
Cocks–Pinch curves of embedding degrees five to
eight and optimal ate pairing computation

Aurore Guillevic1, Simon Masson1,2, and Emmanuel Thomé1

1 Université de Lorraine, CNRS, Inria, Nancy, France
2 Thales, Gennevilliers, France

Abstract. Recent algorithmic improvements of discrete logarithm com-
putation in special extension fields threaten the security of pairing-friendly
curves used in practice. A possible answer to this delicate situation is to
propose alternative curves that are immune to these attacks, without com-
promising the efficiency of the pairing computation too much. We follow
this direction, and focus on embedding degrees 5 to 8; we extend the Cocks–
Pinch algorithm to obtain pairing-friendly curves with an efficient ate
pairing. We carefully select our curve parameters so as to thwart possible
attacks by “special” or “tower” Number Field Sieve algorithms. We target
a 128-bit security level, and back this security claim by time estimates for
the DLP computation. We also compare the efficiency of the optimal ate
pairing computation on these curves to k = 12 curves (Barreto–Naehrig,
Barreto–Lynn–Scott), k = 16 curves (Kachisa–Schaefer–Scott) and k = 1
curves (Chatterjee–Menezes–Rodríguez-Henríquez).

1 Introduction

Constructive pairings have been introduced in the cryptographic world in the
2000’s with a one round tripartite Diffie–Hellman key exchange [31], identity-based
encryption [12], and short signatures [13]. More recently, new applications have
been proposed, e.g. zero-knowledge proofs [11] used in the Zcash cryptocurrency
and electronic voting.

Pairing-based cryptography relies on the hardness of the discrete logarithm
(DL) problem over two groups: an elliptic curve E(Fp) and a finite field Fpk , k
being the embedding degree. Advances on discrete logarithm computation over
special field extensions Fpk force us to review not only the parameter sizes of
curves used in practice, but also the families of curves used to generate parameters.

The computation of discrete logarithms in finite fields and the factorisa-
tion of large integers are both addressed by the Number Field Sieve algo-
rithm (NFS). Its complexity is Lpk(1/3, c+ o(1)), with the notation Lpk(α, c) =
exp(c(log pk)α(log log pk)1−α). For the families of finite fields that we consider
in this paper, we have 1.526 ≤ c ≤ 2.20. The value of c depends on the variant
of the NFS algorithm. For prime fields Fp, c = 1.923 and this complexity was
considered as the reference for choosing the size of any finite field Fpk , where
p is medium to large compared to pk. However, for some degrees k the NFS
algorithm can be parameterised differently, yielding a better complexity with a

smaller c. The size of the finite field must then be increased so as to maintain
the same security as previously thought, that is with c = 1.923. In the context
of finite fields (unrelated to pairings), so-called special primes p are subject to
the special NFS (SNFS) variant with c = 1.526: in these cases, the size of p
gives a false sense of security [28,51,48,46,27]. The most efficient pairings were
obtained with specific families of pairing-friendly curves, where the prime p is
special (see Table 2). In 2013, Joux and Pierrot exploited this weakness [32].
In 2015, Barbulescu, Gaudry and Kleinjung revisited Schirokauer’s Tower NFS
(TNFS) variant, and obtained c = 1.526 in a theoretical “special Tower NFS”
variant (STNFS). In 2016, Kim and Barbulescu applied the STNFS variant to
finite fields of composite extension degree k and obtained, in the best case, an
algorithm of complexity with c = 1.526 [35]. This means that asymptotically,
the size of the finite field Fpk should be doubled to provide the same security as
thought before.

However, the asymptotic complexity does not provide enough accuracy to
deduce the sizes of the finite fields that we would like to use for cryptography
today. Menezes, Sarkar and Singh already showed that the efficiency of the
STNFS variants depends on the total size and the extension degree [41], and that
the STNFS variant with the best asymptotic complexity is not necessarily the
best variant that applies to a 3000-bit finite field. Then Barbulescu and Duquesne
proposed a way to refine the estimates [7] and proposed parameters for 128 bits
of security for BN, BLS, and KSS curves (where k = 12, 16 and 18).

The rule of thumb that prime fields of 3072 to 3200 bits offer 128 bits of
security is extrapolated from the asymptotic complexity, rescaled according to a
record computation. It almost systematically relies on the bodacious assumption
o(1) = 0 in the asymptotic formula. Since a record computation is not available
for the TNFS and STNFS algorithms, the papers [41,7] simulate a simplified
version of the new algorithms to estimate their cost. We recall in Table 1 the
popular pairing-friendly curves before the STNFS algorithm (2015), and the
new propositions of [7], together with our estimate of the running-time of a DL
computation in the corresponding fields Fpk .

parameters Cost of DL computation
curve log2 p log2 r k log2 p

k deg p(u) DL on E(Fp) STNFS on Fpk

(≈
√
r) [7] § B

BN 254 254 12 3039 4 2127 2100 2103

BN 446 446 12 5343 4 2223 – 2132

BN 462 462 12 5535 4 2231 2131 2134

BLS12 381 255 12 4572 6 2127 – 2126

BLS12 461 308 12 5525 6 2154 2132 2134

KSS16 330 257 16 5280 10 2128 2139 2141

KSS16 339 263 16 5411 10 2131 2139 2141

Table 1: Sizes and DL cost estimates.

2

BN, ρ = 1, p = 36u4 + 36u3 + 24u2 + 6u+ 1

BN-254 u = −262 − 255 − 1 (2010) [44]
BN-446 u = 2110 + 236 + 1 (2010) [44]
BN-462 u = 2114 + 2101 − 214 − 1 (2018) [7]
BLS12, ρ = 3/2, p = (u6 − 2u5 + 2u3 + u+ 1)/3

BLS12-381 u = −(263 + 262 + 260 + 257 + 248 + 216) (2017 Zcash [15])
BLS12-461 u = −277 + 250 + 233 (2018) [7]
KSS16, ρ = 5/4
p = (u10 + 2u9 + 5u8 + 48u6 + 152u5 + 240u4 + 625u2 + 2398u+ 3125)/980

KSS16-330 u = −234 + 227 − 223 + 220 − 211 + 1 (2018) [7]
KSS16-339 u = 235 − 232 − 218 + 28 + 1 (2018) [7]

Table 2: Parameters of commonly used pairing-friendly curves

Generation of pairing-friendly curves. Pairings on elliptic curves map pairs in
E(Fp)[r] × E(Fpk)[r] to Fpk , and the embedding degree k should be small, say
1 ≤ k ≤ 20. The first suggested pairings used supersingular curves, because they
were the first known way to produce curves with a small embedding degree. Then
two other approaches were proposed (and surveyed in [26]). On the one hand,
polynomial methods parameterise the characteristic p, the trace t, and the curve
order r by polynomials. The parameterisation enables two fast variants of the
Tate pairing: the ate or optimal ate pairing [50]. A Tate pairing computation
contains an internal loop (the Miller loop) of length log2 r, while this length is
log2(t − 1) (resp. (log2 r)/ϕ(k)) for an ate (resp. optimal ate) pairing. On the
other hand, non-polynomial methods were also proposed. Because of the large
gap in pairing efficiency, the latter methods attracted less attention, and were
not optimised.

Pairing-friendly curves from polynomial constructions enjoy fast implementa-
tions (e.g., [2]). However, the downside is that since p is parameterised by a poly-
nomial, the Kim–Barbulescu STNFS algorithm applies (at least in some cases),
and security estimates need to be revised. Alternatively, cryptographers look for
new pairing-friendly curves. Chatterjee, Menezes and Rodríguez-Henríquez pro-
pose in [16] to revisit curves of degree one (and trace t = 2), avoiding the TNFS
attack. The target finite field is a prime field so it only requires log2(p) ≥ 3072 to
get 128-bits of security [43]. Fotiadis and Konstantinou propose in [24] families
of elliptic curves from a variant of the (polynomial) Brezing–Weng method. For
composite embedding degree, they increase the parameter sizes in order to get
TNFS-resistant curves, but they also propose curves of prime embedding degree
for which the TNFS attack is restricted to deg h = k only. Unfortunately, the
prime p has a polynomial form so the special variants (SNFS and STNFS) still
apply.

Our contribution. In this article, we take a different approach: to avoid having
to increase the size of the target finite field Fpk , we choose a Cocks–Pinch curve
so that p is not special and the special variants (SNFS, STNFS) do not apply.

3

But on Cocks–Pinch curves, no optimal ate pairing is available, and the ate
pairing is as slow as the Tate pairing because of a large trace t. So we modify
the Cocks–Pinch method to obtain a trace of smallest possible size (log2 r)/ϕ(k),
and arrange so that the ate pairing or its variant [50, §2.2] is available. We obtain
an optimal pairing as defined by Vercauteren in [50]. We generate curves of
embedding degree 5 to 8 in order to compare the efficiency of the ate pairing
with different sizes of parameters.

– For composite extension degrees (k = 6 and 8), we reuse some of the op-
timisations from the literature to obtain a pairing computation that is as
efficient as with competing constructions. While it is true that by doing so, we
endow our prime p with some special structure, we argue in this paper that
the multivariate nature of our parameterisation offers much more flexibility
than known constructions, and to our knowledge thwarts all known “special”
variants of NFS.

– For prime embedding degree (k = 5 and 7), the TNFS attack is restricted
to one choice: deg h = k. It leads to a smaller target finite field than in the
composite cases. But a prime embedding degree eliminates some optimisation
opportunities for the pairing computation.

This article also gives cost estimates and comparisons based on existing software.
We show that the added confidence in the DL hardness can be obtained without
sacrificing the pairing efficiency too much.

Organisation of the paper. In Section 2, we recall the Tate and ate pairings, in
particular the notions of Miller loop and final exponentiation. We present in
Section 3 our Cocks–Pinch variant to construct secure curves with an efficient
pairing. Section 4 addresses the cost estimates for DL computation with the
known variants of the NFS algorithm. In Section 5 we provide parameters of
curves for 128 bits of security together with the analysis of the pairing cost. We
compare the pairing efficiency to their challengers: BN, BLS12 and KSS16 curves,
and embedding degree one curves from [16].

1.1 Code repository

Companion code is provided for several sections in this article, including code to
reproduce experimental data. The code repository is publicly accessible at:

https://gitlab.inria.fr/smasson/cocks-pinch-variant.git.

2 Background on pairings

We present here the computation of two pairings used in practice, the Tate and
ate pairings. Then we list refinements in the case of ate pairing on BN curves.

Let E be an elliptic curve defined over Fp. Let πp be the Frobenius endo-
morphism (x, y) 7→ (xp, yp). Its minimal polynomial is X2 − tX + p and t is

4

https://gitlab.inria.fr/smasson/cocks-pinch-variant.git

called the trace. Let r be a prime divisor of #E(Fp) = p+ 1− t. The r-torsion
subgroup of E is noted E[r] := {P ∈ E(Fp), [r]P = O} and has two subgroups
of order r (eigenspaces of πp in E[r]) that are useful for pairing applications:
G1 = E[r] ∩ ker(πp − [1]) and G2 = E[r] ∩ ker(πp − [p]). The latter is defined
over Fpk , where the embedding degree k is the smallest integer k ∈ N∗ such that
r divides pk − 1. A pairing-friendly curve is an elliptic curve that satisfies the
following conditions: p and r are prime numbers, t is relatively prime to p, and k
should be small. The discriminant −D is the fundamental discriminant of the
quadratic imaginary field defined by X2 − tX + p (so that t2 − 4p = −Dy2 for
an integer y). All constructions require that |D| be small enough, so that the
complex multiplication method is feasible (the record computation in [49] has
|D| ∼ 1016). The ρ-value of E is defined by ρ(E) = log(p)/ log(r). The “ideal”
case is ρ(E) ≈ 1 when r = #E(Fp).

