
On the Streaming Indistinguishability of a
Random Permutation and a Random Function

Itai Dinur

Department of Computer Science, Ben-Gurion University, Israel

Abstract. An adversary with S bits of memory obtains a stream of Q
elements that are uniformly drawn from the set {1, 2, . . . , N}, either with
or without replacement. This corresponds to sampling Q elements using
either a random function or a random permutation. The adversary’s goal
is to distinguish between these two cases.
This problem was first considered by Jaeger and Tessaro (EUROCRYPT
2019), which proved that the adversary’s advantage is upper bounded by√

Q · S/N . Jaeger and Tessaro used this bound as a streaming switching
lemma which allowed proving that known time-memory tradeoff attacks
on several modes of operation (such as counter-mode) are optimal up
to a factor of O(logN) if Q · S ≈ N . However, if Q · S � N there is a
gap between the upper bound of

√
Q · S/N and the Q · S/N advantage

obtained by known attacks. Moreover, the bound’s proof assumed an
unproven combinatorial conjecture.
In this paper, we prove a tight upper bound (up to poly-logarithmic fac-
tors) of O(logQ ·Q ·S/N) on the adversary’s advantage in the streaming
distinguishing problem. The proof does not require a conjecture and is
based on a reduction from communication complexity to streaming.
Keywords: Streaming algorithm, time-memory tradeoff, switching lemma,
mode of operations, communication complexity.

1 Introduction

A classical result in cryptography asserts that an adversary attempting to dis-
tinguish a random permutation from a random function with an image size of N
using Q queries has advantage bounded by about Q2/N over a coin toss [2, 11,
12]. This bound serves as a switching lemma which has important implications
in establishing the security of various cryptographic constructions. For example,
the security of several modes of operation (such as counter-mode) is proved up
to the birthday bound of Q =

√
N by first idealizing the underlying block cipher

as a random permutation and then replacing it with a random function using
the switching lemma.1

A limitation of the switching lemma is that it only bounds the advantage of
the adversary as a function of the number of queries, whereas in practice, the

1 For the sake of brevity, in this paper we use the term “switching lemma” to refer
to a particular type of lemma that allows to switch between a random permutation
and a random function.

adversary could have constraints on additional resources, notably on memory. At
the same time, given Q ≈

√
N unrestricted queries to the underlying primitive,

it is possible to distinguish a random function from a random permutation with
constant advantage using a negligible amount of O(logN) bits of memory by ap-
plying a “memory-less” cycle detection algorithm such as Floyd’s algorithm [15]
(or its variants, e.g., [5, 19]).

Streaming Indistinguishability Cycle detection algorithms are inapplicable
when only given access to a stream of data produced by arbitrary queries to the
underlying primitive which are not under the adversary’s control. The stream-
ing indistinguishability model was introduced in the context of cryptography by
Jaeger and Tessaro at EUROCRYPT 2019 [13] (related models were introduced
in earlier works such as [6, 18]). The authors considered an adversary (i.e. a ran-
domized algorithm) with memory size of S bits and access to a stream of Q
elements drawn from either a random permutation or from a random function
with an image size of N . The main technical result of [13] is an adaptation of
the switching lemma between a random permutation and random function to the
streaming model. The streaming switching lemma asserts that the adversary’s
advantage is bounded by

√
Q · S/N as long as the queries to the underlying

primitive are not repeated. The proof of the bound is based on tools from infor-
mation theory and relies on a combinatorial conjecture regarding hypergraphs.
We refer the reader to [13] for more details.

The main applications of the switching lemma described in [13] deal with
cryptanalysis of modes of operations. Such modes are typically secure up to
the birthday bound against adversaries with unbounded memory, yet [13] shows
that they become more secure against memory-bounded adversaries. For ex-
ample, in AES-based randomized counter-mode, message mi is encrypted as
ri, ci = AESK(ri) ⊕ mi, where ri is a random 128-bit string. The best known
distinguishing attack simply awaits a collision ri = rj for i 6= j, in which case
ci ⊕ cj = mi ⊕ mj . This attack stores the ri’s and requires memory of about√
N = 264 to find a collision with constant probability. Let us now assume that

the memory is limited to storing only S′ � 264 values (where S′ ≈ S · logN , as
storing S′ elements requires about S · logN bits). In this case, the probability of
observing a collision with a stored element (i.e., the distinguishing advantage) is
roughly Q · S′/N ≈ Q · S/N (ignoring a logarithmic factor in N). Hence, such a
collision is likely to occur only after observing about Q ≈ N/S � 264 elements.

Jaeger and Tessaro used their streaming switching lemma to show that the
simple attack on randomized counter-mode describe above is optimal up to a fac-
tor of O(logN), if we require a constant advantage. The proof applies the stream-
ing switching lemma to replace the random ri’s with random non-repeating ones
and further replaces AES with a truly random permutation (assuming it is a
PRP). Finally, it applies the streaming switching lemma again to replace the
permutation with a random function, completely masking the messages. More
details and additional applications are described in [13]. We further mention that
attacks against counter-mode and other modes of operation have been shown to

be meaningful in practice (refer to [3] for a recent example), giving an additional
motivation to understand their limitations.

The streaming switching lemma of [13] is very useful, but has two limitations.
First, it is based on an unproven combinatorial conjecture. Second, when Q·S �
N , there is a gap between the advantage upper bound

√
Q · S/N of the lemma

and the Q · S/N advantage of the simple attack described above. In fact, it is
easy to see that the bound

√
Q · S/N is not tight when Q ·S � N and S ≈ Q, as

it evaluates to Q/
√
N . On the other hand, the true optimal advantage is Q2/N ,

as obtained by the original switching lemma (since for S ≈ Q, the adversary can
store all the elements in the stream).

In order to demonstrate the importance of this gap, let us assume that for
N = 2128 the adversary has memory limited to storing S = 240 elements, and
obtains a stream of Q = 264 elements. Jaeger and Tessaro’s result upper bounds
the adversary’s advantage by about

√
264+40−128 = 2−12. On the other hand,

the distinguishing advantage of the attack described above is 264+40−128 = 2−24,
which is significantly lower.

Our Results In this paper, we overcome the two limitations of Jaeger and
Tessaro’s result. More specifically, we derive a streaming switching lemma which
bounds the adversary’s advantage by O(logQ ·Q ·S/N) via an alternative proof
which it is not based on any conjecture. This matches the advantage of the simple
distinguishing attack described above (up to poly-logarithmic factors in N),
hence we resolve the streaming indistinguishability problem unconditionally.2

Note that if we plug S = Q into our bound, we obtain the original switching
lemma (up to poly-logarithmic factors). Hence, our bound can also be viewed
as a natural generalization of the original switching lemma to the case that the
adversary cannot store all the Q elements of the stream (i.e. S � Q).

