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Abstract. Sanitizable signatures allow a single, and signer-defined, sanitizer to modify signed messages in a controlled
way without invalidating the respective signature. They turned out to be a fascinating primitive, proven by different
variants and extensions, e.g., allowing multiple sanitizers or adding new sanitizers one-by-one. Still, existing constructions
are very limited regarding their flexibility in specifying potential sanitizers. In this paper, we propose a different and
more powerful approach: Instead of using the sanitizers’ public keys directly, we assign attributes to them. Sanitizing is
then based on policies, i.e., access structures defined over attributes. A sanitizer can sanitize, if, and only if, it holds a
secret key to attributes satisfying the policy associated to a signature, while offering full-scale accountability.

1 Introduction

Unforgeability of a digital signature scheme prevents deriving signatures for a message not explicitly endorsed by
the signer. This is a desired property in many use cases and applications of signatures. However, it turned out
that certain controlled modifications of a signed message can be beneficial in many scenarios [2, 11, 28, 37]. Over
the years, different types of signature schemes supporting such modifications have been proposed, including
homomorphic signatures [2, 12], redactable signatures [29,40,49], and sanitizable signatures [3, 13,15]. In this
paper, we focus on sanitizable signatures (3S henceforth). In a nutshell, a standard 3S [3] allows for altering
signer-chosen (so called admissible) blocks of signed messages by a single semi-trusted entity, called the sanitizer,
which is specified by the signer when generating the signature. The sanitizer holds its own public and secret
key pair. By using the secret key, the sanitizer can derive modified messages with admissible blocks arbitrarily
updated, along with the corresponding valid signatures. Moreover, given a sanitizable signature, there is a
(virtual) entity, dubbed the judge, who can determine whether a signature comes from the original signer or
has been sanitized, providing accountability. Even though allowing arbitrary modification of signer-specified
blocks seems to give too much power to the sanitizer, 3Ss have proven to be useful in numerous use-cases, as
exhaustively discussed by Bilzhause et al. [11].

After 3Ss were introduced by Ateniese et al. [3], they received a lot of attention in the recent past. The first
thorough security model was given by Brzuska et al. [13] (later slightly modified by Gong et al. [38]). Their work
was later extended for multiple signers/sanitizers [14,23], unlinkability (meaning a derived signatures cannot be
linked to its origin) [15, 17–19,35], non-interactive public-accountability (every party can determine which party
is accountable for a given valid message/signature pair) [16], limiting the sanitizer to signer-chosen values [22,31],
invisibility (meaning that an outsider cannot determine which blocks of a message are sanitizable) [6, 19, 20, 34],
the case of strongly unforgeable signatures [45], and generalizations such as merging the functionality from
sanitizable and redactable signatures [43, 44]. All these extensions make 3Ss suitable for an even broader field of
use-cases of (cf. [11] for a discussion), and are directly applicable to our contribution.

In all of the aforementioned work on sanitizable signatures, the sanitizer(s) need(s) to be known in advance
at signature generation, and there is no possibility to control sanitizing capabilities in a fine-grained way. We
note that there is the concept of trapdoor 3Ss [24, 46, 51]. Although here the signer can grant the possibility
to sanitize to different entities even after generating the initial signature, existing constructions do either not
provide accountability, a central feature of 3S, or require to obtain the trapdoor from the original signer before
sanitizing [46]. This drastically restricts the applicability of 3Ss, their flexibility, and may lead to severe problems
when the specified sanitizer is not available.
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Motivation and Applications. To illustrate the problem, let us consider an enterprise scenario where policies
are associated to different types of documents and documents of some type can be sanitized if the person
performing the sanitization fullfills the respective policy. For simplicity, assume that sanitizing should be possible
if the sanitizer satisfies the policy P = (IT department ∧ admin) ∨ (group leader). Now, lets say that the
head of IT department (the “group-manager”) has previously signed a document, e.g., an order, which urgently
needs to be sent to reseller but some information needs to be sanitized before, e.g., fixing the number of new
SSDs ordered. Unfortunately, the original signer is not available, e.g., due to vacation. Now, everyone satisfying
P should be able to sanitize. Since this covers a potentially large set of persons, there is no availability issue,
and the document can be sent in time. Still, the department head can control via P who is trusted to sanitize
the document if required, and there must be means to determine who did the sanitization in case of a dispute.
Realizing this scenario with the state-of-the-art 3S, such as using a sanitizer key per policy and giving the key to
everyone satisfying it clearly destroys accountability, i.e., there is no means identifying the accountable party
later on, and thus no satisfying solution can be achieved. To tackle this situation, we introduce a primitive
denoted policy-based sanitizable signatures (P3S), that allows to sanitize if, and only if, the attributes associated
to a sanitizer satisfy the policy associated to the signature, while at the same time providing accountability. We
also want to discuss one application of P3S extending the scope of the one discussed in [30]. In particular, [30]
discusses an application to updating/rewriting transactions (or more general objects) in blockchains by selectively
replacing the hash function used to aggregate transactions (e.g., within a Merkle-tree) by a novel chameleon hash.
Now, everyone who wants a transaction that can be updated/rewritten can distribute attribute-keys to users
who can potentially update the transactions of this entity. Using P3S instead of this novel chameleon hash to not
only hash transactions/objects but combine it with a signature (as usual for transactions and typically also for
other objects in blockchains), we achieve stronger guarantees than in [30]. In addition to transparency, meaning
that no outsider sees whether updates happened (as also achieved in [30]), using P3S provides accountability,
i.e., it can be determined who conducted the update.

Contribution and Our Techniques. In this paper we introduce the notion of policy-based sanitizable
signatures (P3S). This primitive provides the functionality that sanitizable signatures are produced with respect
to sanitizing policies, sanitizers can obtain secret keys with respect to attributes and can sanitize if, and only
if, the signature’s policy is satisfied with the attributes in the sanitizer’s key. As mentioned above, although a
potentially huge set of sanitizers can thus produce a sanitized version, the primitive still provides accountability,
i.e., the responsible sanitizer can always be found — if required. We first provide a natural formal framework for
P3S by extending the one for 3S. Here it must be noted that in the case of P3S with a potentially large sets of
sanitizers and different sanitization keys (depending on attributes) make the formal definition much trickier and
somewhat involved. Still, we believe that our proposed definitions are clean and easy to comprehend. Our P3S
framework also allows for different groups and users can obtain new secret keys in a dynamic fashion. The idea
is that signers and sanitizers should be able to re-use their keys across different groups, e.g, in an enterprise
every employee may hold a key-pair and could participate in different “sanitizing groups” for different types
of documents without re-generating fresh keys for every such group. This is modeled in the vein of dynamic
group signatures [9], where we also consider a notion analogous to opening-soundness [48]. Moreover, we propose
very strict privacy notions, where even (most of) the keys are generated by the adversary, further strengthening
already existing definitions [27,33,45].

Then, we provide a construction of P3S which we rigorously analyze in the proposed framework. Technically,
the heart of our our construction is a recent primitive called policy-based chameleon hash (PCH) [30], which is
a trapdoor collision-resistant hash-function, where the hash computation in addition to the message takes a
description of a policy as input. Loosely speaking there can be many different trapdoors and collisions can be
found if, and only if, a trapdoor satisfying the policy used for the computation of the hash is known. Looking
ahead, the PCH proposed in [30] combines chameleon-hashes with ephemeral trapdoors (CHET) [20] and CCA2
secure ciphertext-policy attributes encryption (CP-ABE). In contrast to the original PCH definition in [30],
however, we have to make some minor, yet important, alterations and show that a modified construction from [30]



satisfies our stronger notions. In this regard, we also strengthen the CH and CHET definitions by Camenisch et
al. [20] to also cover keys generated by the adversary. We believe that this strengthened definitions are also useful
in many other scenarios. The concrete PCH construction then requires some additional tools and tricks; In order
to achieve accountability, we use an ∨-“trick”, and attach a non-interactive zero-knowledge proof of knowledge,
demonstrating that either the signer or a sanitizer performed the signing, or the sanitization, respectively. The
expressiveness of the policies supported by the P3S are determined by that of the PCH and in particular by that
of the underlying CP-ABE scheme. We chose to build upon the existing PCH framework which covers (monotone)
access structures as policies as this seems to be the most interesting setting for practical applications.1 For a
detailed intuition on the construction, see Section 4.

2 Preliminaries

Notation. With κ ∈ N we denote our security parameter. All algorithms implicitly take 1κ as an additional
input. We write a← A(x) if a is assigned to the output of algorithm A with input x. An algorithm is efficient,
if it runs in probabilistic polynomial time (PPT) in the length of its input. All algorithms are PPT, if not
explicitly mentioned otherwise. If we make the random coins r explicit, we use the notation a ← A(x; r).
Otherwise, we assume that the random coins are drawn internally. For m = (m1,m2, . . . ,m`), we call mi a block.
Most algorithms may return a special error symbol ⊥ /∈ {0, 1}∗, denoting an exception. Returning output ends
execution of an algorithm or an oracle. If S is a set, we write a←r S to denote that a is chosen uniformly at
random from S. For a list we require that there is an injective, and efficiently reversible, encoding, mapping
the list to {0, 1}∗. A function ν : N→ R≥0 is negligible, if it vanishes faster than every inverse polynomial, i.e.,
∀k ∈ N, ∃n0 ∈ N such that ν(n) ≤ n−k, ∀n > n0.

Assumptions and Primitives. For our construction to work, we need one-way functions (denoted by f),
an unforgeable digital signature scheme Σ = {PPGenΣ ,KGenΣ , SignΣ ,VerfΣ}, an IND-CPA and key-verifiable
secure encryption scheme Π = {PPGenΠ ,KGenΠ ,EncΠ ,DecΠ ,KVrfΠ}. Key-verifiability means that for each
public key exactly one secret key exists (e.g., ElGamal suffices), while KVrfΠ checks whether a given secret key sk
belongs to a pk. Moreover, we require a non-interactive zero-knowledge proof of knowledge system Ω = {PPGenΩ,
ProveΩ,VerifyΩ}, and a recent primitive dubbed policy-based chameleon-hash (PCH), recently introduced by
Derler et al. [30].

Definition 1 (One-Way Functions). A function f : Df → Rf is κ-one-way, if for every PPT adversary A
there exists a negligible function ν such that:

Pr[x←r Df , x
′ ←r A(f(x)) : f(x) = f(x′)] ≤ ν(κ)

We assume that Df and Rf are implicitly defined by f .

Definition 2 (Digital Signatures). A digital signature scheme Σ consists of four algorithms {PPGenΣ ,
KGenΣ , SignΣ ,VerfΣ} such that:

PPGenΣ. The algorithm PPGenΣ outputs the public parameters

ppΣ ←r PPGenΣ(1κ)

We assume that ppΣ contains 1κ and is implicit input to all other algorithms.

KGenΣ. The algorithm KGenΣ outputs the public and private key of the signer, where κ is the security parameter:

(skΣ , pkΣ)←r KGenΣ(ppΣ)

1 PCHs and P3S could be defined for richer policies, e.g., polynomial sized circuits.



SignΣ. The algorithm SignΣ gets as input the secret key skΣ and the message m ∈ M to sign. It outputs a
signature:

σ ←r SignΣ(skΣ ,m)

VerfΣ. The deterministic algorithm VerfΣ outputs a decision bit d ∈ {0, 1}, indicating if the signature σ is valid,
w.r.t. pkΣ and m:

d← VerfΣ(pkΣ ,m, σ)

For each Σ it is required that the correctness properties hold. In particular, it is required that for all κ ∈ N,
for all ppΣ ←r PPGenΣ(1κ), for all (skΣ , pkΣ)←r KGenΣ(ppΣ), for all m ∈M, VerfΣ(pkΣ ,m,SignΣ(skΣ ,m)) =
1 is true. This definition captures perfect correctness.

We require existential unforgeability (eUNF-CMA) of digital signature schemes. In a nutshell, unforgeability
requires that an adversary A cannot (except with negligible probability) come up with a signature for a message
m∗ for which the adversary did not see any signature before. As usual, the adversary A can adaptively query for
signatures on messages of its own choice.

Experiment eUNF-CMAΣA(κ)
ppΣ ←r PPGenΣ(1κ)
(skΣ , pkΣ)←r KGenΣ(ppΣ)
Q ← ∅
(m∗, σ∗)←r ASign′Σ(skΣ ,·)(pkΣ)

where Sign′Σ on input skΣ and m:
σ ←r SignΣ(skΣ ,m)
set Q ← Q∪ {m}
return σ

return 1, if VerfΣ(pkΣ ,m
∗, σ∗) = 1 ∧ m∗ /∈ Q

return 0

Fig. 1: Σ Unforgeability

Definition 3 (Σ Unforgeability). We say a Σ scheme is unforgeable, if for every PPT adversary A, there
exists a negligible function ν such that:

Pr
[
ExpeUNF-CMA

A,Σ (κ) = 1
]
≤ ν(κ).

The corresponding experiment is depicted in Figure 1.

For our definition of public key encryption we need an additional algorithm KVrfΠ verifying if a given key
pair is valid along with a corresponding security notion requiring that even for adversarially chosen public keys
one can find at most one corresponding secret key.

Definition 4 (Public-Key Encryption). A public-key encryption-scheme Π consists of five algorithms
{PPGenΠ ,KGenΠ ,EncΠ ,DecΠ ,KVrfΠ}

PPGenΠ . The algorithm PPGenΠ outputs the public parameters of the scheme:

ppΠ ←r PPGenΠ(1κ)

It is assumed that ppΠ is implicit input to all other algorithms. Also, this algorithm may be omitted, if it is
clear from the context.



KGenΠ . The algorithm KGenΠ outputs the public and private key, on input ppΠ :

(skΠ , pkΠ)←r KGenΠ(ppΠ)

EncΠ . The algorithm EncΠ gets as input the public key pkΠ , and a message m ∈ M to encrypt. It outputs a
ciphertext:

c←r EncΠ(pkΠ ,m)

DecΠ . The deterministic algorithm DecΠ outputs a message m (or ⊥, if the ciphertext is invalid) on input skΠ ,
and a ciphertext c:

m← DecΠ(skΠ , c)

KVrfΠ . The deterministic algorithm KVrfΠ decides whether a given secret key skΠ belongs to pkΠ , outputting a
decision bit b ∈ {1, 0}.

b← KVrfΠ(skΠ , pkΠ)

For each Π, the usual correctness properties must hold. In particular, it is required that for all κ ∈ N, for all
ppΠ ←r PPGenΠ(1κ), for all (skΠ , pkΠ) ←r KGenΠ(ppΠ), for all m ∈ M, it holds that DecΠ(skΠ ,EncΠ(pkΠ ,
m)) = m and KVrfΠ(skΠ , pkΠ) = 1 are true.

Moreover, we require that the encryption scheme is Π is IND-CPA-secure and key-verifiable.

ExpIND-CPA
A,Π (κ)

ppΠ ←r PPGenΠ(1κ)
(skΠ , pkΠ)←r KGenΠ(ppΠ)
b←r {0, 1}
((m∗0,m

∗
1), stateA)←r A(pkΠ)

If |m∗0| 6= |m∗1| ∨m∗0 /∈M∨m∗1 /∈M:
c∗ ← ⊥

Else:
c∗ ←r EncΠ(pkΠ ,m

∗
b)

b∗ ←r A(stateA, c
∗)

return 1, if b∗ = b
return 0

Fig. 2: Π IND-CPA Security

Definition 5 (Π IND-CPA-Security). An encryption scheme Π is IND-CPA-secure, if for any PPT adversary
A there exists a negligible function ν such that:∣∣∣Pr

[
ExpIND-CPA

A,Π (κ) = 1
]
− 1

2

∣∣∣ ≤ ν(κ)

The corresponding experiment is depicted in Figure 2.

Definition 6 (Π Key-Verifiability). An encryption scheme Π is key-verifiable, if for any PPT adversary A
there exists a negligible function ν such that:

Pr
[
ExpKey-Verifiability

A,Π (κ) = 1
]
≤ ν(κ)

The corresponding experiment is depicted in Figure 3.



ExpKey-Verifiability
A,Π (κ)

ppΠ ←r PPGenΠ(1κ)
(sk∗0, sk

∗
1, pk

∗)←r A(ppΠ)
return 0, if KVrfΠ(sk∗0, pk

∗) = 0 ∨ KVrfΠ(sk∗1, pk
∗) = 0

return 1, if sk∗0 6= sk∗1
return 0

Fig. 3: Π Key-Verifiability

L be an NP-language with associated witness relation R, i.e., such that L = {x | ∃w : R(x,w) = 1}. In a
nutshell, a non-interactive zero-knowledge proof of knowledge allows to verify that the generator of such a proof
knows a witness w for some statement x without revealing that witness. More formally, such a system is defined
as follows.

Definition 7 (Non-Interactive Zero-Knowledge Proof of Knowledge System). A non-interactive zero-
knowledge proof of knowledge system Ω consists of three algorithms {PPGenΩ,ProveΩ,VerifyΩ}, such that:

PPGenΩ. The algorithm crsΩ outputs public parameters of the scheme, where κ is the security parameter:

crsΩ ←r PPGenΩ(1κ, L)

For simplicity, it assumed that crsΩ is an implicit input to all other algorithms, while the language L is clear
from the context.

ProveΩ. The algorithm ProveΩ outputs the proof π, on input of the statement x to be proven, and the corresponding
witness w:

π ←r ProveΩ(x,w)

VerifyΩ. The deterministic algorithm VerifyΩ verifies the proof π, w.r.t. to some statement x, where d ∈ {0, 1}:

d← VerifyΩ(x, π)

In the context of (zero-knowledge) proof-systems, correctness is sometimes also referred to as completeness.
More precisely, it is required that for all κ ∈ N, for all “suitable” L, for all crsΩ ←r PPGenΩ(1κ, L), for all
x ∈ L, for all w such that R(x,w) = 1, for all π ←r ProveΩ(x,w), it must hold that VerifyΩ(crsΩ, x, π) = 1.
Two different security notions are required, i.e., zero-knowledge and simulation-sound extractability, taken from
Groth [39].

In a nutshell, zero-knowledge says that the receiver of the proof π does not learn anything except the validity
of the statement. It is assumed that the distribution of crsΩ output by SIM1 is distributed identically to PPGenΩ.

