adversary fails to
predict when a validation would be run — which makes it execute the protocol
correctly all the time. We can also use this method in PrivNPV in order to
prevent such coward attacks. However, in order to ensure validation of all the
packets, authentication (and verification) must be enabled for each of them.
In that case, PrivNPV is still practical as only a few (efficient) symmetric-
key cryptographic operations needed to be performed in the payload-forwarding
phase (see Table 2 for the number of cryptographic operations performed by the
nodes).

– Out-of-order traversal: One or more malicious nodes (controlled by A) can
send the packet through all (or some) of the specified nodes but not in the order
decided by the source. It includes the case where an honest node on the path is
bypassed by the malicious nodes.
Defense: For an out-of-order traversal that involves at least one honest node
N , the CAF value of N cannot be computed correctly without its session key
— which makes all subsequent CAF values incorrect. This is detected by the
next honest on-path node. However, an out-of-order traversal, that involves only
some of the nodes controlled by A, may not be detected (e.g., A, having control
over the nodes Ni, Ni+1, Ni+2, Ni+3, can always make a packet traverse through
Ni − Ni+2 − Ni+1 − Ni+3 or Ni − Ni+3, and it can still generate correct CAF
values using the session keys of these nodes).

Finally, we mention some issues that path validation does not address well in
general [26,18]. They remain unresolved in PrivNPV as well.

– In a path-detour attack, a malicious intermediate node (say, Ni) sends a packet
through an unspecified path Ni −N ′1 −N ′2 − · · · −N ′l −Ni+1 (where the detour
nodes are N ′1, N

′
2, . . . , N

′
l ). If Ni and Ni+1 collude with each other, they can

always produce correct CAF values — which makes such an attack hard to
detect.

– Path validation does not ensure the delivery of a packet to the destination node
D. A node can drop a packet maliciously. On the other hand, if a packet fails
verification at an honest node, the node drops it to avoid wasting downstream
resources.



Table 2: Number of cryptographic operations performed by the source node S, an
intermediate nodeN and the destination nodeD during different phases of PrivNPV

Operations
Setup phase Payload-forwarding phase

S N D S N D

Exponentiation 3n− 1 2 3 0 0 0

Hash 2n+ 1 3 4 1 1 1

PRP (Π) 1 0 1 0 0 0

Encryption/
n+ 1 n† 1 0 0 0

decryption

MAC 2n− 1 2 1 2n− 1 2 1

† In the worst case, an intermediate node tries to decrypt n−1 ciphertexts before it finds the ciphertext
intended for it (an intermediate node finds the corresponding ciphertext after n

2
decryption operations,

on an average).

– D cannot identify the exact node where a packet (if any) has been dropped or
corrupted.

6 Practicality of PrivNPV

6.1 Realization of Cryptographic Primitives

The AES-128 block cipher [27] can be used for symmetric-key primitives in PrivNPV
as follows. The encryption scheme E can be instantiated using AES-128 in cipher-
block-chaining (CBC) mode; the MAC scheme MAC can be realized as CMAC-AES;
the PRP Π can be constructed using FastPRP [34] (FastPRP uses AES-128 to gen-
erate required pseudo-random bits). For the initial key agreement, G is taken to
be an elliptic curve group over Fq, where q is a 160-bit prime. Thus, for the node
Ni, each component of PKi = (bi, yi, vi) and SKi = (ci, xi, ui) is 160-bit long. The
output space for the hash function H is {0, 1}160. The output space for each of the
hash functions H ′, H1, H2 is {0, 1}128, that is, S = K = M = {0, 1}128. We can
use SHA-256 for computing the hashes and truncate the 256-bit outputs to 128-
bit values. We take the identity of a node (e.g., Ni) to be an element of {0, 1}128.
Based on these possible instantiations, each of the following elements is 16-byte long:
ids, σ2, dp, CAF, sk, sk2, sk3, . . . , skn−1, skn, A[1], A[2], . . . , A[n], N1, N2, . . . , Nn. As
Π operates over [1, n], we have Πsk(1), Πsk(2), . . . , Πsk(n) ∈ {0, 1}dlog2 ne. A times-
tamp T is typically represented using 4 bytes. Each of the ciphertexts r1, r2, . . . , rn
is 64-byte long (after padding the plaintexts appropriately).

