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Abstract. In this document, we investigate the complexity of an old-time com-
binatorial problem - namely Permuted Kernel Problem (PKP) - about which no
new breakthrough were reported for a while. PKP is an NP-complete [2] alge-
braic problem that consists of finding a kernel vector with particular entries for a
publicly known matrix. It’s simple, and needs only basic linear algebra. Hence,
this problem was used to develop the first Identification Scheme (IDS) which has
an efficient implementation on low-cost smart cards [1].
The Permuted Kernel Problem has been extensively studied [7,8,9,5,10]. We
present a summary of previously known algorithms devoted to solve this prob-
lem and give an update to their complexity. Contrary to what is shown in [10],
and after a thorough analysis of the State-of-the-art attacks of PKP, we claim that
the most efficient algorithm for solving PKP is still the one introduced by J.
PATARIN and P. CHAUVAUD in [9]. We have been able to specify a theoret-
ical bound on the complexity of PKP which allows us to identify hard instances
of this latter.
Among all the attacks, the problem PKP is in spite of the research effort, still
exponential.

Keywords: Cryptanalysis · Identification scheme · complexity · post-quantum
cryptography · Permuted Kernel Problem.

1 Introduction

In this paper we focus on the analysis of the Permuted Kernel Problem (PKP). In 1989,
A. SHAMIR [1] introduced a scheme of a new nature, a Zero-Knowledge (ZK) Identifi-
cation scheme, based on the Permuted Kernel Problem. PKP is the problem of finding a
permutation of a known vector such that the resulting vector is in the kernel of a given
matrix. It was proved to be an NP-complete combinatorial problem [1].
PKP requires simple operations which involve basic linear algebra computations. Due
to its simplicity, the problem has received significant attentions from theory and appli-
cation in cryptography. Here, we study the theoretical analysis behind the PKP problem
over a finite field. For a little long time, no new attacks on PKP were reported which
makes the construction of schemes based on hard instances of this problem more appli-
cable.
We are essentially concerned about this problem because it can be used to build a post-
quantum signature scheme based on the hardness of solving random instances of PKP.
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In fact and due to the call for post-quantum standards of the NIST, there has been
renewed interest in the transformed Zero-Knowledge Identification Schemes into Dig-
ital Signatures Schemes (DSS) via the Fiat-Shamir paradigm [3]. This transformation
method is important since it yields to efficient signature schemes in terms of minimal
and sufficient security assumptions.
Therefore, it is important to reconsider some NP-Complete problems ( for example
PKP) whose security relies on the fact that there is no quantum algorithms known to
solve such problems [4].

Previous works and Main results Since quantum computers are known to be in-
capable to solve NP-Complete problems [4], algebraic problems such PKP, are very
interesting nowadays.
The main contribution of this paper is to present an updated analysis of the complexity
of the most efficient algorithm for solving instances of the Permuted Kernel Problem.
In [7], J. GEORGIADES proposed the first algorithm to solve PKP. The author presents
symmetric polynomials equations which will be utilized by all the other attacks.
The authors of [8] investigate also the security of PKP, where a time-memory trade-off
was introduced. Moreover, J. PATARIN and P. CHAUVAUD improve algorithms for the
Permuted Kernel Problem[9]. Also, in [10], a new time-memory trade-off was proposed
and believed to be the most efficient attack against PKP.
All the suggested attacks combine exhaustive search with some form of time-memory
tradeoff.
After our complexity analysis of the Permuted Kernel Problem, it appears that the algo-
rithm of PATARIN-CHAUVAUD [9] is the most efficient one against PKP among them
all. Using a Magma code, we have found that the complexity of the algorithm intro-
duced by A. JOUX and E.JAULMES is wrongly estimated. Thus, in order to construct a
new public-key cryptosystem based on PKP, we have to define its security in terms of
the PATARIN-CHAUVAUD ’s algorithm.

2 The Permuted Kernel Problem

In this section, we first present the PKP problem [1] over a finite field Fp.

2.1 Description of PKP

PKP [1,2] is the problem on which the security of the Identification scheme proposed by
A. SHAMIR is based. PKP is a linear algebra problem which asks to find a kernel vector
of given matrix under a vector-entries constraint. It’s a generalization of the Partition
problem [2, pg.224]. More precisely, it is defined as follows:

Input. A finite field Fp, a matrix A ∈Mm×n(Fp) and a n-vector V ∈ Fp
n.

Question. Find a permutation π over (1, . . . ,n) such that A×Vπ = 0, where
Vπ = (Vπ( j)), j = 1, . . . ,n.

2.2 Practical and complexity considerations

First, for the problem to be hard, n−m must be large enough so that the kernel of A has
sufficiently enough elements. Then, since the problem is unchanged by manipulation
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on lines of A, one may assume that the matrix A is of rank exactly m. Otherwise an
equivalent matrix of A could be expressed with fewer significant lines.