Finally, we extend the streaming switching lemma to show that the advantage
of an adversary with S bits of memory that is allowed P passes over a stream of Q
elements (drawn from a random permutation or a random function) is bounded
by O(logQ ·Q · S · P/N). If we combine the multi-pass bound with the original
switching lemma, we obtain the bound of about min{logQ ·Q ·S ·P/N,Q2/N},
which is tight up to poly-logarithmic factors in N .

To understand the significance of our multi-pass bound, observe that for a
fixed value of S, the P -pass streaming bound depends only on the total number
of queries, Q · P (ignoring the small factor of logQ). This essentially implies
that repeating Q distinct queries P times does not give a P -pass algorithm
an advantage over a single-pass algorithm that issues Q · P distinct queries. In
contrast, in the non-streaming model repeating queries in an adaptive way has a
big advantage, as cycle detection algorithms significantly beat the P -pass bound
(obtaining constant advantage for S = O(logN) and

√
N queries).

2 We note, however, that Jaeger and Tessaro’s result is superior to ours by a factor of
O(logQ) when S ·Q ≈ N .

Our Techniques The main novelty of the proof of our switching lemma is a
reduction from communication complexity to streaming which is tailored to our
specific cryptographic setting. Although it is simple, this reduction is somewhat
non-trivial and allows us to apply strong bounds in communication complexity
to the problem. This proof naturally extends to multi-pass adversaries. On the
other hand, it seems challenging to extend the proof of [13] to multi-pass ad-
versaries, where queries to the underlying primitive are repeated. This further
demonstrates that our proof technique may be of independent interest.

Paper Organization The rest of the paper is organized as follows. We give
a technical overview of the proof in Section 2 and describe preliminaries in
Section 3. In Section 4 we prove our main streaming switching lemma for single-
pass algorithms, while our proof of the multi-pass variant in given in Section 5.
Finally, we conclude the paper in Section 6.

2 Technical Overview

We consider an algorithm with S bits of memory that processes a stream of
Q ≤ N elements from [N] = {1, 2, . . . , N}, element by element. The goal of the
algorithm is to decide whether the stream is drawn from a random permutation
(i.e., the elements are drawn uniformly without replacement), or from a random
function (i.e., the elements are drawn uniformly with replacement).

In [13] Jaeger and Tessaro approached the problem by considering the se-
quences of states maintained by the adversary for the two stream distributions,
claiming that they remain statistically close. Roughly speaking, the proof re-
quired a conjecture because of the difficulty in analyzing all possible adversarial
strategies.

In the rest of this section, we give an overview of our proof, which (unlike
Jaeger and Tessaro’s proof) does not directly analyze the states maintained by
the adversary. For the sake of simplicity, in this overview we only consider the
range where Q · S ≈ N , and aim to show that the distinguishing advantage of
the algorithm (compared to a random guess) is negligible as long as Q� N/S.

2.1 An Initial Approach

We start by informally outlining an initial approach that does not give the desired
bound, but motivates the alternative approach that follows. We denote a stream
drawn from a random permutation by x1, . . . , xQ and a stream drawn from a
random function by x̂1, . . . , x̂Q. One way to try and obtain the bound is to use a
hybrid argument by defining intermediate stream distributions, which give rise
to Q distinguishing games. The i’th game involves distinguishing between the
stream distributions

x1, . . . , xQ−i, x̂Q−i+1, . . . , x̂Q and x1, . . . , xQ−i−1, x̂Q−i, . . . , x̂Q,

which is equivalent to distinguishing between

x1, . . . , xQ−i and x1, . . . , xQ−i−1, x̂Q−i.

Namely, the goal is to determine whether the last element already appears
in the stream or not. In fact, even if the last element is chosen uniformly, it
will not appear in the stream with probability 1 − (Q − i − 1)/N . Hence, we
can condition on the event that x̂Q−i appears in the stream. As a result, the
distinguishing advantage of any algorithm can be approximately bounded by
α · (Q − i − 1)/N , where α is the advantage of the algorithm in distinguishing
x1, . . . , xQ−i and x1, . . . , xQ−i−1, x̂Q−i, where x̂Q−i is drawn uniformly from the
first Q− i− 1 elements of the stream.

A standard approach for obtaining such a bound on streaming algorithms
is via a reduction from communication complexity. In our case, we consider a
2-player game between A and B. Player A obtains x1, . . . , xQ−i−1 and B obtains
either xQ−i or x̂Q−i and the goal of A,B is to distinguish between the cases
with minimal one-way communication between A and B. In the reduction from
communication complexity to streaming, A simulates the streaming algorithm
on its input, sends its state to B, which continues the simulation of the streaming
algorithm and outputs its result. Thus, any streaming algorithm with memory
S yields a communication protocol with communication cost of S and the same
distinguishing advantage. Therefore, an upper bound on the distinguishing ad-
vantage of A,B yields a bound on the distinguishing advantage of the streaming
algorithm.

Remark 1. A and B are unrestricted computationally, which is not a problem
since we are considering distinguishing upper bounds. However, in order for the
reduction from communication complexity to the streaming distinguishability
game to be useful, it should have the property that for both stream distributions
considered in the game, each player receives an input (partial stream) drawn from
the same marginal distribution (otherwise, a player could trivially distinguish
between the two distributions with no communication).

Returning to the communication complexity problem defined above, we ob-
serve that it is closely related to the index problem, which is a well-known prob-
lem with strong lower bounds on the communication cost required to achieve con-
stant advantage [16]. Unfortunately, even these strong bounds are insufficient to
prove the bound we require on the streaming algorithm. In order to demonstrate
this, consider the following protocol: A hashes each element x1, . . . , xQ−i−1 to a
single bit, computes the majority among all bits, and sends the majority bit to
B. Then, B hashes its element and outputs 1 if and only if the hash is equal to the
majority. Simple calculation shows that the advantage of A,B in distinguishing
between the streams is about α = 1/

√
Q− i− 1. This implies that using this

method cannot give a better upper bound than 1/
√
Q− i− 1 · (Q− i− 1)/N on

the advantage of a streaming algorithm with memory S = 1 in distinguishing
between neighboring stream distributions. If we sum over the advantages of the

first Q− 1 games (the advantage is 0 in the last game), we obtain

Q−2∑
i=0

1√
Q− i− 1

· Q− i− 1

N
=

Q−2∑
i=0

√
Q− i− 1

N
= Ω

(
Q3/2

N

)
,

which is already Ω(1) for Q = N2/3. On the other hand, our goal is to show that
if S = 1 and the distinguishing advantage is Ω(1), then Q ≈ N .

