
Efficient Symmetric Primitives for Advanced
Cryptographic Protocols
(A Marvellous Contribution)

Abdelrahaman Aly1, Tomer Ashur1, Eli Ben-Sasson2, Siemen Dhooghe1, and
Alan Szepieniec1,3

1 imec-COSIC, KU Leuven, Belgium
firstname.lastname@esat.kuleuven.be

2 StarkWare Industries Ltd
firstname@starkware.co

3 Nervos Foundation
firstname@nervos.org

Abstract While common symmetric primitives like the AES and SHA3
are optimized for efficient hardware and software implementations, a
range of emerging applications using advanced cryptographic protocols
such as multi-party computation and zero-knowledge proofs require op-
timization with respect to a different metric: arithmetic complexity. We
propose two families of symmetric primitives — Vision and Rescue —
designed specifically to have a compact algebraic description optimizing
the advanced cryptographic protocols that employ them. Vision oper-
ates on a small number of binary field elements and adopts the over-
all design strategy, and thus the security rationale, of the AES: it is a
substitution permutation network whose nonlinear layer composes finite
field inversion with an affine transform. To make the same security ra-
tionale work for prime fields, the nonlinear layer of Rescue consists of a
low-degree power map in even steps and its high-degree inverse in odd
ones. The algebraic simplicity of the proposed ciphers raises the need for
careful cryptanalysis, with a particular focus on algebraic attacks. After
providing an elaborate security analysis, we proceed to evaluate the per-
formance of our ciphers with respect to three use cases: the ZK-STARK
proof system, proof systems based on Rank-One Constraint Satisfaction
(R1CS) systems; and Multi-Party Computation (MPC) with masked op-
erations.

1 Introduction

Block ciphers are a fundamental primitive of modern cryptography. They are
used in a host of symmetric-key constructions, e.g., directly as a pseudorandom
permutation to encrypt a single block of data; inside a mode of operations to
generate a stream cipher for authenticated encryption; or, after some tweaking,
in a Merkle-Damgård or sponge construction to generate hash functions. This
last example, hash functions, are themselves a fundamental primitive in their

own right for their fitness to approximate a random oracle, and thereby admit
a security proof based on this idealization.

While the security of standard block ciphers and hash functions such as the
AES, 3DES, SHA2-256, SHA3/Keccak, is well understood and widely agreed on,
their design targets an efficient implementation in software and hardware. The
design constraints that make these primitives efficient in their niche, are different
from the constraints that would make them efficient for use in advanced cryp-
tographic protocols such as zero-knowledge proofs, and multi-party computation
(MPC). The mismatch in design constraints has prompted a departure from the
standardized basic algorithms in favor of new designs, such as LowMC [1] and
MiMC [2]. We contribute to this collection of primitives.

1.1 Arithmetization and Advanced Cryptographic Protocols

Before we introduce our families of permutations and the design decisions that
distinguish them, it is important to understand the needs that they address.
To this end, we first survey various application scenarios within the advanced
cryptographic protocols considered in this paper, and summarize the constraints
induced by them.

The protocols surveyed below use a method that was originally introduced
by Razborov [26] in the context of computational complexity and first applied to
cryptographic protocols by Lund et al. [21]. This method, known as arithmetiza-
tion, characterizes a computation as a sequence of natural arithmetic operations
on finite field elements. This characterization translates computational prob-
lems — such as determining whether a nondeterministic Turing machine halts
in T steps, or whether a Boolean circuit is satisfiable — into algebraic problems
involving low-degree multivariate polynomials over a finite field. A subsequent
interactive proof system that establishes the consistency of these polynomials
simultaneously establishes that the computation was performed correctly. Sim-
ilarly, the arithmetic properties of finite fields enable the transformation of a
computational procedure for one machine — for instance, calculating the value
of a function f(x1, x2, x3) — into a procedure to be run jointly by several in-
teractive machines. The practical benefit of this transformation stems from the
participants’ ability to provide secret inputs xi , and to obtain the function’s
corresponding value without revealing any more information about those inputs
than is implied by this evaluation. In both cases, the complexity of the derived
protocol is determined by that of the arithmetization. Devising cryptographic
primitives that have efficient arithmetizations is the core purpose of this paper.

Zero-knowledge proofs. A zero-knowledge (ZK) proof system is a protocol
between a prover and a verifier whereby the former convinces the latter that
their common input ℓ is a member of a language L ⊂ {0, 1}∗ . The proof system
is complete and sound with soundness error ϵ if it guarantees that the verifier
accepts (outputs 1) when ℓ ∈ L and rejects with probability ≥ 1− ϵ when ℓ ̸∈ L.
When this soundness guarantee holds only against computationally bounded

2

provers we call it an argument system. The proof system is zero-knowledge if
the transcript is independent of the membership or non-membership relation.4
We are concerned here with languages L that capture generic computations in
different models of computation.

Scalable, transparent arguments of knowledge. Let L be a language decidable in
nondeterministic time T (n) , like the NEXP-complete bounded halting problem,

LH = {(M,T) |M is a nondeterministic machine that halts within T cycles.}

Following [7], we say that a ZK proof system for L is
– scalable if two conditions are satisfied simultaneously for all instances ℓ, |ℓ| =

n: (i) proving time scales quasi-linearly, like poly(n) + T (n) · poly logT (n) ,
and (ii) verification time scales like poly(n) + poly logT (n) .

– transparent if all verifier messages are public coins. These systems require
no trusted setup phase.

– argument of knowledge if there exists an extractor that efficiently recovers a
witness of membership of ℓ in L by interacting with a prover whose messages
have a sufficiently high probability of acceptance by the verifier.

Argument systems that possess all of the properties above are referred to as
ZK-STARKs, and have been recently implemented in practice [7], following the-
oretical constructions [8, 9] (cf. [6] for a prior, non-ZK, STARK).

To reap the benefits of a scalable proof system, it is important to encode
computations succinctly, and one natural way to achieve this is via an Algebraic
Intermediate Representation (AIR), as suggested in [7]. Both Turing machines
and Random Access Memory (RAM) machines can be represented succinctly
using AIRs that we describe briefly now, and more formally in the appendix. 5

An Algebraic Execution Trace (AET) is similar to an execution trace of a
computation. It is an array with t rows (one row per time step) and w columns
(one column per register). The size of the AET is t · w . The main property
distinguishing an AET from a standard execution trace is that each entry of the
array is an element of a finite field Fq. The transition function of the computation
is now described by an Algebraic Intermediate Representation (AIR). An AIR is
a set P of polynomials over 2w variables X = (X1, . . . , Xw),X′ = (X ′

1, . . . , X
′
w) ,

representing, respectively, the current and next state of the computation, such
that a transition from state s = (s1, . . . , sw) ∈ Fw

q to state s′ = (s′1, . . . , s
′
w) ∈ Fw

q

is valid iff all polynomials in P evaluate to 0 when the values s, s′ are assigned
to the variables X,X′, respectively. (See appendix B for an example.)

To maximize the efficiency of ZK-STARKs, we wish to minimize the three
main parameters of the AIR: the computation time t , the state width w and the
maximal degree d of an AIR constraint (polynomial) in P.
4 Specifically, if authentic transcripts are indistinguishable from transcripts that can

be generated even when ℓ ̸∈ L by not respecting the correct order of messages.
5 Dealing with random access memory requires a variant of an AIR — a Permuted

AIR (PAIR), but all computations discussed later on in this paper can be done with
a constant number of registers.

3

Circuit model. Numerous ZK proof systems operate in the model of arithmetic
circuits, meaning that the language L is that of satisfiable arithmetic circuits
(ones whose output is 0). Succinct computations can be “unrolled” into arith-
metic circuits, and several compilers exist that achieve this, e.g., [10,25,28]. Such
circuits are specified by directed acyclic graphs with labeled nodes and edges.
The edges, or wires, have a value taken from some ring; the nodes, or gates, per-
form some operation from that ring on the values contained by its input wires
and assign the corresponding output value to its output wires. An assignment
to the wires is valid if and only if for every gate, the value on the output wires
matches that gate’s operation and the values on its input wires. In the context of
zero-knowledge proofs, the prover generally proves knowledge of an assignment
to the input wires of a circuit computing a one-way function, meaning that the
corresponding output matches a given public output. Alternatively, the prover
can prove satisfiability — that there exists a corresponding input — which makes
sense in the context where it is also possible for no such input to exist.

Recent years have seen a concentration of effort towards Quadratic Arith-
metic Programs (QAPs) [19] and rank-one constraint satisfaction (R1CS) sys-
tems [10] for encoding circuits and wire assignments in an algebraically useful
way. The circuit is represented as a list of triples ((ai, bi, ci))i . A vector s of
assignments to all wires is valid iff ∀i . (ai

Ts) · (biTs) = ci
Ts . R1CS systems can

be defined over any ring; when this ring is Z/pZ , i.e., the field of integers modulo
some prime p , the R1CS instance captures exactly an intermediate step of the
ZK-SNARK family of proof systems [19]. Additional transparent systems such
as Ligero [3], BulletProofs [13] and Aurora [11] also accept R1CS over different
fields as their input. For the purpose of efficient R1CS-style proofs, the degree of
the constraints describing a cipher is as important as their number: any algeb-
raic constraint of degree higher than two must first be translated into multiple
constraints of degree two, and the complexity parameter we seek to minimize is
the number of R1CS gates (or constraints) needed to specify the computation.

Multi-party computation (MPC). A multi-party computation is the joint
evaluation of a function in individually known but globally secret inputs. In
recent years, MPC protocols have converged to a linearly homomorphic secret
sharing scheme whereby each participant is given a share of each secret value
such that locally adding shares of different secrets generates the shares of the
secrets’ sum. We use the bracket notation [·] to denote shared secrets.

To compute products, the MPC protocol consumes one pre-generated mul-
tiplication triple, which is a triple of shared and secret values ([a], [b], [c]) such
that ab = c . Since additions are essentially free and multiplication requires the
consumption of multiplication triples, the number of such triples required to
perform a computation is a good first estimate of the complexity of an MPC
protocol.

However, while one multiplication requires one round of communication, in
many cases it is possible to batch many multiplications into a single round.
Moreover, some communication rounds can be executed in an offline pre-processing

4

phase before receiving the input to the computation. These offline rounds are
cheaper than the online rounds, as the former does not affect the protocol’s
latency and the latter completely determines it. To assess the MPC-friendliness
of a cipher one must therefore take three metrics into account: number of mul-
tiplications; number of offline communication rounds; and the number of online
communication rounds.