Definition 8 (Ω Zero-Knowledge). A non-interactive proof system Ω is zero-knowledge, if for a fixed language
L, for any PPT adversary A, there exists an PPT simulator SIM = (SIM1,SIM2) such that there exists a negligible
function ν such that: ∣∣∣Pr

[
ExpZero-Knowledge

A,Ω,SIM,L (κ) = 1
]
− 1

2

∣∣∣ ≤ ν(κ)

The corresponding experiment is depicted in Figure 4. Here, τ is the trapdoor for the simulation.

Simulation-sound extractability says that an adversary cannot generate a proof π∗ for a statement it does
not know a witness for, while the proof-system is also of knowledge, i.e., the witness w can be extracted from
any non-simulated proof π. Clearly, this also implies that the proof-system is non-malleable.



ExpZero-Knowledge
A,Ω,SIM,L (κ)

(crsΩ , τ)←r SIM1(1κ, L)
b←r {0, 1}
b∗ ←r APb(·,·)(crsΩ)

where P0 on input x and w:
return π ←r ProveΩ(x,w), if R(x,w) = 1
return ⊥

and P1 on input (x,w):
return π ←r SIM2(crsΩ , τ, x), if R(x,w) = 1
return ⊥

return 1, if b∗ = b
return 0

Fig. 4: Ω Zero-Knowledge

ExpSimSoundExt
A,Ω,E,L (κ)

(crsΩ , τ, ξ)←r E1(1κ, L)

(x∗, π∗)←r ASIM(·)(crsΩ)
Q ← ∅

where SIM on input x:
obtain π ←r E2(crsΩ , τ, x)
Q ← Q∪ {(x, π)}
return π

w∗ ←r E3(crsΩ , ξ, x
∗, π∗)

return 1, if VerifyΩ(x∗, π∗) = 1 ∧ R(x∗, w∗) = 0 ∧ (x∗, π∗) /∈ Q
return 0

Fig. 5: Ω Simulation Sound Extractability

Definition 9 (Ω Simulation-Sound Extractability). A zero-knowledge non-interactive proof system Ω is
said to be simulation-sound extractable, if for a fixed language L, for any PPT adversary A, there exists a PPT
extractor/simulator E = (E1, E2, E3), such that there exists a negligible function ν such that:

Pr
[
ExpSimSoundExt

A,Ω,E,L (κ)
]

= 1 ≤ ν(κ)

The corresponding experiment is depicted in Figure 5.

Note, E1, E2 are required to behave exactly as (SIM1, SIM2) from the zero-knowledge definition [39], where ξ is
the extraction trapdoor.

For the sake of readability, a somewhat informal CS-notation, derived from Camenisch and Stadler [21], is used.
For example, the notation π ←r ProveΩ{(g1) : C = EncΠ(g1)}(`) denotes the computation of a non-interactive,
simulation-sound extractable, zero-knowledge proof of knowledge (NIZKPOK for short) of the plaintext g1

contained in C (which is assumed to be public), with a non-malleable attached label `. This is also known as a
“signature of knowledge” [25]. Sometimes only “verify π” is used for verification of a proof π. It is assumed that
the public parameters, and the statement to be proven, are also input to the proof system as the label and are
public. This is not make explicit to increase readability.

We also require to strengthen a recent primitive, dubbed policy-based chameleon-hashes, introduced in [30].
Before we introduce it, we need to define what an access structure is.



Definition 10 (Access Structure). Let U denote the universe of attributes. A collection A ∈ 2U \ {∅} of
non-empty sets is an access structure on U. The sets in A are called the authorized sets, and the sets not in
A are called the unauthorized sets. A collection A ∈ 2U \ {∅} is called monotone if ∀ B,C ∈ A : if B ∈ A and
B ⊆ C, then C ∈ A.

Definition 11 (Policy-Based Chameleon-Hashes). A policy-based chameleon-hash PCH consists of six
algorithms (PPGenPCH,MKeyGenPCH,KGenPCH,HashPCH,VerifyPCH,AdaptPCH) which are defined as follows [30].

PPGenPCH. On input a security parameter κ, PPGenPCH outputs the public parameters:

ppPCH ←r PPGenPCH(1κ)

We assume that ppPCH contains 1κ and is implicit input to all other algorithms.
MKeyGenPCH. On input of the global parameters ppPCH, MKeyGenPCH outputs the master private and public key

(skPCH, pkPCH) of the scheme:

(skPCH, pkPCH)←r MKeyGenPCH(ppPCH)

KGenPCH. On input a secret key sk and a set of attributes S ⊆ U, the key generation algorithm outputs a secret
key skS:

skS ←r KGenPCH(skPCH,S)

HashPCH. On input a public key pk, access structure A ⊆ 2U and a message m, this algorithm outputs a hash h
and some randomness (sometimes referred to as “check value”) r:

(h, r)←r HashPCH(pkPCH,m,A)

VerifyPCH. On input public key pk, a message m, a hash h, and a randomness r, it outputs a bit b ∈ {1, 0}.

d← VerifyPCH(pkPCH,m, h, r)

AdaptPCH. On input a secret key skS, messages m and m′, a hash h, and randomness value r, the adaptation
algorithm outputs a new randomness r′:

r′ ←r AdaptPCH(pkPCH, skS,m,m
′, h, r)

We assume that the KGenPCH outputs ⊥, if S is not contained in U.
Note, we have added an additional algorithm PPGenPCH which outputs some additional global parameters,

which was not part of the original description in [30], as we work in a slightly different setting. For correctness, we
require that for all κ ∈ N, for all ppPCH ←r PPGenPCH(1κ), for all (skPCH, pkPCH)←r MKeyGenPCH(ppPCH), for all
A ⊆ 2U, for all S ∈ A, for all skS ←r KGenPCH(skPCH,S), for all m ∈M, for all (h, r)←r HashPCH(pkPCH,m,A),
for all m′ ∈M, for all r′ ←r AdaptPCH(pkPCH, skS,m,m

′, h, r), we have that that 1 = VerifyPCH(pkPCH,m, h, r) =
VerifyPCH(pkPCH,m

′, h, r′).
Furthermore, we require the following security properties, where our notion of indistinguishability below is

stronger than the one introduced in [30]. We also restate the black-box construction from [30] (with some minor
rephrasing and slightly stronger primitives) in Appendix B. The security proof in our stronger model is given in
Appendix A.

Full Indistinguishability. Informally, indistinguishability requires that it be intractable to decide whether for a
chameleon-hash its randomness is fresh or was created using the adaption algorithm. Full indistinguishability
even lets the adversary choose the secret key used in the HashOrAdapt oracle. The security experiment grants
the adversary access to a left-or-right style HashOrAdapt oracle and requires that the randomnesses r does not
reveal whether it was obtained through HashPCH or AdaptPCH. The messages and secret keys are adaptively
chosen by the adversary.



ExpFIndistinguishability
A,PCH (κ)

ppPCH ←r PPGenPCH(1κ)
b←r {0, 1}
b∗ ←r AHashOrAdapt(·,·,·,·,·,b)(ppPCH)

where HashOrAdapt on input pkPCH,m,m
′, skS,A, b:

(h0, r0)←r HashPCH(pkPCH,m
′,A)

(h1, r1)←r HashPCH(pkPCH,m,A)
r1 ←r AdaptPCH(pkPCH, skS,m,m

′, h1, r1)
return ⊥, if r0 = ⊥ ∨ r1 = ⊥
return (hb, rb)

return 1, if b = b∗

return 0

Fig. 6: PCH Full Indistinguishability

Definition 12 (PCH Full Indistinguishability). We say a PCH scheme is fully indistinguishable, if for every
PPT adversary A, there exists a negligible function ν such that:∣∣∣Pr

[
ExpFIndistinguishability

A,PCH (κ) = 1
]
− 1

2

∣∣∣ ≤ ν(κ).

The corresponding experiment is depicted in Figure 6.

Insider Collision-Resistance. Insider collision-resistance addresses the requirement that not even insiders who
possess secret keys with respect to some attributes can find collisions for hashes which were computed with
respect to policies which are not satisfied by their keys (oracle KGen′PCH). Intuitively, this notion enforces the
attribute-based access-control policies, even if the adversary sees collisions for arbitrary attributes (oracles
KGen′′PCH and Adapt′PCH).

Definition 13 (PCH Insider Collision-Resistance). We say a PCH scheme is insider collision-resistant, if
for every PPT adversary A, there exists a negligible function ν such that:

Pr
[
ExpCRIns

A,PCH(κ) = 1
]
≤ ν(κ).

The corresponding experiment is depicted in Figure 7.

Uniqueness. We also introduce the new notion of uniqueness for PCHs, which basically requires that it is hard
to find different randomness yielding the same hash for an adversarial chosen message and public key.

Definition 14 (PCH Uniqueness). We say a PCH scheme is unique, if for every PPT adversary A, there
exists a negligible function ν such that:

Pr
[
ExpUniqueness

A,PCH (κ) = 1
]
≤ ν(κ).

The corresponding experiment is depicted in Figure 8.

Note, we do not require outsider collision-resistance [30].



ExpCRIns
A,PCH(κ)

ppPCH ←r PPGenPCH(1κ)
(skPCH, pkPCH)←r MKeyGenPCH(ppPCH)
S = H = Q ← ∅
i← 0

(m∗, r∗,m′∗, r′∗, h∗)←r AKGen′PCH(skPCH,·),KGen′′PCH(skPCH,·),Hash′PCH(pkPCH,·,·),Adapt′PCH(pkPCH,·,·,·,·)(pkPCH)
where KGen′PCH on input skPCH, S:

skS ←r KGenPCH(sk, S)
S ← S ∪ {S}
return skS

and KGen′′PCH on input skPCH, S:
skS ←r KGenPCH(sk, S)
Q∪ {(i, skS)}
i← i+ 1

and Hash′PCH on input pkPCH,m,A:
(h, r)←r HashPCH(pkPCH,m,A)
if r 6= ⊥, H ← H∪ {(h,A,m)}
return (h, r)

and Adapt′PCH on input pkPCH,m,m
′, h, r, j:

return ⊥, if (j, skS) /∈ Q for some skS
r′ ←r AdaptPCH(pkPCH, skS,m,m

′, h, r)
if r′ 6= ⊥ ∧ (h,A,m) ∈ H for some A, H ← H∪ {(h,A,m′)}
return r′

return 1, if
VerifyPCH(pk,m∗, h∗, r∗) = VerifyPCH(pk,m′∗, h∗, r′∗) = 1 ∧
(h∗,A, ·) ∈ H, for some A ∧ m∗ 6= m′∗ ∧ A ∩ S = ∅ ∧ (h∗, ·,m∗) /∈ H

return 0

Fig. 7: PCH Insider Collision-Resistance

ExpUniqueness
A,PCH (κ)

ppPCH ←r PPGenPCH(1κ)
(pk∗,m∗, r∗, r′∗, h∗)←r A(ppPCH)
return 1, if VerifyPCH(pk∗,m∗, h∗, r∗) = VerifyPCH(pk∗,m∗, h∗, r′∗) = 1 ∧ r∗ 6= r′∗

return 0

Fig. 8: PCH Uniqueness

3 Our Framework for P3Ss

Additional Notation. We need to introduce some additional notation, to make our representation more
compact. Our notation is taken from existing work, making reading more accessible [6, 13, 20]. The variable
A contains the set of indices of the modifiable blocks, as well as ` denoting the total number of blocks in the
message m. We write A(m) = 1, if A is valid w.r.t. m, i.e., A contains a fitting `, i.e., the correct length of m, and
the indices of the admissible blocks are actually part of m. For example, let A = ({1, 2, 3, 5}, 5). Then, m must
contain five blocks, and all but the fourth can be modified. If we write mi ∈ A, we mean that mi is admissible.
We also use mA for the list of blocks in m which are admissible w.r.t. A. Likewise, we use m!A for the list of
blocks of m which are not admissible w.r.t. to A. Moreover, M is a set containing pairs (i,m′i) for those blocks



that are modified, meaning that mi is replaced with m′i. We write M(A) = 1, if M is valid w.r.t. A, meaning that
the indices to be modified are contained in A, i.e., admissible.

Definitional Framework. We now introduce our definitional framework. It is based on existing work [6,13,20].
The main idea is following the line of reasoning of group-signatures. Namely, a designated entity, which we
name “the group-manager”, following the terminology of group-signatures, generates a key pair for its group.
The group-manager can use its secret key to assign secret keys to sanitizers which are identified by their own key
pair. In contrast, signers can create signatures for a specific group (and do not require any prior interaction,
i.e., knowledge of the group public-key is sufficient which is a major difference to group-signatures), and any
sanitizer within that group can then sanitize the generated signatures. Moreover, in contrast to group-signatures,
only the signer can generate proofs to achieve accountability. These proofs, however, can be verified by anyone.
We keep the wording of the algorithms mostly consistent with existing work to ease readability [13].

Definition 15 (P3S). A sanitizable signature with attribute-based sanitizing P3S consists of the algorithms
{ParGenP3S,SetupP3S,KGenSigP3S,KGenSanP3S, SignP3S,AddSanP3S, SanitizeP3S,VerifyP3S,ProofP3S, JudgeP3S} such
that:

ParGenP3S. The algorithm ParGenP3S generates the public parameters:

ppP3S ←r ParGenP3S(1κ)

We assume that ppP3S contains 1κ and is implicit input to all other algorithms.
SetupP3S. The algorithm SetupP3S outputs the global public key pkP3S of a P3S, and some master secret key

skP3S, i.e., it generates the group-manager’s key pair:

(skP3S, pkP3S)←r SetupP3S(ppP3S)

KGenSigP3S. The algorithm KGenSigP3S generates a key-pair for a signer:

(skSig
P3S, pk

Sig
P3S)←r KGenSigP3S(ppP3S)

KGenSanP3S. The algorithm KGenSanP3S generates a key-pair for a sanitizer:

(skSan
P3S, pk

San
P3S)←r KGenSanP3S(ppP3S)

SignP3S. The algorithm SignP3S generates a signature σ, on input of a master public key pkP3S, a secret key
skSig

P3S, a message m, A, and some access structure A:

σ ←r SignP3S(pkP3S, sk
Sig
P3S,m,A,A)

AddSanP3S. The algorithm AddSanP3S allows to the group-manager to generate a secret sanitizing key skS for a
particular sanitizer, on input of skP3S, a public key pkSan

P3S, and some set of attributes S ⊆ U:

skS ←r AddSanP3S(skP3S, pk
San
P3S,S)

VerifyP3S. The deterministic algorithm VerifyP3S allows to verify a signature σ on input of a master public key
pkP3S, a signer public key pkSig

P3S, and a message m. It outputs a decision b ∈ {0, 1}:

b← VerifyP3S(pkP3S, pk
Sig
P3S, σ,m)

SanitizeP3S. The algorithm SanitizeP3S allows to derive a new signature on input of a master public key pkP3S,
a signer’s public key pkSig

P3S, a sanitizer’s secret key skSan
P3S, a token skS, some modification instruction M, a

message m, and a signature σ:

(σ′,m′)←r SanitizeP3S(pkP3S, pk
Sig
P3S, sk

San
P3S, skS,m, σ,M)



ProofP3S. The algorithm ProofP3S allows to generate a proof πP3S and some public pk, used by the next algorithm,
to find the accountable party, on input of a master public key pkP3S, a signer’s secret key skSig

P3S, a signature
σ, and a message m:

(πP3S, pk)←r ProofP3S(pkP3S, sk
Sig
P3S, σ,m)

JudgeP3S. The algorithm JudgeP3S allows to verify whether a proof πP3S is valid. The inputs are a master public
key pkP3S, a signer’s public key pkSig

P3S, some other public key pk, a proof πP3S, a signature σ, and a message
m. It outputs a decision b ∈ {0, 1}, stating whether πP3S is a valid proof that the holder of pk is accountable
for σ:

b←r JudgeP3S(pkP3S, pk
Sig
P3S, pk, πP3S, σ,m)

For each P3S it is required that the correctness properties hold. In particular, it is required that for all
κ ∈ N, for all ppP3S ←r ParGenP3S(1κ), for all (pkP3S, skP3S) ←r SetupP3S(ppP3S), for all (skSig

P3S, pk
Sig
P3S) ←r

KGenSigP3S(ppP3S), for all ` ∈ N, for all m ∈ M`, for all A ∈ 2U, for all A ∈ {Ai | Ai(m) = 1}, for all

σ ←r SignP3S(pkP3S, sk
Sig
P3S,m,A,A), we have that VerifyP3S(pkP3S, pk

Sig
P3S, σ,m) = 1 and for all (πP3S, pk) ←r

ProofP3S(pkP3S, sk
Sig
P3S, σ,m) we have that JudgeP3S(pkP3S, pk

Sig
P3S, pk

Sig
P3S, πP3S, σ,m) = 1 and pk = pkSig

P3S. Moreover,
we require that for all (skSan

P3S, pk
San
P3S) ←r KGenSanP3S(ppP3S), for all S ∈ A, for all skS ←r AddSanP3S(skP3S,

pkSan
P3S,S), for all M ∈ {Mi | Mi(A) = 1}, for all (σ′,m′)←r SanitizeP3S(pkP3S, pk

Sig
P3S, sk

San
P3S, skS,m, σ,M) we have

that VerifyP3S(pkP3S, pk
Sig
P3S, σ

′,m′) = 1 and that for all (π′P3S, pk
′)←r ProofP3S(pkP3S, sk

Sig
P3S, σ

′,m′), we have that

JudgeP3S(pkP3S, pk
Sig
P3S, pk

San
P3S, π

′
P3S, σ

′,m′) = 1 and pk′ = pkSan
P3S.

Security Definitions. We now introduce our security definitions. To increase readability, we keep the naming
close to the already existing definitions for standard 3Ss [13]. However, due to the increased expressiveness of
our new primitive, this is not always possible. Namely, we require new unforgeability and privacy definitions not
considered before.

Unforgeability. The property of unforgeability prohibits that an adversary, which is not a signer, or the entity
holding skP3S, i.e., the group-manager, can generate any validating signature which verifies for honestly generated
keys. This also includes messages for which the adversary does not hold enough attributes for, even if it sees
sanitizations of such signatures. We define it in such a way that (pkP3S, skP3S), and (skSig

P3S, pk
Sig
P3S), are generated

honestly. The adversary gets access to the following oracles: (1) Sign′P3S (where it can even use different pkP3Ss,
which models the case that secret signing keys can be re-used across multiple “groups”), (2) GetSan which
generates a new sanitizer (tracked by S), (3) AddSan′P3S which allows to decide which attributes a given sanitizer
holds (tracked by R), (4) Sanitize′P3S which allows sanitizing signatures for an honest sanitizer (generated by
GetSan) for the challenge group, and (5) Sanitize′′P3S which allows sanitizing for signatures from any other group
(i.e., where the adversary is the group manager). The adversary wins, if it can generate a valid signature for the
defined group which has never been output by either Sign′P3S or Sanitize′P3S (tracked by the set M; Note, this
set may be exponential in size, but membership is trivial to decide), and the adversary A does not hold enough
attributes itself.