We recall the Tate and ate pairings definition, based on the same two steps:
evaluating a function fs,Q at a point P , and then raising it to the power (pk−1)/r.
(Sometimes the pairing is said reduced to stress the final exponentiation). The
function fs,Q has divisor div(fs,Q) = s(Q)− ([s]Q)− (s− 1)(O) and satisfies

fi+j,Q = fi,Qfj,Q
`[i]Q,[j]Q

v[i+j]Q

where `[i]Q,[j]Q and v[i+j]Q are the two lines needed to compute [i + j]Q from
[i]Q and [j]Q (` through the two points, v the vertical). We compute fs,Q(P)
with the Miller loop presented in Algorithm 1.

Algorithm 1: MillerLoop(s, P,Q) – Compute m = fs,Q(P).

m← 1; S ← Q
for b from the second most significant bit of s to the least do

m← m2 · `S,S(P)/v[2]S(P); S ← [2]S
if b = 1 then

m← m · `S,Q(P)/vS+Q(P); S ← S +Q
return m

The Tate and ate pairings are defined by

Tate(P,Q) := fr,P (Q)(pk−1)/r, and ate(P,Q) := ft−1,Q(P)(pk−1)/r

where P ∈ G1 ⊂ E[r](Fp) and Q ∈ G2 ⊂ E[r](Fpk). The values Tate(P,Q), and
ate(P,Q) are in the “target” group GT of r-th roots of unity in Fpk .

Before we analyse in Section 5 the cost of computing pairings, we briefly
comment on the CM discriminant −D. When D = 3 (resp. D = 4), the curve has
complex multiplication by Q(j) (resp. Q(i)), so that a twist of degree 6 (resp. 4)
exists. When E has d-th order twists for some d|k, then E[r](Fpk) is isomorphic
to E′[r](Fpk/d) for some twist E′. Dealing with the latter is easier. Therefore,
composite extension degrees are often an invitation to choose D = 3 or D = 4.

5

3 Construction of secure curves with efficient ate pairing

In this section, we look for curves that are not threatened by recent variants of
NFS. We make the following observations.

– All families of curves in [26] compute p as a polynomial evaluated at a chosen
integer. This (often) enables the STNFS algorithm [32], so that the DL
problem in Fpk is easier than in other fields of same bit length.

– While composite extension degrees are appealing for fast pairing computation
(see §2), they also offer additional parameterisation choices for the TNFS
algorithm [35]. This also makes DL computations in Fpk more efficient.

We wish to avoid special primes. Furthermore, as our range of interest 5 ≤ k ≤ 8
contains the composite degrees k = 6 and k = 8, we acknowledge the need to
choose the size of p so as to compensate the TNFS attack.

Algorithm 2: ModifiedCocksPinch(k,−D,T0, Tmax, λr, λp) – Compute a
pairing-friendly curve of embedding degree k and fundamental discriminant −D,
where dlog2(p)e = λp and dlog2(r)e = λr.
for T ∈ {T0, . . . , Tmax} do

if r = Φk(T) is not prime then continue
if dlog2(r)e 6= λr or −D is not a square mod r then continue
for i in {1, 2, . . . , k − 1} such that gcd(i, k) = 1 do

t0 = T i + 1 mod r; y0 = (t0 − 2)/
√
−D mod r . centered representatives

Let π0 = t0+y0
√
−D

2
.

Choose ht and hy such that π = π0 +
ht+hy

√
−D

2
r is an algebraic integer, and

dlog2(ππ̄)e = λp.
t = t0 + htr; y = y0 + hyr; p = ππ̄ = (t2 +Dy2)/4
if p ≡ 1 mod k then . optimisation; see Remark 2

if p is prime then return [p, r, T, t, y]

To avoid special primes, we revisit the Cocks–Pinch method, which constructs
pairing-friendly curves with freely chosen embedding degree k and discriminant
−D. The classical Cocks–Pinch algorithm first fixes the prime r and deduces
a root of unity mod r to compute t and then p satisfying the conditions of
pairing-friendly curves. Instead, we first choose T small, and then compute r
such that T is a k-th root of unity mod r. Then we observe that fT,Q(P) like
ft−1,Q(P) gives a Miller loop of a bilinear pairing.

Our variant is given in Algorithm 2. The trace t̄ ∈ Z/rZ can be any of
t̄ = T i + 1 mod r where gcd(i, k) = 1. Then ȳ = (t̄ − 2)/

√
−D mod r as in the

original method. We then lift t̄, ȳ to t0, y0 ∈ Z. The choice of the cofactors ht and
hy in Algorithm 2 must abide by certain rules so that the Weil number π is an
algebraic integer: if −D ≡ 0 mod 4, then t0 + ht must be even, and if −D ≡ 1
mod 4, then t0 + y0 + ht + hy must be even. For p to have the desired bit length,

6

we notice that ht and hy must be chosen in an annulus-like region given by the
equation 2λp+1 ≤ (t0 + htr)

2 +D(y0 + hyr)
2 < 2λp+2.

The Miller algorithm in the ate pairing iterates on t − 1 = T i, a k-th root
mod r. Iterating on another root of unity also gives a pairing, as remarked by
the following statement.

Theorem 1 ([50, §2.2] and the references therein). Let P ∈ G1 = E[r] ∩
ker(πp − [1]) and Q ∈ G2 = E[r] ∩ ker(πp − [p]). Let T be a k-th root of unity
mod r. Then, fT,Q(P) defines a bilinear pairing and

Tate(Q,P)L = fT,Q(P)c(p
k−1)/N

where N = gcd(T k − 1, pk − 1), T k − 1 = LN , and c =
∑k−1
i=0 T

k−1−ipji.

In particular, our T in Algorithm 2 is convenient and defines an optimal ate
pairing in the sense of [50, Definition 1]:

OptimalAte(P,Q) := fT,Q(P)
pk−1

r .

Does Algorithm 2 produce primes of a special form? In this paper, we will discuss
in particular whether we hold to our promise that p, as issued by Algorithm 2, is
not special. The prime p has the form

p =
1

4

(
(t0 + htr)

2 +D (y0 + hyr)
2
)

where t0, y0 are centered representatives of T i+1 mod r and (t0−2)/
√
−D mod r

resp., and both r and t0 are low-degree polynomials in T .
If T , ht, and hy are chosen by Algorithm 2 as random integers of the desired

bit length, and that D is arbitrary (then y0 has no nice sparse polynomial
expression in T), then the expression above is considered unlikely to yield any
computational advantage to an attacker.

On the other hand, efficiency considerations may lead us to choose D specially,
so as to allow extra automorphisms on the curve, for example choose −D as
the discriminant of Q(ζd) for some d | k. Then

√
−D typically has a low-degree

polynomial expression in T . If T , ht, and hy are then chosen with low Hamming
weight, the answer is less clear. In comparison to other pairing-based constructions
however (see Table 2), we have here a multivariate expression for p (it depends on
T , ht, and hy). There exists no special-purpose NFS construction that adapts well
to this situation. It seems hard, in particular, to derive a univariate expression that
enjoys the properties of sparsity that are desired for NFS polynomial selection.

As an illustration, here is the multivariate expression of p in the case k = 8,
D = 4, and i = 5.

p = (h2
t + 4h2

y)T 8 − 4hyT
7 − (4hy − 1)T 6 − 2(ht − 1)T 5

+(2h2
t + 8h2

y + 2ht + 1)T 4 − 4hyT
3 − (4hy − 1)T 2 − 2(ht + 1)T

+(h2
t + 4h2

y + 2ht + 1).

7

4 DL cost estimate and size requirements

In this section, we would like to determine, for each embedding degree k ∈
{5, 6, 7, 8}, the appropriate bit length of p so that the pairings on the curves
constructed in §3 match the 128-bit security level. This leads us to assess the
hardness of the DL computation in the subgroup of (256-bit) prime order r of
Fpk , In terms of notations, we naturally search for different values of p for each
k, so that p depends on k. For brevity however, we prefer to keep the notation p
rather than use pk.

We also do the same analysis for other curve families. We strive to take into
account in our analysis the different known NFS variants. This complements the
study in [7].

4.1 Strategy for estimating NFS cost

Estimating the computational cost of the number field sieve is a delicate task
because of the inherent complexity of NFS, its numerous parameters and its
variants, and moreover because of the very different nature of the different steps
of the algorithm. This is a vastly different situation from, say, the assessment
of the DLP hardness for elliptic curves, where the lack of any algorithm more
advanced than O(

√
r) algorithms makes estimations comparatively easy.

The two main steps of NFS are relation collection and linear algebra. We tried
to estimate both, in terms of “elementary operations” that combine a memory
access (to sieve array elements, to vector coefficients) as well as arithmetic
operations. Our simulation methodology is not dissimilar to the one used in [41,7]:
starting from an NFS or TNFS setup, we estimate the norms involved in the
relation collection step, and the associated smoothness probability. Further detail
is given in Appendix B.2. We summarise here the variations that we introduce:

– In the NFS context, coprime (a, b) pairs that form the primary source of
candidates for smoothness are counted as the total number of pairs in the
sieve area times the factor 6

π2 = 1
ζ(2) . In the TNFS context, the analogue of

this scaling is given by 1
ζK(2) where ζK is the Dedekind zeta function of the

base number field [30].
– We compute the smoothness probabilities of the two norms that are deduced

from (a, b) pairs as the average of the smoothness probability of norms over
106 samples, instead of the smoothness probability of the average norm over
25600 samples.

– Estimating the matrix size that results from a given set of parameter choices
requires to estimate the reduction factor of the so-called filtering step. As
we show in Appendix B.2, recent large computations chose parameters very
differently, which led to vastly different reduction factors. Based on a rationale
for parameter choice that is in accordance with previous computation with the
cado-nfs software, we estimate the filtering step as providing a (conservative)
constant reduction factor of 9. This is very different from the reasoning in [7]
and we justify this choice in Appendix B.2.

8

Original family curve or field k log2 p
k log2 r dh df ,dg poly cost

prime fields Oakley p 1 3072 3071 – (5,4) JL 2127

prime field 1 3200 256 – (5,4) JL 2128

[16] 1 3072 256 – (5,4) JL 2128

This work k5, p663 5 3318 256 5 (6,5) JL 2128

k6, p672, D = 3 6 4032 256 2 (6,3) Conj 2128

k7, p512 7 3584 256 7 (6,5) JL 2132

k8, p544, D = 1 8 4349 256 2 (8,4) Conj 2130

[26, Ex. 6.8] BN-462 12 5534 462 6 (8,2) JP 2135

[26, §6.1] BLS12-381 12 4572 255 6 (12,2) JP 2126

BLS12-461 12 5525 256 6 (12,2) JP 2134

[26, Ex. 6.11] KSS16-330 16 5280 257 16 (10,1) JP 2141

KSS16-339 16 5411 263 16 (10,1) JP 2141

Table 3: Comparison of DL cost estimates. Polynomial selection methods are
abbreviated as Conj for the conjugation method [8], JL for Joux–Lercier, JP for
the Joux–Pierrot STNFS variant (when it improves on JL).

