
Cryptanalysis of a System Based on Twisted Reed–Solomon
Codes

Julien Lavauzelle∗ Julian Renner†

April 26, 2019

Abstract

It was recently proved that twisted Reed–Solomon codes represent a family of
codes which contain a large amount of MDS codes, non-equivalent to Reed–Solomon
codes. As a consequence, they were proposed as an alternative to Goppa codes for the
McEliece cryptosystem, resulting to a potential reduction of key sizes.

In this paper, an efficient key-recovery attack is given on this variant of the
McEliece cryptosystem. The algorithm is based on the recovery of the structure of
subfield subcodes of twisted Reed–Solomon codes, and it always succeeds. Its cor-
rectness is proved, and it is shown that the attack breaks the system for all practical
parameters in O(n4) field operations. A practical implementation is also provided
and retrieves a valid private key from the public key within just a few minutes, for
parameters claiming a security level of 128 bits.

We also discuss a potential repair of the scheme and an application of the attack
to GPT cryptosystems using twisted Gabidulin codes.

1 Introduction

In the last years, systems based on the hardness of decoding in a generic code have gained
large attention since they are potentially resistant to quantum computer attacks. The first
code-based cryptosystem was proposed by McEliece in 1978 [16]. It is based on binary
Goppa codes and is still considered to be secure.

The main drawback of the original McEliece system is its large public key. To overcome
this drawback, many code classes have been proposed to replace Goppa codes, but most
of them were subject to algebraic attacks. For instance, generalised Reed–Solomon (GRS)
codes were proposed in 1986 by Niederreiter [18], but Sidelnikov and Shestakov mounted
a very efficient attack to recover an alternative secret key [24]. Wieschebrink proved that
also random subcodes of GRS codes — proposed in [7] — cannot be used due to their
vulnerability against the code squaring attack [27]. Further instances and cryptanalyses of
algebraic code-based schemes can be found in [6, 8, 11, 15,17,23].

One of the recent alternative classes emerged from twisted Reed–Solomon codes [5].
Beelen et al. analysed the structural properties of a specific subfamily of twisted Reed–
Solomon codes in [4]. In their work, they proved that none of the codes they consider is
a generalised Reed–Solomon code and thus the attack by Sidelnikov and Shestakov [24]
cannot be applied to their system. Further, they showed that shortenings of these codes
∗Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes 1, France. Email:

julien.lavauzelle@univ-rennes1.fr
†Institute for Communications Engineering, Technical University of Munich (TUM), Germany. Email:

julian.renner@tum.de

1



up to two positions have maximal Schur square dimension [21], meaning that the proposed
system is impervious to the attack presented by Couvreur et al. in [9]. Additionally,
the authors conjecture that their proposed system is not vulnerable to the algorithms
proposed by Wieschebrink in [26, 27]. As a result of the mentioned structural properties,
specific subfamilies of twisted Reed–Solomon codes seem to be interesting for code-based
cryptography. In [4], the authors propose an explicit subfamily of twisted Reed–Solomin
codes and sets of parameters that provide a reduction of the public key up to a factor of
7.4 compared to binary Goppa codes, for a claimed security level of 128 bits.

In this paper, we mount an attack on the twisted Reed–Solomon code-based cryptosys-
tem given in [4]. Since it does not seem straightforward to directly retrieve the structure
of the proposed codes, our idea is to first recover the structure of the subfield subcodes of
twisted Reed–Solomon codes, which then in turn reveal the structure of the supercodes.
We show that for all practical parameters, our algorithm recovers a valid private key from
the public key in O(n4) operations over the underlying field, where n denotes the code
length. We implemented the attack in the computer-algebra system SageMath [25] and
although the implementation is not optimized, it determines a valid private key for the pa-
rameters proposed by the designers in approximately two minutes (a link to the mentioned
implementation is provided in the paper). Additionally, we discuss a potential application
of the proposed attack to the rank-metric version of the considered system [22].

The paper is structured as follows. In Section 2 we introduce the notation, and we
state the definition and important structural properties of twisted Reed–Solomon codes.
In Section 3 we present the key generation, encryption and decryption algorithm as well as
the parameters proposed in [4]. In Section 4 we derive a structural attack on the scheme,
and we precisely analyse its complexity. In Section 5 we discuss a potential fix of the
cryptosystem, as well as an extension of the attack to the rank-metric setting. Conclusions
are given in Section 6.

2 Preliminaries

2.1 Notation

Let q be a power of a prime and let Fq denote the finite field of order q. We use Fm×n
q to

denote the set of m×n matrices over Fq and Fn
q = F1×n

q for the set of row vectors of length
n over Fq. Rows and columns of m× n-matrices are indexed by 1 ≤ i ≤ m and 1 ≤ j ≤ n,
where Ai,j is the element in the i-th row and j-th column of the matrix A ∈ Fm×n

q .
For a field extension Fq ⊆ F, the F-row space of a matrix A ∈ Fm×n

q is the F-vector
space spanned by its rows, i.e.,

RF
(
A
)

:=

{ m∑
i=1

ai (Ai,1, . . . , Ai,n) : ai ∈ F
}
⊆ Fn.

We denote the component-wise product of a ∈ Fn
q and b ∈ Fn

q by

a ? b := (a1b1, . . . , anbn) ∈ Fn
q .

Further, given a linear code C ⊆ Fn
q , we define its square as

C2 := RFq

(
{a ? b : a, b ∈ C}

)
.