An important family of techniques that have a relatively low multiplication
count, offline and online complexity is masked operations such as the technique
suggested by Damgård et al. [17]. The protocol raises a shared secret to a large
power while offloading the bulk of the computation to the offline phase. Suppose
for instance that the protocol wishes to compute [ae] for some exponent e, given
only the shared secret [a]. The protocol generates a random nonzero blinding
factor [r] and computes [r−e] using log2 e multiplications in the offline phase.
In the online phase they multiply [a] with [r], open [ar], and then locally raise
this known number to the power e . The result of this exponentiation is then
multiplied with [r−e] giving (ar)e[r−e] = [aerer−e] = [ae]. A similar procedure
enables the computation of inverses with only a handful of multiplications [4].
We extend this range of techniques in two ways. First, we adapt the technique
of Damgård et al. for exponents of the form 1/α; while the online complexity is
the same, our technique reduces the offline complexity by exploiting the concise
representation of α . Second, we introduce a new technique to efficiently evaluate
the compositional inverse of sparse linearized polynomials. This novel technique
is a contribution of independent interest. We cover these masked operation tech-
niques in more detail as part of our efficiency evaluation. The key observation is
that some polynomials with large powers can be efficiently computed over MPC
— even when counting the offline phase.

1.2 A Marvellous Contribution

This paper presents the Marvellous universe of cryptographic primitives optim-
ized for efficiency in advanced cryptographic protocols such as MPC and zero-
knowledge proof systems based on either model of computation. The universe
consists of two families, Vision6 and Rescue7, operating over fields of even and
odd order, respectively. Both families manipulate a state of m > 1 elements for
Nb rounds. At a constant level of security, m and Nb are inversely proportional,
meaning that m represents a parameter that can be tweaked in order to favor a
lower multiplication depth in exchange for a higher multiplication count.

Vision follows the design rationale and security argument of the Rijndael
family of block ciphers. Unlike Rijndael, which operates in each round on 16
elements living in F28 (i.e., bytes), Vision operates in each round on m > 1
elements in F2n/m where n and m are chosen depending on the task at hand. The
6 In the Marvel universe, Vision is an android created by Tony Stark et al. and powered

by binary extension fields.
7 In the Marvel comics, Pepper Potts, Chief Executive Officer of Stark Industries, is

a prime character and an occasional superhero under the name Rescue.

5

inversion takes place over F2n/m and the affine layer is constructed specifically
to have a low algebraic complexity — thereby enabling efficient prover or multi-
party computations.

Rescue also operates on m > 1 field elements but this time over a medium or
large prime field Fp . Translating the design rationale from Rijndael and Vision to
work over prime fields presents a couple of difficulties owing to the non-existence
of higher-degree affine transforms. Our solution is to merge the inversion and
affine steps into one step: raising each state element to the power α or 1/α ,
where α is the smallest prime for which the power map is bijective. This merger
recycles the security argument as this α-power map simultaneously is highly
nonlinear, has high rational degree, and delocalizes differences.

By fixing the secret key, both block ciphers become permutations. By using
this permutation as the main building block in a sponge construction [12], we
obtain extendable output functions and, if the output length is fixed, hash func-
tions. We note that the sponge mode can also be used to turn the permutations
into stream ciphers. However, exploring this option is beyond the scope of this
paper.

1.3 Structure of this Paper

The structure of this paper is as follows: in Section 2 we consider previous
works, such as the cryptographic primitives Rijndael and MiMC, and the sponge
framework. In Sections 3–4 we present our respective designs Vision and Rescue.
Then, in Sections 5–8 we evaluate the efficiency of our constructions in advanced
cryptographic protocols and compare them to MiMC: Section 5 evaluates them
in AIR; Section 6 evaluates them in R1CS; Section 7 evaluates them in masked
MPC protocols. A comparison for the evaluations is given in Section 8. Finally,
Section 9 concludes the body of this paper.

In Appendix A the interested reader will find the experimental Gröbner bases
analysis we used for determining the number of rounds. In Appendices B–C we
recall the relevant definitions related to STARKs, along with a simple motivating
example. Appendix D features pseudo-code of the masking algorithms we used
in Section 7. Finally, in Appendix E we present a straightforward square-and-
multiply implementation of Vision, Rescue, and MiMC.

2 Related Work

In this section we recall relevant previous works.

2.1 The Sponge Framework

A sponge construction generates a hash function from an underlying permutation
by iteratively applying it to a large state. The state consists of b = r + c bits,
where r and c are called the rate and the capacity of the sponge, respectively.
The construction hashes a variable length-input into an arbitrary-length output

6

by absorbing r bits of the input at every iteration. We refer the interested reader
to [12] for the full details and intricacies of the sponge construction, the padding
schemes that are compatible with it, and its security claims.

2.2 Rijndael-128

Since the first block cipher we introduce, namely Vision, is obtained by generaliz-
ing the Rijndael block cipher, we start with a brief description of the latter. The
Rijndael-128 cipher, better known as AES-128, consists of five building blocks:
AddRoundKey, SubBytes, MixColumns, ShiftRows and ExpandKey (which in
turn includes: SubWords, AddWords, RotWords and AddConstants). For our
new constructions, we focus mainly on changing the S-Boxes (i.e., SubBytes
and SubWords) which we thus recall in more detail. For more information on
each building block and the security they give, we refer the reader to [16].

Rijndael S-Box For Rijndael, each S-Box works over one byte and consists of
the sequential execution of two functions S-Box(z) = g(f(z)) . The first function
f is defined as the adapted multiplicative inverse function over F28 where zero
is defined to be mapped to zero,

f : F28 → F28 : x 7→ x254 .

This function protects against differential and linear attacks, and allows for the
wide trail design strategy together with the MixColumns and ShiftRows diffusion
functions. The second function g in the SubBytes step is the affine transformation

g : F8
2 → F8

2 : x 7→Mx+ b ,

with M ∈ F8×8
2 and b ∈ F8

2 . The main property of this transformation is to make
the polynomial representation of the S-Box over F28 more complex and thus to
increase the resistance of the cipher against algebraic attacks. Note that while
the affine transformation works over F2 , the entire S-Box can be represented as
the following polynomial over F28 ,

S-Box(z) = 0x05 · z254 + 0x09 · z253 + 0xF9 · z251 + 0x25 · z247 + 0xF4 · z239

+ 0x01 · z223 + 0xB5 · z191 + 0x8F · z127 + 0x63 .

2.3 The Wide Trail Strategy

From [15, Section 3.1]: "The wide trail design strategy was introduced as a means
to guarantee low maximum probability of multiple-round differential trails and
low maximum correlation of multiple-round linear trails." This strategy is used
to parameterize a cipher’s resistance against differential and linear cryptanalytic
attacks. In the design of Rijndael [16], Daemen and Rijmen look at four rounds
of Rijndael-128. By using properties of the linear layers, they prove that for any
input there will always be at least 25 active S-Boxes.

7

Next, they argue cryptanalytic properties of an S-Box considering differential
and linear cryptanalysis, namely the difference propagation probability and the
maximum absolute correlation. The difference propagation probability δ of an
n-bit Boolean function f is defined as

δ = 2−n max
i,j
|{x | f(x)⊕ f(x⊕ i) = j}| .

The maximum absolute correlation between any pair of linear combinations of
n input bits and n output bits λ over f is defined as

λ = max
α,β∈Fn

2

(
2 Pr
a∈F2n

[αa⊕ βf(a) = 0]− 1

)
where α and β are the input and output masks, respectively (for the complete
argument and definitions we refer the reader to [16]).

The cryptanalytic properties of the inversion function in the S-Box of Rijndael
were obtained by Nyberg [24]. For F28 we have δ = 2−6 and λ = 2−3 .

As there are at least 25 active S-Boxes in four rounds and every S-Box has a
difference propagation probability of at most δ = 2−6 and a maximum absolute
correlation |λ| = 2−3 , a four round differential trail will have a maximal prob-
ability of 2−150 and a maximal absolute correlation of 2−75 . This means that
an eight round trail has a maximal probability of 2−300 and maximum absolute
correlation 2−150 which the designers deem sufficient to resist differential and
linear attacks.

2.4 MiMC

MiMC refers to a pair of block ciphers developed by Albrecht et al. [2] and
designed to work over finite fields Fq where q is a prime or a prime power of 2.
The first variant, MiMC-q/q, consists of a state of one field element in Fq which
is raised to the power 3 in each round followed by the addition of a random
constant Ci and the same key K is injected in every round. The construction
is depicted in Figure 1. For a 128-bit state, 82 rounds are sufficient to offer full
security.8

The second variant of MiMC uses a Feistel network and is denoted by MiMC-
2p/p, where p is once again a prime or a prime power of 2. The construction is
depicted in Figure 2. The state consists of two Fp elements, denoted xL and xR.
The ℓth round function is

xL||xR ← xR + (xL +K + Cℓ)
3||xL ,

where K is the key and cℓ the ℓth round constant. For a 128-bit state, 164 rounds
are enough to offer full security.
8 In case the attacker has restricted plaintext/ciphertext pairs or limited memory, the

number of rounds can be reduced. For a fair comparison, we consider only the general
case.

8

Additionally, the authors propose two hash functions: MiMCHash-q/q and
MiMCHash-2q/q. Both are sponge constructions using the permutation obtained
by fixing the key of the respective block cipher to the all-zero string. The absorp-
tion and squeezing of input and output in the case of MiMCHash-q/q are not
native operations to the working field and thus require complex arithmetic to
achieve. By contrast, MiMCHash-2q/q is much better suited to arithmetization
and thus what we compare our algorithms (in hash mode) against.

x3 x3x

K ⊕ C1K

x3

K ⊕ Cr−1 K

y

Figure 1: The MiMC-q/q block cipher as shown in [2]

XL XR

K ⊕ Cl

x
3

X′L X′R

Figure 2: The MiMC-2p/p block cipher as shown in [2]

3 Vision

We now take the Rijndael cipher and generalize it to Fm
2n/m where we aim for n

bits of security working with an n-bit state and an n-bit key. Incidentally, this
greatly improves (compared to Rijndael) the algebraic efficiency of the design
such as the number of multiplications.

In Section 3.1 we describe the round function of Vision and its key schedule.
Then, in Section 3.2 we discuss the security of the algorithm, and in Section 3.3
how to choose the number of rounds.

9

3.1 Round Function

In the design of Vision we make a distinction between a step and a round. A step
in Vision corresponds to a round in Rijndael and includes a nonlinear operation,
an affine layer, an MDS matrix, and a key injection. A round of Vision consists
of two steps.

The most significant change in the new construction is that it works with
larger S-Boxes hence reducing their overall number. We bundle together the
state into m > 1 elements, thus creating an S-box that is a nonlinear function
over 2n/m bits rather than over bytes. We adapt the inversion function for this
field. By Fermat’s little theorem we get

f : F2n/m → F2n/m : x 7→ x2n/m−2 ,

or in rational form

f(x) =

{
1/x, if x ̸= 0 .