4.2 Extension degrees 5 to 8, and comparison

Our simulation results are given in Table 3, which covers both the method in
§3 as well as competing curves. For reference, we also include a cost estimate,
obtained with the same method, for 3072-bit prime fields. This fits reasonably
well with the commonly accepted idea that this size matches 128-bit security (see
e.g. [43, §5.6]). We compared the cost estimates using the special form of p to
generic settings (such as the conjugation method).

It follows from Table 3 that for curves in §3, the “special” algorithms such
as STNFS offer no computational advantage. In other words, p is not special, at
least not in an exploitable way, for the sizes we consider.

4.3 Evolution of DL cost as log2 p changes

As an additional measure of the inapplicability of special algorithms to the
constructions in §3, we also study the evolution of the DL computation cost as
the size of p varies. We do this for k = 6, assuming D = 3, and k = 8 with D = 4.
Figure 4 compares prime-order MNT curves (k = 6, p is not special) and our
curves.

It follows from Figure 4 that the special form of p for our curves does offer an
advantage compared to the generic Conjugation–TNFS algorithm for very small
sizes of p, between 512 and 560 bits for k = 6, D = 3 (this corresponds to |ht|
and |hy| of at most 20 bits), and between 512 and 536 bits for k = 8, D = 4 (|ht|
and |hy| of at most 12 bits). For larger parameters, the generic TNFS algorithm
is faster.

9

1024 2048 3072 4096 5120 6144

64

80

96

112

128

144

160

176

log2 p
n

log2 cost

Simulation in Fp6 , MNT, STNFS deg h = 2

Simulation in Fp6 , Cocks–Pinch (§3), TNFS-conj deg h = 2

Simulation in Fp6 , Cocks–Pinch (§3), STNFS deg h = 3, r of 256 bits
Simulation in Fp8 , Cocks–Pinch (§3), TNFS-conj deg h = 2

Simulation in Fp8 , Cocks–Pinch (§3), STNFS deg h = 8, r of 256 bits
L0

p(1/3, 1.923)/28.2 (DL, theoretical, re-scaled s.t. DL-768 ↔ 268.32)

Fig. 4: Cost estimates in Fp6 and Fp8 , comparison of MNT curves and curves of §3
for k = 6 and k = 8. The degree of h was chosen to minimize the estimated cost
of (S)TNFS. The notation L0

N stresses the fact that the asymptotic complexity
is used without o(1).

10

5 Pairing cost

We now count the number of operations over Fp to compute the optimal ate
pairing with Algorithms 3, 4 and 5. We denote by mk, sk, ik and fk the costs of
multiplication, squaring, inversion, and p-th power Frobenius in Fpk , and by m =
m1 the multiplication in Fp. We neglect additions and multiplications by small
constants. In order to provide a common comparison base, we give theoretical
costs for mk and sk using Karatsuba-like formulas [22,42,19]. Inversions are
computed using the expression below, which relies on efficient Frobenius powers:

a−1 = (NormFk
q/Fq

(a))−1 × aq × · · · × aq
k−1

.

Remark 2 (Frobenius cost). For the latter to perform well, it is very useful to have
p ≡ 1 mod k (as we did in Algorithm 2), and define Fpk as Fpk = Fp[x]/(xk − α):
let w =

∑k−1
i=0 ωix

i ∈ Fpk = Fp[x]/(xk − α). Then, wp
j

= ω0 +
∑k−1
i=1 ωix

ipj . The
terms xip

j

do not depend on w and are precomputed. By Euclidean division by
k, xip

j

= xujk+i = αujxi. Therefore we have at most fk = (k− 1)m for any pj-th
power Frobenius. Note that for k even, we have xk/2·(p

j−1) = α(pj−1)/2 = ±1 so
that xk/2·p

j

= ±xk/2, whence one multiplication can be saved.

Consequences of the above are given in [47], notably i2 = 2m + 2s1 + i1
and i3 = 9m + 3s1 + i1, neglecting additions. Recursive application yields ik
for k = 2, 3, 4, 6, 8, 12, 16. For k = 5 we use aq × · · · × aq4 = ((aq)1+q)1+q2 so
that i5 = 4f5 + 2mk + i1 + 10m, and i7 is obtained in a similar way. Table 5
summarises these theoretical costs, and includes specialised costs for cyclotomic
squares (see [29, §3.1]). We compared Table 5 with timings of the RELIC library [4]
for primes p of 6 to 8 machine words and k = 2, 6, 12 on an Intel Core i5-4570
CPU, 3.20GHz. The accordance is satisfactory (within 10%), to the point that
we use Table 5 as a base. Additionally, we also measured the relative costs of i1,
s1, and m on the same platform, leading to i1 ≈ 25m and s1 ≈m.

k 1 2 3 5 6 7 8 12 16

mk m 3m 6m 13m 18m 22m 27m 54m 81m
sk m 2m 5m 13m 12m 22m 18m 36m 54m
fk 0m 0m 2m 4m 4m 6m 6m 10m 14m

scyclo
k 6m 12m 18m 36m

ik − i1 0 4m 12m 52m 34m 116m 44m 94m 134m
ik, with i1 = 25m 25m 29m 37m 77m 59m 141m 69m 119m 159m

Table 5: Relative cost of mk, sk and ik for our finite field extensions.

5.1 Miller loop

The Miller loop evaluates functions defined over Fpk , at a point of E(Fp). Algo-
rithm 3 is essentially a repetition of Algorithm 1 with a few modifications related

11

to practice: it is desirable to separate numerators and denominators so as to com-
pute only one inversion at the end. Furthermore, the argument T may conveniently
be handled in binary non-adjacent form T =

∑n
i=0 bi2

i = (bnbn−1 . . . b2b1b0)2-NAF
with bi ∈ {−1, 0, 1}. We use the notation HW2-NAF for the number of non-zero
bi.

Algorithm 3 uses three helper functions that are detailed as Algorithms 4
and 5. The input point S as well as the output point S in these algorithms are in
Jacobian coordinates [20]: the quadruple (X,Y, Z, Z2) represents the affine point
(X/Z2, Y/Z3). This saves inversions and multiplications.

In Table 6, we give the cost of the line computations for 5 ≤ k ≤ 8. As
it turns out, the embedding degree k affects the pairing cost in multiple ways.
As mentioned in §2 (see also [21,3]), twists allow efficient computations for 6|k
(resp. 4|k) if we set D = 3 (resp. D = 4). During Algorithm 3, the factors in
proper subfields of Fpk are neutralised during the final exponentiation, and hence
are not computed. In particular, λd and md are omitted from the Miller loop
computation for these curves. Algorithms 4 and 5 are also simplified3. Table 6
takes adaptations of these optimisations into account when twists are available4,
while the data for k = 5 and k = 7 comes straight from Algorithms 3, 4 and 5. We
denote by mck the cost of multiplying a constant c ∈ Fp by an element of Fpk . A
consequence of Table 6 is that the Jacobi quartic, Hessian, and Edwards models
induce comparatively expensive pairing computations, and the Weierstrass model
is preferred in practice.

The final cost of Algorithm 3 is given by the following formula, where the
notation cX denotes the cost of step X, or algorithm X.

cMillerLoop =(log2(T)− 1) (cDoubleLine + cVerticalLine)

+ (log2(T)− 2)cUpdate1

+ (HW2-NAF(T)− 1)(cAddLine + cVerticalLine + cUpdate2)

+ (only if k ∈ {5, 7})ik. (1)

5.2 Final exponentiation, first and second part

The final exponentiation to the power (pk − 1)/r is computed in two steps,
named first and second part, corresponding to the two factors of the exponent:
pk−1
Φk(p) ×

Φk(p)
r .

3 In particular, the line computations involve some sparse products, e.g. (
∑
aix

i)×
(
∑
bix

i) in Fp8 over Fp2 with a1 = 0 (see [21]), which costs 8m2 by Karatsuba. Note
that [52] claims 7m2 but with no explicit formula. We were not able to match this. The
work [34, §3.3] obtained 7m2 in favorable cases at a cost of extra precomputations.

4 The Edwards model is not available for a quartic or sextic twist because there is no
4-torsion point on these twists, only the quadratic twist can be in Edwards form [40].
The Jacobi quartic model is not available for a cubic or sextic twist because there is
no 2-torsion point on the twist. The Hessian model is compatible with cubic twists
but not sextic twists.

12

Algorithm 3: MillerLoop(T, P ∈ E(Fp), Q ∈ E(Fpk)) – Compute fT,Q(P).

(mn,md)← (1, 1); S ← Q
for b from the second most significant bit of |T | to the least do

(λn, λd)← `S,S(P); S ← [2]S .DoubleLine
(µn, µd)← vS(P) .VerticalLine
(mn,md)← (m2

nλnµd,m
2
dλdµn) .Update1

if b = ±1 then
(λn, λd)← `S,bQ(P); S ← S + bQ .AddLine
(µn, µd)← vS(P) .VerticalLine
(mn,md)← (mnλnµd,mdλdµn) .Update2

if T < 0 then (mn,md)← (md,mn)
return mn/md

Algorithm 4: AddLine(S,Q, P) and DoubleLine(S, P) – Given S,Q ∈
E(Fpk), compute S +Q (resp. 2S) and the evaluation of the line (SQ) (resp. the
tangent at S) at P ∈ E(Fp).