2.2 The Improved Approach

The reason that the initial attempt above fails to prove the required bound is
that it uses too many intermediate hybrid distributions, and the sum of the ad-
vantages over all Q games results in a significant loss in the bound. We discuss
two alternative approaches to overcome the loss. The first alternative approach is
to try and avoid the straightforward sum of advantages by using more advanced
techniques developed in the area of provable security for the purpose of obtain-
ing tight bounds (e.g., the chi-squared method proposed in [8]). However, such
techniques do not directly apply to the streaming model where the adversary
no longer has access to answers of its previous queries. Moreover, it seems chal-
lenging to extend such techniques to the multi-pass setting in order to handle
the dependencies between repeated queries to the underlying primitive. In this
paper, we use a completely different approach by reconsidering our definition of
intermediate hybrid distributions that lead from a stream produced by random
permutation to a stream produced by a random function.

The First Intermediate Hybrid Distribution We start by defining the first
distinguishing game between x1, . . . , xQ (a stream drawn from a random permu-
tation) and a second stream drawn from a carefully chosen hybrid distribution.
Our goals in defining the game are: (1) in order to minimize the number of
hybrid distributions, the first intermediate hybrid should break the dependency
among a maximal number of elements of x1, . . . , xQ, and (2) the distinguisha-
bility bound for the two stream distributions should be derived from a 2-player
communication game in which the marginal distributions of the inputs given to
each player are identical. Note that these two conditions are somewhat conflict-
ing, as (2) restricts the inputs of each A and B for both stream distributions to
contain no repetitions.

We define our stream distributions using the notation x11, . . . , x
1
Q/2, y

1
1 , . . . , y

1
Q/2,

where each of x11, . . . , x
1
Q/2 and y11 , . . . , y

1
Q/2 is a stream drawn from a random

permutation, such that the streams are either drawn from the same permutation
(this corresponds to the stream x1, . . . , xQ), or drawn from independent permu-
tations (which corresponds to the first intermediate hybrid). We then define the
corresponding 2-player communication problem (which we call the permutation-
dependence problem), where A and B obtain x11, . . . , x

1
Q/2 and y11 , . . . , y

1
Q/2, re-

spectively, and try to decide with minimal communication whether their inputs
are drawn from the same or from independent permutations.

To complete the distinguishability upper bound proof for the streaming game,
we prove an upper bound on the distinguishing advantage of A and B in the
permutation-dependence problem. The proof is by a reduction from the set-
disjointness problem, which is a canonical 2-player problem in communication
complexity [1, 14, 20], where the input of each player is a set and their goal is
to determine whether their sets intersect, or are disjoint.3 Interestingly, in order
to obtain our optimal bound for the range Q · S � N , we have to use recent
results for set-disjointness [4, 10] which improve upon the classical bounds for
low success probabilities that are particularly relevant for cryptography.

The Remaining Hybrid Distributions We define the second intermediate
hybrid using a similar approach by breaking the two halves of the stream into
quarters

x11, . . . , x
1
Q/4, y

1
1 , . . . , y

1
Q/4, x

2
1, . . . , x

2
Q/4, y

2
1 , . . . , y

2
Q/4,

which corresponds to a stream consisting of either 2 streams of length Q/2 drawn
from 2 independent permutations (the first intermediate hybrid), or 4 streams
of length Q/4 drawn from 4 independent permutations (the second intermediate
hybrid). In the corresponding (generalized) permutation-dependence problem,
each player obtains Q/2 elements drawn from 2 independent permutations, while
in the reduction to streaming, A′s input corresponds to the x values, while
B’s input corresponds to the y values of the stream. The remaining hybrid
distributions are defined in a similar structure that resembles a binary tree.
The i’th distinguishing game corresponds to a stream consisting of elements
drawn from either 2i−1 or 2i independent permutations, and in the permutation-
dependence problem, we give A and B interleaving streams, each consisting
of Q/2i elements. Overall, we have logQ games (and logQ − 2 intermediate
hybrids), where the final game corresponds to distinguishing between a stream
consisting of Q/2 element pairs drawn from independent permutations, and Q
elements drawn from a random function.4

Note that in all distinguishing games except for the first, the inputs of A and
B in the corresponding permutation-dependence problem consist of interleaving
(non-continuous) streams. This implies that the state of the streaming algorithm
has to be communicated several times in the reduction to streaming and results
in a loss in the upper bound compared to the first game. On the other hand, the
reduction from set-disjointness to the permutation-dependence problem on the
shorter independent streams gives a better bound compared to the first game,
compensating for the loss. Overall, the loss of logQ in our boundO(logQ·Q·S/N)
is attributed to the logQ games, each giving a similar bound of O(Q · S/N).

3 In fact, the reduction is from the unique-disjointness problem which is a variant of
set-disjointness with the promise the if the sets of the players intersect, the intersec-
tion size is 1.

4 A hybrid argument on a binary tree is also used to prove the security of the classical
pseudo-random function construction by Goldreich et al. [9]. However, the resem-
blance is superficial, as in [9] the construction itself is a binary tree, whereas in our
case, we build it artificially only in the proof.

3 Preliminaries

Unless stated explicitly, all parameters considered in this paper are positive
integers. We define [N] = {1, 2, . . . , N} and let [N]K = [N]× [N]× . . .× [N]︸ ︷︷ ︸

K

.

Given bit strings x and y, we denote their concatenation by x‖y. For a positive
integer K, we denote by x(K) the string x‖x . . . ‖x︸ ︷︷ ︸

K

, obtained by K repetitions of

x. We denote by HW (x) the Hamming weight of x.
Given a bit string a ∈ {0, 1}N such that HW (a) = K, we can treat it as

an incidence vector of a set {x1, x2, . . . , xK} such that xi ∈ [N] and a[xi] = 1
for i ∈ [K]. We define SEQ : {0, 1}N → [N]K as the sequence SEQ(a) =
x1, x2, . . . , xK (which includes the elements indicated by a in lexicographical
order). Given incidence vectors a ∈ {0, 1}N and b ∈ {0, 1}N , let a∩ b denote the
intersection of these sets, and |a ∩ b| the size of the intersection.

