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Abstract

We introduce and study the notion of keyless fuzzy search (KlFS) which allows to mask a
publicly available database in such a way that any third party can retrieve content if and only if
it possesses some data that is “close to” the encrypted data – no cryptographic keys are involved.
We devise a formal security model that asks a scheme not to leak any information about the data
and the queries except for some well-defined leakage function if attackers cannot guess the right
query to make. In particular, our definition implies that recovering high entropy data protected
with a KlFS scheme is costly. We propose two KlFS schemes: both use locality-sensitive hashes
(LSH), cryptographic hashes and symmetric encryption as building blocks. The first scheme is
generic and works for abstract plaintext domains. The second scheme is specifically suited for
databases of images. To demonstrate the feasibility of our KlFS for images, we implemented
and evaluated a prototype system that supports image search by object similarity on a masked
database.

1 Introduction

Motivation. Consider an app for finding lookalikes. (This is mostly to gain intuition, we discuss
more interesting applications further in the paper.) Using this app, people can post their photos and
emails and are willing to be contacted by users who look very similar. Nowadays, image similarity
search can be fully automated using modern image recognition/retrieval techniques. The downside
is the obvious privacy concerns associated to posting personal information online. As the public is
increasingly privacy-cautious, it is strongly desirable to reveal pictures and contact information only
to lookalikes and not everybody else.

It is not clear how, if at all, existing cryptographic techniques can strengthen privacy of data in
the application above. Multiparty computation techniques are not appropriate for this setting. The
users are not likely to be all available at the same time to run the protocol. The (public) repository
where data is held should neither have access to the raw data. Other cryptographic techniques which
rely on secret keys are also not suitable since people who should be able to access the data are not
known a-priory and we want to avoid a completely trusted third party in our de-centralized setting.

We propose and rigorously study solutions to this problem. In short, we show how to mask publicly-
accessible databases to allow users who know (some information about) what they are looking for to
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get that information, yet ensure that mass-harvesting or data mining is prohibitive. From here on, we
use “masking” and “encrypting” interchangeably: our methods do not use keys but use (unstructured)
data to protect privacy of some content, and the desired hiding properties are somewhat reminiscent
of those of encryption.

Narayanan and Shmatikov [36] have proposed obfuscated databases to tackle the same general
problem. They treat the case of exact match queries and is not suitable for applications where the
match does not have to be exact, such as in the applications we consider. In this paper, we treat the
general case of fuzzy queries.
Our results. We propose the concept of keyless fuzzy search (KlFS), where a user can query a masked
database, retrieve its parts and unmask the content if only if it possesses some data “close to” the
masked data. We introduce syntax and security models for this primitive and present constructions.
We give constructions for the general case (where the structure of the masked data is arbitrary) and
for the specific case of image data and show that even without secret keys useful levels of security are
possible.

Syntax and Security. The masking algorithm of a KlFS scheme takes inputs access data I (e.g.
an image of a face) and an auxiliary message M to return a ciphertext C. To query a database of such
ciphertexts, a user executes the query algorithm that takes input some access data I ′ (e.g. an image)
and outputs the query. Given the database and the query, the server can efficiently find and return
the ciphertexts of all data that have been created with access data “similar” to I ′ (e.g. all images
containing the face in the query). The user can then decrypt and recover the auxiliary message M
and optionally the original data I. The formal definition is in Section 3.

For security, we want to capture the idea the attacker obtains information only if it makes the
“right” query to retrieve the information. In our formal definition (found in Section 3) we measure
if an adversary can compute some useful information about the queries and the underlying with
significantly better probability than a simulator who only has access to a leakage function of the data.
Such definitions (with leakage functions) are common for primitives like searchable encryption and
property-preserving encryption [22, 31, 33, 21, 23].

Discussion. Since in our setting there are no keys or trusted parties, security depends on how hard it
is for the adversary to come up with data that is close to the one in the masked database. Unlike prior
definitions from which we draw inspiration, e.g. those for public-key deterministic encryption [5] and
message-lock encryption [8], we do not require this task be computationally infeasible. For the type
of applications we envision, message unpredictability is a strong assumptions which is often not true
(though later in the paper we discuss a method to improve unpredictability for image encryption).
We therefore take a more flexible approach and define security for an arbitrary data set with some
(not necessarily negligible) min entropy which we leave as an unspecified parameter, and the difficulty
of coming up with an “interesting” query will be reflected by the advantage of the adversary.

This hardness is tightly related to the application domain (how much entropy is there in the stored
data) and the closeness threshold which allows unmasking protected data. A KlFS would allow an
easy check to see if a specific license plate occurs in a surveillance video recording of an airport parking
lot yet, determining all license plates that occur in the video would require exhaustive search. While
feasible, it complicates the adversary’s goal. Similarly, if KlFS is used to mask a database containing
fingerprint readings, then harvesting it would require brute-forcing all possible fingerprints, which
could be prohibitive.

The above suggests that in some scenarios KlFS should provide reasonable levels of security, yet
it also indicates that the precise level of security may be difficult to assess. Empirical studies for
particular datasets could be useful.

We note that it is extremely important that if our schemes get deployed, the users understand
that their data is not getting a very strong level of security. The goal is not to hide the data, but to
mask it to prevent easy harvesting of information. In other words, we do not show that adversaries
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do not exist; we show that adversaries can be tethered.
As such, we envision KlFS as an additional layer of protection to be used in conjunction with

other mechanisms. For example, the cloud server may be trusted to protect its data storage against
malicious compromises with traditional crypto and security tools, but it may not be trusted enough to
not mine the data. In this case, the use of a KlFS scheme will protect the data from mass harvesting
by the server.

Basic construction. All our constructions use, as a building block, a family of locality-sensitive
hash (LSH) functions. A randomly chosen LSH function has the property that it collides with high
probability when applied to “close” messages, and “far” messages are likely to yield distinct hash
values. There are various constructions of LSH families known for different closeness metrics such
as Hamming and Euclidean distances, etc. [29, 4, 25]. Most schemes employ the so-called And-Or
construction, where a hash value is actually a vector of independent hashes applied to the same input.

The idea behind our Basic KlFS scheme is simple. To mask with access data I a message M we
first apply an LSH to I to compute a hash vector G. From G we compute a vector of tags T by
applying a cryptographic hash function to each entry in G. In addition, we encrypt M (and optionally
I) using a standard symmetric encryption scheme under the keys H(G[i]), where 1 ≤ i ≤ |G| and H
is a cryptographic hash function. In practice we recommend to use a slow hash as those used to slow
down offline dictionary attacks on passwords, such as a repeated hash.To query I ′ a user computes
the tag vector T′ the same way using the LSH. The server (who indexed the database by the tags) can
then efficiently find the required records by the common tags. The user can unmask as the common
tag will yield one of the keys used for masking.

KlFS for image search. Since KlFS may be particularly suited to support search on images, we
further focus on such data. Existing algorithms for such (unencrypted) search use of feature vectors.
An image is characterized by a set of such vectors and two images are close if sufficiently many features
of the two images are close. What “sufficient” and ”close” means is defined by the search algorithm.