By denoting Aσ = (aiσ( j)), the effect of a permutation σ over the columns of A,
it’s easy to see that AσVσ = AV. Also, up to a reordering of the columns of A, we may
assume that it is given in a systematic form:

A = (ai j)1≤i≤m,1≤ j≤n =
[
A′|I

]
,

where A′ = (a′i j)1≤i≤m,1≤ j≤n−m ∈Mm×n−m(Fp) and I is the identity matrix of size m.

Note that, to reach higher security levels, it’s more desirable that the n-vector V
has distinct coordinates, since it reduce the number of solutions, or otherwise said, it
enlarges the search space. If the vector V is drawn at random in the kernel of A and is
expected to have this property, then one should draw at random the first distinct n−m
variables, computes the m last ones and checks if suitable. So one should have (p−n+m)!

pm(p−n)!
high.

Also, it is most suitable that pm ≈ n! so that the number of solutions is close to 1.
A reduction of the 3-Partition problem proves PKP to be NP-Complete [2] in the

good reasoning (i.e.its hardness grows exponentially with p). The solidity of PKP comes
from, on one hand, the big number of permutations, on the other hand, from the small
number of possible permutations which may suit the kernel equations. More precisely,
PKP is hard because it obligates the choice of a vector, with already fixed set of entries,
from the kernel of the matrix A.

3 Solving PKP: best known algorithms

The implementation’s efficiency of the first IDS, proposed by A. SHAMIR [1], based on
PKP problem has led to several solving tools, which are all exponential.

As a reference, we mention the exhaustive search consisting in examining all the
possible permutations. Its complexity is obviously n!.

3.1 J. GEORGIADES method

J. GEORGIADES [7] was the first to publish an improvement of the exhaustive search.
The basic idea is to find some new equations in order to reduce the set of suitable
permutations. Since the rank of A is equal to m, there exists m linear equations that
enable to express the last m coordinates of Vπ in terms of the n−m first ones. Therefore,
this will decrease the number of permutations to be considered from n! to:

n!(
n− (n−m)

)
!
=

n!
m!

.

Moreover, since the coordinates of Vπ are known, all their symmetrical expressions are
also known, for example their sum, the sum of their squares, etc. This immediately
gives new equations satisfied by the coordinates, whatever the permutation π . Taking
into account equations of degree 1 (the sum) and 2 (sum of squares) for instance, this
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enables to express m+ 2 variables in terms of the n−m− 2 others. Therefore again
the complexity can be decreased to n!/(m+ 2)!. So far, it is not obvious how to use
symmetric equations with higher degree, and decrease more the complexity.

3.2 A time-memory trade-off

An almost simultaneous improvement was introduced by T. BARITAUD, M. CAM-
PANA, P. CHAUVAUD and H. GILBERT in [8]. The proposed method reduces the time
required to solve the PKP problem at the cost of use of significantly large memory.
The idea for speeding up the solving time is to perform a pre-computation on a smaller
search space involving an A-sub-matrix and the corresponding subsystem. Then natu-
rally in [9], J. PATARIN and P. CHAUVAUD combine this idea with J. GEORGIADES’s
one, adding the “free” linear symmetric equation, resulting in a reduction of time. They
present also some new ideas in order to reduce the needed memory. We may cite:

– “Set introduction” : make an exhaustive search on a sub-set of values, instead of or-
dered tuples of values. This leads to diminish the size of the initial pre-computation.

– “Middle values” : make an exhaustive search on the value of a sub-system,
– “Pre-computation on A” : search if a sub-system could be expressed with less vari-

ables. This leads to probabilistic algorithms.

G. Poupard, in [5] gives a nice generalization of the “Middle values” method, an
a corresponding complexity analysis, but that may be flawed since the details of the
complexity are not clearly given.

3.3 JOUX-JAULMES algorithm

In [10], A. JOUX and E. JAULMES introduce a new time-memory trade-off algorithm
which is an application of the algorithm described in [11] to the Permuted Kernel Prob-
lem. This technique includes the so-called 4SET problem (see [12,10] for more details).

Note that, in this section we use the notations of [10].
In fact, the algorithm of JOUX-JAULMES consists of a main loop containing two enu-
merations phases: A-Phase and B-Phase. The authors of [10] assume that the B-Phase
controls the time complexity of this approach. Without going too far into the analysis
of this technique, we found that the overall complexity is wrongly estimated. By con-
sidering a reasonable choices of parameters, it turns out that the time complexity of the
algorithm is dominated most cases by the A-Phase.