AddLine
(X,Y, Z, Z2)← S
(xQ, yQ)← Q
(xP , yP)← P
t1 ← xQ · Z2 −X
t2 ← yQ · Z · Z2 − Y
t3 ← t21
t4 ← t1 · t3
t5 ← X · t3
X← t22 − (t4 + 2t5)
Y ← t2 · (t5 −X)− Y · t4
Z← Z · t1
λd ← Z
λn ← λd · (yP − yQ)− t2 · (xP − xQ)
return ((λn, λd),S = (X,Y,Z,Z2))

DoubleLine
(X,Y, Z, Z2)← S
(xP , yP)← P
t1 ← Y 2

t2 ← 4X · t1
if a = −3u2 for a small u ∈ Fp then

t3 ← 3(X − uZ2) · (X + uZ2)
else

t3 ← 3X2 + a · Z2
2

X← t23 − 2t2
Y ← t3 · (t2 −X)− 8t21
Z← Z · 2Y
λd ← Z · Z2

λn ← λd · yP − 2t1 − t3 · (Z2 · xP −X)
return ((λn, λd),S = (X,Y,Z,Z2))

Algorithm 5: VerticalLine(S ∈ E(Fpk), P ∈ E(Fp)) – Compute the line
through S and −S evaluated at P .
(X,Y, Z, Z2)← S; (xP , yP)← P
return (µn = Z2, µd = Z2 · xP −X)

13

k −D AddLine
and DoubleLine

Vertical
Line

Update1
and Update2

ref

Weierstrass model

5 any 10m5 + 3s5
6m5 + 4s5 + 10m

5m
4m5 + 2s5

4m5
Alg. 4,5

7 any 10m7 + 3s7
6m7 + 4s7 + 14m

7m
4m7 + 2s7

4m7
Alg. 4,5

6 | k −3
10mk/6 + 2sk/6 + (k/3)m
2mk/6 + 7sk/6 + (k/3)m

0
sk + 13mk/6

13mk/6
[21, §5]

6 | k −3
11mk/6 + 2sk/6 + (k/3)m
3mk/6 + 6sk/6 + (k/3)m

0
sk + 13mk/6

13mk/6
[5, §4,6]

4 | k −4
9mk/4 + 5sk/4 + (k/2)m
2mk/4 + 8sk/4 + (k/2)m

0
sk + 8mk/4

8mk/4
[21, §4]

Jacobi quartic model (not for cubic or sextic twist)

4 | k −4
12mk/4 +7sk/4 +1mck/4 +(k/2)m
3mk/4 + 7sk/4 + 1mck/4 + (k/2)m

0
sk + 8mk/4

8mk/4
[23]

2 | k any 16mk/2 + 1sk/2 + 4mck/2 + km
4mk/2 + 8sk/2 + 1mck/2 + km

0
sk + mk

mk
[25, §3.2]

Hessian model (not for quartic twist)

6 | k −3
7mk/3 + 4mk/6 + (2k/3)m

2mk/6 + sk/6 + 4mk/3 + 2sk/3 + (k/2)m
0

sk + 13mk/6

2mk/3
[18]

Edwards model (not for quartic, cubic or sextic twist)

2 | k any 12mk/2 + mck/2 + km
4mk/2 + 7sk/2 + 2mck/2 + km

0
sk + mk

mk
[40,25]

Table 6: Miller loop cost (see Equation (1)). We assume a = 0 when 6 | k and
D = 3, b = 0 when 4 | k and D = 4, and a = −3 otherwise. The second option
for 6 | k is reported by [5, §4] to perform slightly better.

k (pk − 1)/Φk(p) cFirstExp comment
5 p− 1 (4m) + i5 + m5 Can omit f5 = 4m which appears in i5
6 (p+ 1)(p3 − 1) f6 + m6 + 2s3 + 3m3 + i3 Uses Fp6 = Fp3(y) = F(x)(y)

= 4m + m6 + i6 + m3 with y2 = x and x3 = β

7 p− 1 (6m) + i7 + m7 Can omit f7 = 6m which appears in i7
8 p4 − 1 i8 + m8

Table 7: Cost cFirstExp of the first part of the final exponentiation

14

The first part of the exponentiation uses few Frobenius powers and inversions
and its cost (Table 7) depends on the value of Φk(p). Its computation is very
efficient because of Frobenius powers (Remark 2). In particular, for x ∈ Fp8 , xp

4

is almost free: it is simply the conjugate of x seen in a quadratic extension of
Fp4 .

The second part of the exponentiation is more expensive and is specific to
each curve. The key ingredient is the base-p representation of the exponent, since
Frobenius powers pi are computed efficiently. Notice that in Algorithm 2, we
have p ≡ (t − 1) ≡ (t0 − 1) mod r. Let c be such that p + 1 − t0 = c · r. The
expression (Φk(p)−Φk(t0− 1))/r simplifies, and we obtain a nice generic formula
in p and t0 for each embedding degree. The actual expression depends on the
exponent i in Algorithm 2, as well as on congruence conditions on T . We only
detail a few examples. Formulas for the other cases can be obtained with the
companion software mentioned in §1.1.

For k = 8, we choose D = 4 so that
√
−D = 2T 2. When for instance we

choose i = 5 in Algorithm 2, we have t0 = T 5 + 1 mod r = 1− T . This leads to
the following expression, where hu denotes the integer (ht + 1)/2.

Φ8(p)/r = Φ8(t0 − 1)/r + (p+ t0 − 1)(p2 + (t0 − 1)2))c,

c = ((h2
u − hu + h2

y + 1/4)T − hy)T − hy + 1/4)T

−hu + 1)T + h2
u + h2

y (2)

where Φ8(t0 − 1)/r = Φ8(−T)/r = 1 by construction. To raise to the power
Φ8(p)/r, we use the fact that T is even to deal with fractional values in the
exponent. We obtain the following upper bound on the cost, using cT , cu, cy to
denote the cost of raising to the power T , hu, and hy, respectively:

cSecondExp,k=8 = (3fk + 2sk + 3mk) + (11mk + 4cT + 2cu + 2cy).

For k = 6, we choose D = 3 so that
√
−D = 2T − 1. We obtain expressions

that vary slightly depending on i, and on the congruence class of ht mod 2 and
T mod 3. It also appears that it is more convenient to compute the cube of the
pairing. When for instance we choose i = 1 in Algorithm 2, and that T mod 3 = 1
and ht mod 2 = 1, we have the following expression, where u = (ht + 1)/2,
w = hy/2, and T ′ = T − (T mod 3) = T − 1:

3Φ6(p)/r = 3Φ6(t0 − 1)/r + 3(p+ t0)c,

3c = ((3u2 + 9w2 − 3u− 3w + 1)T ′+

3u2 + 9w2 − 6w)T ′ + 3u2 + 9w2 + 3u− 9w. (3)

Raising to the power 3Φk(p)/r thus has the following cost (we give an upper
bound on all possible congruence conditions). We use cu, cw, cT and cT ′ to denote
the cost of raising to the powers u, w, T and T ′ = T − (T mod 3), respectively.

cSecondExp,k=6 = (cT + fk + 2sk + 4mk) + (12mk + 2sk + 2cu + 2cw + 2cT ′)

15

For k = 5 and k = 7, we use p = (t0 − 1) + cΦk(T) to reduce Φk(p)/Φk(T)
(rational fraction in the indeterminate T) to the form

Φk(p)/r =
∑

0≤j≤k−2

pjaj(c, T).

The exact expression of the coefficients (aj)j depends on k and i, and so does
the cost of raising to these powers. For example, for k = 5 and i = 2, we have

(aj)0≤j≤3 = (−cT 3 − T + 1,−cT 3 − (c+ 1)T + 1, cT 2 + c+ 1, c).

By applying this method, we found that for k = 5 and k = 7, raising to the
power Φk(p)/r costs at most

cSecondExp,k∈{5,7} = 2ik + (k − 2)(fk + cT + 2mk) + cc + mk

where the two inversions can be saved in the favorable case i = 1, and cT and cc
are the costs of raising to the powers T and c, respectively.

6 Comparisons with previous curves

We compare curves generated with Algorithm 2 of embedding degree 5 to 8
with the state of the art: BN and BLS12 curves [3], KSS16 curves [21, §4], and
k = 1 curves [16]. Note that several estimates below differ marginally from [7],
which uses a different estimated cost i12 = i1 + 97m, and also reproduce the 7m2

estimate that we mentioned in footnote 3 on page 12.

BN curve with a 462-bit prime p. Barbulescu and Duquesne give in [7]
parameters of a BN curve for 128 bits of security. The curve is defined from the
parameter u = 2114 + 2101 − 214 − 1 and has a prime p of 462 bits (see Table 2).
An estimation of the optimal ate pairing on this curve is also given in [7], we
reproduce the final count. The Miller loop iterates on T = 6u+ 2, of 117 bits and
NAF-Hamming-weight 7. Reusing Equation (1) and Tables 5 and 6, and taking
into account the correcting terms of the Miller loop for BN curves [50], we get:

cMillerLoop = 116(3m2 + 6s2 + 4m) + 115(s12 + 13m2)

+6(11m2 + 2s2 + 4m + 13m2)

+(11m2 + 2s2 + 4m) + 4m2 + 4m + 2(13m2) + 4(10m)

= 12180m.

According to [33, Corollary 4.1], raising to the power u costs

cu = 4(114− 1)m2 + (6 · 3− 3)m2 + 3m12 + 3 · 3s2 + i2 = 1585m + i.

The final exponentiation costs

cFinalExp = i12 + 12m12 + 3scyclo
12 + 4f12 + 3cu = 5591m + 4i

where scyclo
12 is the cost of cyclotomic squarings (see [33]), namely scyclo

12 = 18m.
The optimal ate pairing on the BN-462 curve costs in total 17771m + 4i.

16

BLS12 curve with a 461-bit prime p. We reproduce the results from [3]
adapted to the parameter u = −277 + 250 + 233 from [7]. We obtain:

cMillerLoop = 76(3m2 + 6s2 + 4m) + 75(s12 + 13m2)

+2(11m2 + 2s2 + 4m + 13m2)

= 7685m.

As above, we adapt [33, Corollary 4.1]. Raising to the power u costs

cu = 4(77− 1)m2 + (6 · 1− 3)m2 + 2m12 + 3 · 2 · s2 + i2

= 1045m + i.

The final exponentiation costs

cFinalExp = i12 + 12m12 + 2scyclo
12 + 4f12 + 5cu

= 6043m + 6i.

The optimal ate pairing on the BLS12-461 curve costs in total 13728m + 6i.

KSS16 curve with a 339-bit prime p. We reproduce the results from [21]
with the parameter u = 235 − 232 − 218 + 28 + 1 from [7]. We obtain:

cMillerLoop = 34(2m4 + 8s4 + 8m) + 33(s16 + (8m4)) + 4(9m4 + 5s4 + 8m)

+ 3(14m) + 5m4 + s4 + 16m + 6(8m4)

= 7691m.

Raising to the power u costs 34scyclo
16 + 4m16 = 1548m, and the final exponentia-

tion costs:

cFinalExp = i16 + 32m16 + 34scyclo
16 + 8f16 + 24m4 + 9(1684m)

= 18210m + i.

The optimal ate pairing on the KSS16-339 curve costs in total 25901m + i.

Curves of embedding degree one. The curves suggested by [16] are resistant
to TNFS because the target finite field is Fp, with p as large as 3072 bits. The
ate pairing is not available on these curves because the trace is t = 2, so the
Tate pairing must be used. Its cost is given in [16]: for a 256-bit r, the Miller
loop costs 4626m + i and the final exponentiation costs 4100m. The total cost is
finally 8726m + i.

6.1 Our new STNFS-resistant curves at the 128-bit security level

We generate four curves of embedding degree 5, 6, 7 and 8 with Algorithm 2
combined with the CM method and estimate the cost of the new optimal ate
pairing on these curves. Code to reproduce this search can be found in the
repository mentioned in §1.1.

17

Twist-secure and subgroup-secure parameters. We checked our curves for twist-
and subgroup-security (see [10]). For each curve, we checked the size of the
cofactors of the curve and its quadratic twist on G1 and G2. A curve E is η-
subgroup-secure over Fq if all the factors of E(Fq) are at least as large as r,
except those of size η. A curve is twist-subgroup secure if its quadratic twist is
subgroup-secure. This makes five criteria: subgroup- and twist-subgroup- security
for both G1 and G2, as well as subgroup security for GT (with respect to Φk(p)).
We selected four curves that are subgroup and twist-subgroup secure for G1

with η = 10. Except in the k = 7 case, the curve containing the subgroup G2

is also twist-subgroup secure. We did not investigate the GT subgroup-security:
together with the Cocks–Pinch conditions, it would require finding parameters
such that Φk(p)/r is prime or almost prime. With the sizes provided in the
following paragraph, 1088 ≤ log2(Φk(p)/r) ≤ 2816 so it is impossible to factor
this thousand-bit integer entirely and it will very unlikely be prime.

