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Abstract—As of 12th January 2019, Monero is ranked as the
first privacy-preserving cryptocurrency by market capitalization,
and the 14th among all cryptocurrencies.

This paper aims at improving the understanding of the Monero
peer-to-peer network. We develop a tool set to explore the Monero
peer-to-peer network, including its network size, distribution, and
connectivity. In addition, we set up four Monero nodes that run
our tools: two in the U.S., one in Asia, and one in Europe. We
show that through a short time (one week) data collection, our
tool is already able to discover 68.7% more daily active peers (in
average) compared to a Monero mining pool, called Monerohash,
that also provides data on the Monero node distribution.

Overall, we discovered 21,678 peer IP addresses in the Monero
network. Our results show that only 4,329 (about 20%) peers
are active. We also show that the nodes in the Monero network
follow the power law distribution concerning the number of
connections they maintain. In particular, only 0.7% of the active
maintain more than 250 outgoing connections simultaneously,
and a large proportion (86.8%) of the nodes maintain less than
8 outgoing connections. These 86.8% nodes only maintain 17.14%
of the overall connections in the network, whereas the remaining
13.2% nodes maintain 82.86% of the overall connections. We
also show that our tool is able to dynamically infer the complete
outgoing connections of 99.3% nodes in the network, and infer
250 outgoing connections of the remaining 0.7% nodes.

I. INTRODUCTION

Monero is one of the most popular privacy-preserving
cryptocurrencies, with a market capitalization of 761 Million
USD. It is ranked the first among privacy-preserving cryp-
tocurrencies [1], [2] by market capitalization, and the 14th
among all cryptocurrencies1. Monero proposes to protect the
sensitive transactions from being traced or linked. While many
studies [3]–[5] have been conducted to understand the privacy
guarantees of Monero through analyzing the data recorded in
the blockchain, little has been done to study the network level
security and privacy. Like Bitcoin, Monero relies on a peer-
to-peer membership communication system. Understanding
Monero’s network therefore a first step towards network level
security analysis.

This work provides the first tool set, with systematic investi-
gation, to help understand Monero’s network. More precisely,
we develop a tool set that allows us to explore the Monero
peer-to-peer network, including its network size, distribution,
and connectivity.

The tool set includes NodeScanner and NeighborFinder.
The former automatically discovers peers in the Monero
network, no matter whether they are online or not. The discov-
ered peers are categorised in three types, namely active and

1https://coinmarketcap.com. Data fetched on 11.Jan.2019.

reachable nodes, active and unreachable nodes, and inactive
nodes. A node is active if it is currently online, and is reachable
if the host running NodeScanner can establish a successful
connection with the node. We use NodeScanner to find IP ad-
dresses from reached nodes, and use NeighborFinder to infer
links between different nodes. This helps us understanding the
connectivity of active nodes in the system. To deploy our tool
set, we set up four nodes in the Monero network: two in the
US, one in Asia, and one in Europe. During one week of data
collection, we collected 21,678 IP addresses participating in
the Monero network, where only 4,329 peers (about 20%) are
active and the rest are inactive. For the active peers, we are able
to connect to 3,626 peers (about 83.8%), and the rest could
not be connected to during the week as all of their outgoing
connections were occupied. Even though our data collection
process only takes a single week, we discovered 68.7% more
active peers than Monerohash [6] – a Monero mining pool
that is the only known pool providing data on the Monero
node distribution. In average, our tool shows that there are
around 2,758 active nodes per day, while Monerohash only
shows about 1,635 active nodes. This shows the effectiveness
of our approach.

Based on the collected data, we show that the Monero
network connections follow the power law. We found out
that only 0.7% active nodes maintain more than 250 outgoing
connections simultaneously, and a large proportion (86.8%) of
nodes maintain less than 8 outgoing connections. Also, these
86.8% nodes collectively maintain only 17.14% of the overall
connections in the network, whereas the remaining 13.2%
nodes maintain the remaining 82.86% connections.

We also present a snapshot of the Monero network topology.
We show that our tool is able to dynamically infer the complete
outgoing connections of 99.3% nodes in the network, and infer
250 outgoing connections of the remaining 0.7% nodes. To
verify the accuracy of connectivity results of Monero nodes,
we use one of our nodes to run NeighborFinder, and use
it to infer the connections of our other three nodes. Our
results indicate that NeighborFinder is able to discover all the
neighbors of the nodes accurately. Inferring the connections of
Monero nodes may allow an attacker to launch network level
attacks, such as the eclipse attack [7], [8]. However, a detailed
network-level security analysis of Monero is future work.