2



The set of all univariate polynomials over a field F is denoted by F[x]. Let us now fix some
α = (α1, . . . , αn) ∈ Fn

q . We define the evaluation map evα as

evα : Fq[x]→ Fn
q

f 7→ (f(α1), f(α2), . . . , f(αn)).

Finally, if I and J are two finite subsets of integers, then we define

I ⊕ J := {a+ b : a ∈ I, b ∈ J }.

2.2 Twisted Reed–Solomon Codes

Definition 1 (Reed–Solomon Code). Let n, k ∈ N with k ≤ n ≤ q, the elements α1, . . . , αn ∈
Fq be distinct and α = (α1, . . . , αn). The Reed–Solomon (RS) code of length n and di-
mension k is defined by

Cα[n, k]Fq :=

{
evα(f) : f ∈

{
k−1∑
i=0

fix
i : fi ∈ Fq

}}
.

The entries in α are called locators of the RS code.

Reed–Solomon codes are maximum-distance separable (MDS) codes, i.e., they reach the
so-called Singleton bound d ≤ n−k+1, where d denotes the (Hamming) minimum distance
of the code. Twisted Reed–Solomon codes were recently proposed as a generalisation of
Reed–Solomon codes.

Definition 2 (Twisted Reed–Solomon Code, [5]). Let n, k, ` ∈ N with k < n and ` ≤ n−k.
Further, denote the hook vector by h ∈ {0, . . . , k − 1}` with distinct hi, the twist vector by
t ∈ {1, . . . , n − k}` with distinct ti, and η ∈ (Fq \ {0})`. The set of twisted polynomials
over Fq is defined by

Pn,k
t,h,η =


k−1∑
i=0

fix
i +
∑̀
j=1

ηjfhj
xk−1+tj : fi ∈ Fq

 ⊆ Fq[x].

Let α1, . . . , αn ∈ Fq be distinct and α = (α1, . . . , αn). The [α, t,h,η]-twisted Reed–
Solomon (RS) code of length n and dimension k is defined by

Cα,t,h,η[k, n] :=
{

evα(f) : f ∈ Pn,k
t,h,η

}
.

The elements α1, . . . , αn are called locators of the twisted RS code.

3



According to Definition 2, a generator matrix of Cα,t,h,η[k, n] with h1 < h2 < · · · < h`
is given by

Gα,t,h,η :=



1
α1

...
αh1−1

αh1 + η1α
k−1+t1

αh1+1

...
αh`−1

αh` + η`α
k−1+t`

αh`+1

...
αk−1



,

where αi := (αi
1, . . . , α

i
n) for 1 ≤ i ≤ q − 1.

In [4], the authors show that by constructing a twisted RS code according to Defini-
tion 2, one does not necessarily obtain an MDS code. However, they provide a method to
obtain twisted RS codes that are MDS, cf. Theorem 1.

Theorem 1 (Explicit MDS twisted RS codes [4]). Let q0 be a prime power, and 1 = s0 <
. . . < s` ∈ Z>0 be non-negative integers such that Fq

s0
0
⊂ Fq

s1
0
⊂ . . . ⊂ Fq

s`
0

= Fq is a
chain of subfields. Let k < n ≤ q0, the elements α1, . . . , αn ∈ Fq0 be distinct, and let t, h
and η be chosen as in Definition 2 and such that ηi ∈ F

q
si
0
\ F

q
si−1
0

for i = 1, . . . , `. Then
Cα,t,h,η[k, n] is MDS.

A decoding algorithm for twisted RS codes is also proposed in [4]. Given a corrupted
codeword r, the strategy is to guess ` elements g1, . . . , g` ∈ Fq and then decode r −
evα(

∑`
i=1 giηiX

ti+k−1) in the Reed–Solomon code Cα[n, k]Fq . This approach succeeds if
gi = fhi

and thus, has a worst case complexity of O(q`n log2 n log logn). Notice that
q = Ω(q2

`

0 ), and thus this decoding algorithm is only practical for a tiny number of twists.
In the following lemma, we show a property of twisted RS codes that is important for

the attack proposed in this paper.

Lemma 2. Let α, t, h and η be defined as in Definition 2. Then for any a ∈ Fq \ {0},

Cα,t,h,η[k, n] = Cα̂,t,h,η̂[k, n],

where α̂ = aα and η̂ = (η̂1, . . . , η̂`) with η̂i = ηia
−(k−1+ti−hi), 1 ≤ i ≤ `.

Proof. Let evα̂(f) ∈ Cα̂,t,h,η̂[k, n], where f(x) =
∑k−1

i=0 fix
i +
∑`

j=1 η̂jfhj
xk−1+tj . We have

f(ax) =
k−1∑
i=0

(fia
i)xi +

∑̀
j=1

(η̂ja
k−1+tj−hj )(fhj

ahj )xk−1+tj = g(x) ,

where g(x) ∈ Pn,k
t,h,η. Hence by definition evα̂(f) ∈ Cα,t,h,η[k, n], and it follows that

Cα,t,h,η[k, n] ⊆ Cα̂,t,h,η̂[k, n]. The proof on the converse inclusion is similar since a is
non-zero.

4



3 The Twisted RS Code Based McEliece Cryptosystem

In this section we describe the system proposed in [4].

3.1 Setup

Fix a prime power q0, and integers k < n ≤ q0 − 1 with 2
√
n + 6 < k ≤ n

2 − 2. Fix also
` ∈ Z>0 such that

n+ 1

k −
√
n
< `+ 2 < min

{
k + 3;

2n

k
;
√
n− 2

}
.