Parameter choices. We explain here the choices for choosing parameter sizes in
Algorithm 2:

Size of the prime p We target a size for the finite field Fpk that determines
the size of p. These values can be read in Table 3.

Hamming weight (or 2-NAF weight) of T We restrict to low weight T in
order to get an efficient Miller loop. We choose HW2−NAF(T) = 4 for the
k = 5 curve, or HW2−NAF(T) = 5 for others.

Discriminant For efficiency, we target curves with as many automorphisms as
possible. For k = 6 (resp. 8), we set D = 3 (resp. 4) so that a sextic (resp.
quartic) twist is avaible. For k = 5, we chose arbitrarily D ≈ 1010, which is
well within the feasible range for the CM method. For k = 7, the size of p (512
bits) restricts us to small discriminants, since we must have 4p = t2 +Dy2

with log2(t), log2(y) ≈ log2(r) = 256.

Hamming weight (or 2-NAF weight) of ht and hy As explained in §5.2,
for k = 6 and k = 8 we restrict to low weight cofactors ht and hy so as to
accelerate the exponentiation to the power c in the second part of the final
exponentiation (see Equations (2) and (3)).

Allowing a cofactor of 10 bits, we obtain twist- and subgroup-secure elliptic
curves of embedding degree five to eight. We denote by Et the quadratic twist
of E and Ẽ the degree d twist of E such that E(Fpk)[r] ' Ẽ(Fpk/d)[r]. Points
on E can be represented with the Edwards model if we restrict to curves with
4-torsion points. For the remainder of this section, the notation pN denotes an
arbitrary prime of N bits.

18

Curve of embedding degree 5 The curve E : y2 = x3 − 3x+ b5 defined over
Fp with

b5 = 0x3dd2d2b0b2e68770bf01b41946ab867390cf9ecc4a858004fc769c
278f079574677c7db3e7201c938b099f85eb6e85f200b95a80b24fdb
df584098d690c6b91b21d00f52cc79473a11123b08ab2a616b4a4fbf

p = 0x40000138cd26ab94b86e1b2f7482785fa18f877591d2a4476b4760
217f860bfe8674e2a4610d669328bda13044c030e8cc836a5b363f2d
4c8abcab71b12091356bb4695c5626bc319d38bf65768c5695f9ad97

satisfies

#E(Fp) = 22 · p405 · r #Ẽ(Fp5) = p2393 · (22 · p405 · r) · r

#Et(Fp) = 22 · p661 #Et(Fp5) = p2649 · (22 · p661)

r = 0x9610000000015700ab80000126012600c4007000a800e000f000200040008001

The additional parameters to obtain the curve from Algorithm 2 are :

T = 264 − 261 + 215, D = 1010 + 147, i = 1, ht = 3, hy = −0x11e36418c7c8b454

and Fp5 can be defined as Fp[x]/(x5 − 5).

Curve of embedding degree 6 The curve E : y2 = x3 − 1 defined over Fp
with

p = 0x9401ff90f28bffb0c610fb10bf9e0fefd59211629a7991563c5e468
d43ec9cfe1549fd59c20ab5b9a7cda7f27a0067b8303eeb4b31555cf4
f24050ed155555cd7fa7a5f8aaaaaaad47ede1a6aaaaaaaab69e6dcb

satisfies
#E(Fp) = 22 · p414 · r #Ẽ(Fp) = 3 · p414 · r

#Et(Fp) = 22 · 3 · 7 · p665 #Et(Fp) = 13 · 19 · p664

r = 0xe0ffffffffffffc400000000000003ff10000000000000200000000000000001

The additional parameters to obtain the curve from Algorithm 2 are :

T = 2128 − 2124 − 269, D = 3, i = 1, ht = −1, hy = 280 − 270 − 266 − 0x3fe0

and Fp6 can be defined as Fp[x]/(x6 − 2).

Curve of embedding degree 7 The curve E : y2 = x3 − 3u2x+ b7u
3 with u

non-square defined over Fp with

b7 = 0x15d384c76889d377dd63600fbe42628e0c386a3e87
915790188d944845aab2b649964f386dc90b3a9b612
0af5da9a2aaead5e415dd958c5cfa80ea61aac268b0

p = 0x8f591a9876a6d2344ae66dd7540ea2fd28174755d1
6c4ae5c5cd5c1d208e639271b48c8ba7453c95a2a9b
e6434f2455504d419f13e35062aa5ebbc49ecfd30f9

19

satisfies
#E(Fp) = 22 · 32 · p251 · r #Et(Fp7) = 25 · 5 · p504

r = 0xb63ccd541c3aa13c7b7098feb312eecf5648fd215c0d2916714b429d14e8f889

The additional parameters to obtain the curve from Algorithm 2 are :

T = 243 − 241 − 0x47dfdb8, D = 20, i = 6, ht = −2, hy = 0

and Fp7 can be defined as Fp[x]/(x7 − 2).

Curve of embedding degree 8 The curve E : y2 = x3 + 289x defined over Fp
with

p = 0xb4910005e588fde4023747293d3a6e3d41b42afe599c
f6ed3e0192d99fe38524365563d4dd1749878641cde159
afdb73b758c3baa70c8c1fa842a7142d6a5981846aba09

satisfies
#E(Fp) = 22 · p286 · r #Ẽ(Fp2) = 2 · p830 · r

#Et(Fp) = 24 · 29 · p535 #Et(Fp2) = 2 · p1086

r = 0xffffffffbfdf08000606301799d79ce503fe520538262507b940781000000001

The additional parameters to obtain the curve from Algorithm 2 are :

T = 264 − 0x10083e00, D = 4, i = 5, ht = 5, hy = −0xd700

and Fp8 can be defined as Fp[x]/(x8 − 17).

6.2 Comparison with the state of the art

In order to compare the pairing on our curves with the computation on BN,
BLS12, KSS16, and k = 1 curves, we need to determine the cost of a multiplication
m for different sizes of p. Indeed, a multiplication in the 3072-bit field of k = 1
curves is much more expensive than in a 512-bit prime field. Table 8 shows the
benchmarks with RELIC [4] for base field arithmetic with the different primes
involved in our pairings.

Pairing computation. The costs of the Miller loop and the first part of the
final exponentiation are given by Equation (1), Table 6, and Table 7. The second
part of the final exponentiation is covered by §5.2. This part is specific to each set
of curve parameters, in particular HW2-NAF(ht) and HW2-NAF(hy). Appendix A
goes into more detail for our curve with k = 8. Further detail for the second part
of the final exponentiation for all exponents, covering the various cases, can be
found in the code repository (see §1.1).

Table 9 summarises our comparison results for pairing computations. We warn
the reader that timings of Table 9 are not real pairing computations, as we simply
used as a base the arithmetic operations of RELIC [4], and the multiplication

20

costs that we detailed in the paragraphs above. This being said, for the curves
where an actual implementation of the optimal ate pairing is available with
RELIC (BN and BLS12 curves), the estimation that we obtain is within 10% of
the actual computation time. This gives reasonable confidence for the validity of
the other projected timings.

Miller loop. We obtain a faster Miller loop for k = 6 and k = 8 curves compared
to BN and BLS12 curves. The k = 8 curve has a shorter Miller loop (64-bit)
compared to the BN and BLS12 ones (117-bit). The k = 6 curve has a sextic
twist that allows to compute fT,Q(P) on Fp of 672 bits, compared to a field of
922 bits for BN and BLS12 curves. As for the cases k = 5 and k = 7, the Miller
loop is not as efficient because no twist is available, and the computation is done
over Fpk . Comparisons between k = 6 and k = 7 curves show that using a curve
with twists is a better option than having a short Miller loop. The best option is
obviously to have a short Miller loop and a curve with twists, as for k = 8 curves.

Final exponentiation. The rewriting tricks used in §5.2 for the final exponentiation
apply for any curve obtained with Algorithm 2 with the optimisation r = Φk(T).
For k = 6 and k = 8 the cofactor is smaller, and the discriminant D = 3, resp.
D = 4, gives formulas that are as good as for BN and BLS12 curves. For k = 5
and k = 7 curves, the exponentiation is less efficient because fast cyclotomic
squaring formulas are not available.

Total cost. Table 9 shows that our new pairing is almost as efficient as the
optimal ate pairing on the BLS12 and KSS16 curves. Given the nature of Table 9
which gives estimated timings, it is however more appropriate to say that the
performance difference is within the error margin. Additionally, we estimate that
the optimal ate pairing on our k = 8 curve is up to 23 times more efficient than
the Tate pairing on k = 1 curves [16].

Prime size Building block for Fp multiplication
192 < log2(p) ≤ 256 35ns
320 < log2(p) ≤ 384 KSS16 69ns
448 < log2(p) ≤ 512 BN, BLS12, k = 7 120ns
512 < log2(p) ≤ 576 k = 8 154ns*
576 < log2(p) ≤ 640 188ns
640 < log2(p) ≤ 704 k = 5, k = 6 230ns*

3008 < log2(p) ≤ 3072 [16] 4882ns**
Table 8: Fp multiplication timing for RELIC on a Intel Core i5-4570 CPU,
3.20GHz
*Estimation because no bench is available for 9 and 11 machine words primes.
**Benched with GNU MP

21

Curve Prime Miller loop
time estimation

Exponentiation
time estimation Total time

estimation

k = 5 663-bit 14500m
3.3ms

9813m
2.3ms 24313m 5.6ms

k = 6 672-bit 4601m
1.1ms

3871m
0.9ms 8472m 2.0ms

k = 7 512-bit 18342m
2.2ms

13451m
1.6ms 31793m 3.8ms

k = 8 544-bit 4502m
0.7ms

7134m
1.1ms 11636m 1.8ms

BN 462-bit 12180m
1.5ms

5691m
0.7ms 17871m 2.2ms

BLS12 461-bit 7685m
0.9ms

6193m
0.7ms 13878m 1.6ms

KSS16 339-bit 7691m
0.5ms

18235m
1.3ms 25926m 1.8ms

k = 1 3072-bit 4651m
22.7ms

4100m
20.0ms 8751m 42.7ms

Table 9: Pairing cost and timing extrapolation from Table 8

Elliptic curve scalar multiplication in G1 and G2. Our generation of curve
leads to large prime value (up to eleven 64-bit words instead of eight for BN and
BLS12 curves). The scalar multiplication cost on G1 is not affected by slow finite
field multiplications because our curves benefit of other improvements: BN (resp.
BLS) curves paramters for 128 bits of security lead to scalar multiplications [k]P
on G1 and G2 with log2(k) ≈ 448 (resp. 300). For our curves of embedding degree
five to eight, we choose r of minimal size (256 bits to withstand the Pollard
rho attack). Some curves get benefits of efficient group law arithmetic: curves
of embedding degree 5, 7, and 8 use the Edwards model. The k = 6 curve use
the efficient formulas available for a = 0 curves, widely used in practice. The
Gallant–Lambert–Vanstone (GLV) method can be performed on k = 6 and k = 8
curves in order to reduce the number of doubling and addition steps. Over G2,
the scalar multiplication is often accelerated by using a twist of the curve. The
trick is available for curves of degree 6 and 8, but not for k = 5 and 7. Even if
the main topic of this paper is about pairing computations, various protocols
also compute scalar multiplications. Curves of embedding degree 5 and 7 do not
benefit of twists and GLV optimisation, so the cost over G2 is too expensive for
practical applications.