Recall from [10],the analysis of JOUX-JAULMES algortihm:
The number of operations needed to execute the A-Phase is in:

CA−Phase = O
(

max
{

N1 log(N2)ψ, (m+1− k)ψ
n!

(n−n1−n2)!p−k

} )
.

While the B-phase requires:

CB−Phase = O
(

max
{

N3 log(N4),(m+1− k)ψ
n!2

(n−n1−n2)!(n−n3−n4)!
p−k} )

,
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Where, Ni = n!
(n−ni)!

. Hence, by considering the effect of the main loop which contains
the 2 Phases, the total time complexity can be expressed as:

φ ×
(
CA−Phase +CB−Phase

)
,

Where φ = pk is the cost of the main loop containing the two phases A and B. Experi-
mental results show that for the set of parameter that minimize the total time complex-
ity, the phase A dominates, and the total is much higher as announced. Therefore, the
Joux-Jeaulmes algorithm is not efficient for solving PKP.

4 Complexity Analysis

Here, we try to estimate a lower bound of the complexity of algorithms solving PKP.
As a simplification, we assume that the elementary operation is the computation of a
tuple, namely a vector-matrix product in Fp or whatever should be more efficient to
accomplish it, as for instance a result can be deduced from another one, where few
changes have to be made. For the same reason, we assume also that the memory unit is
the space needed to store a tuple.

In this section, we use the following notation: k-V is a tuple of k values, where k
notes conveniently at the same time a subset of indexes and the number of elements
of this subset. In the same spirit, k.i-A is a sub-matrix of A with the given subsets of
indexes.

4.1 Simplest and most efficient algorithm

We recall here in Alg. 1 the first method for solving PKP. This methods exploits usefully
the special form of the matrix A = (A′‖I).

For this algorithm, time and space complexity can be approximated by these formu-
las :

space =
n!

(n− l)!
(1)

time =
n!

(n− l)!
+

n!
(n− r)!

+
n!

pk(n− (l + r))!
(2)

In Fig. 1, the number m of equations is implicitly estimated as the closest integer of
log(n!)/ log(p) and the extra equation from Georgiades is used.

4.2 Memory enhancement

Here we give in Alg. 2 a more synthetic description of Poupard’s algorithm, and its
detailed complexity. Notations are the ones in [5, Fig. 3]. It uses precomputed files and
“Middle values” techniques.
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Algorithm 1 A1 : Solve PKP (n,m, p)
Require: 0≤ k ≤ m and l + r+m− k = n
1: select k equations, and split their variables into two sets l and r
2: for all l-tuple l-V do
3: compute C← k.l-A× l-V
4: store efficiently (C, l-V ) in a file F0 so that given a value C, one can retrieve efficiently all

the associated l-tuples
5: end for
6: for all r-tuple r-V do
7: compute C←−k.r-A× r-V
8: retrieve from F0 a list L of l-tuples associated with C
9: filter the list L keeping only the l-tuples compatible with r-V

10: for all l-tuple l-V in L do
11: compute the last variables s-V ← (m− k).(l + r)-A× (l + r)-V
12: if the values s are compatible with (l + r) then
13: (l + r+ s) is a solution
14: end if
15: end for
16: end for
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Algorithm 2 Poupard : Solve PKP (n,m, p)
Require: i+ j+ r+m = n and c+ c′ ≤ m and d ≤ c and l + k = r+d
1: for all j-tuple j-V do
2: compute C0← c. j-A× j-V
3: store efficiently (C0, j-V ) in a file F0 so that given a value C0, one can retrieve efficiently

all the associated j-tuples
4: end for
5: for all l-tuple l-V do
6: compute C2← d.l-A× l-V
7: store efficiently (C2, l-V ) in a file F2 so that given a value C2, one can retrieve efficiently

all the associated l-tuples
8: end for
9: for all c-tuple of “Middle values” c-C do

10: for all i-tuple i-V do
11: compute C0← c-C− c.i-A× i-V
12: retrieve from F0 a list L of j-tuples associated with C0
13: filter the list L0 keeping only the j-tuples compatible with i-V and get ( j+ i)-tuples
14: for all ( j+ i)-tuple j+ i-V of L0 do
15: compute C1← c′.( j+ i)-A× ( j+ i)-V
16: store efficiently (C1,( j+ i)-V ) in a file F1 so that given a value C1, one can retrieve

efficiently all the associated ( j+ i)-tuples
17: end for
18: for all k-tuple k-V do
19: compute C2← d-C−d.k-A× k-V
20: retrieve from F2 a list L2 of l-tuples associated with C2
21: filter the list L2 keeping only the l-tuples compatible with k-V and get (l+k)-tuples
22: for all (l + k)-tuple (l + k)-V of L2 do
23: compute (c−d)-V ← (c−d)-C−(c−d).(l + k)-A×(l + k)-V and keep only val-

ues compatible with (l + k)-V and get (r+ c)-tuples
24: for all c′-tuple c′-V compatible with (r+ c)-V do
25: compute C1←−(c′).(r+ c)-A× (r+ c)-V
26: retrieve from F1 a list L1 of j+ i-tuples associated with C1
27: filter the list L1 keeping only the ( j + i)-tuples compatible with r+ c+ c′-V

and get ( j+ i+ r+ c+ c′)-tuples
28: for all ( j+ i+ r+ c+ c′)-tuple ( j+ i+ r+ c+ c′)-V in L1 do
29: compute the last variables s-V ← (m− c− c′).( j+ i+ r+ c+ c′)-A ×