6.2 Storage Overhead per Packet

The storage overhead for the setup-packet Ps per on-path node is roughly attributed
to an element of A (the list of verification fields) and an element of R2 (the sequence
of shuffled ciphertexts). Thus, the storage overhead for Ps (per on-path node) is
around 80 bytes. On the other hand, the storage overhead for a payload-packet Pp
(per on-path node) is due to an element of A — which accounts for 16 bytes.



Fig. 4: Time required for performing cryptographic operations in: (a) the setup
phase and (b) the payload-forwarding phase. (c) Storage required at the source S,
an intermediate node N and the destination D.

6.3 Computation per Node

Table 2 shows cryptographic operations (to be performed by the source node S, an
intermediate node N and the destination node D) during the setup and payload-
forwarding phases of PrivNPV. From Table 2, we make the following observations.

– Most of the computations are done in the setup phase.

– Only a few symmetric-key operations need to be performed in the payload-
forwarding phase.

– During the setup phase, S has to perform some of the cryptographic operations
for each on-path node (i.e., the number of times each of these operations to be
performed by S grows linearly with the path-length n).

– The number of times any cryptographic operation to be performed by D is
independent of n. This holds for an intermediate node also, except that it has
to perform n

2
decryption operations (on an average) in the setup phase.

Estimation of time required per node: We estimate the time required by the source
node S, an intermediate node N and the destination node D in different phases of a
PrivNPV session as follows. The (additive) elliptic curve group G is defined over the
finite field Fq for a 160-bit prime q. According to the benchmarks given in [15], an
exponentiation operation (or, equivalently, a scalar multiplication operation in the
additive group) takes around 0.75 milliseconds when evaluated on a 1.83 GHz Intel
Core 2 Duo processor. FastPRP [34] requires around n log n pseudo-random bits that
are generated by encrypting non-negative integers using AES-128 with the secret
key sk. For example, for n = 20, Π requires around 100 bits which can be obtained
by invoking AES-128 once (i.e., AES-128sk(0)); for n = 40, it requires around 240
bits which can be obtained by invoking AES-128 twice (i.e., AES-128sk(0) and
AES-128sk(1)). For symmetric-key cryptographic primitives involved in PrivNPV,
we consider the widely used cryptographic benchmarks [10] evaluated on a 1.83
GHz Intel Core 2 Duo processor: each hashing takes 0.55 microseconds (using SHA-
256), each encryption/decryption takes 0.56 microseconds (using 128-bit key AES-
CBC) and each MAC operation takes 0.56 microseconds (using CMAC-AES) —
assuming 64-byte inputs for these primitives. Figure 4(a) and Figure 4(b) show the
time required for performing cryptographic operations in the setup and payload-
forwarding phases, respectively, for varying path-length n.



In practice, the path-length n is small (e.g., 15–20, on an average). Thus, the
per-session computational cost for each node is low (e.g., for n = 20, the nodes S,
N , D take around 44.31, 1.51, 2.25 milliseconds, respectively, in the setup phase
and 22.95, 1.67, 1.11 microseconds, respectively, in the payload-forwarding phase).
The computational cost in the setup phase (one-time per session) is predominated
by expensive public-key operations. However, we note that public-key operations
are necessary for a pair of nodes computing a shared key without establishing a
dedicated channel between them. Once the network path and session keys are set
up for a session, S typically transmits many payload-packets. As the computational
cost in each payload-forwarding phase is small (in the order of microseconds), these
payload-packets are processed fast at each on-path node.

6.4 Storage per Node

Along with the specified network path, the source node S in a PrivNPV session
(identified by ids) stores the following: P , ids, T , rD, the keys (sk, sk2, sk3, . . . , skn)
and the permuted indices (Πsk(1), Πsk(2), . . . , Πsk(n)) — which accounts for total
576+n(128+dlog2 ne) bits. For example, this storage is around 405 bytes for n = 20.
The destination node D stores a tuple (ids, sk,Πsk(n), Nn−1). For example, D stores
around 49 bytes for n = 20. Each intermediate node Ni (2 ≤ i ≤ n − 1) stores a
tuple (ids, ski, Πsk(i), Ni−1, Ni+1). Thus, for a path of length 20, each intermediate
node stores around 65 bytes. Figure 4(c) shows the storage required at different
on-path nodes for varying n.