Our generic KlFS scheme is not immediately suitable since it cannot take advantage of structured
information about the images such as feature vectors. Our high-level idea for an extension is as follows.
First, we encode the LSH tags of all extracted feature vectors, so that only their equality is leaked.
This way the search algorithm can still identify close feature vectors of database pictures and queried
images. Next we encrypt database pictures using the standard symmetric encryption scheme under a
key K that can be computed only if one knows a threshold number of feature vectors close to those in
the picture or, in other words, possesses an image close to that included in the picture. Technically,
we achieve this by secret-sharing the key K (one share per LSH tag) and then encrypting each share
with a key deterministically derived from each LSH tag. To unmask, one would need to have an image
that shares sufficiently many tags with the image used to mask. We define the scheme in detail and
analyze its security (again, in the random oracle model) in Section 5.

Refinements. The security of the scheme described above depends tightly on the closeness unpre-
dictabity of masking data. While some images are reasonably unpredictable, our empirical experiments
on some common image datasets showed that feature vectors are likely to be quite predictable. I.e.,
after trying several images, an attacker will likely have a feature overlap with that of the masked
image, and hence will be able to unmask. Another implication is that our search would yield many
false positives (approx. 4%), in the sense that each query would receive a fraction of ciphertexts of
images that are “technically” close via a common feature, but visually not close. This is a general
observation regarding the primitive which we propose: devising KlFS schemes requires careful analysis
to ensure that ”closeness” as implemented by the schemes corresponds, to the largest extent possible,
to ”closeness” as desired by applications.

We show how to alleviate this problem for image search. We adapt an “entropy-filling” technique
used by Dong et al. [27] to eliminate false positives in image search to work with masked data. We
show that it is possible to extract features in a way that best characterizes the images. The technique
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filters out the most common features therefore making overlaps between distinct images unlikely. In
addition, to improve the true-positive rate while keeping the false-positive rate significantly low, we
modify the search algorithm to rely on the PageRank-Nibble algorithm derived from [3] and also used
in [27] to improve precision in (unencrypted) image search with very few false positives. We provide
more details in Section 6 [12].

Implementation. We realized our findings about KlFS for images as a working prototype system
that adds privacy to image search. We describe our implementation and its evaluation in Section 7
[12].

More potential applications. Our KlFS for images can be used directly for searching on
masked photo repositories.

Vision-based navigation strategies can greatly increase the scope of application of autonomous
mobile vehicles. For example, small Unmanned Aerial Vehicles (UAV) or drones often need to rely
on their camera to navigate. Vision-based navigation is necessary in GPS devoid environments or
for tracking a visible object; even when GPS is available, vision based localization may offer better
precision of self-localization than GPS. Roughly, the process involves acquiring image through the
camera, detecting landmarks in current views (edges, corners, objects), matching observed landmarks
with those contained in a stored map and calculating the updated position based on the matching
results (angle of view, distances between the corresponding points, etc.) and the map’s information
[13, 39].

In a somewhat similar application, a self-driving car continuously collects a large number of data
from its cameras and other sensors. The recorded data may need to be matched against the database
of similar recordings made by other vehicles, e.g., to learn about recent traffic conditions and accidents
in the area.

In both examples recordings may likely contain information that pose privacy risks, such as record-
ings of people on sidewalks or in the nearby vehicles. Our primitive would allow to keep the recordings
and the associated data in the encoded form and be decoded only by the parties who had recorded
data for the same area. Furthermore, depending on the exact use, the people’s recordings may never
be revealed.

In recent years, the demand for 3D printing is rocketing due to the declining manufacturing costs.
3D printing can be used for printing replacing parts when the parts production is discontinued. Usually
customers do not have the expertise either recognizing or describing the small individual part of a
complex machinery. Through built-in phone cameras, they can build 3D models based on the damaged
parts and then search and retrieve the similar correct 3D models for printing. The KlFS primitive
can be useful here since the manufacturers want to limit access to their 3D models.

As the number of devices connected to the Internet grows, network connectivity becomes increas-
ingly critical. Network fault diagnostic and localization is an important research problem. In several
proposals [41, 32, 2] users share their local measurements to distinguish important network faults from
false positive indications, and to diagnose the root cause of the fault. KlFS will allow to share such
information with extra privacy since only the users who experience similar problems in the similar
network area will be able to get the information about this area.

We remind that we do not assume that data in the above applications is unpredictable, as it is
likely not true. For example, an attacker can possibly obtain aerial images. But this involves some
cost. More generally, some entropy in the data will slow down extracting the information from the
database, and the data which was not queried about will stay secret.

More related work. Our work is related to the vast literature on efficient searchable encryption,
e.g., [24, 31, 11, 21, 23] and especially to fuzzy searchable encryption [33, 10], and to the related areas
of property-preserving [38] and structured encryption [22], but all these works are for the symmetric
key setting, where a user possesses a secret key. Our focus is on the keyless setting.

Our work is also related to fuzzy vaults [30] and fuzzy extractors [26, 14, 19], even though their main
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applications are authorization and key generation based on biometrics. These primitives, however, do
not permit efficient search on encrypted data in a remote storage setting, as this would require the
users to share a state (helper data).

The works on privacy-preserving data mining, e.g. [35, 34], provide solutions for mining data while
preserving hiding privacy of the users. Our goal is different, we want to restrict access to the data for
those who do not know what to look for.

Security in the keyless setting has also been considered by the work on message-locked encryption
(MLE) [8], which is a generalization of convergent encryption [28]. The main use of these primitives
is for secure file de-duplication. KlFS can be viewed as fuzzy MLE (MLE ciphertexts leak equality of
the underlying plaintexts and KlFS ciphertexts leak their closeness).

From this perspective, KlFS is related to the idea of obfuscation for (fuzzy) point function
(PFO) [17], i.e. the task of obfuscating the function which returns the result of the comparison

x
?
= a for some fixed a. A fuzzy PFO (which only reveals closeness of x and a) can be used in the

obvious way to implement linear (therefore inefficient) search over encrypted data. The added ability
to decrypt can be obtained using (a fuzzy variant of the) multibit output point function obfusca-
tion with auxiliary information (MB-APFO) [18] and refined in later works [16]. While to explore
these connections may be theoretically interesting, it is unclear if this would yield efficient enough
constructions of KlFS.

2 Preliminaries

Notation and conventions. The algorithms in the following discussions are randomized unless
otherwise specified. For some n ∈ N we let [n] denote the discrete range [1, n]. x[i] denotes the
i-th element for some vector, or ordered set x. For a set T we write |T | for the size of T . For
some algorithm A that takes inputs x1, . . . , xn, its outputs are denoted by [A(x1, . . . , xn)], where
each element occurs with positive probability. By true and false, we denote the Boolean values. A
random variable X has min-entropy k, denoted by H∞(X) = k if maxx Pr [X = x ] = 2−k. For
random variables Y,Z we follow Dodis et al [26] and define the conditional min-entropy of Y given

Z by H̃∞(Y | Z) = − log(Ez←Z [2−H∞(Y |Z=z)]). This definition ensures that for any adversary A,

Pr(y,z)←(Y,Z)[A(z) = y] ≤ 2−H̃∞(Y |Z).

Symmetric encryption. We assume the reader is familiar with the standard IND-CPA security
notion for symmetric encryption schemes. For a symmetric scheme SE we write Advind-cpa

SE (A) for the
advantage of some adversary A in breaking IND-CPA security of SE .

We use symmetric encryption schemes with the additional property that they are key private, i.e.,
hide all information about the keys used in encryption: it is not possible for an adversary to tell if two
ciphertexts of messages are created with the same key, or with different keys. We write Advkh

SE(A)
for the advantage of adversary A in distinguishing between these two scenarios.