Our contributions can be summarized as follows:
• To the best of our knowledge, our work is the first to

describe how to infer the Monero peer-to-peer network,
which would enable further studies on the network level
security analysis of Monero.
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• We provide the first tool set to explore the Monero peer-
to-peer network, including its network size, distribution,
and connectivity. In particular, our NodeScanner explores
existing and historical nodes in the Monero network; and
our NeighborFinder identifies neighbors of the Monero
nodes. We plan to release our toolset as an open source
project shortly.

• We conduct an experiment to evaluate Monero network,
and show the effectiveness of our methods. We also
identified highly influence nodes in the system, and
analyzed their distributions.

The remaining of this paper is structured as follows. We
show how the Monero peer-to-peer membership protocol op-
erates in Section II. Section III provides an overview of our
analysis pipeline. Section IV details the algorithms we used
to implement the discovery of the nodes and the inference
of their connections. Section V details the results obtained
after analyzing the data collected during one week. We discuss
the limitations of our approach in Section VI. Finally, we
review related works in Section VII, and conclude the paper
in Section VIII.

II. MONERO PEER-TO-PEER MEMBERSHIP PROTOCOL

Monero relies on its peer-to-peer network to dissem-
inate messages such as transactions and blocks. Un-
fortunately, a proper presentation on how exactly the
peer-to-peer network operates is missing in the litera-
ture. This section describes Monero’s peer-to-peer mem-
bership protocol based on the source code, available
from its official working repository2, with commit hash
14a5c2068f53cfe1af3056375fed2587bc07d320.

A. Initialisation

Monero hardcodes a set of hostnames, which can be trans-
lated to IP addresses through DNS, and IP addresses of seed
nodes that new participants can contact to be bootstrapped into
the peer-to-peer network. Those seed nodes are operated by
the Monero core team.

New joiners can request IP addresses of active peers from
the seed nodes to initialize their peer lists. They can then
start initiating connections with peers, thereby discovering new
peers thanks to membership list exchanges, until they have
established their desired number of connections.

B. Peer List

In Monero, each node maintains a peer list consisting
of three parts, i.e., an anchor list, a white list, and a
gray list. In the peer list, the information of each recorded
peer contains not only the peer’s identity, its ip address, and
TCP port number, but also a special last seen data, which is
the unix time at which the peer has been seen for the last time.
All the peers in the lists are ordered chronologically according
to their last seen data, i.e., the most recently seen peers are
at the top of the list.

2https://github.com/monero-project/monero

The anchor list is a special list, in the sense that it records
seed nodes the local node connected to during its initialization,
and a subset of the peers later connected to. Monero requires
that each anchor list must contain at least two seed nodes.
These seed nodes can later be used during the entire life time
of the node to establish trustworthy connections. Each time a
node receives information about a set of peers, this information
is merged into the gray list. Nodes update their white list
and gray list through a mechanism called “graylist house-
keeping”, which periodically pings randomly selected peers
in the gray list. If a peer from the gray list is online, then
this peer will be promoted to the white list with an updated
last seen field, otherwise it will be removed from the list. To
handle idle connections, nodes check their connections through
“IDLE HANDSHAKE”, and update the last seen field if
they managed to successfully connect, otherwise they drop
the associated connection. Also, nodes periodically handshake
their current connections, and update the last seen field of the
associated peers if they respond. If a peer does not respond to
a handshake message, then the node will disconnect with the
neighbor peer, and seek new neighbor from the white list.
The disconnected peers will stay in the white list. The
maximum sizes of the white list, and of the gray list, are
respectively 1,000, and 5,000. If the number of peers in these
lists grow over the maximum allowed size, then the peers with
the oldest last seen fields will be removed from the list.

Nodes broadcast messages (e.g., transactions and blocks) to
their neighbors through TCP connections. Nodes choose their
neighbors from the anchor list. If there are not enough cur-
rently online peers from the anchor list, then the neighbors
will be chosen from the white list and then the gray list.
Nodes previously connected to are classified as anchor nodes.
In this way, Monero ensures that every node is connected to at
least two anchor nodes to prevent a node from being isolated
by an attacker. To further establish new connections, nodes
randomly select a number of peers from their white list,
and send a TCP SYN message to the selected peers. Upon
receiving a SYN message, the peer creates a message where
the payload contains the information of its top 250 peers in the
white list, and sends it back to the requester. The requester
then combines the received peer data into its gray list, and
run the graylist housekeeping protocol to update the lists. More
details about the TCP connection and data transmission will
be presented in Section II-D.