Given a distribution X on strings with finite support, we write x
$←− X to

denote a random variable x chosen from X . We write x ∼ X if x is a random
variable that is distributed as X .

Distinguishing between Streams We define our model for a randomized
algorithm whose goal is to distinguish between streams. The model is similar to
the one defined in [13], although we use slightly different notation.

For some parameters N,K, let X be some distribution over [N]K . We denote
by O(X) an oracle that samples x1, x2, . . . , xK from X . The oracle receives up to
K queries and answers query number i by xi. Note that once the oracle outputs
xi, it is not output again. This implies that an algorithm A that interacts with
O(X) receives x1, x2, . . . , xK as a stream, i.e., if A requires access to xi after
issuing query i, it has to store xi in memory in some representation.

We denote by AO(X) a randomized algorithm with oracle access to O(X) and
by AO(X) ⇒ b the event that the algorithm outputs the bit b ∈ {0, 1}.

We say that an algorithm A is S-bounded, if the size of each state maintained
by A during any execution is upper bounded by S bits.

Let X and Y be two distributions over [N]K . The streaming distinguishing
advantage of an algorithm A between X and Y is defined as

AdvSTR
X ,Y (A) =

∣∣Pr[AO(X) ⇒ 1]− Pr[AO(Y) ⇒ 1]
∣∣.

We further define the optimal advantage for an S-bounded algorithm as

OptSTR
X ,Y (S) = lim sup

A
{AdvSTR

X ,Y (A) | A is S − bounded}.

Sampling with and without Replacement For a parameter 0 < K ≤ N ,
let DKN be the distribution over [N]K that is defined by a sampling procedure
which uniformly draws K elements from [N] without replacement.

For parameters 0 < K ≤ N and R > 0, let DK×RN be the distribution over
[N]K·R that is composed of R independent copies of DKN .

Note that sampling from D1×K
N is equivalent to choosing K items from [N]

uniformly with replacement (i.e., from a random function), while sampling from
DKN is equivalent to choosing K items from [N] uniformly without replacement
(i.e., from a random permutation).

The original switching lemma between a random permutation and a random
function [2, 11, 12] asserts that any algorithm that issues Q queries to the under-
lying primitive has distinguishing advantage bounded by Q2/2N . This bound
obviously holds in the (more restricted) streaming model.

Theorem 1 (switching lemma [2, 11, 12]). For any S and Q ≤ N ,

OptSTR
DQ

N ,D
1×Q
N

(S) ≤ Q2

2N
.

The Set-Disjointness and Unique-Disjointness Problems

The set-disjointness function DISJ : {0, 1}N × {0, 1}N → {0, 1} is defined as

DISJ(a, b) =

{
0, there exists i ∈ [N] for which a[i] = b[i] = 1

1, otherwise.

We can view a and b as subsets of [N], encoded as incidence vectors, and then
DISJ(a, b) = 1 if a and b are disjoint.

The set-disjointness problem (or disjointness in short) is a classical problem
in communication complexity.5 It is a 2-player game between A and B that run
a protocol Π. In an instance of disjointness A receives a ∈ {0, 1}N , B receives
b ∈ {0, 1}N and their goal is to output DISJ(a, b) with minimal communication
in the worst case. Namely, the communication cost ofΠ is defined as the maximal
number of bits communicated among all possible protocol executions.

We consider a variant of the disjointness problem called unique-disjointness,
which is identical to disjointness, but with the promise that in a 0-instance, there
exists a single index i ∈ [N] for which a[i] = b[i] = 1. We denote the correspond-
ing function by UDISJ , where we define UDISJ(a, b) =⊥ if a, b do not satisfy
the required promise. We will be interested in a public-coin randomized variant
of unique-disjointness in which A,B have access to a shared random string that
is independent of their inputs.

We denote the output of the protocol Π on inputs a, b as UDISJΠ(a, b).
Note that it is a random variable that depends on the shared randomness of
A,B. Disjointness and its variants are worst case problems. This motivates the

5 For a (slightly outdated) survey on set-disjointness, refer to [7].

following notation for the error and advantage of the protocol.6

ErrUDISJ0
N (Π) = max

a,b
{Pr[UDISJΠ(a, b) 6= 0 | UDISJ(a, b) = 0]},

ErrUDISJ1
N (Π) = max

a,b
{Pr[UDISJΠ(a, b) 6= 1 | UDISJ(a, b) = 1]},

ErrUDISJ
N (Π) = max{ErrUDISJ0

N (Π),ErrUDISJ1
N (Π)},

AdvUDISJ
N (Π) =

∣∣1− ErrUDISJ1
N (Π)− ErrUDISJ0

N (Π)
∣∣.

The following is a classical result in communication complexity.

Theorem 2 ([1, 14, 20, adapted]). Any public-coin randomized protocol Π
that solves unique-disjointness on all inputs a, b ∈ {0, 1}N × {0, 1}N such that
UDISJ(a, b) ∈ {0, 1} with error probability ErrUDISJ

N (Π) ≤ 1/3, uses Ω(N) bits
of communication in the worst case.

Therefore, it is not possible to do much better than the trivial protocol in which
A sends B its entire input a, and B outputs UDISJ(a, b).

When analyzing the advantage γ of a protocol with communication cost of
o(N), we can repeat it and amplify its advantage using a majority vote to obtain
an error probability of at most 1/3. By applying a Chernoff bound and using
Theorem 2, we can lower bound the communication cost required to achieve
advantage of γ by Ω(γ2N). If we use this bound for the purpose of obtaining
a streaming switching lemma, we get a result which is similar to the

√
Q · S/N

bound of [13]. However, relatively recent results [4, 10] prove a much stronger
lower bound of Ω(γN) on the communication cost by a more careful analysis.
This stronger bound (summarized in the theorem below) will allow us to prove
an improved streaming switching lemma.

Theorem 3 ([10, Theorem 1.5, adapted]). For a public-coin randomized
protocol for unique-disjointness Π, denote

α(N) = 1− ErrUDISJ1
N (Π) and β(N) = ErrUDISJ0

N (Π).

There exist constants 0 < M1 < 1 and M2 > 0 such that for all α(N) > β(N)
that satisfy

log(1/α) ≤M1 ·N · (1− β/α),

the communication cost of Π is at least M2 ·N · (1−β/α) bits in the worst case.

Remark 2. The theorem is stated in [10] for the set-disjointness problem, rather
than for unique-disjointness. However, the proof actually considers unique-disjointness.
Since set-disjointness is a worst-case problem, the lower bound on unique-disjointness
also applies to set-disjointness.