Secret sharing scheme. One of our construction will use the standard t-out-of-n secret sharing
scheme, whose syntax, correctness and security we now recall.

A t-out-of-n secret sharing scheme is defined by algorithms (KS,KR) for sharing and reconstructing
a secret (key). For simplicity we assume that the domain of secrets is {0, 1}κ (where κ is some
parameter). The sharing algorithm KS takes a secret s and outputs a set {s1, s2, . . . , sn} of shares.
The reconstruction algorithm KR takes as input a set of shares s1, s2, . . . , sm and returns a string
s ∈ {0, 1}κ if m ≥ t, or ⊥ if m < t.

For correctness we demand that for any s ∈ {0, 1}κ and any sets Allshares ∈ [KS(s)] and
Shares ⊆ Allshares, where |Shares| ≥ t, it holds that KR(Shares) = s with probability 1.

For privacy we demand that for any s ∈ {0, 1}κ and set Allshares ∈ [KS(s)] it holds that any
subset Shares ⊆ Allshares of size l < t does not give any information about s, i.e., its probability
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distribution is independent of s. Most popular Shamir’s secret sharing scheme unconditionally satisfies
both requirements.

Closeness Domains. We adopt the definitions from [10]. We say that Λ = (D,Cl) is a closeness
domain if

1. D is a finite or an infinite set;

2. Cl is the (partial) closeness function that takes any x, y ∈ D and outputs a member of {close, far},
so that Cl is symmetric (i.e., Cl(x, y) = Cl(y, x)).

For example, for a metric space (D, d) and closeness parameters δC and δF we define the closeness
domain (D,Cl) as follows. For V, V ′ ∈ D,

Cl(V, V ′) =

{
close, if d(V, V ′) ≤ δC

far, if d(V, V ′) > δF

There are no requirements on the output of close for pairs that are “near” (i.e. points that neither
close nor far).

Locality Sensitive Hashing (LSH). All of our constructions utilize locality-sensitive hashing
(LSH), so we start with recalling the LSH primitive introduced in [29]. Below, we give definitions for
an arbitrary metric space (D, d).

Definition 2.1 (Locality-sensitive Hashing) A family H is called (δC, δF, p1, p2)-sensitive if for
any two points x, y ∈ D [40].

• if d(x, y) ≤ δC then PrH[h(x) = h(y)] ≥ p1 ,

• if d(x, y) > δF then PrH[h(x) = h(y)] ≤ p2.

In this paper we use an extension of LSH which amplifies the accuracy of the parameters via the
following construction. The construction, known in the literature as the And-Or construction, is the
following.

Definition 2.2 (Extended LSH (eLSH)) Let H be an (δC, δF, p1, p2)-sensitive hash family. For
positive integers k, L, choose random hi,j ∈ H for all i ∈ [L], all j ∈ [k] and define the hash functions
gi(·) by

gi(x) = (hi,1(x), hi,2(x), . . . , hi,k(x)) for all i ∈ [L].

We refer to the set of functions g as the (L, k)-eLSH extension of H.

One can think of (L, k)-eLSH extension of H as an LSH function with improved parameters. The
parameters (δC, δF, P1, P2) are established by Lemma 2.3 [29] as follows.

Lemma 2.3 Let H be a (δC, δF, p1, p2)-sensitive hash family. Then the (L, k)-eLSH extension of H
satisfies the following. Then for V, V ′ ∈ D,
− if d(V, V ′) ≤ δC then

Pr
hi,j

$←H
[∃i ∈ [L] : gi(V ) = gi(V

′) ] ≥ 1− (1− pk1)L = P1 ,

− if d(V, V ′) > δF then

Pr
hi,j

$←H
[∃i ∈ [L] : gi(V ) = gi(V

′) ] ≤ 1− (1− pk2)L = P2 .
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One construction of an LSH scheme that we use in this paper is for the Hamming distance on the
set of binary strings of length l, i.e. D = {0, 1}l. Starting from a simple LSH function which simply
projects on a single bit of its input, i.e. to sample a function from this family simply select a random
index j ∈ {1, . . . , l} and define hj(x) = xj (where x ∈ D and xj is the j’th bit of x). It follows that

for any two points p, q ∈ D collide with probability 1− d(p,q)
l , where d(p, q) is the Hamming distance

on D. The parameters for the corresponding (L, k)-eLSH are derived using the formulas above.

3 Keyless Fuzzy Search (KlFS)

Syntax for a KlFS scheme. A Keyless Fuzzy Search (KlFS) scheme KlFS is defined for a closeness
domain (D,Cl) and message spaceMS by six algorithms KlFS = (Init,Mask,Unmask,Query, CreateDS,
FuzzyS), where,

• Init is a randomized algorithm which outputs a public parameter P ∈ {0, 1}∗;

• Mask is randomized. It takes P , an element I ∈ D, and an element M ∈ MS and outputs a
ciphertext C; We abuse notation and for any subset D ⊆ D×MS we write C← Mask(P,D) for
the set of ciphertexts obtained by encrypting each (I,M) ∈ D using parameters P . We call the
elements of D the access data and those of MS the auxiliary message, or simply the message.

• Unmask is deterministic. It takes P , C, an access data I ′ ∈ D, and outputs either message M
or ⊥;

• CreateDS, takes a set of ciphertexts C, which we call an (encrypted) database, and outputs a
data structure DS.

• Query is deterministic. It takes parameters P , query data I ∈ D, and outputs a query T ; notice
that access data used in encryption and query data live in the same domain.

• FuzzyS is deterministic. On input a database C, data structure DS, and query T it outputs a
set of ciphertexts.

Notice that we mask messages M ∈ MS under access data I ∈ D and demand that unmasking
returns M (see below). We do not preclude that M contains some, or even all of the information
about I.

Correctness and efficiency: We split the correctness requirement of a KlFS scheme in two parts.
The first part is concerned with the masking/unmasking algorithms. It demands that unmasking a
ciphertext with query data far from the access data used to mask will fail whereas decrypting with
data that is close to the original access data will succeed (i.e. return the auxiliary message used to
encrypt). Note that the former is needed for filtering out the false positives.

The second part deals with the results returned by a search query. We demand that, searching
using some query data I ′ will not return ciphertexts created with access data that is not close to I;
conversely, we demand that the search returns all ciphertexts created with access data that is close
to I. All of these requirements need to hold with sufficiently high probability, which is a parameter
of the scheme.
ε-Correct Decryption: Let P

$← Init be parameters and (I, M) ∈ D ×MS and I ′ ∈ D be arbitrary.

Let C
$←Mask(P, I,M). Then for all I, I ′ ∈ D, all M ∈MS

• if Cl(I, I ′) = close then
Pr[Unmask(P, I ′, C) = M ] ≥ 1− ε ,
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• if Cl(I, I ′) = far

Pr[Unmask(P, I ′, C) = ⊥] ≥ 1− ε .

The probabilities are over the choice of P and the coins used by the algorithms involved.

ε-Correct Fuzzy Search: Let P
$← Init be parameters, D ⊆ D×MS be arbitrary and let C

$←Mask(P,D).
Consider the associate data structure DS = CreateDS(C), an arbitrary I ′ ∈ D and T ← Query(P, I ′).