C. Number of Connections

With the default settings, each peer maintains 8 outgoing
connections and accepts 1 incoming connection. If a peer sits
behind a firewall or a NAT, then it does not accept incoming
connections, and only maintains 8 outgoing connections. Peers
are allowed to update their numbers of outgoing and incoming
connections. In fact, Monero recommends peers to increase the
number of connections according to their capacity, to have a
better connectivity.
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Fig. 1: Information propagation in the Monero network.

D. Information Propagation

Three types of messages are propagated in Monero, namely
containing peer information, transactions, and blocks.

A node establishes connections with others through a TCP
three ways handshake (SYN-SYN-ACK), and sends peer in-
formation through the established connection. This process is
illustrated in Figure 1, where a node A establishes a connection
with a node B. Node A initializes the communication by
sending a synchronize message SYN to B, and expecting from
B an acknowledge message SYN+ACK where the SYN and
the ACK bits are both turned on (set to 1) in the TCP header.
Upon receiving SYN+ACK, A completes the handshake by
sending an acknowledge message ACK to B. SYN messages
and ACK messages are indicated by the turned on SYN bit
and the ACK bit inside the TCP header, respectively. After
establishing a connection, Node A prepares a TCP packet
where the payload contains information of the top 250 peers
in A’s white list, and sends this packet to B.

Each node inserts the most recent 250 IP addresses of its
white list into a TCP packet, and sends it to its neighbors
as payload data. In this way, nodes disseminate and update
their peer lists. Similarly, to disseminate received and verified
transactions and blocks, nodes establish TCP connections with
their neighbors as above, then transfer the verified transactions
and blocks to their neighbors through the established TCP
connections.

III. ANALYSIS PIPELINE OVERVIEW

In this section, we introduce the different data structures and
processes we implemented, along with the associated network
tools we used and algorithmic approaches we developed to
count the number of active Monero nodes, and to infer the
neighbors of a target node.

A. Construction

As illustrated on the left of Figure 2, our method sets
up four nodes in the Monero network to collect data. These
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Fig. 2: Analysis pipeline overview.

nodes establish connections with peers in the network, and
store packets into their local storage. We rely on two network
measurement tools, i.e., tcpflow3 and nmap4, to collect data
and analyze the Monero network. First, when establishing
TCP connections with a node, we use tcpflow to collect
the IP addresses of peers communicated by this node. The
collected TCP packets of connections with different nodes
are stored in different files. In other words, we store all data
collected during connections with a single node into a single
file. This allows us to efficiency manage and analyze each of
the connected nodes.

As mentioned in Section II, each received TCP packet
contains the most recent 250 IP addresses of the sender’s
white list. Thus, all received IP addresses are recent out-
bound peers of the sender. We then use our first tool, NodeS-
canner, to collect the IP addresses of Monero nodes and
store the results in the NodePool. To test whether the nodes
associated to the received IP addresses are still active, we use
nmap to test each IP address in the NodePool. In Monero, the
port 18080 is used to receive incoming connections. Hence,
if a node is responsive and its TCP port 18080 is open, then
the node is deemed active. In this case, we will lose the active
node if it does not respond the nmap request. Nevertheless,
our second tool, NeighborFinder, infers the neighbors of the
Monero nodes we received packets from, and store them in
the ConnectionPool. Both reached nodes and their neighbors
from ConnectionPool are active. This provides a better way to
discover active nodes without nmap. We introduce in greater
details our developed tools in the next section.

B. Neighbor Inference Based on Membership Messages

We used two complementary approaches to understand
how to identify a node’s neighbors. First, we checked
the Monero source code, and found that the function
peerlist manager::set peer just seen updates the IP addresses
in the peer list by updating the last seen, using the instruc-
tion ple.last seen = time(NULL). This function is triggered
when an IP address is promoted from the gray list to the
white list, or when a node is connecting with the host. This
updating scheme leads to outbound neighbors of a node to
be associated with the freshest last seen in its peer list.
Therefore, we conclude that the IP addresses of the outbound

3https://www.tecmint.com/tcpflow-analyze-debug-network-traffic-in-linux/
4https://nmap.org/
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neighbors of the packet sender are included in the TCP packet
that are sent to its peers.