Remark 3. We could have also used Theorem 2.2 of [4], and adapted it to our
purposes (we need a public-coin randomized variant of this theorem).

6 Our notation for disjointness is consistent with the rest of the paper, yet it differs
from standard notation used in communication complexity.

It would be useful for us to bound the communication cost of the protocol
using it advantage.

Corollary 1. For a public-coin randomized protocol for unique-disjointness Π,
denote

γ(N) = AdvUDISJ
N (Π).

Then, there exist constants 0 < M1 < 1 and M2 > 0 such that for all γ(N) that
satisfy

γ(N) ≥ logN/(M1 ·N),

the communication cost of Π is at least M2 ·N · γ bits in the worst case.

Proof. We assume that the conditions of Corollary 1 hold and show that the
conditions of Theorem 3 hold. We use the definition of α and β and constants
M1,M2 in Theorem 3 (M1,M2 are the same constants in Corollary 1). We have
α − β = γ ≥ logN/(M1 ·N) > 0. In addition, α ≥ γ ≥ logN/(M1 ·N) > 1/N ,
hence log(1/α) < logN . Therefore,

M1 ·N · (1− β/α) = M1 ·N · (γ/α) ≥
M1 ·N · γ ≥M1 ·N · logN/(M1 ·N) = logN ≥ log(1/α).

Thus, we can apply Theorem 3 and conclude that the cost of Π is at least

M2 ·N · (1− β/α) = M2 ·N · (γ/α) ≥M2 ·N · γ

bits in the worst case. �

4 The Streaming Switching Lemma

Our main theorem is stated below. We refer to it as a “streaming switching
lemma” (for the sake of compatibility with previous results).

Theorem 4 (streaming switching lemma). There exists a constant 0 <
M < 1 such that any S-bounded randomized algorithm A with access to a stream
containing logN ≤ Q ≤ N/3 elements drawn from [N] via either a random
permutation or a random function has a distinguishing advantage bounded by

AdvSTR
DQ

N ,D
1×Q
N

(A) ≤ OptSTR
DQ

N ,D
1×Q
N

(S) ≤ dlogQe
M

· Q · S
N

<
logN

M
· Q · S
N

.

Remark 4. When Q < logN , we can use the original switching lemma (Theo-
rem 1) to bound the advantage by Q2/(2N) ≤ log2N/(2N).

Theorem 4 follows from the lemma below.

Lemma 1. There exists a constant 0 < M < 1 such that for any K ≤ N/3 and
S ·R ≥ logN ,

OptSTR
D2K×R

N ,DK×2R
N

(S) ≤ 1

M
· S ·R ·K

N
.

Proof (of Theorem 4). Let A be an S-bounded algorithm and let M be the
constant (implied by Lemma 1) such that AdvSTR

D2K×R
N ,DK×2R

N
(A) ≤ 1

M ·
S·R·K
N .

Assume that logN ≤ Q ≤ N/3, and let q′ = dlogQe and Q′ = 2q
′

(note that
Q ≤ Q′ ≤ 2Q). We have

AdvSTR
DQ

N ,D
1×Q
N

(A) ≤ AdvSTR

DQ′
N ,D1×Q′

N

(A) =∣∣Pr[AO(DQ′
N) ⇒ 1]− Pr[AO(D1×Q′

N) ⇒ 1]
∣∣ =

∣∣q′−1∑
i=0

(
Pr[AO(DQ′/2i×2i

N) ⇒ 1]− Pr[AO(DQ′/2i+1×2i+1

N) ⇒ 1]
)∣∣ ≤

q′−1∑
i=0

∣∣(Pr[AO(DQ′/2i×2i

N) ⇒ 1]− Pr[AO(DQ′/2i+1×2i+1

N) ⇒ 1]
)∣∣ =

q′−1∑
i=0

AdvSTR

DQ′/2i×2i

N ,DQ′/2i+1×2i+1

N

(A) ≤

q′

M
· Q
′ · S
2N

≤ dlogQe
M

· Q · S
N

,

where the penultimate inequality follows from Lemma 1. �

4.1 Reduction from Communication Complexity to Streaming

We now define the permutation-dependence problem and summarize the out-
come of the reduction from this problem to streaming in Proposition 1. We then
state a lower bound on the communication complexity cost of the permutation-
dependence problem in Proposition 2 (which is proved in Section 4.2), and use
it to prove Lemma 1.

The Permutation-Dependence Problem Permutation-dependence is a 2-
player game between A and B that run a protocol Π. For parameters K,R such
that K is even and K ·R ≤ N , we choose the K ·R elements

x11, . . . , x
1
K/2, y

1
1 , . . . , y

1
K/2, x

2
1, . . . , x

2
K/2, y

2
1 , . . . , y

2
K/2, . . . , x

R
1 , . . . , x

R
K/2, y

R
1 , . . . , y

R
K/2,

from either DK×RN , or from DK/2×2RN . We give

x11, . . . , x
1
K/2, x

2
1, . . . , x

2
K/2, . . . , x

R
1 , . . . , x

R
K/2

to A and

y11 , . . . , y
1
K/2, y

2
1 , . . . , y

2
K/2, . . . , y

R
1 , . . . , y

R
K/2

to B. Note that regardless of the distribution from which the K · R elements
are chosen, the input to each player is taken from the (marginal) distribution

DK/2×RN . However, the inputs are either dependent (chosen from DK×RN) or in-

dependent (chosen from DK/2×2RN) and the goal of the players is to distinguish
between these cases.

After receiving their inputs x, y, players A,B run communication protocol Π
and then one of the players outputs a bit which is the output of the protocol,
denoted by PDEPΠ(x, y). We say that Π has communication cost C if A,B
communicate at most C bits in all possible protocol executions. Similarly to the
disjointness problem, we will be interested in public-coin randomized protocols
for permutation-dependence.

Since it is a distributional communication complexity problem, we define the
following notation for permutation-dependence:

ErrPDEP0
N,K,R (Π) = Pr[PDEPΠ(x, y) = 1 | x, y $←− DK/2×2RN],

ErrPDEP1
N,K,R (Π) = Pr[PDEPΠ(x, y) = 0 | x, y $←− DK×RN],

AdvPDEP
N,K,R(Π) =

∣∣1− ErrPDEP1
N,K,R (Π)− ErrPDEP0

N,K,R (Π)
∣∣,

OptPDEP
N,K,R(C) = lim sup

Π
{ AdvPDEP

N,K,R(Π) | Π has communication cost C}.