We require that:

• For any (I,M) ∈ D; let C be the resulting ciphertext in C. Then, if Cl(I, I ′) = close then

Pr[C ∈ FuzzyS(C, DS, T )] ≥ 1− ε ,

• For any (I,M) ∈ D; let C be the resulting ciphertext in C. Then, if Cl(I, I ′) = far then

Pr[C 6∈ FuzzyS(C, DS, T )] ≥ 1− ε .

The probabilities are over the choice of P and any coins used by subsequent algorithms. We do
not impose a specific bound on ε; the correctness analysis for each scheme would need to determine
the best value for ε, and, of course, one may be able to derive different bounds for each of the four
aspects of the correctness definition.

We say that a KlFS scheme is ε-correct if it satisfies ε-correct decryption and ε-correct fuzzy search.
We say KlFS is an efficiently keyless fuzzy-searchable encryption (EKlFS) scheme if for any P

generated by Init, (sufficiently large) database C, data structure DS = CreateDS(C), and query T with
|FuzzyS(C, DS, T )| sub-linear in the size of C, the running time of FuzzyS is sub-linear in the size of
C. Notice this condition on the running time limits the number of false positives for a fuzzy query.

KlFS Security. We define security of a KlFS scheme using the semantic security approach. As
common with such simulation-based definitions for searchable encryption, the definition requires a
leakage function, which describes whatever the adversary can (unavoidably) glean from the encrypted
database, the search data structure and the queries. Since we cannot (and do not want to) fix a one-
size-fits-all leakage function, our definition is parametrized by a function leak which takes as input
the parameters of the scheme P , the access data I, the auxiliary messages M and the search queries
Q and outputs some information to be passed to the simulator. Ideally, this information should be
as benign as possible, and a scheme designer/user should understand the consequences entailed by
leaking this information. Notice that the function depends on the parameters of the scheme which
essentially means that the information leaked may vary as a function of the parameters of the scheme.

Our definition can be seen as a non-trivial extension of the semantic-security-based definition for
deterministic asymmetric encryption by Bellare et al. [7]. We compare two executions, a real one and
an idealized one. In the real execution a database D and search queries Q are sampled according to
some sourceM. In addition, we let the source sample some target information target that models any
possible information about the data and the queries the attacker can guess. The adversary is provided
with the parameters of the scheme, an encryption of the database the search queries and attempts to
guess the target information. We compare this execution with that of an adversary (simulator) who
needs to guess the same information but only having as input the information which is allowed to be
leaked.

If an ideal adversary exists, then the real adversary cannot learn more from the system beyond the
information passed to the simulator. Unlike the traditional security definitions, we do not ask that
the ideal adversary perform negligibly close to the real one, as this may not be achievable for some
classes of sources. Instead, we let the advantage of the attacker (the difference between its and the
ideal adversary’s performances) be an arbitrary function of the given resources and the data source.
We leave it to applications to estimate whether the given bounds are acceptable.
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Experiment Expprv-real
KlFS,M (A)

P
$← Init ; (I,M,Q, target)

$←M
For j = 1, . . . , |I| do

C[j]
$←Mask(P, I[j],M[j])

For j = 1, . . . , |Q| do
T[j]← Query(Q[j])

info
$←A(P,C,T)

Return info
?
= target

Experiment Expprv-ideal
KlFS,M,leak(S)

P
$← Init; (I,M,Q, target)

$←M
info

$← S(P, leak(P, I,M,Q))

Return info
?
= target;

Figure 1: The PRV real (left) and ideal (right) experiments.

Definition 3.1 For a KlFS scheme, closeness domain (D,Cl), source M, leakage function leak, an
adversary A with given resources, simulator S we define the prv-advantage as Advprv

KlFS,M,leak(A,S) as
the difference

Pr
[

Expprv-real
KlFS,M (A) = 1

]
− Pr

[
Expprv-ideal

KlFS,M,leak(S) = 1
]
,

where the experiments are defined on Figure 1.

Remarks. Note that the above definition is achievable only if the adversary cannot come up with
data that is close to the data stored in the database (otherwise, it will be entitled to get the relevant
data). This is similar to the requirements of data unpredictability for deterministic and message-lock
encryption. We could formally define closeness unpredictability and consider only the sources with
such a property. However, our constructions will rely on stronger assumptions so we do not define the
minimal assumption for the source and instead define the assumptions required for each scheme.

It is likely that the data set of an application contains data of variable degree of unpredictability.
For example, a database of names would have very common names like Adam Smith, somewhat
common names like Brent Waters, and rare names like Muthukrishnan Venkitasubramaniam. In
this case it makes sense to use the bound on the advantage separately to estimate security for each
group, by considering several sources. This would require that there is no correlation between groups
(correlations within each group are fine).

We note that our security definition is for a particular source but it is possible to extend the
definition to consider a class of sources.

Two remarks are in order regarding the public parameters in the security game. First, our definition
only captures security of messages that do not depend on public parameters. This is almost always a
reasonable assumption in practice, and is an assumption which is also required in other settings like
deterministic and hedged encryption [6] and MLE. Secondly, in our definition the simulator needs to
work with honestly generated parameters. One could consider a more permissive definition with a
simulator that generates the public parameters of the scheme.

Note that our security notion does capture (though only implicitly) the intuitive goal that it
should be harder to extract the entire database than to extract a single entry. The definition demands
that the attacker who does not know the right query, gets no information. This means that getting
information reduces to coming up with the right queries. Each of these may take time, depending on
the underlying message. This brings us back to the essential goal of hardness of retrieving records
and tethering the attacker.

4 Basic KlFS

The idea behind the scheme is as follows. The parameters of the scheme consist of an (L, k)-eLSH
family. To mask with data I some message M we calculate gi(I) for each i ∈ [L] and use these values
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in two different ways. First, for each i we derive a key for a standard symmetric encryption scheme by
using a hash function H and encrypt M under each of these keys. If the information to be encrypted
is large, one may use a “hybrid” scheme where M is encrypted once under a random key K and K
is encrypted under each H(gi(I)). As mentioned in the Introduction, in practice we recommend to
use a slow hash function to slow down the exhaustive search. In addition, we calculate L tags by
applying a (different) hash function G to each gi(I). The ciphertext of M under I consists of the list
of ciphertexts together with the set of tags.

The scheme can support search in a masked database as follows. Given some query data I ′ one
can compute the tags associated to I ′ (i.e. G(gi(I

′)) for each i) to form a query. The server (who can
index the database by the tags) can then efficiently locate and return all of the ciphertexts with at
least one overlapping tag. The user who is given some data I ′ close enough to I can then recover at
least one of the keys used to mask M by calculating gi(I

′) (for all i) and decrypt the ciphertext.

Basic KlFS Scheme. We now define a basic KlFS for any closeness domain (D,Cl) for which
there exists an extended (L, k)-eLSH scheme H with parameters (δC, δF, P1, P2) that are “compatible”
with the closeness function, that is for any I, I ′ ∈ D if Cl(I, I ′) = close then d(I, I ′) ≤ δC and if
Cl(I, I ′) = far then d(I, I ′) ≥ δF. Given a standard symmetric encryption scheme SE = (K, E ,D) we
define the Basic KlFS scheme as shown in Figure 2. The initialization algorithm picks two additional
hash functions H,G (which we model as random oracles).

Note that although we present search as a linear operation on the database in practice this search is
sublinear due to the use of data structures such as K-D trees [15]. In addition, we remark that although
the decryption algorithm computes the tags associated to the access data I ′ used for decryption, in
practice this computation is not needed: these tags were computed as part of creating the search
query for I ′ and could be saved to be used in decryption. Moreover, only the “matching” tags could
be sent by the server as part of each returned ciphertext.