Definition 16 (P3S Unforgeability). We say a P3S scheme is unforgeable, if for every PPT adversary A,
there exists a negligible function ν such that:

Pr
[
ExpUnforgeability

A,P3S (κ) = 1
]
≤ ν(κ).

The corresponding experiment is depicted in Figure 9.

Immutability. The above unforgeability definitions assume that the holder of skP3S is honest. If this is not
the case, however, the adversary can generate its own key pair for a sanitizer and can generate skS for any
attribute-set it likes. Still, in such a case, we want to prohibit that an adversary can generate any signatures



ExpUnforgeability
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)
(skP3S, pkP3S)←r SetupP3S(ppP3S)

(skSig
P3S, pk

Sig
P3S)←r KGenSigP3S(ppP3S)

Q = S = R =M = Z ← ∅
i← 0

(m∗, σ∗)←r ASign′P3S(·,sk
Sig
P3S
,·,·,·),GetSan(),AddSan′P3S(skP3S,·,·),Sanitize′P3S(pkP3S,·,·,·,·,·,·),Sanitize′′P3S(·,·,·,·,·,·,·),ProofP3S(·,sk

Sig
P3S
,·,·)(pkP3S, pk

Sig
P3S)

where Sign′P3S on input pk′P3S, skSig
P3S, m, A, A:

σ ←r SignP3S(pk′P3S, sk
Sig
P3S,m,A,A)

if pk′P3S = pkP3S ∧ σ 6= ⊥:
Q ← Q∪ {(σ,m,A,A)}
if A ∈ R, M←M∪ {M(m) | M(A) = 1}

return σ
and GetSan:

(skSan
P3S, pk

San
P3S)←r KGenSanP3S(ppP3S)

S ← S ∪ {(skSan
P3S, pk

San
P3S)}

return pkSan
P3S

and AddSan′P3S on input skP3S, pkSan
P3S, S

if ¬∃(·, pkSan
P3S) ∈ S:

skS ←r AddSanP3S(skP3S, pk
San
P3S, S)

return ⊥, if skS = ⊥
R ← R∪ {S}
for all (σi,mi,Ai,Ai) ∈ Q, where S ∈ Ai, M∪ {M(mi) | M(Ai) = 1}
return skS

skS ←r AddSanP3S(skP3S, pk
San
P3S, S)

Z ← Z ∪ {(i, skS)}
i← i+ 1

and Sanitize′P3S on input pkP3S, pkSig
P3S, pkSan

P3S, j, m, σ, M:

return ⊥, if ¬∃(skSan
P3S, pk

San
P3S) ∈ S for some skSan

P3S

(σ′,m′)←r SanitizeP3S(pkP3S, pk
Sig
P3S, sk

San
P3S, skS,m, σ,M), where skS is taken from (j, skS) ∈ Z

if pk′P3S = pkP3S ∧ σ′ 6= ⊥:
Q ← Q∪ {(σ′,m′,⊥,⊥)}

return σ′

and Sanitize′′P3S on input pk′P3S, pkSig
P3S, pkSan

P3S, skS, m, σ, M:

return ⊥, if ¬∃(skSan
P3S, pk

San
P3S) ∈ S ∨ pk′P3S = pkP3S

(σ′,m′)←r SanitizeP3S(pk′P3S, pk
Sig
P3S, sk

San
P3S, skS,m, σ,M)

return σ′

return 0, if VerifyP3S(pkP3S, pk
Sig
P3S, σ

∗,m∗) = 0 ∨ m∗ ∈M
return 1, if (σ∗,m∗, ·, ·) /∈ Q

return 0

Fig. 9: P3S Unforgeability

which are outside the span the honest signer has endorsed for any combination of attributes. This is captured
within the immutability definition — if a block is marked as non-admissible by a signer, no-one must be able to
change this block. This also includes that an adversary must not be able to redact or append a block. Clearly,
we cannot limit the adversary to change admissible blocks, as it can grant sanitizing rights to itself.

This is modeled in such a way that the challenger draws ppP3S honestly, along with a key-pair for the signer.
The adversary only receives ppP3S and pkSig

P3S. Then, the adversary gains adaptive access to signing-oracle (where

the adversary can choose pkP3S, m, A, A, but not skSig
P3S), and access to a proof-oracle. We keep a set M which

contains all possible messages which can “legally” be derived by the adversary (bound to pkP3S, also chosen
by the adversary, and tracked by M; Again, this set may be exponential in size, but membership is trivial to



decide). If, and only if, the adversary finds a valid signature σ∗ w.r.t. pkSig
P3S and pk∗, which could never been

derived from any input, it wins.

ExpImmutability
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)

(skSig
P3S, pk

Sig
P3S)←r KGenSigP3S(ppP3S)

M← ∅
(pk∗, σ∗,m∗)←r ASign′P3S(·,sk

Sig
P3S
,·,·,·),ProofP3S(·,sk

Sig
P3S
,·,·)(pkSig

P3S)

where Sign′P3S on input pkP3S, skSig
P3S, m, A, A:

σ ←r SignP3S(pkP3S, sk
Sig
P3S,m,A,A)

return ⊥, if σ = ⊥
M∪ {(pkP3S,M(m)) | M(A) = 1}
return σ

return 1, if:

VerifyP3S(pk∗, pkSig
P3S, σ

∗,m∗) = 1 ∧ (pk∗,m∗) /∈M
return 0

Fig. 10: P3S Immutability

Definition 17 (P3S Immutability). We say a P3S scheme is immutable, if for every PPT adversary A, there
exists a negligible function ν such that:

Pr
[
ExpImmutability

A,P3S (κ) = 1
]
≤ ν(κ).

The corresponding experiment is depicted in Figure 10.

Privacy. Privacy prohibits that an adversary can derive any useful information from a sanitized signature. We
define a very strong version, where all values can be generated by the adversary, making our definition even
stronger than existing ones [27,33].

In more detail, the challenger draws a bit b←r {0, 1}, while the parameters ppP3S are generated honestly.

The adversary gains access to a LoRSanit-oracle, where it can input pkP3S, skSig
P3S, skSan

P3S, A, m0, m1, M0, M1, A,
and skS (b is input by the challenger). The oracle then signs mb with A and A. Then, the resulting signature is
sanitized to Mb(mb), while M0(m0) = M1(m1) must hold to prevent trivial attacks. The goal of the adversary is
to guess the bit b.

We stress that this definition seems to be overly strong. However, it also preserves privacy in case of bad
randomness at key generation, completely leaked keys, and even corrupt group-managers.

Definition 18 (P3S Privacy). We say a P3S scheme is private, if for every PPT adversary A, there exists a
negligible function ν such that: ∣∣∣Pr

[
ExpPrivacy

A,P3S (κ) = 1
]
− 1

2

∣∣∣ ≤ ν(κ).

The corresponding experiment is depicted in Figure 11.

Transparency. Transparency prohibits that an adversary can decide whether a signature is fresh or the result
of a sanitization. As for privacy, we define a very strong version, where all values, but the signer’s key pair
(skSig

P3S, pk
Sig
P3S), can be generated by the adversary, making our definition even stronger than existing ones [27,33,45].

The reason why the signer’s key pair must be generated honestly is that the signer can always pinpoint the
accountable party due to correctness.



ExpPrivacy
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)
b←r {0, 1}
b∗ ←r ALoRSanit(·,·,·,·,·,·,·,·,·,·,b)(ppP3S)

where LoRSanit on input of pkP3S, skSig
P3S, skSan

P3S, A, m0, m1, M0, M1, A, skS, b:

σ ←r SignP3S(pkP3S, sk
Sig
P3S,mb,A,A)

for b ∈ {0, 1}, (σ′b, ·)←r SanitizeP3S(pkP3S, pk
Sig
P3S, sk

San
P3S, skS,mb, σ,Mb)

return ⊥, if σ′0 = ⊥ ∨ σ′1 = ⊥ ∨ A(m0) = 0 ∨ A(m1) = 0 ∨ M0(m0) 6= M1(m1)
return σ′b

return 1, if b = b∗

return 0

Fig. 11: P3S Privacy

In more detail, the challenger draws a bit b←r {0, 1}, while the parameters ppP3S and the signer’s key pair

(skSig
P3S, pk

Sig
P3S) are generated honestly. The adversary gains access to three oracles: SignP3S, SignOrSanit, and

Proof ′P3S. The SignP3S-oracle allows the adversary to generate new signatures; the only fixed input is skSig
P3S. The

SignOrSanit-oracle is the challenge oracle. It allows the adversary A to input pkP3S, skSan
P3S, A, m, M, A, and skS

(b and skSig
P3S are input by the challenger). The oracle then signs m with A and A. Then, the resulting signature is

sanitized to M(m). If b = 1, however, a fresh signature on M(m) is generated. The resulting signature is returned
to the adversary. However, we also log the signatures generated by this oracle in a list Q. The list Q is required
to prohibit that the adversary A wants to generate a proof using the Proof ′P3S-oracle with signatures generated
by the SignOrSanit-oracle, which directly returns the accountable party. Thus, the adversary can only input
pkP3S, skSig

P3S, σ, m for which (pkP3S, σ,m) was never input/output to the SignOrSanit-oracle. The goal of the
adversary is to guess the bit b.

We stress that this definition also seems to be overly strong. However, it also preserves transparency in case
of bad randomness at key generation, leaked keys, and even corrupt group-managers.

Definition 19 (P3S Transparency). We say a P3S scheme is transparent, if for every PPT adversary A,
there exists a negligible function ν such that:∣∣∣Pr

[
ExpTransparency

A,P3S (κ) = 1
]
− 1

2

∣∣∣ ≤ ν(κ).

The corresponding experiment is depicted in Figure 12.

Pseudonymity. Pseudonymity prohibits that an adversary can decide which sanitizer actually is responsible for a
given signature, if it does not have access to skSig

P3S. This is related to the anonymity of group signatures [26]. We
formalize it in the following way. The challenger draws a bit b←r {0, 1}, generates the public parameters ppP3S

and the signer’s key pair (skSig
P3S, pk

Sig
P3S) honestly. The adversary gains access to three oracles: SignP3S, LoRSanit,

and Proof ′P3S. The SignP3S-oracle allows the adversary to generate new signatures; the only fixed input is skSig
P3S.

The LoRSanit-oracle is the challenge oracle. It allows the adversary A to input pkP3S, pkSig
P3S, skSan

P3S,0, skSan
P3S,1,

skS0, skS1, m, and σ (b and skSig
P3S are input by the challenger). The oracle then signs m with A and A. Then,

the resulting signature is sanitized to M(m), using keys skSan
P3S,b and skS,b. The resulting signature is given to

the adversary. As done for transparency, we also log the signatures generated by this oracle in a list Q. The
list Q is required to prohibit that the adversary A wants to generate a proof using the Proof ′P3S-oracle with
signatures generated by the LoRSanit-oracle, which clearly contradicts pseudonymity. Thus, the adversary can
only input pkP3S, skSig

P3S, σ, m for which (pkP3S, σ,m) was never input/output to the LoRSanit-oracle. The goal
of the adversary is to guess the bit b.



ExpTransparency
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)

(skSig
P3S, pk

Sig
P3S)←r KGenSigP3S(ppP3S)

b←r {0, 1}
Q ← ∅
b∗ ←r ASignP3S(·,sk

Sig
P3S
,·,·,·),SignOrSanit(·,sk

Sig
P3S
,·,·,·,·,·,·,b),Proof′P3S(·,sk

Sig
P3S
,·,·)(pkSig

P3S)

where SignOrSanit on input of pkP3S, skSig
P3S, skSan

P3S, A, m, M, A, skS, b:

σ ←r SignP3S(pkP3S, sk
Sig
P3S,m,A,A)

(σ′,m′)←r SanitizeP3S(pkP3S, pk
Sig
P3S, sk

San
P3S, skS,m, σ,M)

if b = 1:

σ′ ←r SignP3S(pkP3S, sk
Sig
P3S,m

′,A,A)
Q ← Q∪ {(pkP3S, σ

′,m′)}
return σ′

and Proof′P3S on input of pkP3S, skSig
P3S, σ, m:

return ⊥, if (pkP3S, σ,m) ∈ Q
return ProofP3S(pkP3S, sk

Sig
P3S, σ,m)

return 1, if b = b∗

return 0

Fig. 12: P3S Transparency

Again, we stress that this definition also seems to be overly strong. However, as also done for group signatures,
secrets keys may leak over time. This definition protects even against bad randomness at key generation.

ExpPseudonymity
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)

(skSig
P3S, pk

Sig
P3S)←r KGenSigP3S(ppP3S)

Q ← ∅
b←r {0, 1}
b∗ ←r ASignP3S(·,sk

Sig
P3S
,·,·,·),Proof′P3S(·,sk

Sig
P3S
,·,·),LoRSanit(·,pk

Sig
P3S
,·,·,·,·,·,·,b)(pkSig

P3S)

where Proof′P3S on input of pkP3S, skSig
P3S, σ, m:

return ⊥, if (pkP3S, σ
′,m′) ∈ Q

return ProofP3S(pkP3S, sk
Sig
P3S, σ,m)

and LoRSanit on input of pkP3S, pkSig
P3S, skSan

P3S,0, skSan
P3S,1, skS0, skS1, m, σ, b:

for b ∈ {0, 1}, (σ′b,m
′
b)←r SanitizeP3S(pkP3S, pk

Sig
P3S, sk

San
P3S,b, skS,b,m, σ,M)

return ⊥, if σ′0 = ⊥ ∨ σ′1 = ⊥
Q ← Q∪ {(pkP3S, σ

′
b,m

′
b)}

return σ′b
return 1, if b = b∗

return 0

Fig. 13: P3S Pseudonymity

Definition 20 (P3S Pseudonymity). We say a P3S scheme is pseudonymous, if for every PPT adversary A,
there exists a negligible function ν such that:∣∣∣Pr

[
ExpPseudonymity

A,P3S (κ) = 1
]
− 1

2

∣∣∣ ≤ ν(κ).



The corresponding experiment is depicted in Figure 13.

Signer-Accountability. Signer-accountability prohibits that an adversary can generate a bogus proof that makes
JudgeP3S decide that a sanitizer is responsible for a given signature/message pair (m∗, σ∗), but that sanitizer has
never generated this pair. This is even true, if the adversary can generate the signer’s key pair, the global group
key pair, while receiving full adaptive access to a sanitization-oracle.

ExpSigner-Accountability
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)

(skSan
P3S, pk

San
P3S)←r KGenSanP3S(ppP3S)

b←r {0, 1}
Q ← ∅
(pk∗0, pk

∗
1, σ
∗,m∗, π∗)←r ASanitize′P3S(·,·,skSan

P3S,·,·,·,·)(pkSan
P3S)

where Sanitize′P3S on input of pkP3S, pkSig
P3S, skSan

P3S, skS, m, σ, M:

(σ′,m′)←r SanitizeP3S(pkP3S, pk
Sig
P3S, sk

San
P3S, skS,m, σ,M)

if σ 6= ⊥, Q ← Q∪ {(pkP3S, pk
Sig
P3S, σ

′,m′)}
return σ′

return 1, if JudgeP3S(pk∗0, pk
∗
1, pk

San
P3S, π

∗, σ∗,m∗) = 1 ∧ (pk∗0, pk
∗
1, σ
∗,m∗) /∈ Q

return 0

Fig. 14: P3S Signer-Accountability

Definition 21 (P3S Signer-Accountability). We say a P3S scheme is signer-accountable, if for every PPT
adversary A, there exists a negligible function ν such that:

Pr
[
ExpSigner-Accountability

A,P3S (κ) = 1
]
≤ ν(κ).

The corresponding experiment is depicted in Figure 14.

Sanitizer-Accountability. Sanitizer-accountability prohibits that an adversary can generate a bogus signa-
ture/message pair (m∗, σ∗) that makes ProofP3S outputs a (honestly generated) generated proof πP3S which
points to the signer, but (m∗, σ∗) has never been generated by the signer. This is even true, if the adversary can
generate all sanitizers key pairs, while receiving full adaptive access to a signing-oracle and a proof-oracle.

Definition 22 (P3S Sanitizer-Accountability). We say a P3S scheme is sanitizer-accountable, if for every
PPT adversary A, there exists a negligible function ν such that:

Pr
[
ExpSanitizer-Accountability

A,P3S (κ) = 1
]
≤ ν(κ).

The corresponding experiment is depicted in Figure 15.

Proof-Soundness. Proof-Soundness essentially only handles the case that a signature σ can only be opened in an
unambiguous way. Thus, the adversary’s goal is to output two proofs which “prove” different statements for the
same signature/message pair. It is related to the property of opening-soundness introduced by Sakai et al. [48]
for group signatures.

Definition 23 (P3S Proof-Soundness). We say a P3S scheme is proof-sound, if for every PPT adversary A,
there exists a negligible function ν such that:

Pr
[
ExpProof-Soundness

A,P3S (κ) = 1
]
≤ ν(κ).

The corresponding experiment is depicted in Figure 16.



ExpSanitizer-Accountability
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)

(skSig
P3S, pk

Sig
P3S)←r KGenSigP3S(ppP3S)

b←r {0, 1}
Q ← ∅
(pk∗, σ∗,m∗, π∗)←r ASign′P3S(·,sk

Sig
P3S
,·,·,·),ProofP3S(·,sk

Sig
P3S
,·,·)(pkSig

P3S)

where Sign′P3S on input of pkP3S, skSig
P3S, m, A, A:

σ ←r SignP3S(pkP3S, sk
Sig
P3S,m,A,A)

if σ 6= ⊥, Q ← Q∪ {(pkP3S, σ
′,m′)}

return σ′

(πP3S, pk)←r ProofP3S(pk∗, skSig
P3S, σ

∗,m∗)

return 1, if JudgeP3S(pk∗, pkSig
P3S, pk

Sig
P3S, πP3S, σ

∗,m∗) = 1 ∧ (pk∗, σ∗,m∗) /∈ Q
return 0

Fig. 15: P3S Sanitizer-Accountability

ExpProof-Soundness
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)
((pk∗i )0≤i≤5, σ

∗,m∗, π∗0 , π
∗
1)←r A(ppP3S)

return 1, if JudgeP3S(pk∗0, pk
∗
1, pk

∗
2, π
∗
0 , σ
∗,m∗) = JudgeP3S(pk∗3, pk

∗
4, pk

∗
5, π
∗
1 , σ
∗,m∗) = 1 ∧

(pk∗0, pk
∗
1, pk

∗
2) 6= (pk∗3, pk

∗
4, pk

∗
5)

return 0

Fig. 16: P3S Proof-Soundness

Traceability. Traceability requires that an adversary cannot generate a signature which cannot be opened, i.e., it
can be seen as the “dual” to proof-soundness. In more detail, the adversary’s goal is to generate a verifying
signature for which an honest signer cannot generate (πP3S, pk) for which JudgeP3S outputs correct.