0, otherwise .

Similar to the S-Box of Rijndael, the multiplicative inverse is followed by an
affine polynomial. Recall that an F2-linearized polynomial is of the form

L(x) =

n/m−1∑
i=0

bix
2i ∈ F2n/m [x] with all bi ∈ F2n/m .

Such a polynomial is a permutation over F2n/m if and only if L(x) only has the
root 0 in F2n/m . Finally we add a constant to this linearized polynomial, creating
an F2-affine polynomial,

B(x) = b−1 +

n/m−1∑
i=0

bix
2i ∈ F2n/m [x] .

In the nonlinear layer, each of the m elements goes through an inversion
operation, followed by an affine polynomial: either B−1(x) if this is the first
step in the round, or B(x) if it is the second one. The coefficients bi of B(x)
are chosen such that they are guaranteed not to lie in any subfields of F2n/m in
order to thwart subfield attacks. The polynomial degree of B(x) is four for all
n,m, but as every round involves one evaluation of B−1(x) and of B(x) , the
algebraic degree of a full round in either direction (i.e., encryption or decryption)
is large. Nevertheless, the evaluations of both B(x) and B−1(x) remain efficient
for prover and multi-party computations precisely because of this relatively low
degree.

Finally, we replace the ShiftRows and the MixColumns operations by a single
MDS matrix M generated from a [2m,m,m + 1]2n/m MDS code. We denote
M [i, j] the (i, j)-entry of M . A schematic description of a single round (two
steps) of Vision is depicted in Figure 3 and a full description of the cipher is
listed in Algorithm 1.

10

S2i

K2i−1

S2i−2 M

x
−1

x
−1

⋮

(x)B
−1

⋮

(x)B
−1

M

x
−1

x
−1

⋮

B(x)

⋮

B(x)

K2i

Figure 3: A single round (two steps) of Vision

Algorithm 1: Vision
Input: Plaintext P , round keys Kr for 0 ≤ r ≤ 2Nb

Output: Vision (K,P)
State0 = P +K0

for r = 1 to Nb do
for i = 1 to m do

Interr[i] = (Stater−1[i])
−1

Interr[i] = B−1(Interr[i])
Stater[i] =

∑m
j=1 M [i, j]Interr[j] +K2r−1[i]

end
for i = 1 to m do

Interr[i] = (Stater[i])
−1

Interr[i] = B(Interr[i])
Stater[i] =

∑m
j=1 M [i, j]Interr[j] +K2r[i]

end
end
return StateNb

11

Key schedule. Similar to Whirlpool [5] and in the interest of simplicity, we pro-
pose to reuse the round function of Vision for the key schedule as well. We take a
step of the key schedule to be equal to a step of the cipher proper, replacing the
key addition with an addition of predetermined constants. We set K0 = K and
run the key schedule. The output of step ℓ of the key schedule is then used as
the subkey of step ℓ in the cipher proper. A schematic view of the key schedule
is depicted in Figure 4

K2i

C2i−1

M

x
−1

x
−1

⋮

(x)B
−1

⋮

(x)B
−1

M

x
−1

x
−1

⋮

B(x)

⋮

B(x)

C2i

K2i−2

K2i−1 K2i

Figure 4: The key schedule of Vision

Given the first round constant, all subsequent constants are obtained by ap-
plying an F2n/m affine transformation to the previous one. We use SHAKE256 to
expand a short seed into enough randomness from which one samples (with rejec-
tion as necessary) the initial round constant; the coefficients of this F2n/m affine
transformation; and the coefficients of the F2 affine transformation B. These
constants are generated deterministically using the code provided in [27].

Hashing. By fixing the key to the all zeros string, we transform Vision into a
permutation thereby enabling its use in a sponge construction. The input is pad-
ded and split into blocks of r2n/m elements in F2n/m . The remaining m− r2n/m

elements of the state constitute the capacity and determine the security of the
sponge. After absorbing all the message blocks, r2n/m elements can be squeezed
out in every subsequent iteration. Vision is agnostic to the specific sponge-
construction used.

3.2 Cryptanalytic Strength

In this section we explain the security of Vision and how it resists certain attacks.

The Wide Trail Strategy In order to argue the security of Vision, we follow
the same line of reasoning as was done for Rijndael and apply the wide trail
strategy to our construction. From Nyberg [24] we take the differential and
linear properties of the inversion function over arbitrary binary fields. For the
field F2n/m we have δ = 2−n/m+2 and |λ| = 2−⌈n/2m⌉+1 . Since our construction

12

uses m S-Boxes in every step which are mixed with an MDS matrix, we have at
least m+1 active S-Boxes after a single round consisting of two steps. We require
that n/m ≥ 4 . Thus a four round trail has a maximal differential probability of

24(m+1)(−n/m+2) < 2−2n ,

and maximum absolute correlation

2−4(m+1)⌈n/2m⌉+4(m+1) < 2−n ,

which is sufficient to resist potential differential and linear attacks given that a
large enough security margin was taken.

Polynomial Expressions Jakobsen and Knudsen introduced in [20] the inter-
polation attack. Here the attacker constructs polynomials using input/output
pairs of the cipher. Due to the complexity of calculating GCD’s or Lagrange
interpolation being linear in the degree of the polynomial, one needs the poly-
nomial representations of the cipher to have a high degree to avoid this attack.
Recall that the inversion composed with an affine mapping over F2n/m can be
expressed as the polynomial

b−1 +

n/m−1∑
i=0

bix
2n/m−2i−1, for bi ∈ F2n/m .

For our construction the polynomial expression of one round is of degree close
to the maximum (2n/m − 1). Due to the inversion function after two steps, any
polynomial expression would also be dense.

Rational Expressions The rational degree is defined as the maximum of the
degree of the numerator and of the denominator of the cipher’s fractional rep-
resentation. Denote the rational expression of an S-Box as p(x)/q(x) such that
the degree d of this ratio of polynomials is minimal. We see that Nb iterations
of such an S-Box then would create a rational polynomial of maximal degree
dNb . The S-Box consisting of the inversion function with an affine layer looks as
follows,

S-Box(x) = w−1 +

n/m−1∑
i=0

wi

x2i
,

where each wi is the coefficient of the polynomial representation of the affine
layer. We see that the degree of the rational representation of the S-Box is equal
to 2d for the maximal d such that wd ̸= 0 . Thus the maximal rational degree
of the cipher using Nb iterations is 2Nbd , where the maximal degree is equal to
2n/m − 1 . Due to the combination between the affine layer and the inversion
function, the rational expression is dense. Thus, our dense expression of degree
2Nbd should have around 2Nbd rational terms after Nb iterations. Since B−1(x)

13

is of full degree, two rounds of the cipher are sufficient to create a complex
rational expression between the plaintext and the ciphertext. We also note that
attacks using the rational expression of the cipher can have meet-in-the-middle
attack variants, such as with the interpolation attack [20], thus we consider three
rounds of the cipher to be sufficient in order to resist these attack variants.

Invariant Subfield Attacks Finally, we consider attacks which make use of
an invariant subfield. To recall, for F2n/m , any field F2s where s is a divisor of
n/m is a subfield. An adversary might be able to attack the cipher by making
it work over one of the subfields. This would involve the adversary inputting a
value of a subfield and receiving an output which is again in the same subfield.
When looking at the polynomial representation of a round in Vision. We require
that the affine polynomial has coefficients which do not lie in any subfield of
F2n/m thus frustrating this attack.

Attacks Using Gröbner Bases A Gröbner basis attack amounts to solving
a linear system whose coefficient matrix is the extended Macaulay matrix of
a list of polynomials, in which every row represents one polynomial equation
and every column represents one monomial. Starting with an original list of
polynomials that uniquely defines the solution, this list is extended in two ways:
one, by multiplying polynomials with monomials; and two, by adjoining the
newly derived possibly linearly independent polynomial equations to the working
list. Eventually, the procedure will add rows faster than columns and at some
point solving the linearized system using fast linear algebra techniques produces
a solution to all the polynomial equations, the derived ones as well as the original
ones.

The attack scenario we consider here is a preimage attack when Vision with
a fixed key is used as a permutation inside a sponge function. In our analysis
we observed that the degree of regularity grows very slowly as a function of
the number of rounds whenever m = 1 . As a result, we recommend instanti-
ating families of the Marvellous universe with m > 1 . Consequently a sponge
construction represents a native approach.

To perform this preimage attack on Vision, one compiles a list of polynomial
equations associated with one sponge permutation absorbing one unknown data
block and squeezing out one known block. Absorbing more than one data block
just increases the number of variables but has no effect otherwise; squeezing
out more than one data block increases the number of equations and thereby
decreases the attack complexity. Nevertheless we focus on one output block as
it captures pertinent use cases.

The following system of equations encodes one full round of Vision. Here
S2i−1 ∈ Fm

2n/m is the intermediate state in the middle of Fig. 3, ⊙ represents
the component-wise product, the evaluation of B is component-wise as well, and
0 and 1 represent the vectors of m components set to 0 and 1 , respectively.
The superscript −1 refers to component-wise inversion for S2i−1 and to matrix

14

inversion for M .{
S2i−2 ⊙B

(
M−1(S2i−1 −K2i−1)

)
− 1 = 0

S4
2i−1 ⊙B

(
S−1
2i−1

)
− S4

2i−1 ⊙M−1(S2i −K2i) = 0

}
Note that left hand side of the second equation is a polynomial in S2i−1 as the
negative powers are cancelled by the factor S4

2i−1 and as the degree of the affine
polynomial B is 4.

In total, this system represents 2m polynomial equations of degree 5 in 2m
extra variables per round. The state at the end gives one equation, as one ele-
ment is squeezed out; and m−1 variables, as the value of the one that is squeezed
out is known. The state at the start gives one variable representing the unknown
absorbed data block and m− 1 equations equating parts of the state to zero. So
in total there are 2mNb variables and as many equations, with Nb the number
of rounds and all polynomials are of degree 5. Assuming the system is regular
we find that the Hilbert Series HS(z) =

∏2mNb−1

i=0 (1−z5)

(1−z)2mNb
is a polynomial of degree

8mNb , thereby indicating a degree of regularity of dreg = 8mNb+1 .9 Polynomi-
als in 2mNb variables of this degree have

(
2mNb+dreg

2mNb

)
monomials, and squaring

this number gives a lower bound on the complexity of solving the linearized
system and hence of the overall Gröbner basis attack.

3.3 Choosing the Number of Rounds

In this section we analyze how many rounds are required for the cipher to be
secure. Evidently, this part requires special attention as it affects both the secur-
ity and efficiency of Vision. The number of rounds is determined by the desired
security which in turn is determined by the feasibility of the attacks described
above. The quality of such attacks is quantified by the wide trail strategy, by the
maximal degree and number of terms of the polynomial and rational expressions
of the cipher, and by the complexity of possible Gröbner basis attacks.