( j+ i+ r+ c+ c′)-V
30: if the values s are compatible with ( j+ i+ r+ c+ c′) then
31: ( j+ i+ r+ c+ c′+ s) is a solution
32: end if
33: end for
34: end for
35: end for
36: end for
37: end for
38: end for
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For this algorithm, time and space complexity can be approximated by these formu-
las :

space =
n!

(n− j)!
+

n!
(n− l)!

+
n!

pc(n− (i+ j))!
(3)

time =
n!

(n− j)!
+

n!
(n− l)!

+
n!

(n− (i+ j))!
+

pcn!
(n− k)!

+
pc−dn!

(n− (k+ l))!
+

pc−d(n− (c−d))!
(n− (r+ c+ c′))!

+
(n− (c−d))!

pd(n− (i+ j+ r+ c+ c′))!

(4)

As said in [5], the interest of this algorithm is for realistic attacks, where memory
is limited. However from a theoretical point of view, the previous algorithm is the most
efficient.

4.3 Probabilistic method

We here discuss the method named “Pre-computation on the A matrix” of [9]. Like pre-
vious methods, this new method aims at decreasing the complexity. Its specificity is to
search for subsets of equations with fewer variables than expected. We first give an es-
timation of the probability that among a given set of m random equations in n variables
over Fp, there exists a subset of k equations in only r variables. Such a probability was
given in [9], but here we explain how to compute it more accurately. Lets start with the
following results.

Claim. The probability that a random linear equation in n variables over Fp is indeed
in r variables is

(n
r

)
( 1

p )
n−r( p−1

p )r.

Proof. Let a random linear equation in n variables over Fp. Each of its coefficients is
assumed to be randomly and uniformly distributed if Fp. Therefore the probability that
a given variable does not occur in the equation is the probability that its coefficient
is 0, or so 1

p . All the coefficients are assumed to be independently drawn at random.
Therefore, the number of variables that appears in the equation follows the binomial
distribution with parameters n and 1

p ; hence the result.

Claim. The probability that a set of k random linear equations in n variables over Fp is
indeed in r variables is

(n
r

)
( 1

pk )
n−r(1− 1

pk )
r.

Proof. The probability that a given variable does not occur in the k equations 1
pk . There-

fore, the number of variables that appears in the k equations follows the binomial dis-
tribution with parameters n and 1

pk ; hence the result.

Claim. In a linear space of m linear equations over Fp, the number of distinct linear
subspaces of k equations is

k−1

∏
i=0

pm− pi

pk− pi
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Proof. The number of k-tuples of linearly independent equations is given by :

k−1

∏
i=0

pm− pi.

All the tuples that are equivalent bases of the same subspace are related by a given
isomorphism over Fk

p. These isomorphisms amount to ∏
k−1
i=0 pk− pi. Hence the result.

Claim. In a linear space of m linear equations over Fp, the number of distinct linear
subspaces of k equations that can be expressed in r variables is approx.(

n
r

)
(

1
pk )

n−r(1− 1
pk )

r
k−1

∏
i=0

pm− pi

pk− pi .

Proof. Although the subspaces of dimension k in the linear space are not uniformly
distributed over all possibilities, a good approximation is the product of the number of
subspaces by the probability that one subspace has the required property. This result
has been experimentally verified.

Although the method of using subspaces of equations with less variables speeds
indeed the searching algorithm, it appears that the probability of finding such subsets
is overwhelming small. Example: For PKP(64,37,251), the optimum value for k is 19.
Therefore, finding k equations expressed in r = n−m+ k = 45 is easy. The expected
number of subspaces expressed in only 44 variables is ≈ 2−98.5.

5 Conclusion

The main thing that we have essentially looked at is the complexity analysis of the Per-
muted Kernel Problem. We have seen the most well-known methods for solving PKP.
We presented briefly each one and updated some results that were not accurate or gen-
uine, namely in [5,10]. Also, we discussed the approach of PATARIN-CHAUVAUD in-
troduced in [9], which is the most efficient one and gave an explicit complexity formula
for generic parameters.
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