Further, set qi := q2i−1 = q2
i

0 for i = 1, . . . , `, such that

Fq0 ⊂ Fq1 ⊂ . . . ⊂ Fq` = Fq

is a chain of subfields. Finally, set ti = (i + 1)(r − 2) − k + 2 and hi = r − 1 + i for
i = 1, . . . , `, where r := dn+1

`+2 e+ 2.
Integers q0, n, k, `, and vectors t, h satisfying the above conditions are referred to as

valid parameters of the cryptosystem [4]. They are public parameters of the cryptosystem.

3.2 Key Generation

Given valid parameters q0, n, k, `, t and h:

1. Choose α ∈ Fn
q0 at random such that the entries of α are distinct.

2. Choose η ∈ F`
q at random such that ηi ∈ Fqi \ Fqi−1 for 1 ≤ i ≤ `.

3. Choose S ∈ Fk×k
q at random and full rank.

4. Compute the public key Gpub = SGα,t,h,η ∈ Fk×n
q , where Gα,t,h,η is the generator

matrix of Cα,t,h,η[k, n] described in Section 2.2.

The private key consists of (S,α,η) and the public key is Gpub.

3.3 Encryption

Given a plaintext m ∈ Fk
q and a public key Gpub:

1. Choose e ∈ Fn
q at random with Hamming weight wH(e) = bn−k2 c.

2. Compute the ciphertext
y = mGpub + e ∈ Fn

q .

3.4 Decryption

Given a ciphertext y ∈ Fn
q and the private key (S,α,η):

1. Decode y in Cα,t,h,η[k, n] to m̃ = mS ∈ Fk
q using the decoding algorithm given in [4].

2. Compute the plaintext m = m̃S−1.

5



3.5 Proposed Parameters

In [4], the parameters n = 255, k = 117, ` = 1 and q0 = 28 are proposed for a security
level ≥ 100 bits. There are two main reasons for choosing a small number of twists.
On the one hand, the proposed decoding algorithm has a complexity of q` = q`2

`

0 times
O(n log2 n log log n) and thus increases doubly exponentially with the number of twists.
On the other hand, the field size and thus the key sizes also scale exponentially as the
number of twists.

4 An Efficient Key-Recovery Attack Using Subfield Subcodes

In this section, we propose an efficient key-recovery algorithm for the cryptosystem and
parameters proposed in [4]. The algorithm first determines a linear transformation of
the secret locators α by exploiting structural properties of the subfield subcode of the
public code. Then, the algorithm finds the coefficients of the twist monomials by Lagrange
interpolation. The algorithm finally outputs (Ŝ, α̂, η̂) such that ŜGα̂,t,h,η̂ = Gpub. As
shown in Section 2.2, (Ŝ, α̂, η̂) is a valid private key that can be used in the decryption
algorithm (Section 3.4).

4.1 Derivation of the Key-Recovery Algorithm

4.1.1 First Step: Recovery of an Affine Transformation of the Secret Locators

Let us consider the Fq0-subfield subcode of the code Cpub spanned by the public generator
matrix Gpub. We first state a technical lemma.

Lemma 3. Let α = (α1, . . . , αn) ∈ Fn
q0 with distinct αi, and P ∈ Fq[x] where Fq is an

extension of Fq0. Assume that deg(P ) < n. Then,

evα(P ) ∈ Fn
q0 ⇐⇒ P ∈ Fq0 [x] .

Proof. Let c = evα(P ) and assume that c ∈ Fn
q0 . Since α ∈ Fn

q0 and n ≤ q0, there
exists a polynomial Q ∈ Fq0 [x] of degree ≤ n such that c = evα(Q). Moreover, evα is
injective over the Fq-subspace of polynomials of degree < q0, hence P = Q. The converse
is straightforward.

Let us now define I := {0, 1, . . . , k− 1} \ {h1, . . . , h`} as the set of exponents of mono-
mials which are not twisted.

Theorem 4. Let Gpub be chosen as described in Section 3 and Cpub = RFq

(
Gpub

)
. Then,

Cpub ∩ Fn
q0 = {evα(f) : f ∈ F},

where
F :=

{∑
i∈I

fix
i : fi ∈ Fq0

}
⊆ Fq0 [x].

Proof. First, it is clear that {evα(f) : f ∈ F} ⊆ Cpub ∩ Fn
q0 . Indeed, we obviously have

evα(f) ∈ Cα,t,h,η[k, n] = Cpub for every f ∈ F , and since α is a vector over Fq0 , we also
get evα(f) ∈ Fn

q0 .
Let us now prove that Cpub ∩ Fn

q0 ⊆ {evα(f) : f ∈ F}. Let c = evα(f) ∈ Cpub ∩ Fn
q0 ,

where f ∈ Pn,k
t,h,η. Since deg(f) < n, Lemma 3 implies f ∈ Fq0 [x]. It remains to notice

that F = Fq0 [x] ∩ Pn,k
t,h,η.

6



We observe by Theorem 4 that the subfield subcode Csub := Cpub∩Fn
q0 of the public code

is a strict subcode of a Reed–Solomon code, since the evaluated polynomials do not have
monomials of degree h1, . . . , h`. Thus, one cannot directly use the Sidelnikov–Shestakov
attack [24] on Csub. In 2006, Wieschebrink mounted an attack on cryptosystems based
on random subcodes of Reed–Solomon codes [27]. The author’s idea is that, with very
high probability over the chosen subcode C′, the square code C′2 is a Reed–Solomon code.
Sidelnikov–Shestakov attack can then be used on C′2 to recover the private parameters.