ExpTraceability
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)

(skSig
P3S, pk

Sig
P3S)←r KGenSigP3S(ppP3S)

(pk∗, σ∗,m∗)←r ASignP3S(·,sk
Sig
P3S
,·,·,·),ProofP3S(·,sk

Sig
P3S
,·,·)(pkSig

P3S)

return 0, if VerifyP3S(pk∗, pkSig
P3S, σ

∗,m∗) = 0

(πP3S, pk)←r ProofP3S(pk∗, skSig
P3S, σ

∗,m∗)

return 1, if JudgeP3S(pk∗, pkSig
P3S, pk, πP3S, σ

∗,m∗) = 0
return 0

Fig. 17: P3S Traceability



Definition 24 (P3S Traceability). We say a P3S scheme is traceable, if for every PPT adversary A, there
exists a negligible function ν such that:

Pr
[
ExpTraceability

A,P3S (κ) = 1
]
≤ ν(κ).

The corresponding experiment is depicted in Figure 17.

Relationship of Properties. All properties are independent of each other. The full theorems and proofs are
given in Appendix D.

4 Construction

In this section we present our P3S construction. The key ingredients are our strengthened version of a policy-based
chameleon-hash, a labeled simulation-sound extractable non-interactive zero-knowledge proof of knowledge
system (NIZKPOK for short), a one-way function as well as a key-verifiable IND-CPA secure public key
encryption scheme2 and an eUNF-CMA-secure signature scheme. The intuition behind our construction, given
in Construction 1, is as follows.

The global parameters of the scheme are a one-way function f , the CRS of the NIZKPOK, and the parameters
for the encryption scheme, the signature scheme and the policy-based chameleon hash. The group setup generates
the keys of the policy-based chameleon-hash, and a key pair of the signature scheme. The signer generates a
signature key pair and publishes the public key together with an image y1 of a random pre-image x1 of the OWF
f . The sanitizer chooses a random pre-image x2 of the OWF as secret key and as public key y2 = f(x2). If a
sanitizers joins a group, i.e., obtains secret keys for a set of attributes S, the group manager signs the sanitizer’s
public key and additionally issues a secret key for the PCH for attributes S.

For signing, the signer hashes the message using the PCH and signs the hash (along with some additional
information). Moreover, it computes a NIZKPOK for the relation R in (1) (using as label ` some additional
information like the admissible changes). Sanitizing amounts to computing a collision for the PCH hash, updating
the respective message blocks, and again attaching a NIZKPOK for relation R. Verification is straightforward.

Let us now briefly discuss the NP relation R which is used within signing and sanitizing to force the signer
or the sanitizer to commit to having performed the action. Intuitively, when determining whether a signer or
sanitizer has performed the action, the ProofP3S algorithm (having access to the group secret key) can simply
decrypt c:

((y1, c, y2,pkΠ , pkΣ), (x, r, σskS)) ∈ R ⇐⇒ (y1 = f(x) ∧ c = EncΠ(pkΠ , y1; r)) (1)

∨ (y2 = f(x) ∧ c = EncΠ(pkΠ , y2; r) ∧ VerfΣ(pkΣ , y2, σskS) = 1).

We note that that it is tempting to think that the weaker notion of witness indistinguishability is sufficient
for our construction, but it turns out that one requires zero-knowledge. Moreover, we stress that due to the
underlying construction paradigm, we do not consider the strong privacy notion of unlinkability [15], i.e., that
sanitized signatures cannot be linked to its origin, which seems to be very hard to achieve with the current
construction paradigm. Formally, for our construction, we can show the following:

Theorem 1. If f is a one-way function, Π is IND-CPA-secure and key-verifiable, Σ is eUNF-CMA secure, Ω is
zero-knowledge and simulation-sound extractable, while PCH is fully indistinguishable, insider collision-resistant,
and unique, the construction of a P3S given in Construction 1 is unforgeable, immutable, private, transparent,
pseudonymous, signer-accountable, sanitizer-accountable, proof-sound, and traceable. Likewise, the construction
is correct, if the underlying primitives are correct (and sound, resp.).

2 Although key-verifiability is no property often explicitly used within IND-CPA encryption schemes, yet common schemes such as
ElGamal are key-verifiable. See App. B.



ParGenP3S(1κ) : On input a security parameter κ, let ppΠ ←r PPGenΠ(1κ), crsΩ ←r PPGenΩ(1κ, L).a Finally, choose a one-way
function f , let ppΣ ←r PPGenΣ(1κ), and ppPCH ←r PPGenPCH(1κ). Return ppP3S ← (crsΩ , ppΠ , ppΣ , ppPCH, f).

SetupP3S(ppP3S) : Let (skPCH, pkPCH)←r MKeyGenPCH(ppPCH) and (skΣ , pkΣ)←r KGenΣ(ppΣ). Return (skP3S, pkP3S)← ((skPCH, skΣ),
(pkPCH, pkΣ)).

KGenSigP3S(ppP3S) : Draw x1 ←r Df , (skΠ , pkΠ)←r KGenΠ(ppΠ), let y1 ← f(x1) and (sk′Σ , pk
′
Σ)←r KGenΣ(ppΣ).

Return (skSig
P3S, pk

Sig
P3S)← ((x1, sk

′
Σ , skΠ), (y1, pk

′
Σ , pkΠ)).

KGenSanP3S(ppP3S) : Draw x2 ←r Df . Let y2 ← f(x2). Return (x2, y2).

SignP3S(pkP3S, sk
Sig
P3S,m,A,A) : If A = ∅, return ⊥. Let (h, r)←r HashPCH(pkPCH,m,A), σm ←r SignΣ(sk′Σ , (pkP3S, pk

Sig
P3S,A,m!A, h,A)),

and c ←r EncΠ(pkΠ , y1). Let π ←r ProveΩ{(x1, x2, σskS , σskS) : (y1 = f(x1) ∧ c = EncΠ(pkΠ , y1)) ∨ (y2 = f(x2) ∧ c =
EncΠ(pkΠ , y2) ∧ VerfΣ(pkΣ , (y2, pkP3S), σskS) = 1)}(`), where ` = (ppP3S, pkP3S, pk

Sig
P3S, h, r,m,A,A,mA,m!A, σm, c). Return

σ ← (h, r,A, σm,A, π, c).
AddSanP3S(skP3S, pk

San
P3S, S) : If S /∈ 2U, return ⊥. Let σskS ←r SignΣ(skΣ , (pk

San
P3S, pkP3S)) and sk′S ←r KGenPCH(skPCH, S). Return

skS ← (σskS , sk
′
S).

VerifyP3S(pkP3S, pk
Sig
P3S, σ,m) : If π or σm is not valid, return ⊥. Check that m!A is contained in m in the correct sequence at the right

positions (derivable from A). If VerifyPCH(pkPCH,m, r, h) = 1, return 1. Otherwise, return 0.
SanitizeP3S(pkP3S, pk

Sig
P3S, sk

San
P3S, skS,m, σ,M) : If σskS or σ is not valid, return ⊥. Let r′ ←r AdaptPCH(pkPCH, sk

′
S,m,M(m), h, r),

c′ ←r EncΠ(pkΠ , y2), and π′ ←r ProveΩ{(x1, x2, σskS) : (y1 = f(x1) ∧ c′ = EncΠ(pkΠ , y1)) ∨ (y2 = f(x2) ∧ c′ =
EncΠ(pkΠ , y2) ∧ VerfΣ(pkΣ , (y2, pkP3S), σ) = 1)}(`), where ` = (ppP3S, pkP3S, pk

Sig
P3S, h, r

′,M(m),A,A,mA,m!A, σm, c
′). Let (σ′,

m′)← ((h, r′,A, σm,A, π′, c′),M(m)). If (σ′,m′) is not valid, return ⊥. Return (σ′,m′).
ProofP3S(pkP3S, sk

Sig
P3S, σ,m) : If σ is not valid, return ⊥. Let pk ← DecΠ(skΠ , c). Let πP3S ←r ProveΩ{(skΠ) : pk =

DecΠ(skΠ , c) ∧ KVrfΠ(skΠ , pkΠ) = 1}(`), where ` = (ppP3S, pkP3S, pk
Sig
P3S, σ, pk,m). Return (πP3S, pk).

JudgeP3S(pkP3S, pk
Sig
P3S, pk, πP3S, σ,m) : If σ or πP3S is not valid, return 0. Return 1.

a Note, we need a different CRS for each language L involved. However, we keep the description short, and thus do not make this explicit.

Construction 1: Our P3S

The full proof of Theorem 1 is given in Appendix C.

Proof (Sketch). Unforgeability follows from the zero-knowledge and extractability property of the used proof
system, the insider collision-resistance of the used PCH, as well as the one-wayness of f , and and unforgeability
of the used signature scheme. Immutability directly follows from the unforgeability of the used signature scheme.
Privacy follows from the zero-knowledge property of the used proof system, the full indistinguishability of
the used PCH, and somewhat surprisingly, the uniqueness of PCH. Likewise, transparency follows from the
zero-knowledge property of the used proof system, and the IND-CPA security of the used encryption scheme.
The same is true for pseudonymity, but we also require, again somewhat surprising, the uniqueness of the used
PCH. Both signer-accountability, and sanitizer-accountability, follow from the extractability of the used proof
system, and the one-wayness of f . Proof-soundness follows from key-verifiability of the used encryption scheme,
and the extractability of the used proof system. Finally, traceability follows from the extractability of the used
proof system.

Instantiation. The description of Construction 1 is as compact as reasonable. For a concrete instantiation,
there are some aspects which can be optimized. Currently, it seems to be advisable to stick to the elliptic curve
and in particular to the type-3 bilinear group setting (a setting where we assume the SXDH assumption to hold),
due to the efficiency of the CP-ABE schemes in this setting (used by the PCH). Consequently, we consider the
OWF f to be simply the function f(x) = gx for x ∈ Zq and g being a generator of a group G of prime order q
(and in particular one of the base groups of a bilinear group). Then, as an encryption scheme to encrypt images
under f and that is key-verifiable, we can use ElGamal in either of the two base groups (for completeness, we
show key-verifiability of ElGamal in Appendix B). Now, the signature keys (sk′Σ , pk

′
Σ) used by signer to produce

signatures can be any arbitrary eUNF-CMA-secure scheme. In contrast, the signature scheme associated to keys
(skΣ , pkΣ) used by the group manager in AddSanP3S to certify the y2 values of sanitizers need to be chosen with
care: we need a signature scheme with message space being one of the base groups of the bilinear group and thus
the natural choice is a structure preserving signature scheme [1]. Moreover, the SPS needs to be compatible



with efficient NIZKPOK. Due to the choice of the OWF the most natural choice for Ω are simulation-sound
extractable NIZKPOK obtained via Fiat-Shamir from Σ-protocols (cf. [32]). As PCH instantiation we can use a
strengthened version of the PCH by Derler et al. [30]. See Appendix B.

Efficiency. Our scheme is reasonably efficient. The group-manager only needs to create a key-pair for a PCH,
while the sanitizer only needs to evaluate a one-way functions (the signer additionally needs to draw a key-pair
for an encryption scheme Π). For signing, the signer needs to generate a hash, a signature, an encryption, and
a simple NIZKPOK. For sanitizing, the sanitizer has to create an encryption, adapt a hash, and attaches a
simple NIZKPOK. Granting sanitizing rights boils down to creating a signature and creating a key for the PCH.
Verification is also straightforward: A verifier checks a signature and the NIZPOK. Likewise, proof-generation is a
simple decryption and a NIZKPOK proving that decryption was done honestly. Checking a proof is verifying that
proof and a signature. Thus, ignoring the NIZKPOK and the encryptions, our scheme is therefore comparable to
existing, way less expressive, constructions.

5 Conclusion

In this work we have introduced the notion of policy-based sanitizable signatures, which are an extension to
standard sanitizable signature schemes, along with a provably secure construction, which features, for the first
time, full accountability. In our new primitive, a sanitizer is no longer appointed by the signer at signature
generation, but rather can sanitize based on a set attributes it has. We leave it as open work how to add
invisibility and unlinkability to our contribution.
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6. M. T. Beck, J. Camenisch, D. Derler, S. Krenn, H. C. Pöhls, K. Samelin, and D. Slamanig. Practical strongly invisible and

strongly accountable sanitizable signatures. In ACISP, Part I, pages 437–452, 2017.
7. M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-rsa-inversion problems and the security of chaum’s

blind signature scheme. J. Cryptology, 16(3):185–215, 2003.
8. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In CCS, pages 62–73,

1993.
9. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of dynamic groups. In CT-RSA, pages 136–153,

2005.
10. J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryption. In S&P, pages 321–334, 2007.
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17. C. Brzuska, H. C. Pöhls, and K. Samelin. Efficient and perfectly unlinkable sanitizable signatures without group signatures. In

EuroPKI, pages 12–30, 2013.
18. X. Bultel and P. Lafourcade. Unlinkable and strongly accountable sanitizable signatures from verifiable ring signatures. In

CANS, pages 203–226, 2017.



19. X. Bultel, P. Lafourcade, R. W. F. Lai, G. Malavolta, D. Schröder, and S. A. Thyagarajan. Efficient invisible and unlinkable
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29. D. Derler, H. C. Pöhls, K. Samelin, and D. Slamanig. A general framework for redactable signatures and new constructions. In

ICISC, pages 3–19, 2015.
30. D. Derler, K. Samelin, D. Slamanig, and C. Striecks. Fine-grained and controlled rewriting in blockchains: Chameleon-hashing

gone attribute-based. In NDSS, 2019.
31. D. Derler and D. Slamanig. Rethinking privacy for extended sanitizable signatures and a black-box construction of strongly

private schemes. In ProvSec, pages 455–474, 2015.
32. S. Faust, M. Kohlweiss, G. A. Marson, and D. Venturi. On the non-malleability of the fiat-shamir transform. In INDOCRYPT,

pages 60–79, 2012.
33. V. Fehr and M. Fischlin. Sanitizable signcryption: Sanitization over encrypted data (full version). ePrint, 2015:765, 2015.
34. M. Fischlin and P. Harasser. Invisible sanitizable signatures and public-key encryption are equivalent. In ACNS, pages 202–220,

2018.
35. N. Fleischhacker, J. Krupp, G. Malavolta, J. Schneider, D. Schröder, and M. Simkin. Efficient unlinkable sanitizable signatures
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43. S. Krenn, H. C. Pöhls, K. Samelin, and D. Slamanig. Protean signature schemes. In CANS, pages 256–276, 2018.
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A More Preliminaries and Building Blocks

This section is devoted to give additional background on the building blocks.

A.1 Additional Preliminaries

We first give some additional preliminaries required to understand the concrete constructions given in Appendix B.
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Unknown-Order Group Definitions and Assumptions.

RSA Key-Generator. Let (N, p, q, e, d)←r RSAGen(1κ) be an instance generator which returns an RSA modulus
N = pq, where p and q are distinct primes, e > 1 an integer co-prime to ϕ(n), and de ≡ 1 mod ϕ(n). We require
that RSAGen always outputs moduli with the same bit-length, based on κ.

The One-More-RSA Inversion Assumption [7]. Let (n, e, d, p, q) ←r RSAGen(1κ) be an RSA-key generator
returning an RSA modulus n = pq, where p and q are random distinct primes, e > 1 an integer co-prime to ϕ(n),
and d ≡ e−1 mod ϕ(n). The one-more-RSA-assumption associated to RSAGen is provided an inversion oracle I,
which inverts any element x ∈ Z∗n w.r.t. e, and a challenge oracle C, which at each call returns a random element
yi ∈ Z∗n.

Definition 25 (One-More-RSA Inversion Assumption). An adversary wins if, given n and e, it is able
to invert more elements received by C than is makes calls to I. The corresponding assumption states that for
every PPT adversary A there exists a negligible function ν such that:

Pr[(n, p, q, e, d)←r RSAGen(1κ), X ←r A(n, e)C(n),I(d,n,·) :

more values returned by C are inverted than queries to I] ≤ ν(κ)

Here, X is the set of inverted challenges.
We require that e is larger than any possible n w.r.t. κ and that it is prime. Re-stating the assumption with

this condition is straightforward. In this case, it is also required that e is drawn independently from p, q, or n
(and d is then calculated from e, and not vice versa). This can, e.g., be achieved by demanding that e is drawn
uniformly from [n′ + 1, . . . , 2n′] ∩ {p | p is prime}, where n′ is the largest RSA modulus possible w.r.t. to κ. The
details are left to the concrete instantiation of RSAGen.

A.2 Additional Building Blocks

We now present our additional building blocks.

Standard Chameleon-Hashes. Chameleon-hashes behave similar to standard collision-resistant hash-functions,
but allow to find arbitrary collisions, if a trapdoor is known [41].

The following framework is derived from Camenisch et al. [20].

Definition 26 (Chameleon-Hashes). A chameleon-hash CH consists of five algorithms (PPGenCH,KGenCH,
HashCH,VerifyCH,AdaptCH), such that:

PPGenCH. The algorithm PPGenCH on input security parameter κ outputs public parameters ppCH of the scheme.
For brevity, we assume that ppCH is implicit input to all other algorithms:

ppCH ←r PPGenCH(1κ)

KGenCH. The algorithm KGenCH, given the public parameters ppCH, outputs the private (skCH) and public key
(pkCH) of the scheme

(skCH, pkCH)←r KGenCH(ppCH)

HashCH. The algorithm HashCH gets as input the public key pkCH, and a message m to hash. It outputs a hash h,
and some randomness r:

(h, r)←r HashCH(pkCH,m)

VerifyCH. The deterministic algorithm VerifyCH gets as input the public key pkCH, a message m, randomness r,
and a hash h. It outputs a decision d ∈ {0, 1} indicating whether the hash h is valid:

d← VerifyCH(pkCH,m, h, r)



AdaptCH. The algorithm AdaptCH on input of secret key sk, the old message m, the old randomness r, hash h,
and a new message m′ outputs new randomness r′:

r′ ←r AdaptCH(skCH,m,m
′, r, h)

Note that we assume that the AdaptCH algorithm always verifies if the hash it is given is valid, and outputs ⊥
otherwise.