Correctness and Security. The following theorem establishes the correctness of the basic scheme.
Its proof is in Section A [12].

Theorem 4.1 If H is an (L, k)-eLSH with parameters (δC, δF, P1, P2) then the basic scheme defined
above is ε-correct, with ε = max((1− P1) + L

2h , P2 + L
2h ), where h is the output length of the random

oracle G.

Next, we analyze the security of the the basic scheme. Each ciphertext consists of a symmetric
encryption and a set of tags, each tag is of the form G(gi(I)) (for 1 ≤ i ≤ L) and each search query is
a collection of tags. We show that the only information that is leaked is the overlap between tags and
nothing more, provided a minimal requirement on the interplay between this leakage and the keys
used for symmetric encryption.

In our analysis, first we formalize the unavoidable leakage of the scheme, and then spell out and
discuss the assumption that the source needs to satisfy.

Given some parameters P = k||L||gL(·), random oracles G and H and I,M,Q, target
$←M let

T be the set of all tags (both associated to ciphertexts and to search queries) that are computed
in the experiment. Clearly, the size of T is at most L · (|I| + |Q|): each entry in I and Q (has
at most L associated tags). We can then formalize the information leaked leak(P, (I,Q)) as a map
L : [|T |] → P([|I|+ |Q|]) × [L] which for each tag indicates (the indexes of) the ciphertexts and the
queries in which that tag occurs, and the position in the list of tags where it does.

Assume that T is ordered (i.e. lexicographically) and let T [t] be the t’th tag in this order. By
abusing notation we write T [t] ∈ I[i] to indicate that tag T [t] occurs in the ciphertext associated to
I[i] and we write T [t] ∈ Q[j] to indicate that tag occurs in the querry associated to Q[j]. We can
then define the information leaked as

L(t) = {(i, u) | 〈u, T [t]〉 ∈ I[i]} ∪ {〈j + |I|, u〉 | 〈u, T [t]〉 ∈ Q[j]} .
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Algorithm InitH
For i = 1, . . . , L do

For j = 1, . . . , k do

hi,j(.)
$←H; gi[j]← hi,j(.)

g = (g1(·), g2(·), . . . , gL(·))
P ← k‖L‖g; set random oracles G,H
Return P

Algorithm Mask(P, I,M)

Parse P as k‖L‖g
Tags← ∅
For i = 1, . . . , L do

C[i]
$←E(H(gi(I)),M)

Tags← Tags ∪ {〈i, G(gi(I))〉}
Return C‖Tags

Algorithm Unmask(P, I ′,C‖Tags)

Parse P as k‖L‖g
For i = 1, . . . , L do

T
$←G(gi(I

′))
If 〈i, T 〉 ∈ Tags then
M ← D(H(gi(I

′)),C[i])
Return M

Return ⊥

Algorithm Query(P, I)

Parse P as k‖L‖g
Tags← ∅
For i = 1, . . . , L do

Tags← Tags ∪ {〈i, G(gi(I))〉}
Return Tags

Algorithm FuzzyS(DB, DS,Tags∗)

Cclose ← ∅
For every i = 1, . . . , |DB| do

Parse DB[i] as C‖Tags
If Tags ∩Tags∗ 6= ∅ then

then add DB[i] to Cclose

Return Cclose

Figure 2: Algorithms defining Basic KlFS.

Notice that we expressly do not pass M as input to the leakage function leak since its output L is
independent of M – this indicates that the scheme leaks no information on the underlying plaintexts.

Next, we identify and explain the assumption on the interplay between the source M and the
parameters of the scheme. Recall that, sensitive data is encrypted under keys of the form H(gi(I)),
where H is a random oracle and gi(·) are hash functions form the extended LSH function H, part of
the parameters of the scheme. For security, we need that these keys are unpredictable, even given the
information unavoidably leaked by the scheme. That is, for any gi(·) (sampled from H) and for any

index j ∈ [|I|] and any index k ∈ [|Q|] we have that H̃∞(gi(I[j] | leak(P, I,Q))) ≥ l for some sufficiently

large l. To simplify notation, and avoid the multiple quantifiers we write H̃∞(H(M) | L(M)) ≥ l for
this requirement. Notice that this requirement is strictly stronger than closeness-unpredictability of
M.

The next theorem (which we prove in Section B [12]) establishes the security of the basic scheme,
namely that it leaks no information beyond the tag overlap, unless the attacker can predict the tags.
This holds under the assumption that the symmetric encryption scheme used in the implementation
hides the plaintext and is key-private. This latter assumption is needed since otherwise, ciphertexts will
leak information about equality of keys which translates to more specific information about equality
of tags than leaked by L: an adversary could tell not only that there are tag overlaps, but can tell to
which keys these tags correspond.

Theorem 4.2 Let (D,Cl) be a closeness domain. Let M be an arbitrary source and let H be a
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compatible (L, k)-eLSH scheme with parameters (δC, δF, P1, P2) such that H̃∞(H(M) | L(M)) ≥ l. Let
SE = (E ,D) be a symmetric encryption scheme. We assume that keys for the scheme are bitstrings
length l selected uniformly at random. Let Π be the Basic KlFS and let leak be the leakage function
defined above. Then for any adversary A, we construct a simulator S such that there exist adversaries
B and C so that, in the random oracle model, Advprv

Π,M,leak(A,S) is upperbounded by

Advkh
SE(B) + Advind-cpa

SE (C) +
L · (qG + qH) · (|I|+ |Q|))

2l
,

where qG is the number of queries that A makes to oracle G. Furthermore, the running times of S,
B and C are essentially that of A; the number of encryption queries that B and C make is |I|.

Discussion. As the theorem above states, evaluating security requires estimating unpredictability
of LSH tags, and we understand this is a difficult task. Evaluation of this property has to be done
for the specific LSH instantiation. For example, for the aforementioned random-bit-projection LSH
construction for Hamming distance, it is known [42, 19] that the rate of source unpredictability is
preserved by random random projections (or samples, using the terminology of [19]). It is shown
in [19] that for some specific sources it is possible to preserve more entropy. In addition, one still has
to estimate the unpredictability of the data (empirically or otherwise).

Similarly, it may not be easy to evaluate the implications of the leak function, a key challenge in
studying property-preserving encryption in general. Hopefully future works will bring novel methods
that facilitate such analysis. For our case, further work is needed to understand how leakage about
tags translates into leakage about the data, but this requires a case by case analysis, depending on
the use of a particular LSH and closeness domain.

For the case of random-bit-projection LSH, leak implies leaking the “overlap pattern” of LSH tags.
In particular, each LSH tag (for eLSH construction) is a list of k bits. The attacker will learn to which
data each tag corresponds to, but it does not learn what each tag is or what random bit positions
each tag corresponds to (the latter is due to keeping tags as sets as opposed to lists, and by employing
key-private encryption). An interesting challenge would be to see empirical inference attacks in the
style of [20, 37] which may rely on domain specific knowledge.

Also recall that the definition of the source implies that we only ensure security for messages that
do not depend on public parameters. This is a rather reasonable assumption in practice and moreover,
it is possible future research will remove this assumption, similarly to the case of MLE [1].

As we explained in Section 3, the bound can be used to estimate security of data with different
entropy, if we consider several independent sources and assume that the data produced by different
sources is not correlated across different sources.