In the following, we prove that for most valid parameters of [4], and for every practical
ones, the square code C2sub is a Reed–Solomon code subject to Sidelnikov–Shestakov attack.

Theorem 5. Let q0, n, k, `, t and h be valid parameters, and assume that ` ≤ 1
2(
√
n−3).

Let Csub = Cα,t,h,η[k, n] ∩ Fn
q0. Then,

C2sub = Cα[2k − 1, n]Fq0
.

Proof. We use the notation of Theorem 4. Notice that for valid parameters, we have
2k− 1 ≤ n− 3 and I = {0, . . . , r− 1}∪{r+ `, . . . , k− 1} where r = dn+1

`+2 e+ 2. Theorem 4
implies that

C2sub = RFq0

(
{evα(h) : h ∈ L}

)
,

where L = {g1g2 : g1, g2 ∈ F} and F = {
∑

i∈I fix
i : fi ∈ Fq0}. As a consequence, the

claimed result holds if and only if I ⊕ I = {0, . . . , 2k − 2}.
It is clear that I ⊕ I contains the subset

{0, . . . , r − 1} ∪ {r + `, . . . , k + r − 2} ∪ {k + r + `− 1, . . . , 2k − 2} .

On the one hand, one can easily check that if ` ≤ r − 1, then {r, . . . , r + ` − 1} ⊂ I ⊕ I.
Moreover, ` ≤ r−1 is always fulfilled by valid parameters since ` <

√
n−3 and r >

√
n+3.

On the other hand, if we assume ` ≤ 1
2(
√
n− 3), then we can prove that ` ≤ k−r

2 , which a
sufficient condition for having {k + r − 1, . . . , k + r + `− 2} ⊂ I ⊕ I.

Theorem 6. Let Cα[n, k]Fq0
be a Reed–Solomon code with locators α1, . . . , αn ∈ Fq0. Given

any generator matrix of Cα[n, k]Fq0
, the algorithm given by Sidelnikov and Shestakov [24]

determines, in time O(n4), a vector α′ ∈ Fn
q0 such that

Cα[n, k]Fq0
= Cα′ [n, k]Fq0

.

In particular, it holds that α′ = aα+ b1 := (aα1 + b, . . . , aαn + b) with a ∈ Fq0 \ {0} and
b ∈ Fq0.

Proof. See [24].

It follows that by applying the Sidelnikov–Shestakov algorithm to C2sub, we obtain a
vector α′ ∈ Fq0 which is an affine transformation of the secret locators, i.e., α′ = aα+ b1
for some a ∈ Fq0 \ {0} and b ∈ Fq0 .

4.1.2 Second Step: Recovery of a Linear Transformation of the Secret Loca-
tors

Lemma 2 only ensures that Cα,t,h,η[k, n] = Cα̂,t,h,η̂[k, n] if α̂ = aα for some non-zero
a ∈ Fq0 . Therefore, given α′ = aα+ b1, it remains to search exhaustively for b such that

7



α′ − b1 = aα. This exhaustive search can be proceeded as follows: given α′ and b ∈ Fq0 ,
compute the code

Ab := RFq

(
{evα′−b1(xi) : i ∈ I}

)
.

If Ab ⊆ Cpub, then we found a valid b, hence a valid α̂ = α′ − b1. Notice that each
individual test Ab ⊆ Cpub can be performed in time O(n3).

4.1.3 Third Step: Recovery of a Valid Pair (α̂, η̂)

Previous steps provide a tuple α̂ ∈ Fn
q0 which can be used as locators for the twisted RS

code. To determine a vector η̂ such that Cα,t,h,η[k, n] = Cα̂,t,h,η̂[k, n], we use the following
Lemma 7.

Lemma 7. Let Gpub = SGα,t,h,η be chosen as described in Section 3, α̂ = aα for
some a ∈ Fq0 \ {0} and gi(x) denote the unique polynomial that interpolates the pairs
(α̂1,Gpubi,1), . . . , (α̂n,Gpubi,n). Further, let I1, . . . , I` ∈ {1, . . . , k} be such that SIj ,hj+1 6=
0 and

η̂j =
gIj ,k+tj

gIj ,hj+1
, j = 1, . . . , `,

where gIj ,1, . . . , gIj ,n are the coefficients of gIj (x). Then, Cα,t,h,η[k, n] = Cα̂,t,h,η̂[k, n].

Proof. By definition,

Gpubi,j =
k∑

s=1

Si,sGα,t,h,ηs,j

=
k∑

s=1

Si,sα
s−1
j +

∑̀
u=1

Si,hu+1ηuα
k−1+tu
j

=

k∑
s=1

Si,sa
−s+1α̂s−1

j +
∑̀
u=1

Si,hu+1ηua
−(k−1+tu)α̂k−1+tu

j .

By interpolating (α̂1,Gpubi,1), . . . , (α̂n,Gpubi,n), one obtains a unique polynomial gi(x)
with coefficients

gi,s =


Si,sa

−s+1 if s ∈ {1, . . . , k}
Si,hu+1ηua

−(k−1+tu) if s = k + tu, u = 1 . . . , `

0 otherwise.

If Si,hu+1 6= 0, then we get

η̂u = ηua
−(k−1+tu−hu) =

gi,k+tu

gi,hu+1
.

4.1.4 Final Step: Recovery of an Alternative Private Key (Ŝ, α̂, η̂)

After determining α̂ and η̂, one can easily compute a matrix Ŝ such that ŜGα̂,t,h,η̂ = Gpub.
Then, (Ŝ, α̂, η̂) can be used in the proposed decryption algorithm as a valid (alternative)
private key to retrieve any secret plaintext m.