6.5 Comparison among Path Validation Schemes

Unlike the existing path validation schemes, PrivNPV offers privacy of the path
being validated. However, such privacy comes at a cost. We compare PrivNPV
with ICING [26] and OPT [18] based on certain parameters. For some of these
parameters, PrivNPV has an extra overhead compared to ICING and OPT. On
the other hand, PrivNPV enjoys similar efficiency for the rest of the parameters.
We compare these schemes as follows. Storage overheads per payload-packet (per
on-path node) are 42, 16 and 16 bytes for ICING, OPT and PrivNPV, respectively.
In order to process packets, each node needs some (long-term/per-session) storage.
Table 3 shows the comparison in terms of storage required for different nodes (the
figures for ICING/OPT are taken from [18]). In PrivNPV, each node Ni has to
store its long-term secret key SKi = (ci, xi, ui). Per-session storage for the source
node S in PrivNPV is higher as it stores all the permuted node-indices in order to
populate the verification fields later. The destination node D has to store only a
tuple of four elements for a PrivNPV session. An intermediate node N in PrivNPV
needs a little extra amount of storage (compared to ICING/OPT) for its session
key, permuted index and neighbor information.

The computational overhead in PrivNPV (compared to ICING and OPT) is
due to encryption/decryption operations and PRP computations during the setup
phase (see Table 2). This overhead is attributed to path/index privacy offered by
PrivNPV. For a source node S transmitting a large number of payload-packets in
a session, the amortized cost for these operations is reduced significantly (e.g., for



Table 3: Storage and communication overhead required in path validation schemes
S N D

ICING (per session) n+ 1 2 2n+ 1

Storage OPT (per session) n+ 2 0 n+ 2

(in terms of number PrivNPV (per session) 2n+ 4 5 4

of items stored) ICING (long term) 0 ≤ 400, 000 0

OPT (long term) 1 1 2

PrivNPV (long term) 3 3 3

Number of packets ICING 4n+ 4

communicated OPT 2

during key setup PrivNPV 1

O(n) packets transmitted in a session, the cost per packet is constant). Therefore,
this overhead is practical and justified.

In PrivNPV, S lets each node Ni know its permuted index and right neighbor
by embedding the ciphertext ri in Ps — this requires sending one packet to D along
the path (see Table 3). In OPT, each node embeds its (encrypted) session key in
the setup-packet sent by S along the path S ∼ D. Then, D sends another packet
containing all these keys to S.

6.6 Hiding Path-Length

An intermediate node in PrivNPV can infer the path-length n from the size of A (or
R2). One possible way to hide the actual path-length is to pad the path by adding
dummy fields (for dummy intermediate nodes) in A and R2. As an intermediate node
on the actual path derives its next-node from its respective ciphertext, these dummy
nodes are never traversed. Similarly, S puts random elements into the dummy fields
of A and R2 (which are never checked/decrypted by any node). This hides the
path-length to some extent (e.g., its upper bound is still revealed). If all paths are
padded to be of length n = nmax (say) in order to minimize leakage further, then
nmax should be large enough to accommodate the paths consisting of a large number
(say, 40) of intermediate nodes. However, for such a large nmax, this length-hiding
routing becomes inefficient (compared to that without padding) in case the path
consists of a few (say, less than 5) intermediate nodes.

7 Conclusion

Network path validation enables a source node to enforce packets to traverse along
a specified network path, such that every on-path node can check if the packets
have followed that path so far. In this work, we have addressed certain privacy
concerns that may arise in network path validation. We have introduced two pri-
vacy notions: path privacy and index privacy. These notions are crucial to pre-
serve privacy of on-path nodes in a path validation scheme and to defend against
certain attacks mounted by a network attacker. Path privacy and index privacy
also provide source anonymity and destination anonymity in the presence of mali-
cious intermediate nodes controlled by the attacker. We have constructed PrivNPV,



the first privacy-preserving network path validation protocol, that exploits mostly
lightweight cryptographic operations in order to achieve both path privacy and in-
dex privacy. PrivNPV also enables the destination node to verify if the packets are
indeed generated by the source node. We have analyzed the security of PrivNPV
where we have considered, in addition to attacks related to path validation schemes,
other possible attacks specific to privacy-preserving path validation. Finally, we have
discussed the practicality of PrivNPV and compared PrivNPV with existing path
validation schemes based on storage, communication and computational overhead
required.
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