Second, we setup our own nodes in Monero network to
prove that the neighbors’ IP addresses are binded into the TCP
packet for being sent, as detailed in Section V. We further
analyzed the peer lists and connections of our controlled
nodes, and the payload IP addresses our nodes sent to their
neighbors. We observed that the payload IP addresses our
nodes sent out include all their outgoing connections when
their maximum number of outgoing connections is less than
250. Therefore, by analyzing the payload IP addresses in a
packet, we are able to infer the outgoing connections of its
sender. We discuss the case of nodes that maintain more than
250 outgoing connections (heavy node) and the influence in
section V.

IV. NODES DISCOVERY AND CONNECTIONS INFERENCE

As previously mentioned, by implementing our controlled
full nodes in the Monero network, we can accept incoming
connections and initiate outgoing connections to receive TCP
packets from other nodes.

In the following, let us assume that a node has received
j TCP packets from a Monero reached node. We use P =
{P1, P2, P3, ..., Pj} to denote the set of packets received from
that node. Each packet Pk (k ∈ [1, j]) contains a set Ak =
{Ak,1, Ak,2, Ak,3, ..., Ak,250} of IP addresses and a set Tk =
{Tk,1, Tk,2, Tk,3, ..., Tk,250} of last seen timestamps.

NodeScanner. After having received a set P of packets
from node N , we identify the set A = {A1, A2, A3, ..., Aj}
of included IP addresses. The NodeScanner first collects the
unique IP addresses. We denote U the set of unique IP
addresses that are obtained from N , i.e., U = A1 ∪ A2 ∪
A3 ∪ ... ∪Aj . We then insert all unique IP addresses into the
NodePool.

NeighborFinder. Our second tool aims at identifying a set
Nk of neighbors from each Pk (k ∈ [1, j]). Over the various
packets P1 to Pj , it identifies the overall set of neighbors N =
N1∪N2∪N3∪...∪Nj . In the following, we firstly indicate our
neighbors inference approach based on the time difference of
the nodes’ last seen timestamps in a single packet. We then
refine this approach by relying on several received packets.

1) Neighbors inference based on a single packet: For any
received packet Pk from a node N , we assume that it contains
r (r < 250) neighbors. Because all neighbors of N are
updated at the same time, the neighbors of N tend to be
the first r adjacent IP addresses of Ak, and the difference
between any two neighbors’ timestamps tends to be small. If
we assume that there is a maximum time difference µ between
the timestamps of any two neighbors, then we can extract
a set N ′k = {Ak,i+1, Ak,(i+2), Ak,(i+3), ..., Ak,(i+r)| r ∈
[1, 250], i ∈ [1, (250 − r)], ∀x ∈ [i + 1, i + (r − 1)], Tk,x −
Tk,(x+1) ≤ µ} of neighbors from Pk as shown in Algorithm 1.

Each node checks its connections iteratively by using
IDLE HANDSHAKE, which sends SYN packets to all of its
neighbors, the last seen timestamp of handshaked neighbors
are updated with the local time if nodes can be contacted,

Algorithm 1: Neighbors inference by using single packet
Input : Pk: Packets;

µ: The maximum time difference between the
last seen timestamps of a node’s neighbors;

Ak: the IP addresses of Pk;
Tk: the last seen timestamps of Pk

Output: Neighbors set N ′k;
1 for y = 1, y < 250, y ++ do
2 if Tk,y - Tk,(y+1) ≤ µ then
3 N ′k ←− Ak,y

4 end
5 if Tk,(y+1) - Tk,(y+2) > µ then
6 N ′k ←− Ak,(y+1); break
7 end
8 end

otherwise connections are dropped. This mechanism prevents
idle connections to be maintained. However, each connection
may answer the SYN packet at a different time, which leads
to different answer delays. It is therefore necessary to set µ to
a value that is large enough to discover all neighbors, but the
value should not be too large as it may cause false positives.
This problem only exists when we rely on a single packet
to infer the neighbors of a target node, and disappears when
multiple packets are used.

2) Improved neighbors inference based on multiple packets:
During a connection with a node, it frequently happens that we
receive multiple packets. If an IP address appears in successive
packets, and its last seen has been updated, then we can
conclude that the node corresponding to this IP address is
a neighbor of the sender. We use the set N ′′ = {Ak,z | ∀
z,w, Ak,z = A(k+1),w, Tk,z 6= T(k+1),w, Ak,z ∈ Pk, Tk,z ∈
Pk, A(k+1),w ∈ P(k+1), T(k+1),w ∈ P(k+1)} to denote the
IP addresses that have been updated between packets Pk and
P(k+1). We then extract the neighbors of node N following
Algorithm 2.