As the other attacks become infeasible after a small number of rounds, the
bottleneck seems to be the complexity of a Gröbner basis attack. From our
analysis and subsequent least-squares fit we find that the base-2 logarithm of
the complexity of such an attack is lower-bounded by 5.5mNb . Accounting for
a factor 2 security margin, we recommend 2⌈n/5.5m⌉ rounds, with a minimum
of 10 rounds, for ciphers operating on a state of m elements and targeting an
n-bit security level.

The Gröbner basis attack scenario we considered here, and according to which
we determined the number of rounds, was tailored for using Vision in sponge-
based hashing mode as described in Section 2.1. When used as a block cipher,
the resistance to Gröbner basis attacks would only increase as a result of adding
more variables through the key schedule. We therefore give 2⌈n/5.5m⌉ as a highly
conservative bound and hope that third-party analysis reaches the conclusion
that a smaller number of rounds is sufficient.
9 Experiments we conducted for small m and Nb empirically validate the assertion that

the system behaves like regular ones do. These results are shown in Appendix A.

15

4 Rescue
The second family of algorithms in the Marvellous universe is Rescue. Rescue
is similar to Vision, but this time operating on elements of Fp rather than on
elements of F2n/m .

However, the transition from Vision to Rescue is not straightforward. Since
higher-degree affine polynomials do not exist for Fp we need to find another way
to increase the algebraic degree in order to attain the same security level. One
way to do this is to replace the inverse function with another power mapping α .
This is in line with MiMC [2] which uses α = 3 . Unlike the case of MiMC, in
which security is obtained by employing a relatively large number of rounds, we
increase the algebraic degree by alternating between α and 1/α in consecutive
steps. We note that both α and 1/α are of low-degree when computed in their
“forward” direction and of high-degree when computed in the other direction.
This property makes them suitable for our needs.

In Section 4.1 we describe Rescue and its key schedule. Rescue works with
a power mapping α and in Section 4.2 we discuss proper choices for this α . In
Section 4.3 we argue the security of the algorithm, and in Section 4.4 how to
choose the number of rounds.

4.1 The Round Function
The round function of Rescue is depicted in Figure 5. The cipher works over ele-
ments of the prime field Fp with α the smallest prime such that gcd (p− 1, α) = 1 .
The cipher provides a security level of log2(pm) bits, i.e., m times the bit size of
the prime modulus.

Rescue over Fm
p carries m field element as its state which goes through a

nonlinear operation, an MDS matrix M , and a key injection in each step. Here,
the power map is x1/α if this is the first step in the round, and xα if it is the
second. This nonlinear step is followed by an MDS matrix and a round key
addition over Fm

p .
We focus our attention on the inverse power map which is the function

f : Fp → Fp such that ∀x ∈ Fp : f(xα) = x or f(x)α = x . We note that this
power map exists since we required that gcd(p− 1, α) = 1 . More specifically,
1/α · α ≡ 1mod p− 1 .

A schematic description of the round function (two steps) of Rescue can be
found in Figure 5 and its algorithm is listed Algorithm 2. Note that here, similar
to Vision, both steps are efficient for prover and multi-party computations owing
to the low degree of xα .

Key schedule. Similar to Vision we propose to use the round function for the
key schedule. We replace the key addition with a constant addition, and use
the output of a step in the key schedule as the subkey for the respective step
in the cipher. The initial input to the key schedule is set as K0 = K and the
key schedule is clocked to extract a single round key in every step. A schematic
view of the key schedule is depicted in Figure 6. Again, the code provided in [27]
deterministically generates these constants.

16

x
1

α

x
1

α

⋮ M S2i

x
α

M

K2i

x
α

⋮

K2i−1

+ +S2i−2

Figure 5: One round (two steps) of Rescue.

Algorithm 2: Rescue
Input: Plaintext P , round keys Kr for 0 ≤ r ≤ 2Nb

Output: Rescue (K,P)
State0 = P +K0

for r = 1 to Nb do
for i = 1 to m do

Interr[i] = (Stater−1[i])
1/α

Stater[i] =
∑m

j=1 M [i, j]Interr[j] +K2r−1[i]

end
for i = 1 to m do

Interr[i] = (Stater[i])
α

Stater[i] =
∑m

j=1 M [i, j]Interr[i] +K2r[i]

end
end
return StateNb

K2i

x
α

M

C2i

x
α

⋮

C2i−1

x
1

α

K2i−2

x
1

α

⋮ M

K2i−1 K2i

++

Figure 6: The key schedule of Rescue

17

Hashing. Similar to Vision, by fixing the key to the all zeros string, we transform
Rescue into a permutation thereby enabling its use in a sponge construction. The
input is padded and split into blocks of rp field elements in Fp. The remaining
m−rp elements of the state constitute the capacity and determine the security of
the sponge. After absorbing all the message blocks, rp elements can be squeezed
out in every subsequent iteration. Rescue, like Vision, is agnostic to the specific
sponge-construction used.

4.2 Choosing the Power Mapping

For most fields, α = 3 suffices, and when possible we recommend to choose the
field such that α = 3 is viable. However, in some cases the field is determined by
the intended application and cannot be chosen freely. For example, the 2255−19
field for elliptic curve cryptography does not have gcd (p− 1, 3) = 1 making
α = 3 unsuitable for this case. Instead, users interested in using this field can
choose α = 5 because gcd (p− 1, 5) = 1 .

4.3 Cryptanalytic Strength

We now discuss the security of Rescue.

Wide Trail Strategy over Fm
p We look at the difference propagation probab-

ility of the function xα . In other words, we are interested in solutions a, b such
that

(x+ a)α − xα − b = 0 ,

Since this equation is of degree α− 1 over x it follows that the α power function
is (α − 1)-uniform giving the map a difference propagation probability of at
most δ = 2− log2(p)+log2(α−1) where the differences are taken over Fp . From
the requirement gcd(p − 1, α) = 1 , we know that the α power function is a
permutation, thus its inverse exists and has the same differential uniformity. In
short, we find that x1/α is also (α− 1)-uniform.

From the use of an MDS matrix as diffusion layer between subsequent steps,
we know that every two steps consist of minimally m+ 1 active S-Boxes. From
the stochastic equivalence assumption, we find that for four rounds, or eight
steps, of Rescue, a differential trail has a maximal differential probability of

2−4(m+1) log2(p)+4 log2(α−1)(m+1) .

We require that log2(p) ≥ 2 log2(α− 1) , thus

2−4(m+1) log2(p)+4 log2(α−1)(m+1) ≤ 2−2s ,

with s = m log2(p) the bit-level security. This bound is sufficient to argue the
algorithm’s security against differential attacks.

18

Linear cryptanalysis. Arguing the resistance of Rescue against linear cryptana-
lysis is somewhat more difficult. Linear cryptanalysis over binary fields plays
on the duality between F2n and Fn

2 . The cipher can then be viewed as a vector
Boolean function, and each ciphertext bit can be described as a Boolean function
in (hopefully all) plaintext bits.

Since p is prime, field elements in Fp cannot be broken into smaller compon-
ents in a dual to F2n . This creates a problem for an adversary wishing to use
linear cryptanalysis against Rescue. This is not to say that the cipher is necessar-
ily resistant to all linear cryptanalysis-like attacks. A natural extension of linear
cryptanalysis to Fp would be to search for a linear equation approximating the
cipher as a linear m-variate polynomial over Fp . However, we argue that: (i) this
is not linear cryptanalysis, and more importantly (ii) such an attack should be
considered in the category of algebraic attacks. In particular, our Gröbner basis
analysis below does just that. It describes the cipher as a set of multivariate
polynomials in Fp[x1, . . . , xm] and tries to “linearize” them (in the same sense
that this term is used in linear cryptanalysis over binary vector spaces). One
difference between the two attacks is that a linear attack is statistical in nature:
it approximates a nonlinear function with an error (bias; correlation) whereas
the Gröbner bases attack represents it exactly at the expense of taking explicit
account of the higher-order monomials. Still, the two attacks employ roughly
the same mechanism and hence the Gröbner bases analysis presented below also
applies here.

We stress that the argument provided here is not meant to be rigorous and
that further research is required before the security against linear cryptanalysis
is sufficiently understood for this use case. As Rescue lives in the intersection
of two relatively underdeveloped research areas (namely, ciphers optimized for
arithmetization and ciphers operating over prime fields) we advise users to con-
sult their friendly neighbourhood cryptographer for a third-party evaluation of
this cipher with respect to their particular use case.

Interpolation Attacks We look at polynomial descriptions of the cipher over
Fm
p after several rounds. Due to the α-inverse power map being of high de-

gree, two rounds of the cipher already attain the maximum polynomial degree
p. Moreover, due to this power mapping, the polynomial expression is dense.
From [20], we know that meet-in-the-middle variants of the interpolation attack
are possible, however this attack becomes infeasible after three rounds.

Gröbner Bases Like for Vision, we provide equations encoding the preimage of
the Rescue sponge function where a single unknown message block was absorbed
and one known message block was squeezed out. In contrast to Vision it is now
possible to fold equations across two steps in order to reduce the number of

19

variables and equations.10
(
M−1(S2i−1 −K2i−1)

)α − P −K0 = 0 i = 1

M(Sα
2i−1) +K2i−1 −

(
M−1(S2i+1 −K2i+1)

)α
= 0 i ∈ {1, . . . , Nb − 1}

M(Sα
2i−1) +K2Nb

− S2Nb
= 0 i = Nb

This encoding introduces m new variables and as many new equations of de-
gree α per extra full round. The first half round introduces one variable and m
equations, whereas the last half round introduces no variables and one equation.
So along with m variables representing a single state to start from, we have in
total 1+mNb variables and 1+mNb equations. If the system of equations were
regular its Hilbert Series would be HS(z) =

∏mNb
i=0 (1−zα)

(1−z)mNb+1 and its degree of reg-
ularity dreg = (α − 1)(mNb + 1) + 1 . Experimentally, we find that for small m
and Nb, the degree of the Gröbner bases output by a Gröbner basis attack (the
concrete degree of regularity) satisfies dcon = ⌊dreg/2⌋.11 We extrapolate from
this concrete-to-regular ratio of degrees of regularity to determine the necessary
number of rounds. In particular, for a system of degree of regularity dcon , poly-
nomials in mNb + 1 variables have

(
mNb+1+dcon

mNb+1

)
monomials, and squaring that

number lower bounds the complexity of linear system solving for a square matrix
with that dimension, and hence also bounds the complexity of a Gröbner basis
attack.