8



Algorithm 1 Key-Recovery Attack
Input: Gpub

Output: Ŝ, α̂, η̂

1: Gsub ← SubfieldSubcode(Gpub) ∈ F(k−`)×n
q0

2: Gsq ← Square(Gsub) ∈ F(2k−1)×n
q0

3: α′ ← SidelShest(Gsq) ∈ Fn
q0

4: i← 1 ∈ N
5: do
6: b← βi ∈ Fq0

7: α̂← (α′1 − b, . . . , α′n − b) ∈ Fn
q0

8: G′ ← GenSub(α̂) ∈ F(k−`)×n
q0

9: i← i+ 1 ∈ N
10: while G′(G⊥sub)> 6= 0
11: for all j in {1, . . . , `} do
12: i← 1 ∈ N
13: do
14: g ← Interpolate

(
α′, (Gpubi,1, . . . ,Gpubi,n)

)
∈ Fn

q

15: i← i+ 1 ∈ N
16: while ghj+1 = 0

17: η̂j =
gk−1+tj

ghj+1
∈ Fq

18: ĜTRS ← GTRS(α̂, η̂) ∈ Fk×n
q

19: Ŝ ← ĜTRS\Gpub ∈ Fk×k
q

20: return Ŝ, α̂, η̂

4.2 Performance Analysis of the Attack

A pseudo algorithm describing the attack is given in Algorithm 1. Let us explain the
notation we use there. We arbitrarily order Fq0 = {β1, . . . , βq0}. By A> we denote the
transpose of the matrix A and by A⊥ a matrix whose rows form a basis of the right
kernel of A. The reduced row echelon form of A is denoted by rref(A). The function
SubfieldSubcode : Fk×n

q → F(k−`)×n
q0 maps a generator matrix of Cpub to a generator

matrix of the subfield subcode of Cpub, i.e., RFq0

(
SubfieldSubcode(Gpub)

)
= Cpub ∩ Fq0 .

The function Square : F(k−`)×n
q0 → F(2k−1)×n

q0 maps a generator matrix of Csub to a generator
matrix of the code C2sub. The interpolation function is defined as Interpolate : Fn

q0×F
n
q →

9



Fn
q , (a, b) 7→ g such that

∑n
j=1 gja

j−1
i = bi for i = 1, . . . , n. We define the function

GenSub : Fn
q0 → F(k−`)×n

q0 ,

(a1, . . . , an) 7→



1 . . . 1
a1 . . . an
...

. . .
...

ah1−1
1 . . . ah1−1

n

ah1+1
1 . . . ah1+1

n
...

. . .
...

ah`−1
1 . . . ah`−1

n

ah`+1
1 . . . ah`+1

n
...

. . .
...

ak−11 . . . ak−1n


and the function implementing Sidelnikov–Shestakov attack as SidelShest : Fk×n

q0 → Fn
q0

such that if G is a generator matrix of a Reed–Solomon code Cα[n, k]Fq0
, then

RFq0

(
G
)

= RFq0

(
GenSub(SidelShest(G))

)
.

The function GTRS : Fn
q0 × F`

q → Fk×n
q maps the vectors α̂ and η̂ to the corresponding

twisted RS generator matrix, i.e., GTRS(α̂, η̂) = Gα̂,t,h,η̂. Further, if A ∈ Fk×n
q and

B ∈ Fk×n
q have the same rowspace, then D = A\B is a solution to DA = B.

Below we provide details on the complexity of the steps in Algorithm 1.

• Line 1: Computation of Gsub ∈ F(k−`)×n
q0 requires O(n2(k + n)) ⊆ O(n3) operations

in Fq and O(n2(2`(n− k) + n)) ⊆ O(2`n3) operations in Fq0 .

• Line 2: Computation ofGsq ∈ F(2k−1)×n
q0 can be performed in time O(n4). Informally,

one needs to find basis of the space generated by the family {gi,j := Gsubi?Gsubj , 1 ≤
i, j ≤ dim Csub}. This basis can be built iteratively; updating the basis with a new
element costs O(n3) operations in Fq0 and must be done O(n) times, and rejecting
candidates costs O(n2) operations in Fq0 and must be done O(n2) times.

• Line 3: Applying the SidelShest function on Gsq ∈ F(2k−1)×n
q0 needs O((2k − 2)4 +

(2k − 2)n) ⊆ O(n4) operations in Fq0 [24].

• Line 4 to Line 10: In the worst case, the following computations have to be performed
q0 times. Computation of α̂ ∈ Fn

q0 needs O(n) operations in Fq0 , building G′ ∈
F(k−`)×n
q0 needs O((k−`)n) operations in Fq0 and matrix multiplication of G′(G⊥sub)>

needs O((k− `)(n− k+ `)n) ⊆ O(n3) operations in Fq0 (G⊥sub was already computed
in Line 1). In total O(q0n

3) operations in Fq0 are required.

• Line 11 to Line 17: In the worst case, ` · k Lagrange interpolations have to be
performed, which needs in total O(`kn2) ⊆ O(n4) operations in Fq.

• Line 18: Computation of ĜTRS ∈ Fk×n
q needs O(kn) ⊂ O(n2) operations in Fq.

• Line 19: Computation of Ŝ ∈ Fk×k
q by transformation of

(
Ĝ
>
TRS G>pub

)
∈ Fn×2k

q in
reduced row echelon form needs O(n2(2k)) ⊆ O(n3) operations in Fq.