Algorithm 2: Neighbors inference by using two packets

Input : Packets Pk and P(k+1);
Ak, A(k+1): the IP addresses in Pk, resp. Pk+1;
Tk, T(k+1): the last seen timestamps in Pk,

resp. Pk+1;
Output: Neighbors set N ′′k ;

1 foreach Ak,y = A(k+1),z do
2 if Tk,y 6= T(k+1),z then
3 N ′′k ←− Ak,y

4 end
5 end

V. EXPERIMENTS

A. Data Collection Settings

We set up four full nodes in the Monero network two in the
U.S. (California and Virginia), one in Europe (Luxembourg),
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(c) Reached active nodes.

0 20 40 60 80 100 120 140 160 180

Data collection (hours)

600

700

800

900

1000

1100

1200

N
u
m

b
e
r 

o
f 

u
n
re

a
ch

e
d
 a

ct
iv

e
 n

o
d
e
s

California

Tokyo

Luxembourg

Virginia

Total

(d) Unreached active nodes.

Fig. 3: Evolution of the number of collected IP addresses during the data collection process.

and one in Asia (Japan). In particular, the node in Luxembourg
was set up on an Ubuntu 16.04 machine with Intel Xeon CPU
E5-2695 V3 2.30 GHz processor, and each of the remaining
nodes was established on an independent Ubuntu 16.04 ma-
chine with an Intel Xeon Platinum 8000 series processor. The
four nodes were connected to each other in order to gain the
ground truth for verifying our neighbor inference approach.

We collected data by participating in the Monero protocol
starting from 2018.12.23 during a week. Our goal was to
establish connections with other nodes as much as possible.
We manually modified the settings on our controlled nodes
so that they could establish adequate connections with other
nodes. First, we modified the maximum number of incoming
and outgoing connections to 99,999, which makes our nodes
actively look for new nodes, in order to reach this maximum
number of neighbors. Second, we increased the maximum
number of TCP connections our nodes could maintain with
other nodes simultaneously.

Even though we collected data during a single week, our
results indicate that our approach discovered more than 40%
new active nodes in comparison to the Monerohash5’s results.
To the best of our knowledge, Monerohash is the only Monero
mining pool providing information on the number of active
nodes in the network.

12/24 12/25 12/26 12/27 12/28 12/29 12/30

Date

0

500

1000

1500

2000

2500

3000

3500

4000

N
u
m

b
e
r 

o
f 

n
o
d
e
s

Discovered active nodes by NeighborFinder

Discovered active nodes by MoneroHash

Fig. 4: Number of active nodes per day.

B. Measuring the Network Coverage

Through our NodeScanner, we have collected 21,678 peer
IP addresses. Out of these collected IP addresses, through
NeighborFinder we have established connections with 3,626
peers, and identified 703 peers that we could not connect
to, but that were active and connected to reached nodes.
We say that peers are active and reachable if our nodes can
establish connections with them. We say peers are active but
unreachable if they are connected to nodes we connected to,
but we could not directly connect to them. We say a peer is
inactive if it is neither connected to our nodes, nor connected

5https://monerohash.com/nodes-distribution.html
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to our connected peers. If our nodes could not connect to
a peer, then it either means that the peer was already fully
connected during the data collection, or that it was offline.
To reduce the potential false positives, we consider that a
peer is offline if the peer is not connected to our nodes or
to the neighbors of our nodes, and if their last seen has not
been updated during the data collection process. Our approach
shows that only about 20% (i.e., 4,329) of the discovered nodes
are active, and that the remaining nodes were offline during
the data collection period. We assume that the majority of
transmitted IP addresses are inactive in Monero network.

By using NeighborFinder, we built a ConnectionPool that
includes all the active nodes. To further guarantee that these
nodes are indeed active, we use nmap to check if their IP
addresses can be pinged and determine whether their TCP
port 18080 is open. We indicate the number of active nodes
per day in Figure 4. There were approximately 2,758 active
nodes per day. Compared with Monerohash, which discovers
1,635 active nodes in average per day, we identified 68.7%
more nodes. Moreover, the number of daily active nodes in
Bitcoin [9], [10] and Ethereum [11], [12] is around 10,000,
it is therefore not a surprise to see that Monero has far less
daily active nodes.

Figure 3 presents the data collection statistics, where we
respectively show the data collected by the node in California
in red, Virginia in black, Japan in yellow, and Luxembourg
in green. The total number of reached nodes is represented
in blue. Figure 3(a) shows the number of discovered peers.
Figure 3(b) shows the number of active nodes. Figure 3(c)
shows the evolution of the number of active nodes connected
to our servers. Figure 3(d) shows the number of active but
unreachable peers.