4.4 Choosing the Number of Rounds

From the cryptanalysis of the previous sections we can deduce the number of
rounds Rescue requires to resist known attacks. Again we see that the “classical”
attacks become infeasible after a small number of rounds and that the bottleneck
is the Gröbner basis attack.

From our analysis, we find that the base-2 logarithm of the attack complexity
is lower-bounded by 4mNb . Accounting for a factor two security margin, we set
the number of rounds to 2⌈s/4m⌉ with a minimum of 10 rounds, for a security
level of s.

Again, and similar to the case of Vision, we only experimented with Gröbner
basis attacks for the case of hashing in sponge mode. In addition, the formula for
the number of rounds was developed for α = 3 , which is the smallest α that can
be used for Rescue. Using α > 3 (when α is still a small prime) should increase
the resistance against Gröbner basis attacks. Here too, we hope that third-party
cryptanalysis can eventually inspire confidence in reducing the number of rounds.

5 AIR constraints for ZK-STARKs

In this section we analyze the efficiency of Vision, Rescue, and MiMC when de-
scribed as a set of Algebraic Intermediate Representation (AIR) constraints.
10 How folding is done for Rescue is further explained in Section 5.
11 The experiments can be viewed in Appendix A.

20

A performance comparison is delayed until Section 8, where it is presented
jointly with the analogous comparison but for Rank-One Constraint Satisfac-
tion (R1CS) systems and masked MPC. For the sake of readers not versed in
the relevant definitions related to STARKs [7] we recall those, along with a
simple motivating example in Appendices B and C.

Notation. When describing AIRs we use the following conventions. Variables
of the multivariate polynomials are denoted with capital letters (X,K,R, . . .).
Plain variables denote the current state and primed variables (X ′,K ′, R′) denote
variables describing the state at the next cycle of the computation. We limit
ourselves to constraints involving only two consecutive states. We use [i, j] (or
[i]) to select the indicated element from a matrix (resp. vector). When not affixed
to a vector the notation [m] is shorthand for the set {1, . . . ,m}. Furthermore, we
extend set-builder notation to indicate multiple set members for each conditional
satisfaction, i.e., {ai, bi | i ∈ [2]} = {a1, a2, b1, b2}.

5.1 Encoding of a Vision Step as a Set of AIR Constraints

We present an AIR with w = 4m , t = 2 and degree d = 2 for a single
step of Vision. The sponge-based Vision hash replaces the key schedule with
fixed constants, and hence has half the width of the cipher (w = 2m) and the
same length. We describe only the second step in the round in which B(X) is
used. The first step, which uses B−1(X) , is analogous. First we deal with com-
puting the key schedule, which requires 2m variables, denoted K[1], . . . ,K[m]
and R[1], . . . , R[m] . Let M [i, j] denote the (i, j)-entry of the MDS matrix M ,
let Ck[i] ∈ F2n/m be the ith field element of the kth step constant, and let
B(Z) = b0 + b1Z + b2Z

2 + b3Z
4 be the quartic polynomial used by Vision.

1. The first cycle is used to compute the map x 7→ xq−2 , mapping x to its
inverse when x is nonzero and otherwise keeping x unchanged. The following
set of constraints (polynomials) ensures this,

{K[i]K ′[i]−R[i],K[i](1−R[i]),K ′[i](1−R[i]) | i ∈ [m]} .

To see this, notice that when K[i] ̸= 0 the second constraint forces R[i] = 1
in which case K ′[i] = K[i]−1 , and when K[i] = 0 the first constraint forces
R[i] = 0 so the last constraint forces K ′[i] = 0 as well.

2. The second cycle uses the auxiliary variable R[i] to equal K[i]2 , and so,
there exists a quadratic polynomial in K[1], . . . ,K[m] and R[1], . . . , R[m]
that computes the concatenation of the quartic polynomial B along with
the linear transformation M and the addition of the step constant Ck used
in the kth step. The following constraints ensure that K ′[1], . . . ,K ′[m] hold
the correct values, given K[1], . . . ,K[m] ,{

R[i]−K[i]2,K ′[i]−

(
Ck[i] +

m∑
j=1

M [i, j]
(
b0 + b1K[j] + b2R[j] + b3R[j]2

)) ∣∣∣ i ∈ [m]

}
.

21

A single step of the cipher is identical to the key schedule, with the main dif-
ference being that instead of adding a step constant (denoted Ck above) we add
the kth key expansion during that stage. It follows that with an additional 2m
variables and essentially the same set of constraints as above, we have accounted
for the full AIR of the Vision round.

The Vision hash is a sponge construction and so the keys are fixed to certain
known constants. The key schedule is dropped, leading to an AIR of width
w = 2m and t = 2 cycles per step.

Note that one could use different AIRs than described above to capture the
same computation, just as we could use different AIRs to capture the Fibonacci
computation of the example in Appendix B. For instance, one may increase the
number of cycles per step from 2 to 2m, while decreasing the width from 4m to 4 ,
by operating on the m state registers sequentially instead of in parallel. However,
this alternative description does not reduce the overall size of the AET which
stands at 8m per step (and 16m per round). Similar trade-offs can be applied
to Rescue, as well, which we discuss next.

5.2 Encoding of a Rescue Step as a Set of AIR Constraints

Rescue is quite similar to Vision but simpler from an algebraic perspective. The
main difference between the two ciphers is that the inverse step of Vision is
replaced with a cubing operation (i.e., α = 3) and the quartic polynomial is
removed. The result is that each step of the Rescue key schedule involves only
m cubic polynomials (or inverses thereof), so we can encode it via an AIR using
d = 3 with a single cycle per step and width m. We denote the m variables of the
(2k + 1)th step by K[1], . . . ,K[m], of the 2(k + 1)th step by K ′[1], . . . ,K ′[m],
and the ith element of the (2k + 1)th step constant by C2k+1[i] ∈ Fp. The
following constraints ensure that K ′[1], . . . ,K ′[m] hold the correct values, given
K[1], . . . ,K[m] ,{

K ′[i]−
m∑
j=1

C2k+1[i] +

m∑
j=1

M [i, j]K[j]3
∣∣∣ i ∈ [m]

}
.

The first step of each round has an analogous constraint set. We conclude that
Rescue key schedule step AIR has degree d = 3 , state width w = m and t = 1
cycles per step, and twice as many cycles per round.

The representation of the Rescue state function (not the key schedule) admits
an optimization when one considers an adapted round as shown in Figure 7, in
which the second step of one round is joined with the first step of the next, and
in which the first and last step of the entire primitive are taken separately (and
verified using the above encoding). We connect S and S′ from the middles of
rounds k and k + 1 using m cubic equations effectively skipping the evaluation
of the state after round k. The result is that we can encode the adapted round
function via an AIR with a single cycle per round, d = 3 and width m. The
following constraints ensure that S′[1], . . . , S′[m] hold the correct values, given

22

x
3

x
3

⋮ M S′

x
1

3

M

K2(k+1)−1

x
1

3

⋮

K2k

+S

Step of Round 2 k Step of Round 1 k + 1

+

Figure 7: An adapted representation of a round of Rescue better suited for
STARK evaluation.

S[1], . . . , S[m] , K2k[1], . . . ,K2k[m] and K2(k+1)−1[1], . . . ,K2(k+1)−1[m] ,{
m∑
j=1

M [i, j]S[j]3 +K2k[i]−
(m∑

j=1

M−1[i, j]
(
S′[j]−K2(k+1)−1[j]

))3 ∣∣∣ i ∈ [m]

}
.

We conclude that the Rescue state function AIR has degree d = 3 , state width
w = m and t = 1 cycle per round. When this permutation is used as a hash in
sponge mode, Rescue does not require an AIR for the key schedule; this was also
the case for Vision.

5.3 Encoding of a MiMC Round as a Set of AIR Constraints

The ℓth round of MiMC-q/q or MiMC-2p/p, with p and q a prime or a prime
power of 2, maps a single variable x to x3+Cℓ+K where Cℓ is a round constant
and the key K. Thus, we reach an AIR of degree d = 3 , width w = 1 and t = 1
cycle per round. Using X to denote the current state and X ′ the next state, the
AIR (for the ℓth round) is the following simple construction:{

X ′ − (X3 + Cℓ +K)
}

.

For MiMC-q/q this description can be used directly. For the case of MiMC-2p/p,
variable names need to be remapped to account for addition between the two
halves and the Feistel swap. Similar to Rescue, we can represent two rounds of
MiMC-2p/p (represented in Figure 8) using two cubic polynomials. The following
constraints ensure that X ′

L, X
′
R hold the correct values, given XL, XR and K ,{

XR + (XL +K + Cℓ)
3 −X ′

R, (X
′
R +K + Cℓ+1)

3 −X ′
L

}
.

As a result, we reach an AIR of degree d = 3 , width w = 2 and t = 1 cycle per
two rounds.

23

XL XR

K ⊕ Cl

x
3

K ⊕ Cl+1

x
3

X′L X′R

Figure 8: Two rounds of MiMC-2p/p.

6 Zero-Knowledge Proofs Based on R1CS Systems

In this section we evaluate the efficiency of Vision, Rescue and MiMC when en-
coded as rank one constraint satisfaction (R1CS) systems. Such systems are used
by many zero-knowledge proof systems that operate on arithmetic circuits, such
as Pinocchio [25], ZK-SNARK [10], Aurora [11], Ligero [3], and Bulletproofs [13].

6.1 Encoding of a Vision Step as a System of Rank-one Constraints

Recalling the two cycles of the AIR for Vision recounted earlier for constructing
each of the key and round (section 5.1), we convert them into a system of R1CS
constraints. Consider the key schedule first; the cipher round is identical. The
first cycle is converted into 3m R1CS constraints. The second cycle splits the
evaluation of the affine polynomial into two parts, each involving one squaring
and thus m constraints for each part, resulting in a total of 2m constraints for
the second cycle. For this latter constraint we notice that over binary fields (of
size 2k , integer k) it is the case that∑

j

M [i, j]b3R[j]2 = (
∑
j

αjR[j])2

for the constants αj satisfying α2
j = M [i, j]b3 . To see this, observe that in the

expansion of the right hand side
∑

j

∑
j′ αjαj′R[j]R[j′], the terms αjαj′R[j]R[j′]

24

where j ̸= j′ occur twice and thus disappear modulo 2. The constants αj are
guaranteed to exist because the map x 7→ x2 is bijective over binary fields. As a
result, a squaring over a binary field requires only m constraints instead of m2

constraints when working over non-binary fields. Since each step involves both
the key derivation and the cipher step, we observe that the cost of a Vision block
cipher step is 10m R1CS constraints, and that of a round is 20m .

When used in sponge hash mode the key schedule is fixed, and so the num-
ber of R1CS constraints per step is halved. This gives a total number of 5m
constraints per step (and twice that number per round.).