10



q0 n k l wH(e)
Claimed

security level
Runtime of
Algorithm 1

28 255 117 1 83 128 bits∗ 133 seconds
28 255 117 2 83 128 bits 141 seconds
29 511 200 3 192 196 bits 2260 seconds
29 511 170 3 217 256 bits 1532 seconds

Table 1: Experimental results obtained by averaging several runtimes of Algorithm 1 on
an Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz. The line annotated with a star refers to
parameters proposed by the designers of the system. The remaining security levels were
computed according to formulae given in [4].

In practice, ` and q0 = q1/2
` have to be chosen small (for instance, ` = 1 and q0 =

n + 1 = 28 were proposed in [4]) for decryption efficiency and key size reduction. Hence,
Algorithm 1 has a complexity in O(n4) and thus recovers a valid private key in polynomial
time.

We implemented our attack in the computer-algebra system SageMath v8.7 [25], and
we make it available online under https://bitbucket.org/julianrenner/trs_attack.
Although our implementation is not optimized, we were able to obtain a valid private key
for the proposed parameters within a few minutes, cf. Table 1.

5 Discussion and Open Questions

5.1 Repairing the Cryptosystem?

We notified the authors about our attack, and they validated the weaknesses of the cryp-
tosystem as it is presented above. They also described a possible fix, where a modified
version of the generator matrix is made public. The idea is to multiply the generator matrix
Gpub on the right by a diagonal matrix with non-zero entries y = (y1, . . . , yn) ∈ (Fq\{0})n,
such that the Fq0-subfield subcode of the vector space spanned by the rows of Gpub is not
contained in a Reed–Solomon code. This clearly prevents a direct application of our attack.

Nevertheless we would like to point out that this possible repair might not fix the
inherent weaknesses of the cryptosystem. In fact, the subfield subcode of a generalised
Reed–Solomon code y ? Cα is a so-called alternant code Alt(α,y) ⊆ Fn

q0 which also admit
an algebraic description. As a consequence, it seems very plausible that the security of
the proposed repaired cryptosystem can be reduced to the security of a McEliece-like
cryptosystem using the subfield subcode Alt(α,y).

One can then notice that the parameters proposed by the authors are way below
those considered as secure for alternant codes. For instance, BIG QUAKE [2] and Classic
McEliece [10] (both are unbroken candidates for the NIST standardisation call on post-
quantum cryptography) use alternant codes of length and dimension several thousands,
while in the proposed parameters for twisted Reed–Solomon codes, we have n = 255 and
k = 117 with a field size q0 = 28. Algebraic attacks as developed in [11, 12] should then
considered as potential threat. One can also mention the recent attack on the alternant
code-based cryptosystem DAGS [1] performed by Barelli and Couvreur [3]. Informally,
the authors manage to derive from the public code an alternant code with much smaller
parameters, and the last step of the key recovery algorithm — which is exponential in the
involved parameters — remains doable due to the small size of the derived alternant code.

11

https://bitbucket.org/julianrenner/trs_attack


Finally, a crucial point is that one can wonder about the possible benefit to consider
codes whose security might be not better than those based on alternant codes (for which
cryptosystems have been designed and studied), but which suffer from larger key sizes and
much less efficient decoding algorithms.

5.2 On the Rank-Metric Version of the Cryptosystem

In [22] was proposed a modified version of the previous system, based on a subfamily of
twisted Gabidulin codes. The idea is to consider a variant of the GPT cryptosystem [14],
where twisted Gabidulin codes are used instead of (subcodes of) Gabidulin codes. Al-
though we do not claim to have a proper attack on the system, let us show some potential
weaknesses which could be analysed in a future work.

5.2.1 A Short Description of the System

The GPT cryptosystem can be viewed as an analogue of the McEliece cryptosystem, using
rank-metric codes instead of codes in the Hamming metric. We refer to [20] for more
details about rank-metric codes and variants of the GPT cryptosystem. Let us give a
short overview of the latter.

Let Fp ⊂ Fq0 and Γ ⊆ {C ⊆ Fn−t
q ,dim C = k} be a family of rank-metric codes. the

GPT cryptosystem works as follows.

• Key generation: Alice generates a secret generator matrix G ∈ Fn−t
q for a code C

randomly chosen in Γ. Then she computes a public key Gpub = S[X|G]P , where
matrices S ∈ Fk×k

q of full-rank, X ∈ Fk×t
q of rank s ≤ t, and P ∈ Fn×n

p of full-rank
are chosen randomly and kept secret.

• Encryption: given a plaintextm ∈ Fk
q , Bob computes the ciphertext y = mGpub+e,

where e ∈ Fn
q is a random error with small rank over Fp (such that it can be decoded

in C).

• Decryption: Alice decodes the last n − t coordinates of yP−1 in the code C and
retrieves m.

In most variants of the GPT cryptosystem, Γ is a (sub-)family of Gabidulin codes Gα[n−
t, k]Fq = {evα(f) : f ∈ {

∑k−1
i=0 fix

[i] : fi ∈ Fq}}, where x[i] := xp
i , firstly defined in [13].

In [22], the authors proposed to define Γ as the subfamily of twisted Gabidulin codes

Gα,t,h,η[n− t, k] =
{

evα(f) : f ∈
{ k−1∑

i=0

fix
[i] +

∑̀
j=1

ηjfhj
x[k−1+tj ] : fi ∈ Fq

}}
,

where ηi are chosen in the chain of subfields Fq0 ⊂ Fq1 ⊂ . . . ⊂ Fq` = Fq, and (α1, . . . , αn−t) ∈
Fn−t
q0 are Fp-linearly independent, similarly to the case of twisted Reed–Solomon codes.