For a CH we require the correctness property to hold. In particular, we require that for all κ ∈ N, for all
ppCH ←r PPGenCH(1κ), for all (skCH, pkCH)←r KGenCH(ppCH), for all m ∈ M, for all (h, r)←r HashCH(pk,m),
for all m′ ∈ M, we have for all for all r′ ←r AdaptCH(skCH,m,m

′, r, h), that 1 = VerifyCH(pkCH,m, h, r) =
VerifyCH(pkCH,m

′, h, r′). This definition captures perfect correctness.
The randomness is drawn by HashCH, and not outside. This was done to capture “private-coin” construc-

tions [5].
Next, we present security notions of CHs.

Full Indistinguishability. Full indistinguishability requires that the randomnesses r does not reveal if it was
obtained through HashCHET or AdaptPCH, which is captured by the HashOrAdapt-oracle. The messages are chosen
by the adversary.

We relax the indistinguishability definition by Brzuska et al. [13] to a computational version, which is enough
for most use-cases, including ours. However, compared to the existing definitions in [6, 20, 30, 42], the adversary
is also allowed to generate the secret keys involved.

ExpFIndistinguishability
A,CH (κ)

ppCH ←r PPGenCH(1κ)
b←r {0, 1}
b∗ ←r AHashOrAdapt(·,·,·,b)(ppCH)

where oracle HashOrAdapt on input skCH,m,m
′, b:

(h, r)←r HashCH(pkCH,m
′)

(h′, r′)←r HashCH(pkCH,m)
r′′ ←r AdaptCH(skCH,m,m

′, r′, h′)
return ⊥, if r′′ = ⊥ ∨ r′ = ⊥ ∨ r = ⊥
if b = 0, return (h, r)
if b = 1, return (h′, r′′)

return 1, if b∗ = b
return 0

Fig. 18: CH Full Indistinguishability

We implicitly return ⊥ in the HashOrAdapt oracle (in case of an error), as the adversary A may try to enter
a message m /∈ M, even if M = {0, 1}∗, which makes the algorithm output ⊥. If we would not do this, the
adversary could trivially decide which case it sees. For similar reasons these checks are also included in other
definitions.

Definition 27 (CH Full Indistinguishability). We say a CH scheme is fully indistinguishable, if for every
PPT adversary A, there exists a negligible function ν such that:

Pr
[
ExpFIndistinguishability

A,CH (κ) = 1
]
≤ ν(κ).

The corresponding experiment is depicted in Figure 18.



Collision-Resistance. Collision-resistance says, that even if an adversary has access to an adapt oracle, it cannot
find any collisions for messages other than the ones queried to the adapt oracle. Note, this is an even stronger
definition than key-exposure freeness [4]: key-exposure freeness only requires that one cannot find a collision for
some new “tag”, i.e., for some auxiliary value for which the adversary has never seen a collision.

ExpCollision-Resistance
A,CH (κ)

ppCH ←r PPGenCH(1κ)
(skCH, pkCH)←r KGenCH(ppCH)
Q ← ∅
(m∗, r∗,m′∗, r′∗, h∗)←r AAdapt′CH(skCH,·,·,·,·)(pkCH)

where Adapt′CH on input skCH,m,m
′, r, h:

r′ ←r AdaptCH(skCH,m,m
′, r, h)

Q ← Q∪ {m,m′}
return r′

return 1, if VerifyCH(pkCH,m
∗, h∗, r∗) = VerifyCH(pkCH,m

′∗, h∗, r′∗) = 1 ∧
m∗ /∈ Q ∧ m∗ 6= m′∗

return 0

Fig. 19: CH Collision-resistance

Definition 28 (CH Collision-Resistance). We say a CH scheme is collision-resistant, if for every PPT
adversary A, there exists a negligible function ν such that:

Pr
[
ExpCollision-Resistance

A,CH (κ) = 1
]
≤ ν(κ).

The corresponding experiment is depicted in Figure 19.

Uniqueness. Uniqueness requires that it be hard to come up with two different randomness values for the same
message m∗ such that the hashes are equal, for the same adversarially chosen pk∗.

ExpUniqueness
A,CH (κ)

ppCH ←r PPGenCH(1κ)
(pk∗,m∗, r∗, r′∗, h∗)←r A(ppCH)
return 1, if VerifyCH(pk∗,m∗, h∗, r∗) = VerifyCH(pk∗,m∗, h∗, r′∗) = 1
∧ r∗ 6= r′∗

return 0

Fig. 20: CH Uniqueness

Definition 29 (CH Uniqueness). We say a CH scheme is unique, if for every PPT adversary A, there exists
a negligible function ν such that:

Pr
[
ExpUniqueness

A,CH (κ) = 1
]
≤ ν(κ).

The corresponding experiment is depicted in Figure 20.



We do not consider uniqueness as a fundamental security property, as it depends on the concrete use-case
whether this notion is required.

Chameleon-Hashes with Ephemeral Trapdoors. We recall the notion of chameleon-hashes with ephemeral
trapdoors (CHET) from [20]. This primitive is a variant of a chameleon-hash where, in addition to the long-term
trapdoor, another ephemeral trapdoor etd (chosen freshly during hashing) is required to compute collisions.

Definition 30 (Chameleon-Hashes with Ephemeral Trapdoors). A chameleon-hash with ephemeral
trapdoors CHET is a tuple of five algorithms (PPGenCHET,KGenCHET,HashCHET,VerifyCHET,AdaptCHET), such
that:

PPGenCHET : On input security parameter κ, this algorithm outputs the public parameters ppCHET.

ppCHET ←r PPGenCHET(1κ)

We assume that ppCHET implicitly defines the message space M.

KGenCHET : On input the public parameters ppCHET, this algorithm outputs the long-term key pair (skCHET, pkCHET):

(skCHET, pkCHET)←r KGenCHET(ppCHET)

HashCHET : On input the public key pkCHET and a message m, this algorithm outputs a hash h, corresponding
randomness r, as well as the ephemeral trapdoor etd:

(h, r, etd)←r HashCHET(pkCHET,m)

VerifyCHET : On input the public key pkCHET, a message m, a hash h, and randomness r, this algorithm outputs
a bit b ∈ {1, 0}:

b← VerifyCHET(pkCHET,m, h, r)

AdaptCHET : On input secret key skCHET, ephemeral trapdoor etd, a message m, a message m′, hash h, randomness
r, and trapdoor information etd, this algorithm outputs randomness r′:

r′ ←r AdaptCHET(skCHET, etd,m,m
′, h, r)

Note that we assume that the AdaptCHET algorithm always verifies if the hash it is given is valid, and output ⊥
otherwise.

For correctness, we require that for all κ ∈ N, all ppCHET ←r PPGenCHET(1κ), all (skCHET, pkCHET) ←r

KGenCHET(ppCHET), all m,m′ ∈M, all (h, r, etd)←r HashCHET(pkCHET,m), all r′ ←r AdaptCHET(skCHET, etd,m,
m′, h, r), we have that VerifyCHET(pkCHET,m, h, r) = VerifyCHET(pkCHET,m

′, h, r′) = 1.

Full Indistinguishability. Full indistinguishability requires that it be intractable for outsiders to distinguish
whether a given randomness corresponds to an output of HashCHET or AdaptCHET. This is captured within the
HashOrAdapt-oracle. Note, however, that—when compared to the definitions in [6, 20,30]—the adversary can
additionally generate all secret keys.

Definition 31 (CHET Full Indistinguishability). We say a CHET scheme is fully indistinguishable, if for
every PPT adversary A, there exists a negligible function ν such that:

Pr
[
ExpFIndistinguishability

A,CHET (κ) = 1
]
≤ ν(κ).

The corresponding experiment is depicted in Figure 21.



ExpFIndistinguishability
A,CHET (κ)

ppCHET ←r PPGenCHET(1κ)
b←r {0, 1}
b∗ ←r AHashOrAdapt(·,·,·,b)(ppCHET)

where HashOrAdapt on input skCHET,m,m
′, b:

let (h0, r0, etd0)←r HashCHET(pk,m′)
let (h1, r1, etd1)←r HashCHET(pk,m)
let r1 ←r AdaptCHET(skCHET, etd1,m,m

′, h1, r1)
return ⊥, if r0 = ⊥ ∨ r1 = ⊥
return (hb, rb, etdb)

return b = b∗

Fig. 21: CHET Full Indistinguishability

ExpPublic Collision-Resistance
A,CHET (κ)

ppCHET ←r PPGenCHET(1κ)
(skCHET, pkCHET)←r KGenCHET(PPGenCHET)
Q ← ∅
(m∗, r∗,m′∗, r′∗, h∗)←r AAdapt′CHET(skCHET,·,·,·,·,·)(pkCHET)

where Adapt′CHET on input etd,m,m′, h, r:
r′ ←r AdaptCHET(sk, etd,m,m′, h, r)
if r′ 6= ⊥, let Q ← Q∪ {m,m′}
return r′

return 1, if VerifyCHET(pkCHET,m
∗, h∗, r∗) = 1 ∧

VerifyCHET(pkCHET,m
′∗, h∗, r′∗) = 1 ∧

m∗ /∈ Q ∧ m∗ 6= m′∗

return 0

Fig. 22: CHET Public Collision-Resistance

Public Collision-Resistance. Public collision-resistance grants the adversary access to an AdaptPCH oracle. It
requires that it is intractable to produce collisions, other than the ones produced by the AdaptPCH oracle. Thus,
the adversary gains access to a Adapt′CHET-oracle, which also keeps track of the produced collisions, which we
need to exclude to have a meaningful definition.

Definition 32 (CHET Public Collision-Resistance). We say a CHET scheme is publicly collision-resistant,
if for every PPT adversary A, there exists a negligible function ν such that:

Pr
[
ExpPublic Collision-Resistance

A,CHET (κ) = 1
]
≤ ν(κ).

The corresponding experiment is depicted in Figure 22.

Strong Private Collision-Resistance. Strong private collision-resistance requires that it is even intractable for the
holder of the secret key sk to find collisions without knowledge of etd. Note, the adversary can obtain arbitrary
collisions.

Definition 33 (CHET Strong Private Collision-Resistance). We say a CHET scheme is strongly privately
collision-resistant, if for every PPT adversary A, there exists a negligible function ν such that:

Pr
[
ExpStrong Private Collision-Resistance

A,CHET (κ) = 1
]
≤ ν(κ).



ExpStrong Private Collision-Resistance
A,CHET (κ)

ppCHET ←r PPGenCHET(1κ)
Q ← ∅
i← 0

(pk∗,m∗, r∗,m′∗, r′∗, h∗)←r AHash′CHET(·,·),Adapt′CHET(·,·,·,·,·,·,·)(ppCHET)
where Hash′CHET on input pk, m:

(h, r, etd)←r HashCHET(pk,m)
return ⊥, if r = ⊥
i← i+ 1
let Q ← Q∪ {(pk, h,m, etd, i)}
return (h, r)

and Adapt′CHET on input sk, h, r, m, m′, i:
return ⊥, if (pk, h′,m′′, etd, i) /∈ Q for some h′, m′′, etd, pk
r′ ←r AdaptCHET(sk, etd,m,m′, h, r)
if r′ 6= ⊥, let Q ← Q∪ {(pk, h′,m, etd, i), (pk, h′,m′, etd, i)}
return r′

return 1, if VerifyCHET(pk∗,m∗, h∗, r∗) = 1 ∧
VerifyCHET(pk∗,m′∗, h∗, r′∗) = 1 ∧ m∗ 6= m′∗ ∧
(pk∗, h∗,m∗, ·, ·) /∈ Q ∧ (pk∗, h∗, ·, ·, ·) ∈ Q

return 0

Fig. 23: CHET Strong Private Collision-Resistance

The corresponding experiment is depicted in Figure 23.

Uniqueness. Uniqueness requires that it be hard to come up with two different randomness values for the same
message m∗ such that the hashes are equal, for the same adversarially chosen pk∗.

ExpUniqueness
A,CHET (κ)

ppCHET ←r PPGenCHET(1κ)
(pk∗,m∗, r∗, r′∗, h∗)←r A(ppCHET)
return 1, if VerifyCHET(pk∗,m∗, h∗, r∗) = VerifyCHET(pk∗,m∗, h∗, r′∗) = 1
∧ r∗ 6= r′∗

return 0

Fig. 24: CHET Uniqueness

Definition 34 (CHET Uniqueness). We say a CHET scheme is unique, if for every PPT adversary A, there
exists a negligible function ν such that:

Pr
[
ExpUniqueness

A,CHET (κ) = 1
]
≤ ν(κ).

The corresponding experiment is depicted in Figure 24.

Attribute-Based Encryption. Let us recall the description of a cipertext-policy attribute encryption scheme
(ABE henceforth) [10].



Definition 35 (Ciphertext-Policy Attribute-Based Encryption). A ABE scheme is a tuple of PPT
algorithms (PPGenABE,KGenABE,EncABE,DecABE) such that:

PPGenABE(1κ) : Takes as input a security parameter κ and outputs a master secret and public key (mskABE,mpkABE):

(mskABE,mpkABE)←r PPGenABE(1κ)

We assume that all subsequent algorithms will implicitly receive the master public key mpkABE (public
parameters) as input which implicitly fixes a message space M.

KGenABE(mskABE,S) : Takes as input the master secret key mskABE and a set of attributes S and outputs a secret
key ssk:

ssk←r KGenABE(mskABE,S)

EncABE(m,A) : Takes as input a message m ∈M and an access structure A. It outputs a ciphertext c:

c←r EncABE(m,A)

DecABE(ssk, c) : Takes as input a secret key ssk and a ciphertext c and outputs a message m or ⊥ in case
decryption does not work:

m← DecABE(ssk, c)

Correctness of a ABE scheme requires that for all κ ∈ N,for all access structures A, all (mskABE,mpkABE) ←r

PPGenABE(1κ), all m ∈M, all S ∈ A, all ssk←r KGenABE(mskABE,S) we have that DecABE(ssk,EncABE(m,A)) =
m.

Security of ABE. In the following, we recall adaptive IND-CCA2 security, for ABE. It is derived from the definition
given by Lewko et al. [47] and Derler et al. [30]. but altered for our used notation. Refer, e.g., to [50] for how to
construct chosen-ciphertext secure ABEs from CPA-secure ones.

Definition 36 (ABE IND-CCA2-Security). An ABE scheme is IND-CCA2-secure, if for any PPT adversary
A there exists a negligible function ν such that:∣∣∣Pr

[
ExpIND-CCA2

A,ABE (κ) = 1
]
− 1

2

∣∣∣ ≤ ν(κ)

The corresponding experiment is depicted in Figure 25.

B Concrete Instantiations of Primitives

We now present the instantiations of our building blocks.

Instantiation of Secure CHs. We recall a construction from [20] in Construction 2.

Theorem 2. If the one-more-RSA inversion assumption [7] holds, then the construction of a CH given in
Construction 2 is fully indistinguishable, correct, unique and collision-resistant, in the random-oracle model [8].

Proof. All properties, but full indistinguishability, have already been proven by Camenisch et al. [20]. Thus, it
remains to prove full indistinguishability.

Full Indistinguishability. We prove full indistinguishability by a sequence of games.

Game 0: The original full indistinguishability game in the case b = 0.
Game 1: As Game 0, but we now make the transition to b = 1.
Transition - Game 0 → Game 1: As there is exactly one secret key (up to the group order, which can be

ignored), which makes adaption work correctly, which we explicitly check, while r is always chosen randomly,
the distributions are exactly equal and thus |Pr[S0]− Pr[S1]| = 0 follows.

As the adversary now has to other way to win the full indistinguishability game and each hop only changes
the view of the adversary negligibly, full indistinguishability is proven.



ExpIND-CCA2
A,ABE (κ):

(mskABE,mpkABE)←r PPGenABE(1κ)
b←r {0, 1}
Q ← ∅
S ← ∅
i← 0

(m0,m1,A∗, state)←r AKGen′ABE(mskABE,·),KGen′′ABE(mskABE,·),Dec′ABE(·,·)(mpkABE)
where KGen′ABE on input mskABE, S:

return KGenABE(mskABE, S) and set S ← S ∪ S
and KGen′′ABE on input j, S:

let ssk←r KGenABE(mskABE, S) and set Q ← Q∪ {(i, ssk)}
i← i+ 1

and Dec′ABE on input j, c:
return ⊥, if (j, ssk) /∈ Q for some ssk
return DecABE(ssk, c)

if m0,m1 /∈M ∨ |m0| 6= |m1| ∨ A∗ ∩ S 6= ∅, let c∗ ← ⊥
else let c∗ ←r EncABE(mb,A∗)

b∗ ←r AKGen′′′ABE(mskABE,·),KGen′′′′ABE(mskABE,·),Dec′′ABE(·,·)(c∗, state)
where KGen′′′ABE on input mskABE, S:

return ⊥, if S ∈ A∗
return KGenABE(mskABE, S)

and KGen′′′′ABE on input j, S:
let ssk←r KGenABE(mskABE, S) and set Q ← Q∪ {(i, ssk)}
i← i+ 1

and Dec′′ABE on input j, c:
return ⊥, if (j, ssk) /∈ Q for some ssk ∨ c = c∗

return DecABE(ssk, c)
if b∗ = b return 1 else return 0

Fig. 25: ABE IND-CCA2 Security

PPGenCH(1κ) : On input a security parameter κ it outputs the public parameters ppCH ←r (1κ, e), where e is prime and e > N ′ with

N ′ = maxr{N ∈ N : (N, ·, ·, ·, ·)←r RSAGen(1κ; r)}.
KGenCH(ppCH) : On input ppCH = (1κ, e) run (N, p, q, ·, ·)←r RSAGen(1κ), choose a hash-function H : {0, 1}∗ → Z∗N (modeled as a

random-oracle), compute d s.t. ed ≡ 1 mod ϕ(N), set skCH ←r d, pkCHET ← (N,H), and return (skCH, pkCH).
HashCH(pkCH,m) : On input a public key pkCH = (N,H) and a message m, choose r ←r Z∗N , compute h←r H(m)re mod N and

output (h, r).
VerifyCH(pkCH,m, h, r) : On input public key pkCH = (N,H), a message m, a hash h, and a randomness r ∈ Z∗N , it computes

h′ ←r H(m)re mod N and outputs 1 if h′ = h and 0 otherwise.
AdaptCH(skCH,m,m

′, h, r) : On input a secret key skCH = d, messages m and m′, a hash h, and randomness values r and r′, the

adaptation algorithm outputs ⊥ if VerifyCH(pkCH,m, h, r) 6= 1. Otherwise, let x ←r H(m), x′ ←r H(m′), y ←r xr
e mod N .