Figures 3(a) and 3(b) show that the number of discovered
peers, and active nodes including both reachable active nodes
and unreachable active nodes, increased dramatically in the
first 18 hours of the data collection. However, while the
number of unreached nodes in each of the data collection
server increases rapidly, the total number of unreached nodes
goes the other way. This means that the sets of nodes that our
data collection servers connected to are fairly non-overlapping
until the 18th hour. Around the 23rd hour of the data collection
process, the Virginia, Luxembourg, Tokyo, and California
server respectively connected to 1481, 1385, 1371, and 1292
nodes. Each server connected to a number of nodes that other
servers did not connect to. Overall, we reached 1863 nodes. In
addition, the number of discovered peers stabilized after 160
hours of data collection, as Figure 3(c) shows.

Figure 3(d) indicates that we have detected most of the long-
term running active nodes within 12 hours, when the total
number of unreached active nodes dramatically decreased.
Then, this number keeps decreasing showing that we con-
nected to most of them. In particular, we have connected
to most of the nodes between 2 to 12 hours. Comparing
total number of unreached active nodes (blue line) with
the number of unreached active nodes detected in different
locations between 2 to 12 hours, we can find that each

deployed server instantly discovered more unreached active
nodes, which had been discovered by other deployed servers.
One interesting finding is that we detected almost all long-term
running active nodes after the first 80 hours. This indicates that
new participants mostly connected to the nodes that we had
discovered. Sometimes, new participants connected to some
nodes that we had not discovered (like the jump at 132 hour
in the blue line of Figure 3(d)). Thus, it is likely that the
Monero network contains around 2758 active nodes per day
(according to our experiment) that maintain all connections in
the system.

C. Node Distribution

Fig. 5: Representation of the Monero nodes. Each dot rep-
resents a Monero node. The size of the dots represents the
outgoing degree of the node. Red represents unreached nodes
and blue represents reached nodes.

Snapshot of the Monero network topology. Based on the
ConnectionPool, we draw a snapshot of the Monero network
topology as shown in Figure 5. In this Figure, we use red
dots to denote unreached nodes, and blue dots to denote
reached nodes. The size of a dot represents the node’s degree.
This figure shows a potential re-centralization problems in the
Monero network. We discovered that some nodes operated by
mining pools are always maintaining many more connections
than normal client users. In this case, the actual maximum
number of connections depends on the network capacities
of the host. Mining pools are then implementing a Monero
node on a well equipped and connected host to reach as
many other nodes as possible, so that they receive the the
broadcast messages faster to gain an advantage to win coins.
Generally, smaller client users use their node to transfer coins
or check their balance, and are not willing to reach more other
nodes. Therefore, those clients are likely to use the system
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rather than participate in it.We believe that such difference
in nodes’ behaviors cause the inequality of connectivity in
the Monero peer-to-peer network, and might lead to network
vulnerabilities.

Connectivity. We say that a node is of degree N , if it
maintains at most N outgoing connections. We classify active
nodes into three types based on their degree: light node
(degree≤8), medium node (8< degree≤ 250), and heavy node
(degree>250).

As shown in Table I, out of the 3,626 active and reachable
nodes, 3,146 nodes (86.8%) are light nodes, i.e., the number of
their outgoing connections is limited to 8, and most of the light
nodes accept only 1 incoming connection; 452 nodes (12.5%)
are medium nodes maintaining from 8 to 250 connections,
and only 28 nodes (0.7%) are heavy nodes maintaining more
than 250 connections simultaneously. In addition, the majority
of the nodes (86.8%) collectively maintain only 17.14% con-
nections, while the remaining 13.2% of the nodes collectively
maintain 82.86% of the network connections.

Light Medium Heavy In total
nodes nodes nodes

Reached 3146(86.8%) 452(12.5%) 28(0.7%) 3626
Unreached - - - 703
In total 3146 452 28 4329

TABLE I: Number of active nodes in the ConnectionPool.