5 KlFS for Fuzzy Image Search

Feature vectors. Most algorithms for image search deal with image feature vectors. Feature
vectors are small pieces of data containing information about the image or parts of the image, such
as color, shape, object boundaries, etc. Some applications may need to work with several types of
features. For simplicity, in this work we focus on feature vectors of the same type. We remark that
our definitions could easily be extended to handle multiple types of feature vectors. E.g., one could
assign a specific index to indicate which type the feature vector belongs to.

We consider a domain of feature vectors V and assume that there exists an efficient deterministic
algorithm extractV that takes an image I ∈ D and outputs a set of feature vectors V ⊂ V (such
algorithms are well-documented in the computer vision and graphics literature).

Intuition for the Scheme. We aim to add security to the existing image search applications. In
one such application, a user can search a database of pictures by an image of a face. The user is able
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to retrieve the pictures containing the person in question. More generally, a user holding an image
I should be able to find database pictures that contain (as part of the picture) an image close to I
in some metrics. As we discussed in the Introduction, the existing algorithms for unencrypted search
work roughly by determining how many features are close between those for query and database data
and this is done by comparing equality of LSH tags.

Our goal is to let such algorithms work on masked data. I.e., we want to hide information about
the database and the queries besides the information necessary for efficient search, such as similarity
of underlying feature vectors. And again, since we are working in the keyless setting, security depends
on how hard it is to predict the images. Of course, we want to state and prove the exact security
guarantees for our construction, even though we do not expect the security guarantees to be very
strong (as we also have functionality and efficiency considerations on the other side of the scale).

Since our general KLFS scheme from Section 4 is not immediately suitable (mainly because it does
not consider feature vectors), we propose a scheme tailored for the task. First, we encode the LSH tags
of all extracted feature vectors, so that only their equality is leaked. This way the search algorithm can
still identify close feature vectors of database pictures and queried images. Next we encrypt database
pictures using the standard symmetric encryption scheme under a key K that can be computed only
if one knows a threshold number of feature vectors close to those in the picture or, in other words,
possesses an image close to that included in the picture. We achieve this by secret-sharing the key
K and for each feature encrypting the corresponding share with a key deterministically derived from
each LSH tag. We now provide the details.

The Construction. We consider closeness domain Λ = (D,Cl), where D is a domain of images
and Cl determines when two images are close for a match. The latter can depend on the application.
(See Section 7 for a concrete example.) We assume the existence of deterministic algorithm extractV
that takes an image in D and outputs a set of feature vectors V. We also assume that Cl defines the
parameter thr which is the number of close features needed to determine a match (closeness) between
two images. The construction will use a (δC, δF, p1, p2)-sensitive hash family HL,k with parameters
L and k, matching the closeness domain as defined for the general schemes, cryptographic hashes
H,G (will be treated as random oracles in the security analysis), a symmetric encryption scheme
SE = (K, E ,D) and a secret sharing scheme (KS,KR). We remark that in the secret sharing scheme,
the parameter n (from t-out-of-n) will vary and will be determined in the construction.

The parameter generation algorithm P is as of the Basic KlFS scheme. The rest of the algorithms
are defined in Figure 3. Similarly to the Basic KlFS description, we do not specify in Figure 3 how
FuzzyS makes use of the data structure DS or that the server could only return the matched tags. And
in practice unmasking can be sped up if the user stores the tags (and their corresponding indices) so
they are not re-computed during decryption.

Correctness and Security. The correctness of fuzzy search is as of the Basic KlFS. Correctness
of decryption is similar to that of the Basic KlFS, but it also relies on correctness and security of the
key sharing scheme. Specifically, correctness of the latter ensures that the threshold number of shares
are sufficient to reconstruct the key, which in turn will ensure that decryption using an image close to
the one used to encrypt will be correct. Decryption with a “far” image fails due to the use of the key
sharing scheme: in this case the decryptor will not have enough shares. We observe that security of
key sharing is actually stronger than what we need here (failure of key reconstruction with insufficient
number of shares), as correctness is not an adversarial notion.

Before we specify the security of the scheme, we formalize the information that we expect that the
scheme leaks. Given some parameters P = k||L||gL(·), random oraclesG andH and (I,M,Q, aux)

$←M
we define the leakage function leak(P, (I,Q)) as follows. (As for the previous scheme we do not pass
M as input to the leak function to indicate that the information revealed by the scheme does not
depend on M.) We let F be the (lexicographically ordered) set of features associated to the images in
I,Q; we write F [i] for the i’th feature in F and let f = |F |. Let T be the (lexicographically ordered)
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Algorithm Mask(P, I,M)

Parse P as k‖L‖g
V← extractV(I)
CT← ∅
K

$←K
C

$←E(K,M)

(s1, . . . , sn)
$← KS(K),

where n = |V|
For every feature Vi ∈ V

Tags← ∅
For j = 1, . . . , L do

EncSh[j]← E(H(gj(Vi)), si)
Tags← Tags ∪ {〈j,G(gj(Vi))〉}

CT← CT ∪EncSh‖Tags
Return C‖CT

Algorithm Query(P, I)

Parse P as k‖L‖g; V← extractV(I)
For every Vi ∈ V

Tags← ∅
For j = 1, . . . , L do

Tags← Tags ∪ {〈j,G(gj(Vi))〉}
T[i]← Tags

Return T

Algorithm Unmask(P, I ′, C∗)

Parse P as k‖L‖g
Parse C∗ as C‖CT
Shares← ∅
V′ ← extractV(I ′)
For every feature V ′i ∈ V′

Parse CTi as EncSh‖Tags
For j = 1, . . . , L do

T ′ ← 〈j,G(gj(V
′
i ))〉

If T ′ ∈ Tags then
si ← D(H(gj(V

′
i )),EncSh[j])

Add si to Shares

K ← KR(Shares)
If K = ⊥ then return ⊥
Else M ← D(K,C)
Return M

Algorithm FuzzyS(DB, DS,T∗)

match← 0; Cclose(T )← ∅
For every Ci ∈ DB

Parse Ci as C‖CT
For each CTi

Parse CTi as EncSh‖Tags
For every T∗[l] if Tags ∩T∗[l] 6= ∅
then match← match + 1; break

If match > thr then
add Ci to Cclose(T )

Return Cclose(T )

Figure 3: Algorithms defining the KlFS for Images.

set of tags associated to the features above; we let T [i] be the i’th tag and let n = |T |. Define the
matrix M of |I| + |Q| rows, and f columns where the entry on row i and column j of matrix M
is the list of tags associated to feature F [j] if F [j] is a feature of I[i]. In other words l is part of
the list M(i, j) if F [j] is a feature of I[i] and T [l] is a tag derived from F [j]. The leakage function
L : [n]→ P(([|I|+ |Q|])× [f ]× [L])) is defined by L(t) = {(i, j, u) | 〈u, T [t]〉 ∈M(i, j)}. Informally, the
function reveals for each tag (identified by an index t ≤ n) all access data or query entries (identified
by i ∈ [|I| + |Q|]) and all features (identified by some j ≤ f) for which the tag was derived from
feature j belong to access data (or query) i.