Output ⊥, if VerifyCH(pkCH,m
′, h, r′) 6= 1. Return r′ ← (y(x′−1))d mod N .

Construction 2: RSA-based CH

Instantiation of Secure CHETs. The generic construction is given in Construction 3. This construction is
essentially the one given by Krenn et al. [42], but we additionally check whether a hash h is valid after adaption,
and use the stronger CH introduced above.

Theorem 3. If CH is fully indistinguishable, collision-resistant, unique, and correct, then the construction of a
CHET given in Construction 3 is fully indistinguishable, publicly collision-resistant, strongly private collision-
resistant, unique, and correct.



PPGenCHET(1κ) : On input a security parameter κ, let ppCH ←r PPGenCH(1κ) Return ppCHET ← ppCH.

KGenCHET(ppCHET) : On input ppCHET = ppCH run and return (sk1CH, pk
1
CH)←r KGenCH(ppCH).

HashCHET(pkCHET,m) : On input of pkCHET = pk1CH and m, let (etd, pk2CH)←r KGenCH(ppCH). Let (h1, r1)←r HashCH(pk1CH, (m, pk
1
CH,

pk2CH)) and (h2, r2)←r HashCH(pk2CH, (m, pk
1
CH, pk

2
CH)). Return ((h1, h2, pk1CH, pk

2
CH), (r1, r2)).

VerifyCHET(pkCHET,m, h, r) : On input of pkCHET = pk1CH, m, h = (h1, h2, pk1CH, pk
2
CH) and r = (r1, r2), return 1, if VerifyCH(pk1CH, (m,

pk1CH, pk
2
CH), h1, r1) = 1 and VerifyCH(pk2CH, (m, pk

1
CH, pk

2
CH), h2, r2) = 1. Otherwise, return 0.

AdaptCHET(skCHET, etd,m,m
′, h, r) : On input a secret key skCHET = sk1CH, etd, messages m and m′, a hash h = (h1, h2, pk1CH, pk

2
CH)

and r = (r1, r1), first check that VerifyCHET(pkCHET,m, h, r) = 1. Otherwise, return ⊥. Let r′1 ←r AdaptCH(sk1CHET, (m,
pk1CH, pk

2
CH), (m′, pk1CH, pk

2
CH), r1, h1) and r′2 ←r AdaptCH(etd, (m, pk1CH, pk

2
CH), (m′, pk1CH, pk

2
CH), r2, h2). Let r′ ← (r′1, r′2). If

VerifyCHET(pkCHET,m
′, h, r′) = 0, return ⊥. Return r′.

Construction 3: Construction of a CHET

Proof. All properties, but full indistinguishability and uniqueness, have already been proven [30,42]. We thus
prove each remaining property on its own.

Full Indistinguishability. First, we prove full indistinguishability by a sequence of games.

Game 0: The original full indistinguishability game in the case b = 1.
Game 1: As Game 0, but instead of calculating the hash h1 as in the game, directly hash.
Transition - Game 0 → Game 1: We claim that Game 0 and Game 1 are indistinguishable under the full

indistinguishability of CH. More formally, assume that the adversary A can distinguish this hop. We can
then construct an adversary B which breaks the indistinguishability of CH. In particular, the reduction works
as follows. B receives ppCH as it’s own challenge, passing them through to A within ppPCH (generating the
rest honestly), and proceeds as in the prior hop, with the exception that it uses the HashOrAdapt oracle to
generate h1. Then, whatever A outputs, is also output by B. Clearly, the simulation is perfect from A’s point
of view. Note, the HashOrAdapt always checks if the adaption was successful, and thus so does B, making
the distributions equal. |Pr[S0]− Pr[S1]| ≤ νCH-sInd(κ) follows.

Game 2: As Game 1, but instead of calculating the hash h2 as in the game, directly hash.
Transition - Game 1 → Game 2: We claim that Game 1 and Game 2 are indistinguishable under the full

indistinguishability of CH. More formally, assume that the adversary A can distinguish this hop. We can
then construct an adversary B which breaks the indistinguishability of CH. In particular, the reduction works
as follows. B receives ppCH as it’s own challenge, passing them through to A within ppPCH (generating the
rest honestly), and proceeds as in the prior hop, with the exception that it uses the HashOrAdapt oracle to
generate h2. Then, whatever A outputs, is also output by B. Clearly, the simulation is perfect from A’s point
of view. Note, the HashOrAdapt always checks if the adaption was successful, and thus so does B, making
the distributions equal. |Pr[S1]− Pr[S2]| ≤ νCH-sInd(κ) follows.
We are now in the case b = 0. However, as the adversary only sees negligible changes, full indistinguishability
is proven.

Uniqueness. Finally, we prove uniqueness by a sequence of games.

Game 0: The original strong private collision-resistance game.
Game 1: As Game 0, but we abort if the adversary outputs (pk∗,m∗, r∗, r′∗, h∗) such that the winning conditions

are fulfilled. Let this event be E1.
Transition - Game 0 → Game 1: Assume that event E1 happens. We can then construct an adversary B which

breaks the uniqueness of the underlying CH.
The reduction works as follows. It receives ppCH from its own challenger and embeds it into ppCHET. Then,
when the adversary outputs (pk∗,m∗, r∗, r′∗, h∗) such that the winning conditions are fulfilled, we know that
r∗i 6= r′∗i must hold for either i = 1 or i = 2 (or even both). Thus, the adversary can return (pk′∗, (m∗, pk1

CH,
pk2

CH), r∗i , r
′∗
i , h

∗
i ), where pk′∗ = pk1

CH if i = 1 and pk′∗ = pk2
CH otherwise, while for the hash h∗ = (h∗1, h

∗
2)

holds. |Pr[S0]− Pr[S1]| ≤ νCH-unique(κ) follows.



As now the adversary has no longer the possibility to win the uniqueness game, while each hop changes the
view only negligibly, uniqueness is proven.

Instantiation of Secure PCHs. Our generic construction is depicted in Construction 4. This construction is
taken from [30], but we also check whether an adaption was successful.

PPGenPCH(1κ) : Return ppPCH ←r PPGenCHET(1κ).
MKeyGenPCH(ppPCH) : Return skPCH ← (mskABE, skCHET) and pkPCH ← (mpkABE, pkCHET), where (skCHET, pkCHET)←r KGenCHET(ppPCH),

and (mskABE,mpkABE)←r PPGenABE(1κ).
KGenPCH(skPCH, S) : Parse skPCH as (mskABE, skCHET) and return ssk← (skCHET, ssk

′), where ssk′ ←r KGenABE(mskABE, S).
HashPCH(pkPCH,m,A) : Parse pkPCH as (mpkABE, pkCHET) and return (h, r) ← ((hCHET, c), rCHET), where (hCHET, rCHET, etd) ←r

HashCHET(pkCHET,m), and c←r EncABE(etd,A).
VerifyPCH(pkPCH,m, h, r) : Parse pkPCH as (mpkABE, pkCHET), h as (hCHET, c), and r as rCHET. Return 1, if the following check holds and

0 otherwise VerifyCHET(pkCHET, (m, c), hCHET, rCHET) = 1.
AdaptPCH(ssk,m,m′, h, r) : Parse ssk as (skCHET, ssk

′) and h as (hCHET, c), and r as rCHET. Check whether VerifyPCH(pkPCH,m, h, r) =

1 and return ⊥ otherwise. Compute etd ← DecABE(ssk′, c) and return ⊥ if etd = ⊥. Let r′ ← r′CHET, where r′CHET ←r

AdaptCHET(skCHET, etd,m,m
′, h, rCHET). Return ⊥, if VerifyPCH(pkPCH,m

′, h, r′) = 0. Return r′.

Construction 4: Black-box construction of a PCH scheme

Theorem 4. If ABE is IND-CCA2-secure and correct, while CHET is fully indistinguishable, strongly pri-
vate collision-resistant, unique, and correct, then the construction of a PCH given in Construction 4 is fully
indistinguishable, insider collision-resistant, unique, and correct.

Proof. Due to our strengthened notions, we need to prove each property on its own.

Uniqueness. First, we prove uniqueness by a sequence of games.

Game 0: The original uniqueness game.
Game 1: As Game 0, but we abort, if the adversary found (pk∗,m∗, r∗, r′∗, h∗) such that it wins the uniqueness

game. Let this event be E1.
Transition - Game 0 → Game 1: Assume towards contradiction that event E1 happens, we can build an ad-

versary B which breaks uniqueness of the underlying CHET. Our reduction receives ppCHET and embeds
it into ppPCH. Then, by assumption, B can directly return (pk∗2,m

∗, r∗, r′∗, h∗0), where pk∗ = (pk∗0, pk
∗
1) and

h∗ = (h∗0, c
∗). |Pr[S0]− Pr[S1]| ≤ νCHET-uniq(κ) follows, as c∗ is part of the hash, while the randomness only

applies to the CHET.
As the adversary now has no way to win the uniqueness game and the hop only changes the view of the
adversary negligibly, uniqueness is proven.

Full Indistinguishability. Now, we prove full indistinguishability by a sequence of games.

Game 0: The original full indistinguishability game in the case b = 1.
Game 1: As Game 0, but instead of calculating the hash h as in the game, directly hash.
Transition - Game 0 → Game 1: We claim that Game 0 and Game 1 are indistinguishable under the full

indistinguishability of CHET. More formally, assume that the adversary A can distinguish this hop. We can
then construct an adversary B which breaks the full indistinguishability of CHET. In particular, the reduction
works as follows. B receives ppCHET as it’s own challenge, passing them through to A within ppPCH (generating
the rest honestly), and proceeds as in the prior game, with the exception that it uses the HashOrAdapt oracle
to generate hCHET. Then, whatever A outputs, is also output by B. Clearly, the simulation is perfect from
A’s point of view. Note, the HashOrAdapt always checks if the adaption was successful, and thus so does B,
making the output behave the same. |Pr[S0]− Pr[S1]| ≤ νCHET-sInd(κ) follows.
We are now in the case b = 0. However, as the adversary only sees negligible changes, full indistinguishability
is proven. Note, the ciphertext is distributed equally in all cases.



Insider Collision-Resistance. Finally, we prove insider collision-resistance by a sequence of games.

Game 0: The original strong insider collision-resistance game.

Game 1: As Game 0, but we abort, if the adversary makes a query (m,m′, h, r, j), for which h verifies, to the
adaption oracle, for a h returned by the hashing oracle, but m has never been input to the hashing oracle or
the adaption oracle, and A does not have enough attributes to find a collision all by itself. Let this event be
E1.

Transition - Game 0 → Game 1: Assume that event E1 happens with non-negligible probability. We can then
construct a reduction B which breaks the strong private collision-resistance of the underlying CHET.

Our reduction B works as follows. Let q be an upper bound on the queries to the hashing oracle. The
adversary B then makes a guess i←r {1, 2, . . . , q}. All queries, but the ith one, are answered as in the prior
game. On the ith query, however, B encrypts 0 instead of the real etd. If, at some point, the adversary has
asked or asks to receive ssk which would allow to decrypt that c, we abort. However, by assumption, this does
not happen in at least one case, thus we at most lose a factor of q. Further assume, towards contradiction,
that B guessed right, but A behaves noticeably different now. Our reduction B can then use A to break
the IND-CCA2 security of the used ABE. The reduction proceeds as follows. It receives mpkABE as its own
challenge, and embeds it accordingly. The oracles are simulated as follows:

Before the challenge ciphertext is embedded on the ith query (see below), every query to KGen′PCH is answered
by the KGen′ABE-oracle provided. However, calls to KGen′′PCH are simply stored as (j,S) by B. Hashing is
done honestly for all queries except for the ith query, where the reduction queries its own challenger with
either 0 or the correct etd, embedding the response c in the returned h. All following queries are performed
honestly. After this embedding, all queries to the KGen′′PCH-oracle are redirected to the KGen′′′ABE-oracle, while
queries to the KGen′′PCH-oracle are again stored as (j,S). Note, by assumption A never queries for keys which
would allow decrypting that ciphertext. Adaption is done in such a way that if h was generated by the
hashing-oracle, then we only continue if (j,S) is sufficient to decrypt (note, h is known to B, including the
access structure A used to generate that hash). Finally, for every decryption necessary during adaption, i.e.,
for ciphertexts not generated by the reduction (and sskj , defined by the index j, is actually sufficient to
adapt; c, as part of h, never needs to be decrypted, even if it is re-used in another hash), B uses the provided
decryption oracle to receive each etd, and proceeds like in the game. Note, adaption can still be performed
honestly, as all etds are thus known. Then, whatever A outputs, is also output by B.

We are now in the case that etd is no longer given to the adversary A. However, this now also means that the
adversary A was able to find a collision, without ever having grasp on the valuable information of etd. Thus, B
can finally use this adversary to break the strong private collision-resistance of CHET. Consider the following
reduction B: it receives ppCHET and embeds it into ppPCH. (skCHET, pkCHET) ←r KGenCHET(PPGenCHET) is
generated honestly. It then uses those to initialize the adversary A. The ABE-part is done as before. The
reduction B now proceeds as follows: every hash is generated honestly, but the ith one; here, the oracle
Hash′CHET is queried. All adaptions, but the challenge one, can be performed honestly (as described above
with the decryption oracle provided). For the challenge one, however, B uses its own oracle to find the
collision. Then, if E1 happens, B can return ((m∗, c∗), r∗, (m′∗, c∗), r′∗, h∗0) by assumption, where h∗ = (h∗0, c

∗)
by construction.

|Pr[S0] − Pr[S1]| ≤ q(νABE-CCA2(κ) + νCHET-SPrivColl(κ)) follows, where q is the number of queries to the
hashing oracle.

Game 2: As Game 1, but we abort, if the adversary outputs (m∗, r∗,m′∗, r′∗, h′∗), such that the winning
conditions are fulfilled. Let this event be E2.

Transition - Game 1 → Game 2: Assume that event E2 happens with non-negligible probability. We can then
construct a reduction B which breaks the strong private collision-resistance of the underlying CHET.

Our reduction B works as follows. Let q be an upper bound on the queries to hashing oracle. The adversary
B then makes a guess i ←r {1, 2, . . . , q}. All queries, but the ith one, are answered as in the prior game.
On the ith query, however, B encrypts 0 instead of the real etd. If, at some point, the adversary has asked
or asks to receive ssk which would allow to decrypt that c, we abort. However, by assumption, this does



not happen in at least one case, thus we at most lose a factor of q. Further assume, towards contradiction,
that B guessed right, but A behaves noticeably different now. Our reduction B can then use A to break
the IND-CCA2 security of the used ABE. The reduction proceeds as follows. It receives mpkABE as its own
challenge, and embeds it accordingly. The oracles are simulated as follows:

Before the challenge ciphertext is embedded on the ith query (see below), every query to KGen′PCH is answered
by the KGen′ABE-oracle provided. However, calls to KGen′′PCH are simply stored as (j,S) by B. Hashing is
done honestly for all queries except for the ith query, where the reduction queries its own challenger with
either 0 or the correct etd, embedding the response c in the returned h. All following queries are performed
honestly. After this embedding, all queries to the KGen′′PCH-oracle are redirected to the KGen′′′ABE-oracle, while
queries to the KGen′′PCH-oracle are again stored as (j,S). Note, by assumption, i.e., A never queries for key
which would allow decrypting that ciphertext. Adaption is done in such a way that if h was generated by
the hashing-oracle, then we only continue if (j,S) is sufficient to decrypt (note, h is known to B, including
the access structure A used to generate that hash). Finally, for every decryption necessary during adaption,
i.e., for ciphertexts not generated by the reduction (and sskj , defined by the index j, is actually sufficient to
adapt; c, as part of h, never needs to be decrypted, even if it is re-used in another hash), B uses the provided
decryption oracle to receive each etd, and proceeds like in the game. Note, adaption can still be performed
honestly, as all etds are thus known. Then, whatever A outputs, is also output by B.

We are now in the case that etd is no longer given to the adversary A. However, this now also means that the
adversary A was able to find a collision, without ever having grasp on the valuable information of etd. Thus, B
can finally use this adversary to break the strong private collision-resistance of CHET. Consider the following
reduction B: it receives ppCHET and embeds it into ppPCH. (skCHET, pkCHET) ←r KGenCHET(PPGenCHET) is
generated honestly. It then uses those to initialize the adversary A. The ABE-part is done as before. The
reduction B now proceeds as follows: every hash is generated honestly, but the ith one; here, the oracle
Hash′CHET is queried. All adaptions, but the challenge one, can be performed honestly (as described above
with the decryption oracle provided). For the challenge one, however, B uses its own oracle to find the
collision. Then, if E2 happens, B can return ((m∗, c∗), r∗, (m′∗, c∗), r′∗, h∗0) by assumption, where h∗ = (h∗0, c

∗)
by construction.

|Pr[S1] − Pr[S2]| ≤ q(νABE-CCA2(κ) + νCHET-SPrivColl(κ)) follows, where q is the number of queries to the
hashing oracle.

As now the adversary A has no additional way to win this game, our statement is proven.

Instantiation of a Key-Verifiable Π. We recall a construction from ElGamal [36] in Construction 5.

PPGenΠ(1κ) : On input a security parameter κ, it outputs the public parameters ppΠ ←r DLGen(1κ).
KGenΠ(ppΠ) : On input ppΠ = (G, g, q), draw x←r Zq. Set pkΠ ← gx and skΠ ← x. Return (skΠ , pkΠ).
EncΠ(pkΠ ,m) : On input a public key pkCH = gx and a message m, draw r ←r Zq, compute c1 ← gr and c2 ← m · pkrΠ . Return

(c1, c2).
DecΠ(skΠ , c) : On input secret key skΠ = x, and a ciphertext c = (c1, c2), compute s← cx1 and output m′ ← c2s

−1.