The Reduction from Permutation-Dependence to Streaming The fol-
lowing proposition upper bounds the advantage of a (memory-bounded) stream-

ing algorithm in distinguishing between DK×RN and DK/2×2RN by the advantage
of an optimal permutation-dependence protocol (with limited communication
cost). It is a standard reduction from a 2-player communication protocol to
streaming (for example, refer to [17]).

Proposition 1. For any even K ≤ N ,

OptSTR

DK×R
N ,DK/2×2R

N

(S) ≤ OptPDEP
N,K,R(S ·R).

Proof. Given black-box access to an S-bounded streaming algorithm A1, players
A and B in the permutation-dependence protocol Π run A1 and answer its or-
acle queries using their inputs: A answers the first batch of K/2 queries (using
x11, . . . , x

1
K/2) and then communicates the state of A1 to B which answers the

second batch of K queries (using y11 , . . . , y
1
K/2, y

2
1 , . . . , y

2
K/2). B then communi-

cates the state of A1 back to A which answers the third batch of K queries (using
x21, . . . , x

2
K/2, x

3
1, . . . , x

3
K/2), and so forth. Finally, B answers the final batch of

K/2 queries using yR1 , . . . , y
R
K/2 and outputs the same answer as A1.

Thus, A1 is given oracle access to O, where either O = O(DK×RN) or O =

O(DK/2×2RN), depending on the distribution of the inputs x, y of A,B. Moreover,
sinceA1 is S-bounded and its state is communicated R times, the communication
cost of Π is bounded by S ·R. Therefore,

AdvSTR

DK×R
N ,DK/2×2R

N

(A1) = AdvPDEP
N,K,R(Π) ≤ OptPDEP

N,K,R(S ·R).

The proposition follows since the above inequality holds for any S-bounded al-
gorithm A1. �

Remark 5. In case S > K/2, a trivial reduction (where one party sends its input
to the other) is more efficient than the one above. This gives

OptSTR

DK×R
N ,DK/2×2R

N

(S) ≤ OptPDEP
N,K,R(K ·R/2).

Using this observation, it is possible to obtain a limited improvement to the
streaming switching lemma of Theorem 4 in case S = Nω(1).

Proof of Lemma 1 In order to prove Lemma 1, we use the following proposition
which bounds the advantage of any protocol Π for permutation-dependence.

Proposition 2. There exists a constant 0 < M < 1 such that for any R, K ≤
N/3 and C ≥ logN ,

OptPDEP
N,2K,R(C) ≤ 1

M
· C ·K

N
.

Proof (of Lemma 1). Let M be the constant implied by Proposition 2. Based
on Proposition 1 and Proposition 2 we have

OptSTR
D2K×R

N ,DK×2R
N

(S) ≤ OptPDEP
N,2K,R(S ·R) ≤ 1

M
· S ·R ·K

N

�

4.2 Reduction from Unique-Disjointness to Permutation-
Dependence

The proof of Proposition 2 is based on a reduction from the unique-disjointness
problem to the permutation-dependence problem.

Proposition 3. Let K ≤ N/3 and N ′ = bN/Kc. There exists a public-coin
randomized local reduction, f1, f2, where fi : {0, 1}N ′ → [N]K·R, such that for
any a, b ∈ {0, 1}N ′ × {0, 1}N ′ ,

f1(a), f2(b) ∼

{
DK×2RN , if UDISJ(a, b) = 0

D2K×R
N , if UDISJ(a, b) = 1.

Here, a public-coin randomized local reduction means that f1 only depends of
a and on public randomness (but not on b), and similarly, f2 does not depend
on a. In the particular case of R = 1, if a, b intersect at exactly 1 index, then
the output of the reduction consists of two independent random permutation
streams, each of K elements. On the other hand, if a, b are disjoint, then the
output of the reduction consists of a single random permutation stream of 2K
elements (that is split among the parties).
Proof. We first describe the reduction f1, f2 for the specific case of R = 1 below,
as a procedure executed by two parties A,B that do not communicate, but share
a random string.

1. Given incidence vector inputs (bit arrays) a, b ∈ {0, 1}N ′ × {0, 1}N ′ ,
let SA = a(K)‖0(N−N ′·K), SB = b(K)‖0(N−N ′·K). Namely, each party
locally duplicates its array K times and appends zero entries such that
SA ∈ {0, 1}N and SB ∈ {0, 1}N .

2. Using their joint randomness, the parties sample a sequence of K indices

i1, i2, . . . , iK
$←− DKN (chosen from [N] without replacement). The parties

use the sampled indices to create new arrays: A defines an array TA ∈
{0, 1}K , where TA[j] = SA[ij] for j ∈ {1, 2, . . . ,K}. Similarly, B defines
TB ∈ {0, 1}K , where TB [j] = SB [ij] for j ∈ {1, 2, . . . ,K}.

3. Each party locally extends its array from size K to size N such that its
Hamming weight becomes K (the parties add disjoint 1 entries). More
specifically, A computes

T 2
A = TA‖1(K−HW (TA))‖0(N−2K+HW (TA)),

and B computes

T 2
B = TB‖0(K)‖1(K−HW (TB))‖0(N−3K+HW (TB)).

4. Each party applies (the same) uniform permutation σ : {0, 1}N →
{0, 1}N to its array of size N (σ is specified in the joint randomness),

T 3
A[i] = T 2

A[σ(i)], and T 3
B [i] = T 2

B [σ(i)],

for each i ∈ [N].
5. Finally, A selects a uniform permutation σ1 : {0, 1}K → {0, 1}K and

uses it to output the elements indicated by its array T 3
A (the 1 entries)

in uniform order. A outputs

f1(a)i = SEQ(T 3
A)σ1(i), for each i ∈ [K].

B selects a uniform permutation σ2 : {0, 1}K → {0, 1}K and outputs

f2(b)i = SEQ(T 3
B)σ2(i), for each i ∈ [K].

Analysis Observe that T 3
A ∈ {0, 1}N satisfies HW (T 3

A) = K and similarly
T 3
B ∈ {0, 1}N satisfies HW (T 3

B) = K. Therefore, each party outputs a sequence
of K elements.

Due to the randomization of σ (which randomizes the elements that are
output by f1, f2) and of σ1, σ2 (which randomize the order of the elements output
by f1, f2), we have the following property.