The security theorem below establishes that unless the attacker guesses successfully some tag,
provided the unavoidable leakage of the scheme, no information is leaked about the data that is
masked. Specifically, we assume that we know l such that for any fixed gi of H, and j ∈ [|I|] if we let

Vk(I[i]) be the k’th feature extracted by extractV from I[i], then H̃∞(gi(Vk(I[j]) | leak(P, I,Q))) ≥ l:
that is there is sufficient entropy left in the (LSH projection) of each feature vector, even given the
inherent leakage of the scheme (i.e. the different feature vector overlaps). We make the analogous

requirement for Q by abuse of notation we write H̃∞(H(extractV(M)) | L(M)) ≥ l for the resulting
condition.

Theorem 5.1 Let (D,Cl) be a closeness domain. Let M be an arbitrary source and let H be a

(L, k)-eLSH scheme with parameters (δC, δF, P1, P2) such that H̃∞(H(extractV(M)) | L(M)) ≥ l . Let
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SE be a symmetric encryption scheme, let Π-IM be the KlFS described above Then for any adversary
A, we construct a simulator S and adversaries B and C so that Advprv

Π-IM,M,leak(A,S) is upperbounded
by

Advkh
SE(B) + 2Advind-cpa

SE (C) +
L · f · (qG + qH) · (|I|+ |Q|)

2l
,

where leak is as defined above, and qH and qG are the number of random oracle calls to H and G.
Furthermore, the running time of S, B and C are essentially that of A; the number of queries that
B and C make to the encryption oracle is |I| · f · L (where f is the maximum number of features per
image).

Discussion. As we discussed in Section 4, it is important to provide general means to further
understand the extent and implications of leakage. Meanwhile, to gain more intuition about the
leakage function, assume that the database contains 2 similar images I1, I2, so that I1 and I2 have
close features V1, V2, V3. Further assume that V1, V2 share LSH tags t1, t2; V1, V3 share LSH tags t1, t3;
and V1, V3 share t4. Then, according to leak function we defined, the adversary learns exactly that,
namely the Venn diagram of the set of tags overlaps.

One could strengthen our theorem by relaxing the tag unpredictability requirement. Instead, one
could require that only the threshold (from the key sharing scheme) tags be unpredictable as opposed
to each individual one. In this case, the security of the scheme will also rely on security of the key
sharing scheme.

6 New KlFS for Images

Empirical study of the Basic KlFS for images. We implemented the KlFS for images from
the previous section. We implemented the random bit projection LSH. We used the feature extraction
algorithm from OpenCV 2.4.13. We limited the number of extracted features to 200 for each image
and considered images close if they have at least two close ORB features (have an overlapping tag).

We experimentally evaluated the security of our scheme and found that it does not provide rea-
sonable security, without any contradiction with the theoretical results. The problem is not with the
scheme or its analysis. The problem is that the assumption on which security relies on is not true for
the data sets we have experimented with. I.e., the feature vectors and hence the tags are predictable,
in that images that are not visually close end up being “technically” close since their feature vectors
overlap. An attacker can try several images until one of the features will match a feature from the
masked image, and then the attacker will succeed.

New KlFS for images. To address the problem, we modify the basic KlFS scheme for images to
include “entropy-filtering” and “query expansion” techniques introduced by Dong et al. [27].

Entropy-filtering is a technique which aims to eliminate false positives by filtering the features
associated to images. More specifically, after extracting SIFT features from each image, a customized
algorithm is used to remove the common features, leaving the more unique ones that better describe
the image. This technique helps to decrease the rate of false positives wrt “visually” far images and,
as we discuss later also improves security. The downside is that, the technique also decreases the
precision (the true-positive rate wrt “visually” close images).

To improve precision, we adopt a “query-expansion” strategy and the corresponding PR-Nibble
algorithm used in [27] for the same goal but for unencrypted images. We modify the CreateDS
algorithm as follows. The server first creates a search graph DS on top of the masked database DB,
which utilizes the tag-overlapping pattern of the data. Each masked data is indexed as a vertex, and
any pair of masked data sharing at least one tag is connected by an (undirected) edge. Essentially,
the server is capable of building such a graph by running the basic KLFS search algorithm on each
masked data in the database. The details are in Fig. 5.
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The FuzzyS algorithm also creates a temporary data structure DS′, which is initialized as a tempo-
rary copy of the data structure DS. It then updates DS′ by adding a new vertex representing Q, and
creates new edges between Q and every masked data in DS′ sharing at least one overlapping tag with
Q. After that, the server runs an approximate PageRank algorithm as part of the PR-Nibble algo-
rithm on query Q, database DB, and the search graph DS′. The final output of algorithm PR-Nibble
contains a set of masked data that is reachable from the query data Q through edges in DS′, while
minimizing the “conductance” property, i.e., the ratio between the number of edges connecting the
search results (cluster which lies the query image Q) and “visually far” clusters, and the number of the
intra-connections of the search results. Since edges establish the closeness relation between any pair
of images based on whether they share close features, we can interpret the objective for minimizing
the “conductance” as follows: smaller nominator means fewer “visually far” images are captured, and
larger denominator implies the search results capture more “visually close” ones with high probability.
We outline the algorithms in Fig. 4 and refer readers to [27] for more details. Since minimizing “con-
ductance” is the standard objective for Approximate PageRank algorithms with approximation error
par-ε and damping factor par-α ∈ (0, 1] as input. We refer readers to PageRank related literature for
parameter selection [3]. Typically, par-α is set to 0.85, and both parameters can be chosen empirically
as in [27].

For correctness of our scheme, we recall the difference between two correctness notions: a “techni-
cal” notion that relies on the distance of the feature vectors and the number of matching features; and
a more practical notion dealing with images that are “visually close”. The “technical” correctness is
as that for the basic KlFS for images. The “visual” correctness can only be justified empirically: we
provide the results in the next section.

For security we note that the bound is the same as for the basic KlFS scheme since the modified
algorithms output strictly less data (and therefore information). What changes, is the assumptions on
the unpredictability of masking data – we argue below that with the modifications spelled out above,
tags closeness unpredictability is now a realistic assumption. Indeed, the extractV algorithm removes
the common features from the images, which leads to improving the closeness-unpredictability of the
features, thus enhances the closeness-unpredictability of the LSH hashes. Under the random oracle
model, with practical instantiation using a collision-resistant hash function such as SHA256 or some
slow hashes, the new scheme makes it harder for the adversary to come up with LSH hashes matching
the tags in the database, to recover the keys and break the security. We validate this observation
empirically through experiments.

7 Experimental Results

We implemented the revised KLFS scheme for Images with cryptographic library
Crypto++6.5.4 in C++ on Ubuntu 16.04 with a 6-core processor (Intel R© CoreTM i7-8750H CPU @
2.20GHz ×12), 16GB RAM and demonstrated that the masking scheme was practical. In particular,
we used SHA3-256 hashing (with different prepended bits to realize two independent hashes), AES-
CBC encryption with random IV and Shamir’s secret sharing. We did not use a slow hash, but plan
to experiment with it in the future. We used the same image dataset as in [27]. The test database
contains 10839 images of famous paintings and CD covers in total, and are divided into 81 groups. In
each group, images were manually checked to ensure that the were visually close.