5.2.2 Potential Weakness

Our claim is that the code Cpub generated by Gpub also admit structured subfield subcodes
which could be used to attack the system. Indeed, one can prove that the last n − t
coordinates of (Cpub∩Fn

q0)P−1 form a subcode of the Gabidulin code Gα[n−t, k]Fq0
⊆ Fn−t

q0
of rather small codimension. Applying variants of Overbeck’s attacks — e.g. in [19] —
might lead to the recovery of a linear transformation of α and thus a structural attack on
the public key close to the one presented in this paper.

12



In fact, we observe in simulations that if λf (Cpub ∩ Fn
q0) has dimension n − 1, where

f = n− k − t− 1 and

λf (C) := RFq0



G

G[1]

...

G[f ]




forG being a generator matrix of C, one recovers an Fp-linear transformation α̂ of α, as well
as a full-rank matrix P̂ ∈ Fn×n

p , by simply applying the algorithm shown in [20, Algorithm
3.5.1] to a generator matrix of Cpub ∩ Fn

q0 . Then, the coefficients η̂ are determined by

interpolating the last n − t positions of GpubP̂
−1

with p-polynomials of p-degree smaller
than n, similar to Section 4.1.3. Finally, one chooses Ŝ such that

ŜĜ =
(
GpubP̂

−1)
[t+1:n]

,

where subscript [t+1 : n] refers to the last n−t positions of GpubP̂
−1

and Ĝ is a generator
matrix of Gα̂,t,h,η̂[n− t, k]. Clearly, (Ŝ, α̂, η̂, P̂ ) is then a valid private key.

Further simulations show that if X has full Fq-rank and t is small, then the vector
space λf (Cpub ∩ Fn

q0) has dimension n − 1 with high probability. However, if t is large or
X has Fq-rank smaller than t, λf (Cpub ∩ Fn

q0) has dimension smaller than n − 1 and this
straightforward approach fails.

Since a precise analysis of the potential weakness of system proposed in [22] is out of
the scope of this paper, we leave it as an open problem for future research.

6 Conclusion

In this paper, we have presented an efficient key-recovery attack on the McEliece cryptosys-
tem based on a subfamily of twisted Reed–Solomon codes. The attack does not contradict
the structural properties presented in [4], but recovers the structure of the subfield subcode
of the used twisted Reed–Solomon code, which then in turn enables us to determine a
description of the supercode.

We have proven that the attack retrieves a valid private key from the public key for all
practical parameters in O(n4) field operations. This is confirmed by experimental results
which indicate that one is able to retrieve a valid private key for a claimed security level
of 128 bits within a few minutes by running a non-optimized SageMath implementation
of the proposed algorithm on a general purpose processor. In addition, we have discussed
the security of an attempt to repair the system and potential ways to adapt our attack to
the rank-metric variant of the considered system.

Although we have shown that a variant of the McEliece cryptosystem based on the
subfamily of twisted Reed–Solomon codes proposed in [4] is not secure, this does not
imply that any subfamily of twisted Reed–Solomon codes is not suitable for code-based
cryptography. In fact, twisted Reed–Solomon codes represent a very large family of codes,
and it requires further research to determine if there could exist other subfamilies that can
be used for the design of cryptosystem.

Acknowledgements

This work was done while the second author was visiting the Institut de Recherche Math-
ématique de Rennes (IRMAR), Université de Rennes 1, France.

13



The first author is funded by the French Direction Générale l’Armement, through the
Pôle d’excellence cyber.

This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement
No 801434).

We would like to thank Antonia Wachter-Zeh for fruitful discussions. We would further
like to thank the authors of the proposed cryptosystem [4] for validating our attack and
pointing out a possible repair of the system with respect to our attack.

References

[1] Gustavo Banegas, Paulo S. L. M. Barreto, Brice O. Boidje, Pierre-Louis Cayrel,
Gilbert N. Dione, Kris Gaj, Cheikh T. Gueye, Richard Haeussler, Jean B. Klamti,
Ousmane Ndiaye, Duc T. Nguyen, Edoardo Persichetti, and Jefferson E. Ricardini.
DAGS: Key Encapsulation Using Dyadic GS Codes. J. Mathematical Cryptology,
12(4):221–239, 2018.

[2] Magali Bardet, Élise Barelli, Olivier Blazy, Rodolfo C. Torres, Alain Couvreur,
Philippe Gaborit, Ayoub Otmani, Nicolas Sendrier, and Jean-Pierre Tillich. BIG
QUAKE BInary Goppa QUAsi–cyclic Key Encapsulation. https://bigquake.inria.
fr, 2017.

[3] Élise Barelli and Alain Couvreur. An Efficient Structural Attack on NIST Submission
DAGS. In Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology
- ASIACRYPT, volume 11272, pages 93–118. Springer, 2018.

[4] Peter Beelen, Martin Bossert, Sven Puchinger, and Johan Rosenkilde né Nielsen.
Structural Properties of Twisted Reed–Solomon Codes with Applications to Code-
Based Cryptography. In IEEE Int. Symp. Inf. Theory (ISIT), 2018.

[5] Peter Beelen, Sven Puchinger, and Johan Rosenkilde né Nielsen. Twisted Reed–
Solomon Codes. In IEEE Int. Symp. Inf. Theory (ISIT), 2017.