Property 1. Let a, b ∈ {0, 1}N ′ × {0, 1}N ′ and

x, y = x1, . . . , xK , y1, . . . , yK ∈ [N]2K , x′, y′ = x′1, . . . , x
′
K , y

′
1, . . . , y

′
K ∈ [N]2K ,

where each K element sequence (x, y, x′ and y′) contains distinct elements and
for some 0 ≤ t ≤ K,

|{x1, . . . , xK} ∩ {y1, . . . , yK}| = |{x′1, . . . , x′K} ∩ {y′1, . . . , y′K}| = t.

Then,
Pr[f1(a), f2(b) = x, y] = Pr[f1(a), f2(b) = x′, y′].

Hence, the distribution of f1(a), f2(b) is completely determined by the distribu-
tion of the size of the intersection of the sequences f1(a) and f2(b) as sets. The
intersection size is equal to |TA ∩ TB | (since |TA ∩ TB | = |T 3

A ∩ T 3
B |), thus we

analyze this variable below.
Observe that

|SA ∩ SB | = K · |a ∩ b|.

Consider the case that UDISJ(a, b) = 1, or |a ∩ b| = 0. We have |SA ∩ SB | = 0
and therefore |TA ∩ TB | = 0. Hence, f1(a) and f2(b) are disjoint as sets, and by
Property 1, f1(a), f2(b) ∼ D2K×1

N .
Otherwise, UDISJ(a, b) = 0, implying that |a ∩ b| = 1 and therefore |SA ∩

SB | = K. the number of options for selecting i1, i2, . . . , iK in the second step
such that they intersect the K common indices in SA, SB in exactly 0 ≤ t ≤ K
places is

(
K
t

)(
N−K
K−t

)
. Since the total number of options for selecting i1, i2, . . . , iK

is
(
N
K

)
,

Pr[|TA ∩ TB | = t] =

(
K
t

)(
N−K
K−t

)(
N
K

) .

At the same time,

Pr[
∣∣{x1, . . . , xK} ∩ {y1, . . . , yK}∣∣ = t | x1, . . . , xK , y1, . . . , yK

$←− DK×2N] =(
K
t

)(
N−K
K−t

)(
N
K

) = Pr[|TA ∩ TB | = t].

Hence, by Property 1, f1(a), f2(b) ∼ DK×2N as claimed.
The generalization of the reduction for R > 1 and its analysis are straight-

forward: the parties independently generate R stream pairs f i1(a), f i2(b) for i ∈
{1, . . . , R} using SA, SB , repeating all the steps (except the first) with fresh
randomness. �

Finally, Proposition 2 follows from Proposition 3 by applying Corollary 1.
Proof (of Proposition 2). We show that there exists a constant M such that
any permutation-dependence protocol Π ′ with communication cost C ≥ logN ,
satisfies AdvPDEP

N,2K,R(Π ′) ≤ C ·K/(M ·N). This proves Proposition 2.
We consider a protocol Π for unique-disjointness, where given an input a, b ∈

{0, 1}N ′ × {0, 1}N ′ (for N ′ = bN/Kc), each party independently applies the
reduction of Proposition 3 to its input using the public randomness. The parties
then run the permutation-dependence protocol Π ′ on input f1(a), f2(b) with

communication cost (at most) C bits in the worst case and output the same
value. In short,

UDISJΠ(a, b) = PDEPΠ′(f1(a), f2(b)).

The reduction of Proposition 3 implies that for every a, b such that UDISJ(a, b) =
0,

Pr[UDISJΠ(a, b) = 1 | UDISJ(a, b) = 0] =

Pr[PDEPΠ′(f1(a), f2(b)) = 1 | UDISJ(a, b) = 0] = ErrPDEP0
N,2K,R(Π ′),

and a similar equality holds for every a, b such that UDISJ(a, b) = 1. Hence

ErrUDISJ0
N ′ (Π) = ErrPDEP0

N,2K,R(Π ′), and ErrUDISJ1
N ′ (Π) = ErrPDEP1

N,2K,R(Π ′).

Denote

α′ = 1− ErrUDISJ1
N ′ (Π), β′ = ErrUDISJ0

N ′ (Π),

and γ′ = α′ − β′. We have

AdvUDISJ
N ′ (Π) = α′ − β′ = γ′ =

1− ErrPDEP1
N,2K,R(Π ′)− ErrPDEP0

N,2K,R(Π ′) = AdvPDEP
N,2K,R(Π ′),

where we assume that α′−β′ ≥ 0 (otherwise, A,B in Π simply negate the output
of Π ′). Hence, γ′ is equal to the advantage of both the unique-disjointness and
permutation-dependence protocols.

Let M1,M2 be the constants defined in Corollary 1 and define

M = 2/3 ·min{M1,M2}.

Note that since K ≤ N/3, then M ≤ 2/3 ·M1 ≤ M1 · (1 −K/N), or M1 ≥
M/(1−K/N). Furthermore, N ′ = bN/Kc ≥ N/K − 1. Therefore,

M1 ·N ′ ≥
M

1− K
N

·
(
N

K
− 1

)
= M ·N/K, and similarly M2 ·N ′ ≥M ·N/K.

To conclude the proof, we show that γ′ ≤ C ·K/(M ·N).
If γ′ < logN ′/(M1 ·N ′), then,

γ′ < logN ′/(M1 ·N ′) < logN/(M1 ·N ′) ≤ C ·K/(M ·N).

Otherwise, γ′ ≥ logN ′/(M1 ·N ′). We apply Corollary 1, and since C bounds the
communication cost of Π is the worst case, we conclude that C ≥ M2 ·N ′ · γ′.
This gives

γ′ ≤ C/(M2 ·N ′) ≤ C ·K/(M ·N),

as required.
�

5 The Multi-Pass Streaming Switching Lemma

For a parameter P ≥ 1, we consider a P -pass streaming algorithm which can
access an input stream of Q elements P times at the same order. The P -pass
algorithm attempts to distinguish between a stream chosen from a random per-
mutation or from a random function. In our model, the algorithm interacts with
an oracle that samples from one of the distributions defined below.

For 0 < K ≤ N , let DK×R⊗PN be the distribution over [N]K·R·P that is

defined by a sampling procedure which first draws x
$←− DK×RN and then outputs

x‖x‖ . . . ‖x︸ ︷︷ ︸
P

. In case R = 1, we simply write DK⊗PN .

Theorem 5 (multi-pass switching lemma). There exists a constant 0 <
M < 1 such that any S-bounded randomized P -pass algorithm A with access to
a stream containing logN ≤ Q ≤ N/3 elements drawn from [N] via either a ran-
dom permutation or a random function has a distinguishing advantage bounded
by

AdvSTR
DQ⊗P

N ,D1×Q⊗P
N

(A) ≤ OptSTR
DQ⊗P

N ,D1×Q⊗P
N

(S) ≤ dlogQe
M

·P ·Q · S
N

<
logN

M
·P ·Q · S

N
.