KVrfΠ(skΠ , pkΠ) : On input a secret key skΠ = x and a public key pkΠ = gx
′
, output 1, if gx = pkΠ , and 0 otherwise.

Construction 5: ElGamal Π

Theorem 5. If the DDH-Assumption holds in G, then the above construction is correct, IND-CPA-secure, and
key-verifiable.

Proof. Correctness and IND-CPA-security have already been proven by ElGamal [36].

Thus, it remains to prove key-verifiability.



Key-Verifiability. We prove key-verifiability by a sequence of games.

Game 0: The original key-verifiability game.

Game 1: As Game 0, but abort, if the adversary A wins the game as defined. Let this event be E1.

Transition - Game 0 → Game 1: Assume, towards contradiction, that E1 happens. However, as we are working
in prime-order groups, it is obvious that pk and sk form a one-to-one mapping (“bijective”), while the
encryption scheme is perfectly correct. Thus, there is no way for the adversary to cheat here. |Pr[S0]−Pr[S1]| =
0 follows.

As the adversary has no more possibilities to win the game, key-verifiability is proven.

C Proof of Theorem 1

Proof. We prove each property on its own, while correctness follows from inspection.

Unforgeability. To prove insider-unforgeability, we use a sequence of games:

Game 0: The original unforgeability game.

Game 1: As Game 0, but we replace crsΩ with the one generated by (crsΩ, τ) ←r SIM1(1κ, L) and keep the
trapdoor τ .

Transition - Game 0 → Game 1: Assume towards contradiction that the adversary behaves differently. We can
then build an adversary B which breaks the zero-knowledge property of the underlying proof-system. The
reduction works as follows. Our adversary B receives crsΩ from its own challenger and embeds it into ppP3S

and generates all other values honestly. All proofs are then generated using the oracle P provided and
embedded honestly. Then, whatever A outputs, is also output by B. |Pr[S0]− Pr[S1]| ≤ νnizk-zk(κ) follows.
Note, this also means that all proofs are now simulated, even though they still prove valid statements.

Game 2: As Game 1, but we replace crsΩ with the one generated by (crsΩ, τ, ξ) ←r E1(1κ, L) and keep the
trapdoors τ and ξ. Let E2 be the event that A can distinguish this replacement with non-negligible probability.
Moreover, note that by definition crsΩ is exactly distributed as in the prior hop.

Transition - Game 1 → Game 2: As we only keep one additional value, i.e., ξ, this is only an internal change.
|Pr[S1]− Pr[S2]| = 0 immediately follows.

Game 3: As Game 2, but we abort, if we cannot extract the (valid) witnesses from proofs generated by the
adversary A, i.e., for all non-simulated proofs. Let this event be E3.

Transition - Game 2 → Game 3: Assume, towards contradiction, that event E3 happens. We can then construct
an adversary B which breaks the simulation-sound extractability property of the proof-system. Namely,
B receives crsΩ and gives it to the adversary. Every proof is generated using the oracle provided, while
everything else is done honestly. If, at some point, the adversary A outputs a non-extractable proof π∗ as part
of its forgery attempt (σ∗,m∗), it can trivially be extracted by B, breaking the simulation-sound extractability
property. |Pr[S2]− Pr[S3]| ≤ νnizk-sse(κ) follows. Note, each proof π which belongs to a signature is bound to
the message and the signature.

Game 4: As Game 3, but we abort, if the adversary was able to generate a signature σ∗m on a string never
generated by the signing-oracle. Let this event be E4.

Transition - Game 3 → Game 4: Assume, towards contradiction, that event E4 happens. We can then construct
an adversary B which breaks the unforgeability of the underlying signature scheme. Namely, B receives pk
of the signature scheme. This is embedded in pk′Σ , while all other values are generated as in Game 3. All
oracles are simulated honestly, but Sign′P3S. The only change is, however, that the generation of each σm
is outsourced to the signature-generation oracle. Then, whenever E4 happens, B can return ((pkP3S, pk

Sig
P3S,

A,m!A, h,A), σ∗m). These values can easily be compiled using A’s output, i.e., (m∗, σ∗). Note, this already
includes that the adversary cannot temper with A. |Pr[S3]− Pr[S4]| ≤ νeUNF-CMA(κ) follows.

Game 5: As Game 4, but we abort, if the adversary was able to generate (m∗, σ∗) which should not have been
derivable. Let this event be E4.



Transition - Game 4 → Game 5: Assume, towards contradiction, that event E5 happens. We can then construct
an adversary B which breaks the strong insider collision-resistance of the used PCH. Namely, B receives
pkPCH of the PCH. This is embedded in pkP3S, while all other values are generated as in Game 4. The
GetSan-oracle is simulated honestly. Calls to Sign′P3S-oracle are done honestly, but the hash is generated using
the Hash′PCH-oracle. Calls to the AddSan′P3S-oracle are simulated as follows. If a key for a simulated sanitizer
(obtained by a call to the GetSan-oracle) is to be generated, it is rerouted to KGen′′PCH. If the adversary wants
to get a key for itself, it is re-routed to the KGen′PCH-oracle and the answer embedded honestly in the response.
Sanitization requests are performed honestly (but simulated proofs), with the exception that adaptions for
simulated sanitizers are done using the Adapt′PCH-oracle. So far, the distributions are equal. Then, whenever
the adversary outputs (m∗, σ∗) such that the winning-conditions are fulfilled, our reduction B can return
(m∗, r∗,m′∗, r′∗, h∗). The values can be compiled from (m∗, σ∗) and the transcript from the signing-oracle (note,
we already excluded that the adversary can temper with the hash h). |Pr[S4]−Pr[S5]| ≤ νPBCH-SInsider-CollRes(κ)
follows.
Now, the adversary can no longer win the unforgeability game; this game is computationally indistinguishable
from the original game, which concludes the proof.

Immutability. To prove immutability, we use a sequence of games:

Game 0: The original immutability game.
Game 1: As Game 0, we abort if the adversary outputs (pk∗, σ∗,m∗) such that the winning conditions are met.

Let this event be E1.
Transition - Game 0 → Game 1: Assume, towards contradiction, that event E1 happens. We can then build an

adversary B which breaks the unforgeability of the used signature scheme. Namely, we know that A (which
also contains the length of the message and all non-modifiable blocks along with their location), along with
pkPCH, is signed. As, however, by definition, the message m∗ must be different from any derivable message,
A w.r.t. pkPCH was never signed in this regard. Thus, (pk∗, pkSig

P3S,A
∗,m∗!A, h

∗,A∗) was never signed by the
signer.
Constructing a reduction B is now straightforward. Our reduction B receives the public key pk′Σ (along with
the public parameters) from its own challenger. This public key is embedded as pk′Σ . All other values are
generated honestly. If a signature σm is to be generated, B asks its own oracle to generate that signature,
embedding it into the response A receives. At some point, A returns (pk∗, σ∗,m∗). The forgery can be
extracted as described above. |Pr[S0]− Pr[S1]| ≤ νeUNF-CMA(κ) follows.
We stress that, by construction, a sanitizer always exists. Now, the adversary can no longer win the
immutability game; this game is computationally indistinguishable from the original game, which concludes
the proof.

Privacy. To prove privacy, we use a sequence of games:

Game 0: The original privacy game.
Game 1: As Game 0, but we replace crsΩ with the one generated by (crsΩ, τ) ←r SIM1(1κ, L) and keep the

trapdoor τ .
Transition - Game 0 → Game 1: Assume towards contradiction that the adversary behaves differently. We can

then build an adversary B which breaks the zero-knowledge property of the underlying proof-system. The
reduction works as follows. Our adversary B receives crsΩ from its own challenger and embeds it into ppP3S

and generates all other values honestly. All proofs are then generated using the oracle P provided and
embedded honestly. Then, whatever A outputs, is also output by B. |Pr[S0]− Pr[S1]| ≤ νnizk-zk(κ) follows.
Note, this also means that all proofs are now simulated, even though they still prove valid statements.

Game 2: As Game 1, but we replace crsΩ with the one generated by (crsΩ, τ, ξ) ←r E1(1κ, L) and keep the
trapdoors τ and ξ. Let E2 be the event that A can distinguish this replacement with non-negligible probability.
Moreover, note that by definition crsΩ is exactly distributed as in the prior hop.

Transition - Game 1 → Game 2: As we only keep one additional value, i.e., ξ, this is only an internal change.
|Pr[S1]− Pr[S2]| = 0 immediately follows.



Game 3: As Game 2, but we abort if (σ′0,m) and (σ′1,m) contain different randomness r′0 6= r′1 if generated
inside LoRSanit. Let this event be E3.

Transition - Game 2 → Game 3: Assume, towards contradiction, that event E3 happens. We can then construct
an adversary B which breaks the uniqueness of PCH. In particular, it receives ppPCH and embeds it accordingly.
All other values are generated as in Game 3. Then, when A was able to generate r′0 6= r′1, the reduction B
can directly return (pk∗,m, r′0, r

′
1, h
∗), where pk∗ is contained in pkP3S.

|Pr[S2]−Pr[S3]| ≤ νPCH-uniq(κ) follows, while the signature does not matter, as it is already hidden behind a
simulated zero-knowledge proof, making the distributions equal.

Game 4: As Game 3, but we directly generate (σ,M0(m0)) without using sanitizing, i.e., we freshly hash with
M0(m0) (if the oracle would return a signature). Note, the proofs are already simulated, but we also need to
encrypt pkSan

P3S, as it would be done at sanitization anyway. Moreover, the adversary never sees a non-sanitized
signature from that oracle, while all proofs are already simulated.

Transition - Game 3 → Game 4: If the adversary behaves noticeably different, we can build an adversary B
which breaks the strong indistinguishability of the used PCH. The reduction works as follows. B receives
ppPCH and embeds is honestly. All other values are generated according to Game 3. Then, for every hash
generated in the LoRSanit-oracle, the challenge oracle is queried and the answer embedded into the response.
Whatever A then outputs, is also output by B. |Pr[S3]− Pr[S4]| ≤ νPCH-SInd(κ) immediately follows.
We stress that, by construction, a sanitizer always exists, because A 6= ∅ must hold. Thus, sanitization is
always possible from any generated signature, even in the case A = (∅,m`), i.e., where a sanitizer only claims
accountability, but does not modify the message itself.

Now, the privacy game is independent of the bit b, proving privacy.

Transparency. To prove transparency, we use a sequence of games:

Game 0: The original transparency game, where b = 0.
Game 1: As Game 0, but we replace crsΩ with the one generated by (crsΩ, τ) ←r SIM1(1κ, L) and keep the

trapdoor τ .
Transition - Game 0 → Game 1: Assume towards contradiction that the adversary behaves differently. We can

then build an adversary B which breaks the zero-knowledge property of the underlying proof-system. The
reduction works as follows. Our adversary B receives crsΩ from its own challenger and embeds it into ppP3S

and generates all other values honestly. All proofs are then generated using the oracle P provided and
embedded honestly. Then, whatever A outputs, is also output by B. |Pr[S0]− Pr[S1]| ≤ νnizk-zk(κ) follows.
Note, this also means that all proofs are now simulated, even though they still prove valid statements.

Game 2: As Game 1, but we replace crsΩ with the one generated by (crsΩ, τ, ξ) ←r E1(1κ, L) and keep the
trapdoors τ and ξ. Let E2 be the event that A can distinguish this replacement with non-negligible probability.
Moreover, note that by definition crsΩ is exactly distributed as in the prior hop.

Transition - Game 1 → Game 2: As we only keep one additional value, i.e., ξ, this is only an internal change.
|Pr[S1]− Pr[S2]| = 0 immediately follows.

Game 3: As Game 2, but we abort, if we cannot extract the (valid) witnesses from proofs generated by the
adversary A, i.e., for all non-simulated proofs. Let this event be E3.

Transition - Game 2 → Game 3: Assume, towards contradiction, that event E3 happens. We can then construct
an adversary B which breaks the simulation-sound extractability property of the proof-system. Namely,
B receives crsΩ and gives it to the adversary. Every proof is generated using the oracle provided, while
everything else is done honestly. If, at some point, the adversary A outputs a non-extractable proof π∗ as part
of its forgery attempt (σ∗,m∗), it can trivially be extracted by B, breaking the simulation-sound extractability
property. |Pr[S2]− Pr[S3]| ≤ νnizk-sse(κ) follows. Note, each proof π which belongs to a signature is bound to
the message and the signature.

Game 4: As Game 3, but we replace the contents of c (or c′ resp.) with a 0, if generated by the SignOrSanit-oracle.
Transition - Game 3 → Game 4: Assume, towards contradiction, that the adversary behaves noticeably different.

We can then construct an adversary B which breaks the IND-CPA-security of the used encryption scheme.



Namely, we use a series of hybrids. Our reduction B proceeds as follows. It receives pkΠ and (and the
corresponding parameters) from its own challenger and embeds them correctly. All other values are generated
as in Game 3. For the first i ciphertexts generated, encrypt a 0. If, however, the ith ciphertext is generated,
B asks its own challenge oracle to either encrypt 0 or the correct value. The response is embedded to B’s
response to A. All following ciphertexts are generated honestly. Decryption queries for “all other” ciphertexts
can be queried to decryption oracle provided. Thus, Game 4.0 is the same as Game 3, while in Game 4.1.,
however, we make the first replacement. Then, whatever A outputs in Game 4.i is also output by B.
|Pr[S3]−Pr[S4]| ≤ qνind-cpa(κ) follows, where q is the number of ciphertexts generated. We stress that we do
not need to “cheat” during proof-generation, as the adversary is not allowed to query such signatures to the
Proof ′P3S-oracle.

Game 5: As Game 5, but we directly generate (σ,M(m)) without using sanitizing, i.e., we always freshly hash
with M(m) (if the oracle would return a signature). Note, the proofs are already simulated. Moreover, the
adversary never sees a non-sanitized signature from that oracle, while all proofs are already simulated.

Transition - Game 4 → Game 5: Assume, towards contradiction, that the adversary behaves noticeably different.
We can build an adversary B which breaks the strong indistinguishability of the used PCH. The reduction
works as follows. B receives ppPCH and embeds is honestly. All other values are generated according to Game
4. Then, for every hash generated in the SignOrSanit oracle the challenge oracle is queried and the answer
embedded into the response. Whatever A then outputs, is also output by B. |Pr[S4]− Pr[S5]| ≤ νPCH-SInd(κ)
immediately follows.
We stress that, by construction, a sanitizer always exists, because A 6= ∅ must hold. Thus, sanitization is
always possible from any generated signature, even in the case A = (∅,m`), i.e., where a sanitizer only claims
accountability.

Now, we are in the case that a signature is freshly generated. Thus, transparency is proven, as each hop only
changes the view negligibly.

Pseudonymity. To prove pseudonymity, we use a sequence of games:

Game 0: The original transparency game.
Game 1: As Game 0, but we replace crsΩ with the one generated by (crsΩ, τ) ←r SIM1(1κ, L) and keep the

trapdoor τ .
Transition - Game 0 → Game 1: Assume towards contradiction that the adversary behaves differently. We can

then build an adversary B which breaks the zero-knowledge property of the underlying proof-system. The
reduction works as follows. Our adversary B receives crsΩ from its own challenger and embeds it into ppP3S

and generates all other values honestly. All proofs are then generated using the oracle P provided and
embedded honestly. Then, whatever A outputs, is also output by B. |Pr[S0]− Pr[S1]| ≤ νnizk-zk(κ) follows.
Note, this also means that all proofs are now simulated, even though they still prove valid statements.

Game 2: As Game 1, but we replace crsΩ with the one generated by (crsΩ, τ, ξ) ←r E1(1κ, L) and keep the
trapdoors τ and ξ. Let E2 be the event that A can distinguish this replacement with non-negligible probability.
Moreover, note that by definition crsΩ is exactly distributed as in the prior hop.

Transition - Game 1 → Game 2: As we only keep one additional value, i.e., ξ, this is only an internal change.
|Pr[S1]− Pr[S2]| = 0 immediately follows.

Game 3: As Game 2, but we abort, if we cannot extract the (valid) witnesses from proofs generated by the
adversary A, i.e., for all non-simulated proofs. Let this event be E3.

Transition - Game 2 → Game 3: Assume, towards contradiction, that event E3 happens. We can then construct
an adversary B which breaks the simulation-sound extractability property of the proof-system. Namely,
B receives crsΩ and gives it to the adversary. Every proof is generated using the oracle provided, while
everything else is done honestly. If, at some point, the adversary A outputs a non-extractable proof π∗ as part
of its forgery attempt (σ∗,m∗), it can trivially be extracted by B, breaking the simulation-sound extractability
property. |Pr[S2]− Pr[S3]| ≤ νnizk-sse(κ) follows. Note, each proof π which belongs to a signature is bound to
the message and the signature.



Game 4: As Game 3, but we abort if (σ′0,m) and (σ′1,m) contain different randomness r′0 6= r′1 if generated
inside LoRSanit. Let this event be E4.

Transition - Game 3 → Game 4: Assume, towards contradiction, that event E4 happens. We can then construct
an adversary B which breaks the uniqueness of PCH. In particular, it receives ppPCH and embeds it accordingly.
All other values are generated as in Game 3. Then, when A was able to generate r′0 6= r′1, the reduction B
can directly return (pk∗,m, r′0, r

′
1, h
∗), where pk∗ is contained in pkP3S.

|Pr[S3]−Pr[S4]| ≤ νPCH-uniq(κ) follows, while the signature does not matter, as it is already hidden behind a
simulated zero-knowledge proof, making the distributions equal.

Game 5: As Game 4, but we replace the contents of c′ with a 0, if generated by the LoRSanit-oracle.

Transition - Game 4 → Game 5: Assume, towards contradiction, that the adversary behaves noticeably different.
We can then construct an adversary B which breaks the IND-CPA-security of the used encryption scheme.
Namely, we use a series of hybrids. Our reduction B proceeds as follows. It receives pkΠ and (and the
corresponding parameters) from its own challenger and embeds them correctly. All other values are generated
as in Game 4. For the first i ciphertexts generated, encrypt a 0. If, however, the ith ciphertext is generated,
B asks its own challenge oracle to either encrypt 0 or the correct value. The response is embedded to B’s
response to A. All following ciphertexts are generated honestly. Thus, Game 5.0 is the same as Game 4,
while in Game 5.1., however, we make the first replacement. Then, whatever A outputs in Game 5.i is also
output by B.

|Pr[S4]− Pr[S5]| ≤ qνind-cpa(κ) follows, where q is the number of queries to the LoRSanit-oracle. We stress
that we do not need to “cheat” during proof-generation, as the adversary is not allowed to query such
signatures to the Proof ′P3S-oracle.