[6] Thierry P. Berger, Pierre-Louis Cayrel, Philippe Gaborit, and Ayoub Otmani. Reduc-
ing Key Length of the McEliece Cryptosystem. In Bart Preneel, editor, Progress in
Cryptology - AFRICACRYPT, volume 5580, pages 77–97. Springer, 2009.

[7] Thierry P. Berger and Pierre Loidreau. How to Mask the Structure of Codes for a
Cryptographic Use. Designs, Codes and Cryptogr., 35(1):63–79, Apr 2005.

[8] Alain Couvreur, Irene M. Corbella, and Ruud Pellikaan. Cryptanalysis of McEliece
Cryptosystem Based on Algebraic Geometry Codes and Their Subcodes. IEEE Trans.
Information Theory, 63(8):5404–5418, 2017.

[9] Alain Couvreur, Philippe Gaborit, Valérie Gauthier-Umaña, Ayoub Otmani, and
Jean-Pierre Tillich. Distinguisher-Based Attacks on Public-Key Cryptosystems Using
Reed–Solomon Codes. Designs, Codes and Cryptogr., 73(2):641–666, Nov 2014.

[10] Daniel J. Bernstein and Tung Chou and Tanja Lange and Ingo von Maurich and
Rafael Misoczki and Ruben Niederhagen and Edoardo Persichetti and Christiane Pe-
ters and Peter Schwabe and Nicolas Sendrier and Jakub Szefer and Wen Wang. Classic
McEliece. https://classic.mceliece.org, 2017.

14

https://bigquake.inria.fr
https://bigquake.inria.fr
https://classic.mceliece.org


[11] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, Frédéric de Portzamparc, and
Jean-Pierre Tillich. Structural Cryptanalysis of McEliece Schemes with Compact
Keys. Des. Codes Cryptogr., 79(1):87–112, 2016.

[12] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich. Al-
gebraic Cryptanalysis of McEliece Variants with Compact Keys. In Henri Gilbert,
editor, Advances in Cryptology - EUROCRYPT 2010, volume 6110, pages 279–298.
Springer, 2010.

[13] Ernst M. Gabidulin. Theory of Codes with Maximum Rank Distance. Probl. Inf.
Transm., 21(1):3–16, 1985.

[14] Ernst M. Gabidulin, A.V. Paramonov, and O.V. Tretjakov. Ideals over a Non-
Commutative Ring and Their Application in Cryptology. In Workshop Theory and
Appl. Cryptogr. Techn., pages 482–489. Springer, 1991.

[15] Heeralal Janwa and Oscar Moreno. McEliece Public Key Cryptosystems Using
Algebraic-Geometric Codes. Des. Codes Cryptogr., 8(3):293–307, 1996.

[16] Robert J. McEliece. A Public-Key Cryptosystem Based on Algebraic Coding Theory.
Coding Thv, 4244:114–116, 1978.

[17] Lorenz Minder and Amin Shokrollahi. Cryptanalysis of the Sidelnikov Cryptosys-
tem. In Advances in Cryptology - EUROCRYPT 2007, volume 4515, pages 347–360.
Springer, 2007.

[18] Harald Niederreiter. Knapsack type cryptosystems and algebraic coding theory. Probl.
Control Inf. Theory, 15, 01 1986.

[19] Raphael Overbeck. A New Structural Attack for GPT and Variants. LNCS: MY-
CRYPT, 3715:50–63, 2005.

[20] Raphael Overbeck. Public Key Cryptography Based on Coding Theory. PhD thesis,
Darmstadt University of Technology, Germany, 2007.

[21] Sven Puchinger. Construction and Decoding of Evaluation Codes in Hamming and
Rank Metric. PhD thesis, Ulm University, Germany, 2018.

[22] Sven Puchinger, Julian Renner, and Antonia Wachter-Zeh. Twisted Gabidulin Codes
in the GPT Cryptosystem. In Int. Workshop Alg. Combin. Coding Theory (ACCT),
2018.

[23] M. V. Sidelnikov. Public-key Cryptosystem Based on Binary Reed-Muller Codes.
Discrete Math. Appl., 4:191–208, 01 1994.

[24] M. V. Sidelnikov and O. S. Shestakov. On Insecurity of Cryptosystems Based on
Generalized Reed-Solomon Codes. Discrete Math. Appl., 2:439–444, 01 1992.

[25] The Sage Developers. SageMath, the Sage Mathematics Software System, 2019.
https://www.sagemath.org.

[26] Christian Wieschebrink. An Attack on a Modified Niederreiter Encryption Scheme. In
Public Key Cryptography - PKC 2006, pages 14–26, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

15



[27] Christian Wieschebrink. Cryptanalysis of the Niederreiter Public Key Scheme Based
on GRS Subcodes. In Nicolas Sendrier, editor, Post-Quantum Cryptography, pages
61–72, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

16


	Introduction
	Preliminaries
	Notation
	Twisted Reed–Solomon Codes

	The Twisted RS Code Based McEliece Cryptosystem
	Setup
	Key Generation
	Encryption
	Decryption
	Proposed Parameters

	An Efficient Key-Recovery Attack Using Subfield Subcodes
	Derivation of the Key-Recovery Algorithm
	First Step: Recovery of an Affine Transformation of the Secret Locators
	Second Step: Recovery of a Linear Transformation of the Secret Locators
	Third Step: Recovery of a Valid Pair (, )
	Final Step: Recovery of an Alternative Private Key (,,)

	Performance Analysis of the Attack

	Discussion and Open Questions
	Repairing the Cryptosystem?
	On the Rank-Metric Version of the Cryptosystem
	A Short Description of the System
	Potential Weakness


	Conclusion