We present in Figure 6 the location of the Monero nodes
depending on their classification. This Figure shows that the
light nodes, which are likely to be clients, are more distributed
around the world than the heavy nodes. In particular, over
78% of the heavy nodes are located in only three countries,
namely US, France, and Germany, and half of the heavy nodes
in Monero are located in US. In fact, US has the largest
number of nodes in all three types. France, which comes to the
second place and the third place considering the total number
of hosted heavy nodes and medium nodes. However, only a
small proportion (3.59%) of light nodes are located in the
France. Germany is more balanced in terms of the percentage
of different types of nodes — 10.71% heavy nodes (3rd place
in the chart), 10.4% medium nodes (2nd place), and 7.68%
light nodes (2nd place) are located in Germany. Moreover, we

present in Figure 7 the geographic distribution of active nodes.

Fig. 7: Geographic distribution of active nodes.

Monero has hardcoded 8 seed nodes in the system, and
we initially suspected that all of them would be heavy nodes.
Interestingly, our experiment shows that only 5 seed nodes
can be pinged, and that only 2 seed nodes are heavy nodes.
By comparing the discovered heavy nodes with public Monero
mining pools 6 and seed nodes 7, we found that 9 heavy nodes
are maintained by mining pools, 2 heavy nodes are Monero
seed nodes. Due to the lack of public information, we cannot
identify the other 17 heavy nodes. However, we assume that
the remaining heavy nodes are likely to be private mining
pools.

Figure 8 presents the number of inferred neighbors of a
heavy node, medium node, and light node. For instance, a light
node represented in green maintains 8 outgoing connections,
a medium node represented in orange maintains 98 outgoing
connections. However, the maximum number of outgoing
connections of heavy nodes is difficult to confirmed. First,
heavy nodes might have an unlimited number of connections
in order to maintain the highest connectivity they can. Second,
the actual number of outgoing connections might never reach
the maximum number for some heavy node. This is due to the
fact that even though a heavy node may have more than 250

6http://moneropools.com/
7https://github.com/monero-project/monero/blob/

577a8f5c8431d385bf9d11c30b5e3e8855c16cca/src/p2p/net node.inl
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Fig. 8: Number of outgoing neighbors of heavy node, medium
node, and light node.

neighbors, it can only select and broadcast 250 of its neighbors
in its messages.
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Fig. 9: Neighbor updates in 9 hours.

Figure 9 details the number of new neighbors per category
of node. In this Figure, we use orange to denote the number
of new neighbors during 9 hours. The green color denotes
the number of old neighbors, i.e., the neighbors that were
connected at the beginning. The dark blue denotes the total
number of neighbors during 9 hours. The red color denotes
the number of neighbors for which we could not confirm
whether they were old neighbors or new neighbors. Figure 9
shows that we are able to infer all the neighbors of light and
medium nodes with their neighbors updating history. However,
for heavy nodes, it is difficult to infer the maximum number
of their outgoing connections. Nevertheless, monitoring heavy
nodes for a longer period of time would allow us to get a more
accurate maximum number of outgoing connections of heavy
nodes.

By using our neighbor inference approach, we are able to
find all of their neighbors during the data collection. As shown
in Figure 10, we show all neighbors of a light node during the
9-hour monitoring. Each color represents a neighbor of the
node. It shows that neighbor 1-6 stayed in connection with
the node in the entire 9 hours, whereas the connection with
neighbor 7 is dropped around the 8th hour, and neighbor 11
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Fig. 10: Neighbor updating of a light node in 9 hours.

is connected to replace neighbor 7. Similarly, the connection
to neighbor 8 is dropped within 3 hours, and the node is
reconnected to neighbor 9 for a very short time period,
before establishing a more stable connection with neighbor 10.
This indicates that the NeighborFinder not only discovers the
number and information of neighbors at a single time point, but
also the number and information of neighbors during a period
of time. This allows us to monitor the dynamic connectivities
of existing active Monero nodes.

Power Law Distribution. Previous works [13], [14] pointed
out that the cryptocurrency networks follow the power law
distribution, where the majority of the nodes maintains few
connections, and a small number of nodes maintains most of
the connections. Our findings, as presented in the Figure 11,
confirm this statement in the Monero network. This indicates
that successfully attacking a small number of heavy nodes
might cause large communication delays, or even a network
partition. Such a network attack might open a window for
attacker to launch a network level attacks. We leave for future
work the detailed analysis on the feasibility of such attacks.
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Fig. 11: Degree distribution.

VI. DISCUSSION

A. Unreached Active Nodes

During the data collection process, we measured that our
nodes could not directly connect to 16.2% of the active nodes
that are connected to our neighbors. We indirectly observed
their presence in the network from the payload TCP packets
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that we received from the nodes we reached. The following
two reasons might explain why they could not be contacted
directly by our nodes. First, the nodes might be fully connected
and could not accept new connections. Second, if a host
receives several connection tentatives simultaneously, it will
prefer to establish the connection with the nodes that were
previously connected to. The second reason comes from our
analysis of the Monero peer-to-peer network. In particular, as
detailed in Section II, to establish connections nodes will first
choose peers from its anchor list, where all recorded nodes
are previously connected.