Now, the game is independent of the bit b, proving the theorem.

Signer-Accountability. To prove signer-accountability, we use a sequence of games:

Game 0: The original signer-accountability game.

Game 1: As Game 0, but we replace crsΩ with the one generated by (crsΩ, τ) ←r SIM1(1κ, L) and keep the
trapdoor τ .

Transition - Game 0 → Game 1: Assume towards contradiction that the adversary behaves differently. We can
then build an adversary B which breaks the zero-knowledge property of the underlying proof-system. The
reduction works as follows. Our adversary B receives crsΩ from its own challenger and embeds it into ppP3S

and generates all other values honestly. All proofs are then generated using the oracle P provided and
embedded honestly. Then, whatever A outputs, is also output by B. |Pr[S0]− Pr[S1]| ≤ νnizk-zk(κ) follows.
Note, this also means that all proofs are now simulated, even though they still prove valid statements.

Game 2: As Game 1, but we replace crsΩ with the one generated by (crsΩ, τ, ξ) ←r E1(1κ, L) and keep the
trapdoors τ and ξ. Let E2 be the event that A can distinguish this replacement with non-negligible probability.
Moreover, note that by definition crsΩ is exactly distributed as in the prior hop.

Transition - Game 1 → Game 2: As we only keep one additional value, i.e., ξ, this is only an internal change.
|Pr[S1]− Pr[S2]| = 0 immediately follows.

Game 3: As Game 2, but we abort, if we cannot extract the (valid) witnesses from proofs generated by the
adversary A, i.e., for all non-simulated proofs. Let this event be E3.

Transition - Game 2 → Game 3: Assume, towards contradiction, that event E3 happens. We can then construct
an adversary B which breaks the simulation-sound extractability property of the proof-system. Namely,
B receives crsΩ and gives it to the adversary. Every proof is generated using the oracle provided, while
everything else is done honestly. If, at some point, the adversary A outputs a non-extractable proof π∗ as part
of its forgery attempt (σ∗,m∗), it can trivially be extracted by B, breaking the simulation-sound extractability
property. |Pr[S2]− Pr[S3]| ≤ νnizk-sse(κ) follows. Note, each proof π which belongs to a signature is bound to
the message and the signature.

Game 4: As Game 3, but we abort, if the adversary outputs (pk∗0, pk
∗
1, σ
∗,m∗, π∗) such that the winning

conditions are met. Let this event be E4.



Transition - Game 3 → Game 4: Assume, towards contradiction, that E4 happened. We can then construct
an adversary B against the one-wayness of f . The reduction works as follows. It receives f and f(x). It
embeds both accordingly. Note, the proofs are simulated, and thus x is not needed to be known for πpk. Every
sanitization is done honestly, with the exception of simulated proofs. Then, as we know that the adversary
wins its game, B can extract a pre-image x′ such that f(x′) = f(x), and can return it to its own challenger.
|Pr[S3]− Pr[S4]| ≤ νow(κ) follows.
As now the adversary has no more possibilities to win the signer-accountability game, the theorem is proven.

Sanitizer-Accountability. To prove sanitizer-accountability, we use a sequence of games:

Game 0: The original sanitizer-accountability game.
Game 1: As Game 0, but we replace crsΩ with the one generated by (crsΩ, τ) ←r SIM1(1κ, L) and keep the

trapdoor τ .
Transition - Game 0 → Game 1: Assume towards contradiction that the adversary behaves differently. We can

then build an adversary B which breaks the zero-knowledge property of the underlying proof-system. The
reduction works as follows. Our adversary B receives crsΩ from its own challenger and embeds it into ppP3S

and generates all other values honestly. All proofs are then generated using the oracle P provided and
embedded honestly. Then, whatever A outputs, is also output by B. |Pr[S0]− Pr[S1]| ≤ νnizk-zk(κ) follows.
Note, this also means that all proofs are now simulated, even though they still prove valid statements.

Game 2: As Game 1, but we replace crsΩ with the one generated by (crsΩ, τ, ξ) ←r E1(1κ, L) and keep the
trapdoors τ and ξ. Let E2 be the event that A can distinguish this replacement with non-negligible probability.
Moreover, note that by definition crsΩ is exactly distributed as in the prior hop.

Transition - Game 1 → Game 2: As we only keep one additional value, i.e., ξ, this is only an internal change.
|Pr[S1]− Pr[S2]| = 0 immediately follows.

Game 3: As Game 2, but we abort, if we cannot extract the (valid) witnesses from proofs generated by the
adversary A, i.e., for all non-simulated proofs. Let this event be E3.

Transition - Game 2 → Game 3: Assume, towards contradiction, that event E3 happens. We can then construct
an adversary B which breaks the simulation-sound extractability property of the proof-system. Namely,
B receives crsΩ and gives it to the adversary. Every proof is generated using the oracle provided, while
everything else is done honestly. If, at some point, the adversary A outputs a non-extractable proof π∗ as part
of its forgery attempt (σ∗,m∗), it can trivially be extracted by B, breaking the simulation-sound extractability
property. |Pr[S2]− Pr[S3]| ≤ νnizk-sse(κ) follows. Note, each proof π which belongs to a signature is bound to
the message and the signature.

Game 4: As Game 3, but we abort, if the adversary outputs (pk∗, σ∗,m∗, π∗) such that the winning conditions
are met. Let this event be E4.

Transition - Game 3 → Game 4: Assume, towards contradiction, that E4 happened. We can then construct an
adversary B against the one-wayness of f . The reduction works as follows. It receives f and f(x). It embeds
both accordingly. Every signing and proof-generation is done honestly, with the exception of simulated proofs.
Then, as we know that the adversary wins its game, B can extract a pre-image x′ such that f(x′) = f(x),
and can return it to its own challenger. |Pr[S3]− Pr[S4]| ≤ νow(κ) follows.
As now the adversary has no more possibilities to win the sanitizer-accountability game, the theorem is
proven.

Proof-Soundness. First, we prove proof-soundness by a sequence of games.

Game 0: The original proof-soundness game.
Game 1: As Game 0, but we replace crsΩ with the one generated by (crsΩ, τ) ←r SIM1(1κ, L) and keep the

trapdoor τ .
Transition - Game 0 → Game 1: Assume towards contradiction that the adversary behaves differently. We

can then build an adversary B which breaks the zero-knowledge property of the underlying proof-system.
The reduction works as follows. Our adversary B receives crsΩ from its own challenger and embeds it



into ppP3S and generates all other values honestly. Note, in this case no proofs need to be simulated.
|Pr[S0]− Pr[S1]| ≤ νnizk-zk(κ) follows.

Game 2: As Game 1, but we replace crsΩ with the one generated by (crsΩ, τ, ξ) ←r E1(1κ, L) and keep the
trapdoors τ and ξ. Let E2 be the event that A can distinguish this replacement with non-negligible probability.
Moreover, note that by definition crsΩ is exactly distributed as in the prior hop.

Transition - Game 1 → Game 2: As we only keep one additional value, i.e., ξ, this is only an internal change.
|Pr[S1]− Pr[S2]| = 0 immediately follows.

Game 3: As Game 2, but we abort if the adversary outputs ((pk∗i )0≤i≤5, σ
∗,m∗, π∗0, π

∗
1) such that pk2 6= pk5,

the winning conditions are met, while pk∗0 = pk∗2 and pk∗3 = pk∗5 holds. Let this event be E3.
Transition - Game 2 → Game 3: Assume, towards contradiction, that event E3 happens. We can then construct

an adversary B against the key-verifiability of the used encryption scheme. The reduction works as follows.
It receives ppΠ , and once the adversary outputs ((pk∗i )0≤i≤5, σ

∗,m∗, π∗0, π
∗
1), B extracts sk∗0 from π∗0 and sk∗1

from π∗1. Then, it can return (sk∗0, sk
∗
1, pk

∗
3) as its own forgery.

|Pr[S2]− Pr[S3]| ≤ 2νenc-key-verf(κ) immediately follows.
Game 4: As Game 4, but we abort if the adversary outputs ((pk∗i )0≤i≤5, σ

∗,m∗, π∗0, π
∗
1) for which the winning

conditions are met. Let this event be E4.
Transition - Game 3 → Game 4: If this event (E4) happens, either π∗0 or π∗1 is a bogus proof, as at least one

proves a false statement. For the reduction, B proceeds as in the prior game (doing everything honestly, but
using crsΩ received from B’s own challenger) and randomly selects either the first statement (concerning
(pk∗i )0≤i≤2) or the second statement (concerning (pk∗i )3≤i≤5). As B needs to randomly guess (one may still be
true), we lose a factor of 2 in the reduction. |Pr[S3]− Pr[S4]| ≤ 2νnizk-sse(κ) follows.
As the adversary now has to other way to win the proof-soundness game and each hop only changes the view
of the adversary negligibly, proof-soundness is proven.

Traceability. Next, we prove traceability by a sequence of games.

Game 0: The original traceability game.
Game 1: As Game 0, but we replace crsΩ with the one generated by (crsΩ, τ) ←r SIM1(1κ, L) and keep the

trapdoor τ .
Transition - Game 0 → Game 1: Assume towards contradiction that the adversary behaves differently. We can

then build an adversary B which breaks the zero-knowledge property of the underlying proof-system. The
reduction works as follows. Our adversary B receives crsΩ from its own challenger and embeds it into ppP3S

and generates all other values honestly. All proofs are then generated using the oracle P provided and
embedded honestly. Then, whatever A outputs, is also output by B. |Pr[S0]− Pr[S1]| ≤ νnizk-zk(κ) follows.
Note, this also means that all proofs are now simulated, even though they still prove valid statements.

Game 2: As Game 1, but we replace crsΩ with the one generated by (crsΩ, τ, ξ) ←r E1(1κ, L) and keep the
trapdoors τ and ξ. Let E2 be the event that A can distinguish this replacement with non-negligible probability.
Moreover, note that by definition crsΩ is exactly distributed as in the prior hop.

Transition - Game 1 → Game 2: As we only keep one additional value, i.e., ξ, this is only an internal change.
|Pr[S1]− Pr[S2]| = 0 immediately follows.

Game 3: As Game 2, but we abort if the adversary outputs a valid (pk∗, σ∗,m∗) for which we cannot (as the

holder of skSig
P3S) extract a pk which makes JudgeP3S(pk∗, pkSig

P3S, pk, πP3S, σ
∗,m∗) output 0. Let this event be

E3.
Transition - Game 2 → Game 3: If this event (E3) happens, we have a bogus proof π contained in σ∗, as it

proves a false statement. Thus, B proceeds as in the prior game (doing everything honestly, but using
simulated proofs and the simulated crsΩ), and can simply return the statement claimed to be proven by π
and π itself. |Pr[S2]− Pr[S3]| ≤ νnizk-sse(κ) directly follows.

D Relations of Security Properties

We now show several relations among the security properties defined. These relations may only hold relative to
the assumptions we use in our construction.



Theorem 6 (Unforgeability is independent). There exists a P3S which offers all security properties, but
unforgeability.

Proof. A counter-example is simple: Alter AddSanP3S in such a way, that a sanitizer receives a skS not only
for the asked for attributes, but for all attributes. Clearly, all other properties, including correctness, are still
preserved, but now a sanitizer can alter more signatures than it should be allowed to, as it holds a skS for all
attributes. Moreover, it still cannot blame a signer or sanitizer for the signatures it creates.

Theorem 7 (Transparency is independent). There exists a P3S which offers all security properties, but
transparency.

Proof. This holds by altering our construction. Namely, at signing, the label to the proof system is no longer
` = (ppP3S, pkP3S, pk

Sig
P3S, h, r,m,A,A,mA,m!A, σm, c), but ` = (ppP3S, pkP3S, pk

Sig
P3S, h, r,m,A,A,mA,m!A, σm, c,

0). For sanitization, the label is changed to ` = (ppP3S, pkP3S, pk
Sig
P3S, h, r,m,A,A,mA,m!A, σm, c, 1). For verifica-

tion, both possibilities (last bit equal to 0 or equal to 1; Both values are distinct, and are neither derived from
any secrets or message) are tested, and only returns 1, if one of the verification procedures return 1. Clearly, all
other properties still hold, while an adversary can use the last bit to decide whether a sanitization was performed
or not.

Theorem 8 (Privacy is independent). There exists a P3S which offers all security properties, but privacy.

Proof. We prove this by slightly altering our construction. First note that, in the privacy experiment, the
adversary A is allowed to generate skSig

P3S, and thus obviously knows it. We now alter our construction in the
following way; At signing, the original message (if the message space is not compatible, one can use a hash-
function) is also encrypted to the signer itself as c′ (note, the signer already owns an encryption key-pair), and

appended to the label ` = (ppP3S, pkP3S, pk
Sig
P3S, h, r,m,A,A,mA,m!A, σm, c, c

′), and is also part of the signature
σ′ = (σ, c′). Verification works as expected. Sanitization remains the same, also using c′ in the augmented label,
but returns c′ as part of the sanitized signature. Proof-generation and the judge now also take c′ into account in
a straightforward manner. All properties, but privacy, remain to hold, as we only add an additional value to the
label ` of the proof-system. However, an adversary A can use its secret decryption key to decrypt the original
message (or its hash), directly contradicting the privacy requirements. Transparency continues to hold, as the
message is encrypted. Note, IND-CPA is sufficient, as this value is never decrypted by an honest party.

Theorem 9 (Immutability is independent). There exists a P3S which offers all security properties, but
immutability.

Proof. We alter the construction in the following way: An honestly generated pkPCH is augmented by appending
a 0. For usage outside of ` for the proof-system, this bit is dropped. However, if the appended bit is a 1, the
verification algorithm now also accepts, if A, mA, and m!A are not consistent, i.e., arbitrary. Thus, an adversary
can sanitize a seen signature to arbitrary ones. Again, all properties, but immutability, remain to hold: An
adversary A simply needs to generate a bogus public key (which is never generated in the honest case), and can
then alter immutable blocks.

Theorem 10 (Pseudonymity is independent). There exists a P3S which offers all security properties, but
pseudonymity.

Proof. We first want to remind the reader that, in the pseudonymity experiment, the adversary A is allowed to
input arbitrary signatures, while in the transparency experiment the adversary never sees a signature from the
signer in the case b = 0 from the LeftOrRight-oracle.

We use this gap to encode the sanitizer’s identity such that it can only be noticed, if a sanitized and the
original signatures are available. Let l be an upper bound on the bit-length of the output of the one-way function
f . Let e be an additional security parameter. We alter signing as follows: At signing, the signer chooses a random



integer i←r {0, 1}l+e, and attaches it to the label `′ for the NIZKPOK, i.e., `′ = (ppP3S, pkP3S, pk
Sig
P3S, h, r,m,A,

A,mA,m!A, σm, c, i), yet also to the signature, i.e., σ′ = (σ, i). Verification simply also takes the altered values
into account. At sanitization, however, i is altered by setting i′ ← i+ x′2, where x′2 is the binary representation
of x2. The variable i′ then becomes part of the used label for the new NIZKPOK and the sanitized signatures. If
e is chosen large enough, while l is a constant, the distributions remain indistinguishable in the transparency
experiment. Note, all attached values are independent of the messages, thus privacy still holds.

Clearly, all properties, but pseudonymity, hold. Namely, the adversary A simply checks whether a chosen x2

and i (note, the adversary A also chooses the corresponding secret keys in the pseudonymity experiment, and
thus knows the corresponding public keys) match by checking whether i′ (generated by the challenger) equals
x′2 + i or not.

Theorem 11 (Signer-Accountability is independent). There exists a P3S which offers all security prop-
erties, but signer-accountability.

Proof. The idea is similar to the proof for showing that immutability is independent. Namely, we alter our
construction as follows. At key-generation for the signer, a 0 is appended to pkSig

P3S. If some of the inner keys of

pkSig
P3S are used, the last bit is simply dropped for the underlying algorithms. For the judge, however, if pkSig

P3S
has a trailing 1, it always outputs 1, if the key to the checked is the corresponding sanitizer one, if signature
verification passes (in other words, the generated proof is ignored, but only the validity is checked). Otherwise,
the original algorithm is executed.

Now, if the signer generates a key with a trailing 1, if can make the sanitizer accountable for any signature it
wants. All other properties are, however, still preserved, as all keys are part of the label, which still preserves
proof-soundness.

Theorem 12 (Sanitizer-Accountability is independent). There exists a P3S which offers all security
properties, but sanitizer-accountability.

Proof. The proof follows the same line as for proving the independence of signer-accountability. Namely, we alter
our construction as follows. At key-generation for the sanitizer, a 0 is appended to pkSan

P3S. If some of the inner
keys of pkSan

P3S are used, the last bit is simply dropped for the underlying algorithms. For the judge, however, if
pkSan

P3S has a trailing 1, it always outputs 1, if the key to the checked is the corresponding signer one, if signature
verification passes (in other words, the generated proof is ignored, but only the validity is checked). Otherwise,
the original algorithm is executed.

Now, if the sanitizer generates a key with a trailing 1, if can make the signer accountable for any signature it
wants. All other properties are, however, still preserved, as all keys are part of the label, which still preserves
proof-soundness.

Theorem 13 (Proof-Soundness is independent). There exists a P3S which offers all security properties,
but proof-soundness.

Proof. We alter our construction as follows. At key-generation, all keys (group, signer, and sanitizer) are
appended with a 0. If an algorithm uses an inner key, that bit is ignored. Judge, however, outputs also 1 (if the
corresponding signature verifies), if all public keys have a trailing 1. This allows the adversary to easily win the
proof-soundness experiment. All other properties are still preserved, as the adversary need to control all three
key-pairs to win, which is not the case in the other definitions, but privacy. Privacy, however, still continues to
hold, as the message is not input to the changes in our contrived scheme.

Theorem 14 (Traceability is independent). There exists a P3S which offers all security properties, but
traceability.

Proof. This holds by altering our construction. Namely, at signing, the label to the proof system is no longer
` = (ppP3S, pkP3S, pk

Sig
P3S, h, r,m,A,A,mA,m!A, σm, c), but ` = (ppP3S, pkP3S, pk

Sig
P3S, h, r,m,A,A,mA,m!A, σm, c,

0). For sanitization, the label remains the same. If, however, the last bit is a 1, judge outputs 0.



Again, all properties, but traceability, are preserved, as an adversary can simply append a 1 to the label,
which an honest player would never do.
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