6.2 Encoding of a Rescue Step as a System of Rank-one Constraints

To efficiently encode a step of Rescue for α = 3, we use two R1CS constraints
to compute the cube of a state variable giving a total of 2m constraints for
the cubing operations over the whole state. The step using the inverse cubing
map is analogous. The linear combinations due to the MDS matrix M can be
integrated into these 2m constraints. Since the same computation is applied to
the key schedule when used as a cipher, we count 4m per step, twice as many
constraints (8m) per round, and 2m constraints per step for Rescue used in
sponge hash mode because the key schedule is fixed.

6.3 Encoding of a MiMC Round as a System of Rank-one
Constraints

Since a single MiMC round involves a cubic polynomial, it can be seen that 2
R1CS constraints suffice.

7 MPC with Masked Operations

In this section we explore how to implement Vision and Rescue over MPC using
masked operations.12 We consider three masked operation techniques: one tech-
nique to find the inverse of a shared field element due to Bar-Ilan and Beaver [4];
one technique to raise a shared element to an arbitrary but known power due
to Damgård et al. [17]; and one new technique to compute the compositional
inverse of a low-degree linearized polynomial.

The common strategy behind these techniques is to apply random and un-
known masks to a shared secret value and opening their sum. The operation
proper is applied to the opened variable giving a known but still-masked output
value. The mask on this output value is then removed by combining it with the
output of a dual operation applied to the original shared random mask. The
benefit of these techniques comes from shifting the computation of this mask
and its dual to the offline phase, which is possible as this computation does not
12 For the sake of completeness, we also consider MPC implementations based on the

more straightforward square-and-multiply algorithm in Appendix E.

25

depend on the value to which the operation is applied. In the online phase, the
regular operation is computed locally (i.e. without needing to communicate);
the dual operation does require communication but it is cheaper.

The first two of these techniques require zero-tests — sub-protocols that pro-
duce a sharing of 1 if its input is a sharing of 0, and a sharing of 0 otherwise. For
binary fields and XOR-based secret sharing, the bit decomposition of a shared
element imposes no additional cost. Moreover, using a tree-based multiplication
strategy, the output of the zero-test can be computed in a logarithmic number of
communication rounds. For large prime fields, or binary fields and generic secret
sharing, an observation by Nishide and Ohta provides the protocol with a similar
list of bits with only two rounds of interaction [23]; the same tree-based strategy
then computes the zero-test output once again with a logarithmic number of
communication rounds. Our MPC implementations of Rescue and Vision are
agnostic of the particular zero-test as well as of the secret sharing mechanism,
and the selection of the constituent sub-protocols depends exclusively on the
trade-offs imposed by the application at hand.

It is possible to drop the zero-test altogether; this produces a method which
evaluates an inversion in a small constant number of communication rounds. The
method then assumes that the value is non-zero. In a passive adversarial model,
the probability of this event may be cryptographically small enough to neglect,
especially if the field size is chosen in excess of the bare security requirement.
Conversely, an active adversary may try to manipulate the event and force a
zero value into the S-box. We therefore recommend that users drop the zero-test
only after thoroughly investigating its implications.

7.1 Vision
Recall that elements of the state in Vision are members of the extension field
F2n/m . Since we use a linear secret sharing scheme, we can perform the addi-
tions and multiplications-by-constants from Vision in a straightforward manner,
namely by manipulating shares locally. In particular, this means that applica-
tions of the MDS matrix to the working state impose no extra cost. However,
nonlinear operations do not admit such a straightforward realization and instead
require creative solutions to retain an efficient implementation.

Inversion Only two component blocks of Vision induce a cost: the inversion
operation, and the polynomial evaluation of B and B−1 . All other operations are
linear and thus free. Recall that the state of Vision consists of m field elements.
Therefore, each round includes m initial inversions, m inverse-polynomial evalu-
ations, followed by another m inversions and m regular polynomial evaluations.
These m executions are independent and can therefore be performed in parallel.
The cipher consists of Nb rounds in total. The key schedule algorithm doubles
these numbers, but its cost can be amortized over the entire execution of the
protocol so we neglect it here.

To evaluate the inversion step, we use the technique due to Bar-Ilan and
Beaver [4], of which pseudocode is given below. In a nutshell, the protocol starts

26

with some secret shared random value [r], generated e.g., using PRSS [14]. Gener-
ating this randomness does not require any communication between the parties.
The parties then multiply this random value with the proper input [x], thereby
obtaining the shared value [rx], which is then opened to reveal rx. The inversion
is computed locally by all parties: (rx)−1 . A subsequent multiplication of this
known constant with the secret random value [r] removes the mask. This pro-
duces (rx)−1[r] = [x−1r−1r] = [x−1] , which is exactly the sharing of the inverse
of x. This technique only works of both x and r are nonzero, which explains
where the required zero-tests come from.

The procedure above requires 2 communication rounds and works for all
non-zero elements x ∈ F2n . In scenarios where the shared value is unlikely to
be zero (i.e., if the field is large enough), this technique can be used directly.
Ignoring the zero test, the total cost of this method is 1 communication round:
it is possible to merge a multiplication and an opening call.

For the zero-test we adopt an observation by Nishide and Ohta [23]: we pro-
duce n/m secret-shared random bits [ri] jointly comprising the binary represent-
ation of a random mask [r] with which we mask [x]. Then we open [c] = [x]+ [r]
and obtain this number’s binary representation. Note that c = r if and only if
x = 0 . It follows that by flipping the bits [ri] whose counterparts in c are 0 ,
we obtain a string of shared 1’s iff c = r . Multiplying these bits together in the
tree-based multiplication strategy gives the zero-test output. The generation of
random bits requires 1 offline communication round. The tree-based multiplic-
ation strategy involves n/m − 1 multiplications in ⌈log2(n/m)⌉ online rounds.
The total cost of this zero-test is therefore

offline rounds: 1 ,
online rounds: ⌈log2(n/m)⌉ ,
multiplications: m · 2 · (n/m)− 1 .

Inverse of Sparse Linearized Polynomial A similar approach can be used to
compute B−1(x) thanks to the following observations.13 We ignore for the sake
of simplicity the constant that makes B(x) affine and not linear (over F2); this
simplification makes B−1(x) linear also. In particular, this means that B−1(x+
y) = B−1(x) + B−1(y) . Noting that B(x) consists of three terms with degrees
1, 2, and 4, we can calculate the output [B−1(x)] from [x] as follows: create a
shared random mask [r] and compute [B(r)]. Then open [x − B(r)] and apply
B−1 locally to this opened value. Then adding [r] back gives B−1(x − B(r)) +
[r] = [B−1(x) − r + r] = [B−1(x)] , which is exactly the desired output. Note
that the evaluation of B(r) is not tied to any input data, and can therefore be
pre-computed in an offline phase. The pseudocode in Appendix D.2 shows this
procedure more formally.

Total cost The implementation of a round of Vision follows straightforwardly
from using these building blocks, along with linear (and thus local) operations.
13 To the best of our knowledge, this technique is new and thus an independent con-

tribution of this paper.

27

A round of Vision consists of 2 calls to the inversion protocol at a total cost of
2 communication rounds (ignoring the zero-test), the evaluation of B−1(x) with
an overall cost of 3 communication rounds (2 of which are be precomputed in an
offline phase), and the evaluation of B(x) at a cost of 2 communication rounds.
While these elements are performed on each of m elements, they are performed
independently and are hence parallelizable. The total complexity of Vision is
therefore

offline rounds: 2 ,
online rounds: 2 + 1 + 2 = 5 ,
multiplications: m · (2 + 3 + 2) = m · 7 .

7.2 Rescue

The only nonlinear operations of Rescue to take into account are the α and
inverse-α power maps. To achieve this, We have adapted, for any arbitrary large
α , the exponentiation technique introduced by Damgård et al. [17]. This way,
we can offload a portion of the computation to an offline phase and retain a
constant online complexity (i.e., 1 round). A small adaptation of this technique
computes the inverse power map at the same online cost. We summarize this
adaptation here.

The participants generate a shared secret mask [r]. They compute [rα] and
[r−1] in the offline phase. In the online phase, they open the masked value [xrα]
and locally raise this known value to the power 1/α . At this point, a simple
multiplication-by-constant yields (xrα)1/α[r−1] = [xαrr−1] = [xα]. The pseudo-
code for both procedures is shown in Appendix D.3.

Each procedure requires ⌈log2 α⌉+2 multiplications in total, and ⌈log2 α⌉+2
communication rounds (including the 1 online round). In the case of the inverse
alpha map, obtaining [r−1] can be combined with the exponentiation, thus re-
ducing by one the number of communication rounds. All operations on r can be
executed in parallel during an offline phase as they do not depend on the input
and on each other.

The implementation of Rescue is now straightforward. Each power map is
applied in parallel to all m elements of the state. The multiplication with the
public MDS matrix is free. The cost of a single round is therefore

offline rounds: ⌈log2 α⌉+ 1 ,
online rounds: 2 ,
multiplications: 2m · (⌈log2 α⌉+ 2) .

Note that we have excluded the zero-test from this analysis, given the relat-
ively large field. However, when the risk for having x = 0 is non-negligible, the
additional cost of testing for zero should be taken into account. The protocol
by Nishide and Ohta [23] performs this test by subtracting from [x] a random
shared value [r] with known bit decomposition [r0], . . . , [r⌈log2 p⌉−1]. The protocol
opens [x−r] and locally computes this number’s binary expansion, and each such
bit is subtracted from its corresponding [ri]. The protocol is now in possession

28

of ⌈log2 p⌉ shared secrets which are all zero iff x = 0 . A tree-based multiplica-
tion strategy completes the zero-test. The generation of a bit-wise uniform [r]
in p can be done in 7 communication rounds and 56 · log2(p) multiplications if
log2(p) ≥ 36 (see [22]). These operations add an additional cost of

offline rounds: 7 ,
online rounds: ⌈log2(⌈log2(p)⌉)⌉ ,
multiplications: m · (56 · ⌈log2(p)⌉+ ⌈log2(p)⌉ − 1) .

7.3 MiMC

MiMC works by repeatedly cubing an element and interleaving this cube map
by constant and key injections. For decryption, the inverse of this cube map is
required. However, we have already discussed both nonlinear operations in our
description of Rescue as they constitute the special case where α = 3 . Therefore,
a single round of MiMC has a complexity of

Encryption:
offline rounds: ⌈log2 α⌉+ 1 ≈ 3
online rounds: 1
multiplications: ⌈log2 α⌉+ 2 ≈ 4

Decryption:
offline rounds: ⌈log2 α⌉ ≈ 2 ,
online rounds: 1 ,
multiplications: ⌈log2 α⌉+ 2 ≈ 4 .