7 Conclusion

We modified the Cocks–Pinch method to generate pairing-friendly elliptic curves
with an optimal Miller loop length log r/ϕ(k) to compute efficiently an optimal
ate pairing. Moreover the parameters are carefully chosen so that the curves
withstand the recent STNFS attacks on discrete logarithms. Optimal ate pairing

22

computation on our k = 8 curve seems to be faster than on the BN curves
proposed in [7]. In the k = 8 case, performance is apparently on par with BLS12
curves. Compared to k = 1 curves presented in [16], pairing computations on the
curves suggested here are expected to be 7 (k = 5) to 23 (k = 8) times faster.

One lesson of our work is that the Miller loop length is very important for an
efficient pairing, even in the Cocks–Pinch case. It matters much more than the ρ
value.

With respect to the threats on pairing summarised in Table 1, users fearing
the progress of NFS variants should prefer the more conservative choice of our
modified Cocks–Pinch curves: unlike BN, BLS12, and KSS16 curves, we do not
have to use much larger parameters to be STNFS-resistant.

We finally note that the short Miller loop on our k = 6 and k = 8 curves is
well-suited to protocols where the product of several pairings is computed, the
final exponentiation being computed only once, after the Miller loops. This is
the case for the translation in the prime-order setting of the Boneh–Boyen IBE
scheme: the product of six pairings is computed in the decryption step, and for
the hierarchical identity-based encryption based on Lewko–Waters scheme: the
product of ten pairings is computed in the decryption step [39].

Acknowledgements. The second author thanks P. Zimmermann for his help with
Pari/Gp, and P. Gaudry and T. Kleinjung for their contribution to Table 11.

References

1. Aoki, K., Franke, J., Kleinjung, T., Lenstra, A.K., Osvik, D.A.: A kilobit special
number field sieve factorization. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 1–12. Springer, Heidelberg (Dec 2007). https://doi.org/10.1007/
978-3-540-76900-2_1

2. Aranha, D.F.: Pairings are not dead, just resting (nov 2017), slides at ECC 2017
workshop. https://ecc2017.cs.ru.nl/

3. Aranha, D.F., Fuentes-Castañeda, L., Knapp, E., Menezes, A., Rodríguez-Henríquez,
F.: Implementing pairings at the 192-bit security level. In: Abdalla, M., Lange, T.
(eds.) PAIRING 2012. LNCS, vol. 7708, pp. 177–195. Springer, Heidelberg (May
2013). https://doi.org/10.1007/978-3-642-36334-4_11

4. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography.
https://github.com/relic-toolkit/relic

5. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (May 2011).
https://doi.org/10.1007/978-3-642-20465-4_5

6. Bai, S., Gaudry, P., Kruppa, A., Thomé, E., Zimmermann, P.: Factorization of RSA-
220. Number Theory list (May 12 2016), https://listserv.nodak.edu/cgi-bin/
wa.exe?A2=NMBRTHRY;d17fe291.1605, http://www.loria.fr/~zimmerma/papers/
rsa220.pdf

7. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. Journal
of Cryptology (Jan 2018). https://doi.org/10.1007/s00145-018-9280-5

23

https://doi.org/10.1007/978-3-540-76900-2_1
https://doi.org/10.1007/978-3-540-76900-2_1
https://ecc2017.cs.ru.nl/
https://doi.org/10.1007/978-3-642-36334-4_11
https://github.com/relic-toolkit/relic
https://doi.org/10.1007/978-3-642-20465-4_5
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;d17fe291.1605
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;d17fe291.1605
http://www.loria.fr/~zimmerma/papers/rsa220.pdf
http://www.loria.fr/~zimmerma/papers/rsa220.pdf
https://doi.org/10.1007/s00145-018-9280-5

8. Barbulescu, R., Gaudry, P., Guillevic, A., Morain, F.: Improving NFS for the
discrete logarithm problem in non-prime finite fields. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 129–155. Springer,
Heidelberg (Apr 2015). https://doi.org/10.1007/978-3-662-46800-5_6

9. Barbulescu, R., Gaudry, P., Kleinjung, T.: The tower number field sieve. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453,
pp. 31–55. Springer, Heidelberg (Nov / Dec 2015). https://doi.org/10.1007/
978-3-662-48800-3_2

10. Barreto, P.S.L.M., Costello, C., Misoczki, R., Naehrig, M., Pereira, G.C.C.F., Zanon,
G.: Subgroup security in pairing-based cryptography. In: Lauter, K.E., Rodríguez-
Henríquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 245–265. Springer,
Heidelberg (Aug 2015). https://doi.org/10.1007/978-3-319-22174-8_14

11. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again.
In: Goldwasser, S. (ed.) ITCS 2012. pp. 326–349. ACM (Jan 2012). https:
//doi.org/10.1145/2090236.2090263

12. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(Aug 2001). https://doi.org/10.1007/3-540-44647-8_13

13. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(Dec 2001). https://doi.org/10.1007/3-540-45682-1_30

14. Bouvier, C., Gaudry, P., Imbert, L., Jeljeli, H., Thomé, E.: Discrete logarithms
in GF(p) — 180 digits. Number Theory list, item 004703 (June 11 2014), https:
//listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;615d922a.1406

15. Bowe, S.: BLS12-381: New zk-SNARK elliptic curve construction. Zcash blog (March
11 2017), https://blog.z.cash/new-snark-curve/

16. Chatterjee, S., Menezes, A., Rodríguez-Henríquez, F.: On instantiating pairing-based
protocols with elliptic curves of embedding degree one. IEEE Trans. Computers
66(6), 1061–1070 (2017). https://doi.org/10.1109/TC.2016.2633340

17. Childers, G.: Factorization of a 1061-bit number by the special number field sieve.
Cryptology ePrint Archive, Report 2012/444 (2012), http://eprint.iacr.org/
2012/444

18. Chuengsatiansup, C., Martindale, C.: Pairing-friendly twisted hessian curves. In:
Chakraborty, D., Iwata, T. (eds.) INDOCRYPT. LNCS, vol. 11356, pp. 228–247.
Springer, New Delhi, India (December 9-12 2018). https://doi.org/10.1007/
978-3-030-05378-9_13

19. Chung, J., Hasan, M.A.: Asymmetric squaring formulae. In: 18th IEEE Symposium
on Computer Arithmetic (ARITH ’07). pp. 113–122 (June 2007). https://doi.
org/10.1109/ARITH.2007.11

20. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT’98. LNCS, vol. 1514, pp. 51–65.
Springer, Heidelberg (Oct 1998). https://doi.org/10.1007/3-540-49649-1_6

21. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with
high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 224–242. Springer, Heidelberg (May 2010). https://doi.org/10.
1007/978-3-642-13013-7_14

22. Devegili, A.J., Ó hÉigeartaigh, C., Scott, M., Dahab, R.: Multiplication and squaring
on pairing-friendly fields. Cryptology ePrint Archive, Report 2006/471 (2006),
http://eprint.iacr.org/2006/471

24

https://doi.org/10.1007/978-3-662-46800-5_6
https://doi.org/10.1007/978-3-662-48800-3_2
https://doi.org/10.1007/978-3-662-48800-3_2
https://doi.org/10.1007/978-3-319-22174-8_14
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-45682-1_30
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;615d922a.1406
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;615d922a.1406
https://blog.z.cash/new-snark-curve/
https://doi.org/10.1109/TC.2016.2633340
http://eprint.iacr.org/2012/444
http://eprint.iacr.org/2012/444
https://doi.org/10.1007/978-3-030-05378-9_13
https://doi.org/10.1007/978-3-030-05378-9_13
https://doi.org/10.1109/ARITH.2007.11
https://doi.org/10.1109/ARITH.2007.11
https://doi.org/10.1007/3-540-49649-1_6
https://doi.org/10.1007/978-3-642-13013-7_14
https://doi.org/10.1007/978-3-642-13013-7_14
http://eprint.iacr.org/2006/471

23. Duquesne, S., El Mrabet, N., Fouotsa, E.: Efficient computation of
pairings on jacobi quartic elliptic curves. J. Mathematical Cryptology
8(4), 331–362 (2014), http://www.degruyter.com/view/j/jmc.2014.8.issue-4/
jmc-2013-0033/jmc-2013-0033.xml, https://eprint.iacr.org/2013/597

24. Fotiadis, G., Konstantinou, E.: Pairing-friendly elliptic curves resistant to TNFS
attacks. 7th International Conference on Algebraic Informatics (June 2017), http:
//www.icsd.aegean.gr/publication_files/conference/880724856.pdf

25. Fotiadis, G., Martindale, C.: Optimal tnfs-secure pairings on elliptic curves with
even embedding degree. Cryptology ePrint Archive, Report 2018/969 (2018), https:
//eprint.iacr.org/2018/969

26. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology 23(2), 224–280 (Apr 2010)

27. Fried, J., Gaudry, P., Heninger, N., Thomé, E.: A kilobit hidden SNFS discrete
logarithm computation. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part I. LNCS, vol. 10210, pp. 202–231. Springer, Heidelberg (Apr / May 2017).
https://doi.org/10.1007/978-3-319-56620-7_8

28. Gordon, D.M.: Designing and detecting trapdoors for discrete log cryptosystems. In:
Brickell, E.F. (ed.) CRYPTO’92. LNCS, vol. 740, pp. 66–75. Springer, Heidelberg
(Aug 1993). https://doi.org/10.1007/3-540-48071-4_5

29. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth
degree extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 209–223. Springer, Heidelberg (May 2010). https://doi.org/10.
1007/978-3-642-13013-7_13

30. Guillevic, A.: Simulating DL computation in GF(pn) with the new variants of the
Tower-NFS algorithm to deduce security level estimates (Nov 2017), slides at ECC
2017 workshop. https://ecc2017.cs.ru.nl/

31. Joux, A.: A one round protocol for tripartite Diffie-Hellman. Journal of Cryptology
17(4), 263–276 (Sep 2004)

32. Joux, A., Pierrot, C.: The special number field sieve in Fpn - application to
pairing-friendly constructions. In: Cao, Z., Zhang, F. (eds.) PAIRING 2013. LNCS,
vol. 8365, pp. 45–61. Springer, Heidelberg (Nov 2014). https://doi.org/10.1007/
978-3-319-04873-4_3

33. Karabina, K.: Squaring in cyclotomic subgroups. Math. Comput. 82(281), 555–579
(2013). https://doi.org/10.1090/S0025-5718-2012-02625-1

34. Khandaker, M.A.A., Nanjo, Y., Ghammam, L., Duquesne, S., Nogami, Y., Kodera,
Y.: Efficient optimal ate pairing at 128-bit security level. In: Patra, A., Smart, N.P.
(eds.) INDOCRYPT 2017. LNCS, vol. 10698, pp. 186–205. Springer, Heidelberg
(Dec 2017)