The proof of Theorem 5 is based on the lemma below, which is a generalization
of Lemma 1.

Lemma 2. There exists a constant 0 < M < 1 such that for any K ≤ N/3 and
S ·R ≥ logN ,

OptSTR
D2K×R⊗P

N ,DK×2R⊗P
N

(S) ≤ 1

M
· P · S ·R ·K

N
.

We omit the proof of Theorem 5, as it is essentially identical to the one of
Theorem 4.

The proof of Lemma 2 uses the following proposition which generalizes Propo-
sition 1.

Proposition 4. For any K ≤ N ,

OptSTR

DK×R⊗P
N ,DK/2×2R⊗P

N

(S) ≤ OptPDEP
N,K,R(S ·R · P).

Proof. The proof is via a reduction from the permutation-dependence problem
to (multi-pass) streaming, which is similar to the one of Proposition 1. The only
difference is that in order to simulate the P -pass streaming algorithm, its state
is communicated (at most) R · P times, hence the communication cost of the
permutation-dependence protocol is bounded by S ·R · P . �
Proof (of Lemma 2). Let M be the constant implied by Proposition 2. Based
on Proposition 4 and Proposition 2 we have

OptSTR
D2K×R⊗P

N ,DK×2R⊗P
N

(S) ≤ OptPDEP
N,2K,R(S ·R · P) ≤ 1

M
· P · S ·R ·K

N
.

�

6 Conclusions and Future Work

In this paper we proved an upper bound on the streaming distinguishing ad-
vantage between a random permutation and a random function, which is tight
up to poly-logarithmic factors. Our proof is based on a reduction from commu-
nication complexity to streaming, and is tailored to a common cryptographic
setting where the goal is to distinguish between two pre-fixed distributions of
streams. The cryptographic setting is different from the typical worst-case set-
ting of streaming problems, where there is much more freedom in choosing the
stream distributions in reductions from communication complexity. In the fu-
ture, it would be interesting to apply our techniques to additional streaming
problems that are relevant to cryptography.

Finally, our bounds in the (multi-pass) streaming switching lemma (theo-
rems 4 and 5) depend on the constant M , where M = 2/3 ·min{M1,M2} (see
the proof of Proposition 2).7 The constants M1,M2 are defined in Theorem 3
and should be derived according to communication cost lower bounds on the
disjointness problem. While M1 only influences the lower range for which our
bound is applicable, the value of M2 is important if one needs to use our switch-
ing lemma in concrete security proofs. Communication cost lower bounds for
disjointness obtained by information statistics [1] typically have small constant
overhead, but additional technical effort is required in order to estimate M2 in
our setting where the stronger results of [4, 10] are required. We leave this to
future work.

References

1. Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An information statis-
tics approach to data stream and communication complexity. J. Comput. Syst.
Sci., 68(4):702–732, 2004.

2. M. Bellare and P. Rogaway. The Security of Triple Encryption and a Framework for
Code-Based Game-Playing Proofs. In S. Vaudenay, editor, Advances in Cryptology
- EUROCRYPT 2006, 25th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June
1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer Science, pages
409–426. Springer, 2006.

3. K. Bhargavan and G. Leurent. On the Practical (In-)Security of 64-bit Block
Ciphers: Collision Attacks on HTTP over TLS and OpenVPN. In E. R. Weippl,
S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, editors, Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 456–467. ACM, 2016.

4. M. Braverman and A. Moitra. An information complexity approach to extended
formulations. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, Sympo-
sium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June
1-4, 2013, pages 161–170. ACM, 2013.

7 We note that in case N is a power of 2, it is possible to eliminate the factor of 2/3
and set M = min{M1,M2}.

5. R. P. Brent. An improved Monte Carlo factorization algorithm. BIT Numerical
Mathematics, 20(2):176–184, 1980.

6. C. Cachin and U. M. Maurer. Unconditional security against memory-bounded
adversaries. In B. S. K. Jr., editor, Advances in Cryptology - CRYPTO ’97, 17th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 17-21, 1997, Proceedings, volume 1294 of Lecture Notes in Computer Science,
pages 292–306. Springer, 1997.

7. A. Chattopadhyay and T. Pitassi. The story of set disjointness. SIGACT News,
41(3):59–85, 2010.

8. W. Dai, V. T. Hoang, and S. Tessaro. Information-Theoretic Indistinguishability
via the Chi-Squared Method. In J. Katz and H. Shacham, editors, Advances in
Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III, volume 10403
of Lecture Notes in Computer Science, pages 497–523. Springer, 2017.

9. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986.

10. M. Göös and T. Watson. Communication Complexity of Set-Disjointness for All
Probabilities. Theory of Computing, 12(1):1–23, 2016.

11. C. Hall, D. A. Wagner, J. Kelsey, and B. Schneier. Building PRFs from PRPs. In
H. Krawczyk, editor, Advances in Cryptology - CRYPTO ’98, 18th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 23-27,
1998, Proceedings, volume 1462 of Lecture Notes in Computer Science, pages 370–
389. Springer, 1998.

12. R. Impagliazzo and S. Rudich. Limits on the Provable Consequences of One-Way
Permutations. In D. S. Johnson, editor, Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA,
pages 44–61. ACM, 1989.

13. J. Jaeger and S. Tessaro. Tight Time-Memory Trade-offs for Symmetric Encryp-
tion. Cryptology ePrint Archive, Report 2019/258, 2019. Accepted to EURO-
CRYPT 2019.

14. B. Kalyanasundaram and G. Schnitger. The Probabilistic Communication Com-
plexity of Set Intersection. SIAM J. Discrete Math., 5(4):545–557, 1992.

15. D. E. Knuth. The Art of Computer Programming, Volume II: Seminumerical
Algorithms. Addison-Wesley, 1969.

16. I. Kremer, N. Nisan, and D. Ron. On Randomized One-Round Communication
Complexity. Computational Complexity, 8(1):21–49, 1999.

17. E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University
Press, 1997.

18. N. Nisan. Pseudorandom generators for space-bounded computation. Combina-
torica, 12(4):449–461, 1992.

19. J. M. Pollard. A monte carlo method for factorization. BIT Numerical Mathemat-
ics, 15(3):331–334, 1975.

20. A. A. Razborov. On the Distributional Complexity of Disjointness. Theor. Comput.
Sci., 106(2):385–390, 1992.