Note that now there is once again the possible security hazard when the
secret value, that is undergoing the inverse cube map, is zero. The protocol
should either perform the zero-test and incur its associated cost; or ignore it and
argue why the security degradation is negligible or tolerable.

8 Comparison

To compare MiMC with Vision and Rescue, we set m = 2 , n = 128 , p = 264+13 ,
q = 2127+45 and α = 3. For the purpose of the present comparison, the number
of AIR constraints (of degree d) is given by the value of w · t, we ignore the
zero-test for MPC and observe that the offline parts can be done in parallel for
all rounds.

We compare the three algorithms for AIR (Table 1), R1CS (Table 2) and
masked MPC (Table 3) in two scenarios: as block ciphers and as sponge functions.
For 128-bit block cipher security, we require 24 rounds of Vision; 32 rounds of
Rescue; 82 rounds of MiMC-q/q; and 164 rounds of MiMC-2p/p. Recall that
MiMC-2p/p is better suited for arithmetization in hash mode (see Section 2.4).
In sponge mode these parameters offer only 32 bits security against collisions;
nevertheless they allow for an apples-to-apples comparison with the same rate
and capacity. Note that the field size does not change the cost under the metrics
we consider in this paper.

29

Table 1: Comparison of Vision, Rescue, MiMC-q/q and MiMC-2p/p over AIR.
With m = 2 , n = 128 , p = 264 + 13 , α = 3 , q = 2127 + 45.

Mode Degree (d) Width (w) Cycles (t) w · t
Vision BC 2 8 96 768
Rescue BC 3 2 97 194
MiMC-q/q BC 3 1 82 82
Vision Hash 2 4 96 384
Rescue Hash 3 2 33 66
MiMC-2p/p Hash 3 2 82 164

Table 2: Comparison of Vision, Rescue, MiMC-q/q and MiMC-2p/p over R1CS.
With m = 2 , n = 128 , p = 264 + 13 , α = 3 , q = 2127 + 45.

Mode Constraints per Step Steps Total
Vision BC 20 48 960
Rescue BC 8 64 512
MiMC-q/q BC 2 82 164
Vision Hash 10 48 480
Rescue Hash 4 64 256
MiMC-2p/p Hash 2 164 328

Table 3: Comparison of the Vision, Rescue, MiMC-q/q and MiMC-2p/p over
MPC using masked operations. With m = 2 , n = 128 , p = 264 + 13 , α = 3 ,
q = 2127 + 45.

Mode Offline Rounds Online Rounds Multiplications
Vision BC 2 120 336
Rescue BC 3 64 512
MiMC-q/q BC 3 82 328
Vision Hash 2 120 336
Rescue Hash 3 64 512
MiMC-2p/p Hash 3 164 656

30

9 Conclusion

This paper introduced Marvellous —a universe of cryptographic primitives op-
timized for arithmetic computation. The universe consists of two families of block
ciphers: Vision operates on elements in Fm

2n/m and Rescue operates on elements
in Fm

p . Both can be turned into a hash function by using the sponge construc-
tion and by fixing the key input to zero. We compare our ciphers to MiMC
in terms of efficiency with respect to three use cases: scalable and transpar-
ent zero-knowledge argument of knowledge (STARK) systems, zero-knowledge
proof systems based on rank-one constraint satisfaction (R1CS) systems, and
multiparty computation (MPC) with masked operations.

The Marvellous designs operate on vectors of m > 1 elements, which puts
them at a disadvantage compared to primitives operating on a single field element
(m = 1) such as MiMC or Jarvis in terms of efficiency. We did consider the
counterparts of Vision and Rescue with m = 1. However, experimental results
with m = 1 indicate that the degree of regularity grows poorly in the number
of rounds. The purpose of the parameter constraint m ≥ 2 is to counteract
this vulnerability. We plan to investigate this surprising observation further and
experimentally assess the security of designs having m = 1.

In addition, the Marvellous designs may offer advantages beyond merely the
availability of alternatives with the same functionality to fall back on in the event
of a break. The parameter m can be optimized according to the application’s
native support for parallelism. Furthermore, having fewer rounds as a result of
increasing m is conducive to better latency. Lastly, Marvellous offers the designer
some flexibility to adapt the primitive’s field to the context.

Finally, we stress the highly conservative approach for determining the num-
ber of rounds. We expect that third party cryptanalysis concludes, after due
deliberation, that the number of rounds can be safely reduced in order to im-
prove the efficiency even further. Aggressive optimization is likely to further
reduce the cost of actual implementations in real-world scenarios.

Acknowledgments The authors would like to thank Vincent Rijmen and Daira
Hopwood for their useful comments.

This research was partly funded by Starkware Industries Ltd., as part of
an Ethereum Foundation grant activity. The first author was also supported
by Research Projects Agency (DARPA) and Space and Naval Warfare Systems
Center, Pacific (SSC Pacific) under contract No. N66001-15-C-4070. The second
author was supported by the Research Council KU Leuven, C16/18/004. Author
4 is supported by a Ph.D. Fellowship from the Research Foundation - Flanders
(FWO). Author 5 was supported by an IWT doctoral grant and by the Nervos
Foundation. These supports are greatly appreciated.

References

1. Albrecht, M., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. Cryptology ePrint Archive, Report 2016/687 (2016), http:

31

http://eprint.iacr.org/2016/687
http://eprint.iacr.org/2016/687

//eprint.iacr.org/2016/687
2. Albrecht, M.R., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: Mimc:

Efficient encryption and cryptographic hashing with minimal multiplicat-
ive complexity. In: ASIACRYPT 2016, Part I. pp. 191–219. LNCS (2016).
https://doi.org/10.1007/978-3-662-53887-6_7

3. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: ACM - CCS 2017 (October 2017)

4. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: ACM Symposium on Principles of Distributed
Computing 1989. pp. 201–209 (1989). https://doi.org/10.1145/72981.72995

5. Barreto, P.S.L.M., Rijmen, V.: Whirlpool. In: Encyclopedia of Cryptography and
Security, 2nd Ed. pp. 1384–1385 (2011). https://doi.org/10.1007/978-1-4419-5906-
5_626, https://doi.org/10.1007/978-1-4419-5906-5_626

6. Ben-Sasson, E., Bentov, I., Chiesa, A., Gabizon, A., Genkin, D., Hamilis, M.,
Pergament, E., Riabzev, M., Silberstein, M., Tromer, E., Virza, M.: Computational
integrity with a public random string from quasi-linear pcps. In: EUROCRYPT
2017, Part III. LNCS, vol. 10212, pp. 551–579 (2017). https://doi.org/10.1007/978-
3-319-56617-7_19

7. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018), https://eprint.iacr.org/2018/046

8. Ben-Sasson, E., Chiesa, A., Forbes, M.A., Gabizon, A., Riabzev, M., Spooner,
N.: On probabilistic checking in perfect zero knowledge. arXiv preprint
arXiv:1610.03798 (2016)

9. Ben-Sasson, E., Chiesa, A., Gabizon, A., Virza, M.: Quasilinear-size zero knowledge
from linear-algebraic PCPs. In: TCC 2016. pp. 33–64. LNCS (2016)

10. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In: CRYPTO 2013.
pp. 90–108. LNCS (2013)

11. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. Cryptology ePrint Archive,
Report 2018/828 (2018), http://eprint.iacr.org/2018/828

12. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the indifferentiabil-
ity of the sponge construction. In: EUROCRYPT 2008. pp. 181–197 (2008).
https://doi.org/10.1007/978-3-540-78967-3_11

13. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Efficient range proofs for confidential transactions. Cryptology ePrint Archive, Re-
port 2017/1066 (2007), http://eprint.iacr.org/2017/1066

14. Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Theory of Cryptography, pp. 342–362.
LNCS, Springer (2005). https://doi.org/10.1007/978-3-540-30576-7_19

15. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher square. In: FSE 1997.
pp. 149–165. LNCS (1997). https://doi.org/10.1007/BFb0052343

16. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced En-
cryption Standard. Information Security and Cryptography, Springer (2002).
https://doi.org/10.1007/978-3-662-04722-4

17. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: TCC 2006. pp. 285–304 (2006)

18. Damgård, I., Keller, M.: Secure multiparty AES. In: FC 2010, Tenerife. pp. 367–
374. LNCS (2010). https://doi.org/10.1007/978-3-642-14577-3_31

32

http://eprint.iacr.org/2016/687
https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1145/72981.72995
https://doi.org/10.1007/978-1-4419-5906-5_626
https://doi.org/10.1007/978-1-4419-5906-5_626
https://doi.org/10.1007/978-1-4419-5906-5_626
https://doi.org/10.1007/978-3-319-56617-7_19
https://doi.org/10.1007/978-3-319-56617-7_19
https://eprint.iacr.org/2018/046
http://eprint.iacr.org/2018/828
https://doi.org/10.1007/978-3-540-78967-3_11
http://eprint.iacr.org/2017/1066
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-642-14577-3_31

19. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct nizks without pcps. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 626–645 (2013). https://doi.org/10.1007/978-3-642-
38348-9_37

20. Jakobsen, T., Knudsen, L.R.: The interpolation attack on block ciphers. In: FSE
1997. pp. 28–40. LNCS (1997). https://doi.org/10.1007/BFb0052332

21. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. In: Foundations of Computer Science 1990. pp. 2–10. IEEE (1990)

22. Ning, C., Xu, Q.: Constant-rounds, linear multi-party computation for exponen-
tiation and modulo reduction with perfect security. In: ASIACRYPT 2011. pp.
572–589. LNCS (2011). https://doi.org/10.1007/978-3-642-25385-0_31

23. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and compar-
ison without bit-decomposition protocol. In: PKC 2007. pp. 343–360 (2007)

24. Nyberg, K.: Differentially uniform mappings for cryptography. In: EUROCRYPT
1993. pp. 55–64. LNCS (1993). https://doi.org/10.1007/3-540-48285-7_6

25. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: IEEE Symposium on Security and Privacy 2013. pp. 238–252.
Oakland ’13 (2013)

26. Razborov, A.A.: Lower bounds on the size of bounded depth circuits over a com-
plete basis with logical addition. In: Mathematical notes of the Academy of Sciences
of the USSR. vol. 41 - 4, pp. 333–338 (1987)

27. Szepieniec, A., Dhooghe, S.: Marvellous (instance generator) (2019), https://
github.com/KULeuven-COSIC/Marvellous.git

28. Wahby, R.S., Setty, S., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM and
control flow in verifiable outsourced computation. In: NDSS 2015. LNCS (2015)

33

https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/BFb0052332
https://doi.org/10.1007/978-3-642-25385-0_31
https://doi.org/10.1007/3-540-48285-7_6
https://github.com/KULeuven-COSIC/Marvellous.git
https://github.com/KULeuven-COSIC/Marvellous.git

A Experimental Results Using Gröbner Bases

Vision. Due to the high complexity of calculating the degree of regularity (i.e.,
of performing the Gröbner basis calculation and observing the degree of the
resulting basis) even for round reduced versions, we have few results even after
running the experiment for 60 hours. The one observed data point, coupled with
the prohibitive complexity of obtaining more, justify the assumption that the at-
tacked system behaves like a regular system of the same number of equations and
variables. We extrapolate this finding and show the complexity of constructing
a degree reverse lexicographic Gröbner basis of Vision providing for a different
number of rounds and parameters m. We found these results were independent
of the field size.