35. Kim, T., Barbulescu, R.: Extended tower number field sieve: A new complexity
for the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part I. LNCS, vol. 9814, pp. 543–571. Springer, Heidelberg (Aug 2016). https:
//doi.org/10.1007/978-3-662-53018-4_20

36. Kiyomura, Y., Inoue, A., Kawahara, Y., Yasuda, M., Takagi, T., Kobayashi, T.:
Secure and efficient pairing at 256-bit security level. In: Gollmann, D., Miyaji, A.,
Kikuchi, H. (eds.) ACNS 17. LNCS, vol. 10355, pp. 59–79. Springer, Heidelberg
(Jul 2017). https://doi.org/10.1007/978-3-319-61204-1_4

37. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,
P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H.J.J., Timofeev, A.,
Zimmermann, P.: Factorization of a 768-bit RSA modulus. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (Aug 2010).
https://doi.org/10.1007/978-3-642-14623-7_18

25

http://www.degruyter.com/view/j/jmc.2014.8.issue-4/jmc-2013-0033/jmc-2013-0033.xml
http://www.degruyter.com/view/j/jmc.2014.8.issue-4/jmc-2013-0033/jmc-2013-0033.xml
https://eprint.iacr.org/2013/597
http://www.icsd.aegean.gr/publication_files/conference/880724856.pdf
http://www.icsd.aegean.gr/publication_files/conference/880724856.pdf
https://eprint.iacr.org/2018/969
https://eprint.iacr.org/2018/969
https://doi.org/10.1007/978-3-319-56620-7_8
https://doi.org/10.1007/3-540-48071-4_5
https://doi.org/10.1007/978-3-642-13013-7_13
https://doi.org/10.1007/978-3-642-13013-7_13
https://ecc2017.cs.ru.nl/
https://doi.org/10.1007/978-3-319-04873-4_3
https://doi.org/10.1007/978-3-319-04873-4_3
https://doi.org/10.1090/S0025-5718-2012-02625-1
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-319-61204-1_4
https://doi.org/10.1007/978-3-642-14623-7_18

38. Kleinjung, T., Diem, C., Lenstra, A.K., Priplata, C., Stahlke, C.: Computation
of a 768-bit prime field discrete logarithm. In: Coron, J., Nielsen, J.B. (eds.)
EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 185–201. Springer, Heidelberg
(Apr / May 2017). https://doi.org/10.1007/978-3-319-56620-7_7

39. Lewko, A.B.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (Apr 2012). https://doi.org/
10.1007/978-3-642-29011-4_20

40. Li, L., Wu, H., Zhang, F.: Pairing computation on edwards curves with high-
degree twists. In: Lin, D., Xu, S., Yung, M. (eds.) Inscrypt, Revised Selected
Papers. LNCS, vol. 8567, pp. 185–200. Springer, Guangzhou, China (Novem-
ber 27-30 2013). https://doi.org/10.1007/978-3-319-12087-4_12, https://
eprint.iacr.org/2012/532

41. Menezes, A., Sarkar, P., Singh, S.: Challenges with assessing the impact of NFS
advances on the security of pairing-based cryptography. In: Phan, R.C., Yung, M.
(eds.) Mycrypt Conference, Revised Selected Papers. LNCS, vol. 10311, pp. 83–108.
Springer, Kuala Lumpur, Malaysia (December 1-2 2016). https://doi.org/10.
1007/978-3-319-61273-7_5

42. Montgomery, P.L.: Five, six, and seven-term Karatsuba-like formulae. IEEE Trans-
actions on Computers 54, 362–369 (March 2005). https://doi.org/10.1109/TC.
2005.49

43. National Institute of Standards and Technology: Recommendation key management
(part 1: General); SP 800-57 Part 1 (2016). https://doi.org/10.6028/NIST.SP.
800-57pt1r4, fourth revision

44. Pereira, G.C., Simplício, M.A., Naehrig, M., Barreto, P.S.: A family of
implementation-friendly BN elliptic curves. Journal of Systems and Software
84(8), 1319 – 1326 (2011). https://doi.org/10.1016/j.jss.2011.03.083, http:
//www.sciencedirect.com/science/article/pii/S0164121211000914

45. Sarkar, P., Singh, S.: A general polynomial selection method and new asymptotic
complexities for the tower number field sieve algorithm. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 37–62. Springer, Heidelberg
(Dec 2016). https://doi.org/10.1007/978-3-662-53887-6_2

46. Schirokauer, O.: The number field sieve for integers of low weight.
Math. Comp. 79(269), 583–602 (January 2010). https://doi.org/10.1090/
S0025-5718-09-02198-X

47. Scott, M.: Implementing cryptographic pairings (invited talk). In: Takagi,
T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) PAIRING 2007. LNCS,
vol. 4575, pp. 177–196. Springer, Heidelberg (Jul 2007). https://doi.org/10.
1007/978-3-540-73489-5

48. Semaev, I.A.: Special prime numbers and discrete logs in finite prime
fields. Math. Comp. 71(737), 363–377 (2002). https://doi.org/10.1090/
S0025-5718-00-01308-9

49. Sutherland, A.V.: Accelerating the CM method. LMS Journal of Computation and
Mathematics 15, 172–204 (2012). https://doi.org/10.1112/S1461157012001015

50. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory 56(1),
455–461 (Jan 2010). https://doi.org/10.1109/TIT.2009.2034881

51. Weber, D., Denny, T.F.: The solution of McCurley’s discrete log challenge. In:
Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol. 1462, pp. 458–471. Springer, Heidelberg
(Aug 1998). https://doi.org/10.1007/BFb0055747

26

https://doi.org/10.1007/978-3-319-56620-7_7
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-319-12087-4_12
https://eprint.iacr.org/2012/532
https://eprint.iacr.org/2012/532
https://doi.org/10.1007/978-3-319-61273-7_5
https://doi.org/10.1007/978-3-319-61273-7_5
https://doi.org/10.1109/TC.2005.49
https://doi.org/10.1109/TC.2005.49
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://doi.org/10.1016/j.jss.2011.03.083
http://www.sciencedirect.com/science/article/pii/S0164121211000914
http://www.sciencedirect.com/science/article/pii/S0164121211000914
https://doi.org/10.1007/978-3-662-53887-6_2
https://doi.org/10.1090/S0025-5718-09-02198-X
https://doi.org/10.1090/S0025-5718-09-02198-X
https://doi.org/10.1007/978-3-540-73489-5
https://doi.org/10.1007/978-3-540-73489-5
https://doi.org/10.1090/S0025-5718-00-01308-9
https://doi.org/10.1090/S0025-5718-00-01308-9
https://doi.org/10.1112/S1461157012001015
https://doi.org/10.1109/TIT.2009.2034881
https://doi.org/10.1007/BFb0055747

52. Zhang, X., Lin, D.: Analysis of optimum pairing products at high security levels. In:
Galbraith, S.D., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 412–430.
Springer, Heidelberg (Dec 2012). https://doi.org/10.1007/978-3-642-34931-7_
24

A Second part of the final exponentiation for k = 8

As an illustration, we give here pseudo-code that raises a finite field element a
to the power c = (p+ 1− t0)/r, in the case k = 8 and i = 5. Recall that since
the first part of the final exponentiation has been done, we know that ap

4+1 = 0
so that a−1 = ap

4

= a where the conjugate is taken over the subfield Fp4 . The
formula below is specific to i = 5, but we let T = 4U + 2V which is the most
general form (with V ∈ {0, 1}). If we apply this to the parameters in §6.1, we
can do some simplifications using V = 0 (in square brackets below).

ay = ay; au = au; aQ = ayya
u
u; b = aQau; (2cu + 2cy + 2mk)

b = b2; b = (b2a)UbV ; b = bay; (cT + 2mk)

b = b2; [b = baV]; b = (b2)UbV ; b = bay; (cT + mk[+mk])

b = b2; b = (b2a)UbV ; b = bau; b = ba; (cT + 3mk)

b = b2; [b = baV]; b = (b2)UbV ; b = baQ; (cT + mk[+mk])

The cost is 11mk + 4cT + 2cu + 2cy in general, and 2mk less if V = 0, using
the notations of §5.2. Here we use cT to represent a set of operations whose
cost is similar to b = b2 followed by b = (b2)UbV , although scheduling above is
sometimes different.

B Estimating the cost of NFS, NFS-HD and TNFS

We would like to measure with the same methodology as Barbulescu and Duquesne
in [7] the cost of computing a discrete logarithm in Fp55 , Fp66 , Fp77 , and Fp88 , and
compare it with a prime field Fp1 of 3072 bits. In our setting the primes p1, p5, p7

have no structure so we cannot use the Joux–Pierrot (JP) polynomial selection.
The primes p6 and p8 have some structure but not enough to provide an advantage
to the JP method (see §3). We compare the NFS, NFS-HD and TNFS variants.
We give the best parameters we have found to minimise the running-time of the
relation collection and the linear algebra steps, in the sense of [7]. Moreover we
make available all the needed SageMath code to run our experiments (see §1.1)

Contrary to [36], we not only estimate the size of the norms but we generate
polynomials for each polynomial selection method available, we find parameters
(see §B.2) so that enough relations are obtained, and we compare the estimated
cost.

27

https://doi.org/10.1007/978-3-642-34931-7_24
https://doi.org/10.1007/978-3-642-34931-7_24

A remark about Special NFS and TNFS. We consider that a prime p in our set
or primes (p1, p5, p6, p7, p8) is special and provides a notable advantage to the
SNFS or STNFS algorithm if it can be written p = P (u) where u ≈ p1/d, and P
is a polynomial of degree at least 3 and whose coefficients are much smaller than
p1/d. As a counterexample, for any prime p we can use the base-m polynomial
selection method. It chooses m = bp1/de, writes p in basis m and outputs the
corresponding polynomial P such that p = P (m). Then ‖P‖∞ = m, and the
coefficients are large.

The vulnerabilities of pairing-friendly curves are the following:

– a special prime p given by a polynomial of degree > 2 and tiny coefficients,
for instance p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1 for BN curves [26, Ex. 6.8].In
that case, the Joux–Pierrot polynomial selection method (SNFS) allows a
better complexity of NFS, in Lpk(1/3, 1.923).

– a composite embedding degree k allowing the Kim–Barbulescu variant of
TNFS. Note that the original TNFS algorithm where deg h = k does apply
but usually is not efficient when it is not combined with the Special variant.

– We note that the effectiveness of STNFS is not very clear. In [7], the authors
found that for the KSS curves with k = 16, the optimal choice is deg h =
k = 16, which is the original setting of Tower NFS, as in [9]. The key
point is the special form of p: the prime is given by a polynomial p(s) =
(s10 + 2s9 + 5s8 + 48s6 + 152s5 + 240s4 + 625s2 + 2398s+ 3125)/980.

B.1 Choices of polynomials

Figure 10 shows the polynomials on the NFS setting and in the Tower-NFS
setting.