B. Potential Attacks

We briefly discuss potential network level attacks on Mon-
ero, however, it is very important to conduct a formal study
on the attacks as a part of the future work. As we showed
previously, the links between the nodes in Monero can be in-
ferred due to the last seen associated to the IP addresses. This
might help an adversary to launch BGP hijacking attacks [15],
where the adversary would isolate a node from the network.
On the other hand, if the adversary can connect to the node
that does not accept incoming connections, then the adversary
could dominate the victim’s peer list by continuously sending
its IP addresses with fresh last seen, and then monopolize
all the connections of the victim to launch attacks [7].

We also show the possibility to detect the destination of
outbound connections of the heavy nodes. In practice, miners
would try to broadcast their created blocks to the network
as fast as they can, to compete against other miners who
might have mined a block at the same time. Thus, the front-
end node of a mining pool is likely to maintain a large
amount of outgoing connections to speed up the message
propagation. An adversary can connect to the front-end node
of the mining pool, and infer its outgoing connections. The
adversary can then launch DOS attacks to harm the mining
pool’s connectivity. By comparing with Bitcoin and Ethereum,
the network size of Monero is far smaller. This might make
similar attacks easier and cheaper to launch on Monero.

VII. RELATED WORK

Previous works studied the topology of leading cryptocur-
rencies, e.g., Bitcoin and Ethereum, that are not privacy
preserving. Decker and Wattenhofer [16] measured the rate
of information propagation in the network, Miller et al. pro-
posed CoinScope [14] to discover a node’s degree and the
network topology in Bitcoin. Neudecker et al. [13] proposed a
comprehensive timing analysis to discover Bitcoin’s network
topology. Their approach is based on an estimation of the
sending time of a transaction/block. This estimation is obtained
by subtracting the measured time needed to transfer a message
between the two nodes to the receiving time of the transaction
at the receiver side. As a result, they can link a transaction with
the IP address that generated it with high probability. Later on,
the Bitcoin developers noticed this timing leakage, and added
a random delay to the dissemination of a message at a sender’s
side. Kim et al. [17] evaluated the network size and evaluated

several properties of the Ethereum network. They used the
number of daily online nodes to evaluate the network size in
Ethereum. However, links between different nodes are difficult
to discover in Ethereum.

Network level attacks, such as routing attacks [7], [15],
[18] or man-in-the-middle attacks [19], have been explored
on Bitcoin and Ethereum. Such attacks are facilitated by the
fact that Bitcoin’s protocol makes nodes exchange messages in
plaintext during the peer-to-peer communications. An adver-
sary is therefore able to explore the network for the purpose of
harming the blockchain system. Deanonymization attacks [18]
have been described by Fanti and Viswanath. These attacks
aim at linking the IP address of a node with the transactions it
created, even if the node is located behind a firewall or a NAT.
Such attacks are based on monitoring the messages exchanged
between nodes of the network. Apostolaki et al. described BGP
hijacking attacks in Bitcoin [15], where malicious messages
are injected to broadcast wrong IP prefixes in Bitcoin, which
causes packets to be delivered to incorrect locations. By
launching a hijacking attack, an adversary can isolate a target
node in the network, and delay the dissemination of messages
among nodes in order to spend one coin twice, or in order
to win the mining competition. Eclipse attacks, in Bitcoin [7]
and in Ethereum [8], pointed out that unsolicited incoming
connections can be applied by the adversary to continuously
send large amount of fake packets to a given node, and
fill the table of its stored IP addresses, forcing it to restart.
These attacks demonstrated that an attacker can monopolize
all connections of a targeted node with high probability.

VIII. CONCLUSION

In this work, we presented a method to observe the Monero
peer-to-peer network, and infer its topology. More particularly,
we described how to rely on Monero nodes to discover all
the nodes participating in the protocol, and how to infer
their connections, using the last seen timestamps in the peer
lists that nodes exchange. Our experiments show that even
though Monero is a privacy-preserving cryptocurrency, it is
still possible to accurately discover the nodes in the network
and their connections with each other. Our analysis provides
insights about how centralized the Monero network is. As
future work, we will conduct a deeper network-based security
and privacy analysis of Monero, based on the tools provided
in this paper.
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