0 5 10 15 20 25 30

0

100

200

300

ratio: 1.00

number of rounds

de
gr

ee
of

re
gu

la
ri

ty
/

at
ta

ck
co

m
pl

ex
ity

(lo
g 2

)

(a) m = 2

0 5 10 15

0

100

200

300

ratio: 1.00

number of rounds

de
gr

ee
of

re
gu

la
ri

ty
/

at
ta

ck
co

m
pl

ex
ity

(lo
g 2

)

(b) m = 3

Figure 9: Experimental results of round reduced Vision for parameters m. The
bottom left graphs show on the vertical axis the degree of regularity with exper-
iments denoted by asterisks. The upper graph shows the resulting complexity
of constructing a Gröbner basis assuming the system is regular with the grey
dotted lines showing 128, 192 and 256-bits of complexity.

Rescue. We made the same experiments for Rescue. We calculated the degree
of the Gröbner basis output by the Gröbner basis algorithm for several round-
reduced versions of Rescue and found that this concrete degree was exactly half
the degree of regularity of regular systems, independently of the field size. We
show the complexity of constructing a degree reverse lexicographic Gröbner basis
of round reduced versions of Rescue for different m assuming the same concrete-
to-regular degree ratio holds even for larger round numbers. For comparison, we
also show the complexity if the system were regular.

34

0 5 10 15 20 25 30 35

0

100

200

300

ratio: 1.00
ratio: 0.50

number of rounds

de
gr

ee
of

re
gu

la
ri

ty
/

at
ta

ck
co

m
pl

ex
ity

(lo
g 2

)

(a) m = 2

0 5 10 15 20 25

0

100

200

300

400

ratio: 1.00
ratio: 0.50

number of rounds

de
gr

ee
of

re
gu

la
ri

ty
/

at
ta

ck
co

m
pl

ex
ity

(lo
g 2

)

(b) m = 3

Figure 10: Experimental results of round reduced Rescue for parameters m. The
bottom left graphs show on the vertical axis the degree of regularity of regular
systems (in blue), and half that number (in green), with experimental observa-
tions denoted by asterisks. The upper graph shows the resulting complexity of
constructing a Gröbner basis with the grey dotted lines showing 128, 192 and
256-bits of complexity.

B STARK Intuition

We start be recalling the relevant definitions from [7], along with a simple mo-
tivating example.

Scalable Interactive Oracle Proofs (IOPs) and Transparent Arguments of
Knowledge (STARKs) like [6, 7] express computations using an Algebraic Exe-
cution Trace (AET): for a computation with t steps and internal state captured
by w registers, the trace is a t× w array. Each entry of this array is an element
of a finite field F.

Before presenting formal definitions, we motivate them using a simple ex-
ample. Suppose the prover wishes to prove the statement below, where p is
prime and Fp is the finite field of size p:

“∃x0, x1 ∈ Fp such that y is the qth element in the Fibonnacci sequence
defined recursively for i > 1 by xi = xi−1 + xi−2 mod p.”

An execution trace proving the statement above is a (q + 1)× 1 array in which
the ith state is, supposedly, xi. Now, to verify the correctness of the statement
our verifier must check that the following two conditions hold:

– boundary constraints: the last entry equals y.
– transition relation constraints: for each i ≤ q − 1, the ith register plus

the i+1st register equals the i+2nd register. This can be captured succinctly
by a constraint of the form

Xcurrent +Xnext −Xnext_next = 0 ,

35

which is applied to each consecutive triple-of-states in the trace. Satisfying
a constraint always means setting it to 0, so the right hand side above is
redundant and henceforth we shall simplify such a constraint and write only
its left hand side, namely,

Xcurrent +Xnext −Xnext_next .

Alternatively, the execution trace could be a q × 2 array in which the ith state
supposedly contains xi, xi+1. Now, the verifier checks two constraints for each
pair of consecutive states, described next by using X,Y to denote the two re-
gisters capturing the state,

(i) Xcurrent + Ycurrent − Ynext; (ii) Xnext − Ycurrent .

The boundary constraint would now check that the [q, 2]-entry of the execution
trace equals y.

Comparing the two solutions above, we see that the second one is ×2 bigger
than the first, but its constraints involve only two consecutive states, rather than
three states required in the first solution. The second solution also has a larger
set of constraints (two constraints vs. one constraint in the first solution) but
in both solutions all constraints are multivariate polynomials of degree 1. The
main takeaway message here is that the same computation can be expressed in
several ways via different execution traces and constraint systems.

C Formal Description of an Algebraic Execution Trace

We start with the definition of an algebraic execution trace.

Definition 1 (Algebraic Execution Trace (AET)). An Algebraic Execu-
tion Trace (AET) of width w and length t over a field F is an array with t rows
and w columns, each entry of which is an element of F. The ith row represents
the state of a computation at time i and the jth column represents an algebraic
register. The size of the AET is t · w.

Next, we define a constraint system that checks whether an execution trace
is valid with respect to a computation. Informally, the constraints capture the
transition relation of the computation, each constraint is a polynomial, and an
assignment satisfies a constraint iff the constraint (polynomial) evaluates to 0
under the assignment.

Definition 2 (Algebraic Intermediate Representation (AIR)). An Al-
gebraic Intermediate Representation (AIR) of degree d, width w and length t
over the field F is a set of multivariate polynomials of total degree at most d,
with coefficients in F and variable set Rij , i ≤ w, j ≤ t.

We point out that the definition of AIR in [7] is slightly more complicated
(dealing with boundary constraints and neighborhood sets) but for the purpose
of the current work the simpler definition above suffices.

36

D Algorithms for Masked MPC implementations

We provide here C++-like algorithms for the various masking techniques used
in Section 7.

D.1 Inversion

Invert(x,n) {
b = (x == 0); // log2(x) com calls
c = 0;
while(c == 0) {

r = share_random();
temp = (b + x);
temp = temp * r; // 1 com call
c = open(temp); // 1 com call

}
c = pow(c,2^n-2);
c = (r * c) - b;

return c;
}

D.2 Inverse of Sparse Linearized Polynomial

Invert_B(x) {
r = share_random(); // offline
b_r = B(r); // trivial impl. of B (2 rounds) -- and offline
c = x + b_r;
c = open(x + b_r); // 1 round
c = B_inv(c); // B^-1(x + B(r))
c = c - r; // B^-1(x) + B^-1(B(r)) - r
return c; // B^-1(x)

}

37

D.3 α-power and Inverse-α-power

AlphaPower(x,alpha) {
c = 0;
while(c == 0) {
// offline phase

r = share_random();
rinv = Invert(r);
rexp = rinv^alpha;

// online phase
c = open(x * r);

}
c = pow(c,alpha);
c = c * rexp;
return c;

}

InverseAlpha(x,alpha,alpha_inv) {
c = 0;
while(c == 0) {
// offline phase

r = share_random();
rinv = Invert(r); //1 round
rexp = r^alpha; //lg(alpha)

// online phase
c = open(x * rexp);

}
c = pow(c,alpha_inv);
c = c * rinv;
return c;

}

E MPC with Square-and-Multiply

In Section 7 we presented a method to compute families of the Marvellous uni-
verse in an MPC protocol using masked operations. In this section, we explore a
more straightforward alternative: square-and-multiply. The main difference with
our masked approaches relies on the fact that there is no mechanism to out-
source computation to a pre-processing phase. In fact, all multiplications have
to be performed online.

The exponents for all nonlinear operations for both Vision and Rescue (as
well as MiMC) are publicly available. The complexity of square-and-multiply
over MPC is upper bounded by 2ℓ multiplications and ℓ communication rounds,
where ℓ is the bit length of the exponent. We refer the reader to Damgård and
Keller for a more detailed treatment on the use of square-and-multiply over
MPC [18]. For the treatment here, we assume the existence of a functionality
square_multiply(x,e) that takes a shared secret [x] and outputs [xe] with the
stated complexity.

Vision. To implement the inversion of Vision using square-and-multiply, observe
that x−1 = x2n/m−2 and no zero-test is required; the inverse can therefore be
computed with square_multiply([x], 2n/m− 2). The complexity of this expo-
nentiation is thus n/m communication rounds and 2n/m multiplications. The
evaluation of B and of B−1 requires 2 and n/m − 1 sequential multiplications,
respectively. The linear components of Vision do not contribute to its cost. The
total complexity of one round of this implementation of Vision is therefore

offline rounds: 0 ,
online rounds: 3n/m+ 1 ,
multiplications: m · (5n/m+ 1) .

38

Rescue. For Rescue, the use of square-and-multiply does not require any specific
protocol adaptation. Both power maps can be obtained from an invocation of
square_multiply([x],e), where e = α or e = α−1 mod p− 1. Like for Vision,
the linear components do not contribute to the cost. Consequently, the total
complexity of one round of this implementation of Rescue is

offline rounds: 0 ,
online rounds: ⌈log2 α⌉+ ⌈log2 p⌉ ,
multiplications: 2m · (⌈log2 α⌉+ ⌈log2 p⌉) .

MiMC. The most straightforward implementation of MiMC encryption is already
using square-and-multiply. For the decryption mode, inverse cube map can be
computed with square-and-multiply by invoking square_multiply([x],e), where
e = 3−1 mod q−1. The total cost of one round of MiMC in this implementation
is therefore

Encryption:
offline rounds: 0
online rounds: 2
multiplications: 2

Decryption:
offline rounds: 0 ,
online rounds: ⌈log2 q⌉ ,
multiplications: 2⌈log2 q⌉ .

Comparison. Like before, we consider 24 rounds of Vision with n = 128 and
m = 2; 34 rounds of Rescue with p = 264 +13, α = 3 and m = 2; and 82 rounds
of MiMC; each a parameter set targeting 128 bits of security. This consideration
gives rise to the following table of comparison.

Table 4: Comparison of Vision, Rescue, and MiMC over MPC using square-and-
multiply.

Vision Rescue MiMC Enc. MiMC Dec.
offline rounds 0 0 0 0
online rounds 4632 4420 164 10496
multiplications 15408 17680 164 20992

39

	Efficient Symmetric Primitives for Advanced Cryptographic Protocols (A Marvellous Contribution)