Q

K0 =
Q[x]/(f0(x))

K1 =
Q[x]/(f1(x))

deg f0 ≥ k deg f1 ≥ k

(a) NFS number fields, pk | Res(f0, f1)

Q

Kh = Q[y]/(h(y))

deg h = k1

K0 =
Kh[x]/(f0(x))

K1 =
Kh[x]/(f1(x))

deg f0 ≥ k2 deg f1 ≥ k2

(b) Tower-NFS number fields, k1k2 =
k, pk | Resy(h,Resx(f0, f1))

Fig. 10: Extensions of number fields for NFS and Tower variants

28

Polynomial h. In the Tower-NFS setting, the degree of the polynomial h divides
the degree k of the extension. For k = 6, we can take deg h ∈ {2, 3, 6} for example.
We search for all monic polynomials h of chosen degree, coefficients in {0, 1,−1}
to minimise the norms, and of small Dedekind-zeta value ζKh

(2), so that its
inverse 1/ζKh

(2) is as close as possible to 1 (in practice, we observed that this
value is in the interval]0.4, 1.0[).

Polynomials f0, f1. These two polynomials are selected according to a polyno-
mial selection method: JLSV1, JLSV2, Joux–Lercier, Generalised Joux–Lercier,
Conjugation, Joux–Pierrot (Special case), Sarkar–Singh (see for example [8,32,45]).

B.2 Methodology for cost estimation

Relation collection cost. To estimate this cost, we need first to discuss how
relation collection will be performed. We make the conservative assumption that
a sieving method can always be used. While this is of course commonplace for
NFS computations, the same does not hold for TNFS, which needs (2 deg h)-
dimensional sieving for tuples of the form (a0, . . . , adeg h−1, b0, . . . , bdeg h−1). As a
consequence of this assumption, the relation collection cost can be approximated
as the size of the set of tuples. (Alternatively, relation collection can also use
smoothness detection algorithms based on remainder trees, which can perform
well in practice, see e.g. [38].)

We estimate the size of the set of tuples (a0, . . . , adeg h−1, b0, . . . , bdeg h−1)
processed in the relation collection of the TNFS algorithm to be

S0
TNFS(h,A) = (2A+ 1)2 deg h/2 (4)

and its core part (duplicates removed) to be

S1
TNFS(h,A) = (2A+ 1)2 deg h/(2w(h)ζKh

(2)) . (5)

We consider that the cost of the relation collection is proportional to the first
quantity S0

TNFS(h,A), and to simplify, we assume that this is S0
TNFS(h,A). We

estimate that the number of unique relations obtained is S1
TNFS(h,A) times the

average smoothness probability. For the NFS-HD algorithm, we estimate the size
of the set of tuples (a0, . . . , adim−1) to be

S0
NFS−HD(dim, A) = (2A+ 1)dim/2 (6)

and its core part (duplicates removed) to be

S1
NFS−HD(dim, A) = (2A+ 1)dim/(2ζ(dim)) . (7)

Again, we consider that the cost of the relation collection is S0
NFS−HD(dim, A),

and the number of unique relations obtained is S1
NFS−HD(dim, A) times the

average smoothness probability.

29

In the NFS algorithm, the elements in the relation collection are pairs of
integers (a, b). We need a, b to be coprime: the probability is 1/ζ(2) = 6/π2 ≈ 0.60.
For NFS-HD, the probability that a tuple of random integers (a0, . . . , adim−1) has
gcd 1 is 1/ζ(dim). To avoid duplicates, the leading coefficient is chosen positive
((a, b) and (−a,−b) give the same relation).

The generalisation to pairs of coprime ideals depends on the number field Kh

defined by h. The probability that two ideals of Kh are coprime is 1/ζKh
(2). In

practice we observed that it can vary from 0.44 to 0.99. Then as in [7, §5.2], we
consider torsion units of Kh (it happens if h is a cyclotomic polynomial). Let w
be the index of {1,−1} in the group of roots of unity in Kh. If q is a prime ideal
in Kf , then uq is also a prime ideal giving the same relation, where u is any root
of unity of Kh. We can detect and avoid the case u = −1 but (up to now) there
does not exist a way to avoid the other roots of unity. The number of tuples that
will contribute to distinct relations is divided by 2w.

The non-torsion units do not contribute to duplicates: their coefficients being
quite large, the coefficients of the ideal u1q overpass the bound A and are not
considered in the relation collection.

Average smoothness probability. To compute an average smoothness prob-
ability, we took at random 106 coprime tuples a of coefficients in [−A,A] and
positive leading coefficient (this requires about ζ(dim) · 106 random tuples),
resp. 106 pairs of coprime ideals of Kh (this requires about ζKh

(2) · 106 random
tuples). Then we compute the resultants Nf , Ng on both sides (f and g) and we
compute the smoothness probability of that tuple as

Pr(a) = Pr(Nf is B-smooth)× Pr(Ng is B-smooth) . (8)

We compute the average smoothness probability as the average over all the
random unique tuples, that is 10−6

∑
random a, coprime Pr(a).

We estimate the smoothness probability on one side with the formula

Pr(N is B-smooth) ≈ δ(u) + (1− γ)
δ(u− 1)

logN
, where u =

logN + α

logB
(9)

where γ ≈ 0.577 is Euler’s constant, and δ is the Dickman rho function.5

Linear algebra cost (filtering, block-Wiedemann). We assume that the
input of this step is a set of unique relations. Usually, a certain amount of excess
is required: there are up to twice more relations than prime ideals involved in
the relations (at this point, the matrix would be a vertical rectangle of twice
more rows than columns). Before the linear algebra, the relations are processed
to produce a dense matrix of good quality, in order to ease the linear algebra
step. The filtering step removes the singletons (the prime ideals corresponding to
5 We depart from the conventional notation ρ for the Dickman rho function, to avoid
confusion with ρ = log p/ log r.

30

columns that appear only in one relation). Doing this produces new singletons,
so this step is done several times (two to ten times for example). Then a “clique
removal” is performed, that also reduces part of the excess. Finally, a merge
step increases the density of the matrix to some target density, reaching 125 to
200 non-zero entries per row in the recent record computations. The yield of
the filtering step varies a lot in the literature: it reduced the size of the set of
relations by a factor 9 for the SNFS-1024 DLP record [27], and by a factor 386
for the NFS-768 DLP record [38]

cfiltering,min = 9, cfiltering,max = 386 .

We summarise in Table 11 the parameters of the filtering step for the recent
record-breaking integer factorisations and discrete logarithm computations6,7.
When we were not able to collect the data we put a question mark. Contrary
to [7], we propose a different interpretation of the filtering step yield: in our point
of view, it is highly software-dependent and cryptanalyst-dependent. Indeed,
the low values correspond to records by the cado-nfs team, while the high
values correspond to Kleinjung et al. record computations (the software being
not available in the latter case). At first glance, it seems to be due to software
performance differences. To refine this impression, we decided to compare the two
integer factorisation records of 21039 − 1 and 21061 − 1 by the SNFS algorithm:
for 21039 − 1, Kleinjung et al. have chosen a large prime bound of 236 to 238,
while Childers has chosen the lower value 233 for the larger integer 21061 − 1
(Table 11). We can also compare the RSA-220 and RSA-768 record factorisations
(220 and 232 decimal digits resp.) and obtain the same conclusion.

In fact, a strategy of oversieving was deployed for the DLP-768 record compu-
tation. The large prime bound was increased to 236, while a bound of 231 could
have been enough (but it would have required a much higher effort in the linear
algebra step). The ratio of ratios is 386.34/8.84 = 43.7 and part of it is explained
by the factor 25 = 32 in the large prime bound choice. The larger set of relations
to feed the filtering step allowed to obtain a matrix of better quality, reducing
the linear algebra step. The density of rows seems more under control: from 134
to 200. We choose an upper bound: we assume that the density of a row is

weight per row = 200 .

We estimate the time of the matrix-vector multiplications in the block-Wiedemann
algorithm of the linear algebra step to be

(number of rows)2 × w× (weight per row) (10)

where w is the word-size of subgroup order (in our case, log2 r = 256 bits and
w = 4 words of 64 bits).
6 For the RSA-768 record factorisation, we used the corrected value 46.7G instead
of 47.7G, according to P. Zimmermann’s webpage https://members.loria.fr/
PZimmermann/papers/#rsa768.

7 We mention that there was a typo in [7, Table 3]: in the factorisation of 21039 − 1,
there were 66.7M rows after filtering, not 82.8M, and the reduction factor of the
filtering step is 143, not 167.

31

https://members.loria.fr/PZimmermann/papers/#rsa768
https://members.loria.fr/PZimmermann/papers/#rsa768

cado-nfs Kleinjung et al. NFS@HOME
record
references
year
after sieving
lpb
unique rows (R0)
prime ideals
columns (C0)
excess (R0/C0)
after rm singleton
rows (R1)
columns (C1)
excess (R1/C1)
ratio R0/R1

a. rm clique+singl
rows (R2)
columns (C2)
excess (R2/C2)
weight/row
ratio R0/R2

after merge
rows (R3)
columns (C3)
weight/row
ratio R2/R3

ratio R0/R3

DL-1024 (S)
[27]
2017

231

248.94 M
210.20 M
210.18 M
1.184

222.77 M
173.58 M

1.28
1.12

95.93 M
95.93 M
1.00
27.68
2.595

28.15 M
28.15 M

200
3.40
8.84

RSA-220
[6]
2016

234

1.17 G
1.52 G
1.21 G
0.97

613 M
594 M
1.03
1.91

496 M
496 M
1.00
18.48
2.36

132 M
132 M
175
3.76
8.86

DL-180
[14]
2014

229, 230

179.29 M
82.60 M
81.80 M
2.19

–
–
–
–

21.46 M
21.46 M
1.00
28.84
8.40

7.29 M
7.29 M
150
2.95
24.60

DL-768
[38]
2017

236

9.08 G
5.75 G
5.08 G
1.79

7.84 G
≤3.77 G
≥2.07 G
1.16

1528 M
670 M
2.28
≤ 22.73
5.94

23.5 M
23.5 M
134
65.04
386.34

RSA-768
[37]
2010

237 to 240

46.76 G
11.17 to 82.41 G

35.29 G
1.32

24.62 G
≈ 15 G
1.64
1.90

2.46 G
1.70 G
1.45
?

19.02

192.80 M
192.80 M

144
12.75
242.55

21039 − 1 (IF)
[1]
2007

236 to 238

13.8 G
5.75 to 21.73 G

?

?
?

755.7 M
594.2 M
1.27
?

18.26

66.7 M
66.7 M
143
11.33
207

21061 − 1 (IF)
[17]
2012

233

671 M
787 M

?

?
?

282 M
?

?
2.38

90.3 M
90.3 M
125
3.12
7.43

Table 11: Data from recent record computations. Additional data for the DL-
1024, DL-180, and DL-768 computations was collected from their respective
authors (the cado-nfs-team and T. Kleinjung).The number of prime ideals
is computed as log_integral(lpb0) + log_integral(lpb1). the purge step
removes singletons, cliques, and for cado-nfs: removes the excess, for Kleinjung
et al. records: removes part of the excess. the merge step increases the weight per
row, reduces the number of rows and columns, and for Kleinjung et al. records:
removes the final excess.

32

	Cocks–Pinch curves of embedding degrees five to eight and optimal ate pairing computation