We implemented the extractV algorithm using the techniques in [27] to extract the most represen-
tative SIFT features and transform them into Hamming space. We chose to count any two features
with more than 3-bit difference out of 128 bits as “far”, and setting a single “close” feature match as
the threshold for an image match in the experiment to produce significantly low rate of false-positives
regarding the “visual closeness”. To choose the projection LSH parameters, we knew that the pa-
rameter k, the number of bits of each LSH hash is highly related to security since the adversary can
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Algorithm Mask(P, I,M)

Parse P as k‖L‖g
V← extractV(I)
CT← ∅
K

$←K
C

$←E(K,M)

(s1, . . . , sn)
$← KS(K),

where n = |V|
For every feature Vi ∈ V

Tags← ∅
For j = 1, . . . , L do

EncSh[j]← E(H(gj(Vi)), si)
Tags← Tags ∪ {G(gj(Vi))}

CT← CT ∪EncSh‖Tags
Return C‖CT

Algorithm Query(P, I)

Parse P as k‖L‖g; V← extractV(I)
For every Vi ∈ V

Tags← ∅
For j = 1, . . . , L do

Tags← Tags ∪ {G(gj(Vi))}
T[i]← Tags

Return T

Algorithm Unmask(P, I ′, C∗)

Parse P as k‖L‖g
Parse C∗ as C‖CT
Shares← ∅
V′ ← extractV(I ′)
For every feature V ′i ∈ V′

Parse CTi as EncSh‖Tags
For j = 1, . . . , L do

T ′ ← G(gj(V
′
i ))

If T ′ ∈ Tags then
si ← D(H(gj(V

′
i )),EncSh[j])

Add si to Shares

K ← KR(Shares)
If K = ⊥ then return ⊥
Else M ← D(K,C)
Return M

Algorithm FuzzyS(DB, DS,T∗)

DS′ ← CreateTempDS(DB, DS,T∗)
Cclose(T )← PR-Nibblepar-α,par-ε(DB, DS′,T∗)
Return Cclose(T )

Figure 4: Algorithms defining the revised KlFS for Images.

compute the hashes by brute force. Consequently, we need to choose k > 60. Given k, based on the
equation for theoretic bounds of eLSH extension, we can compute the parameter L accordingly with
reasonably high P1 and low P2. Since we are only dealing with the “closeness-unpredictable” distribu-
tion instead of arbitrary distribution the eLSH theoretic bounds apply, we can reduce L significantly.
We found out that since the closeness threshold of filtered features was small, then choosing k = 80
and L = 8 was sufficient in our experiment and the LSH application did not increase the rate of false
positives.

Based on the “visual correctness” notion, we select 5 most representative images per group, and test
in the same database, with closeness threshold 3 out of 128 bits on each feature; closeness threshold 1
on each image, i.e., one close feature match will result in one close image match. Average TP and FP
is computed by averaging all TPs, FPs of each group respectively. Then without LSH tags, average
TP = 0.65 and FP = 0; with LSH tags, average TP = 0.69 and FP = 0. The average of TP is not high,
but still practical in some applications that we mentioned earlier. That no false-positive results were
returned is partially due to the small image database we were working on. Still, the “entropy-filtering”
and “query expansion” techniques do scale, shown by [27] testing against one million random Flicker
images as background images, i.e., “visually far” images to each test image and the average TP = 0.79
and FP = 2.5 × 10−6. The spatial overhead of our revised KLFS scheme is roughly 400%, same as
the basic scheme, but with an additional graph structure which takes negligible amount of space (e.g.,
5.8 MB). The extractV algorithm and tags generation take less than a second per image; average time
for encryption per image including the encryption of tags is 0.3 second. Average time for decryption
per image is 0.008 second. CreateDS takes about an hour to complete on the whole data set. The
average processing time of PR-Nibble algorithm running on the graph structure per query is 0.006
second to retrieve the file ids. The overall significantly low false-positive rate of the result against
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Algorithm TagsUnion(C∗)

Tags∗ ← ∅
Parse C∗ as C‖CT
For each CTi

Parse CTi as EncSh‖Tags
Tags∗ ← Tags∗ ∪Tags

Return Tags∗

Algorithm CreateTempDS(DB, DS,T∗)

Parse DS as (V,Ad)
idQ ← |V|+ 1

V← V ∪ {idQ}
AdidQ ← ∅
For each Ci ∈ DB

Tags← TagsUnion(Ci)
If T∗ ∩Tags 6= ∅ then

AdidQ ← AdidQ ∪ {i}
Adi ← Adi ∪ {idQ}

DS′ ← (V,Ad)
Return DS′

Algorithm CreateDS(DB)

V← ∅
For each Ci ∈ DB

V← V ∪ {i}
For i = 1, . . . , |V| do

Adi ← ∅
For each Ci ∈ DB

Tags(i) ← TagsUnion(Ci)

For each (Tags(i),Tags(j)) and i 6= j

and Tags(i) ∩Tags(j) 6= ∅
Adi ← Adi ∪ {j}
Adj ← Adj ∪ {i}

DS← (V,Ad)
Return DS

Figure 5: Algorithms defining the revised KlFS for Images.

public database shows that our scheme prevents the computational bounded adversaries harvesting
data from a masked database at a scale.

We observe that the true-positive rate is not very high, but this is as expected, given the necessity
for almost no false positives and inability to execute advanced search techniques on unencrypted images
use because the data is masked (such as, for example, feeding images into the trained deep neural
networks). Still, for data domains where similar images are closely clustered together and clusters
are reasonably far apart low true-positive rate may be sufficient. For example, for applications which
needs to check for the presence of a specific and highly distinct image in a database where the multiples
variations of that picture are present (and therefore does not need to recover all occurrences of that
image). This is the case, for example, when determining if a particular human face, license plate
number, animal, or logo appears in a collection of frames of a given video. Similarly, in machine
learning applications, if an image (with objects or scenes) needs to be classified using a database of
labeled images, then it is enough to match the image with the most likely class, and it is not necessary
to match all close images.
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A Proof of Theorem 4.1

We analyze in turn, each of the four aspects that comprise correctness. We start with correctness of
decryption. Let I, I ′ ∈ D arbitrary such that Cl(I, I ′) = close and let M be some message associated
to I. We lowerbound the probability that

Pr[P ← Init;C ← Mask(P, I,M) : Unmask(P, I ′, C) = M ] .

Notice that the decryption succeeds if for some i the values of gi(I) and gi(I
′) coincide, and for any i

for which the values of gi(I) and gi(I
′) are different, the values of G(gi(I)) and G(gi(I

′)) do not collide.
If we write coll(i) for the event that gi(I) = gi(I

′) and tagcoll for the event that G(gi(I)) = G(gi(I
′))

then we can lowerbound the above probability by

Pr[(∃i ∈ |L|) coll(i) ∧ ((∀i ∈ |L|) (coll(i) =⇒ tagcoll(i))] ,

which ensure that if for some i G(gi(I)) = G(gi(I
′)) then the collision holds because I and I ′ collide

under gi and not because a collision in G. We can lowerbound the above probability by:

1−
(

Pr[(∀i ∈ |L|) coll(i) ∨ (∃i ∈ |L|) coll(i) ∧ tagcoll(i)]]
)

≥ Pr [ (∃i ∈ |L|) coll(i) ]−
∑
i∈[|L|]

Pr
[
coll(i) ∧ tagcoll(i))

]
≥ P1 −

L

2h
.

Above, by the assumption that close(I, I ′) = close we have that Pr [ (∃i ∈ |L|) coll(i) ] ≥ P1. Fur-

thermore, for any i we have that Pr [ ((∃i ∈ |L|) coll(i) ∧ tagcoll(i)) ] = Pr
[
coll(i)

]
·Pr
[
tagcoll(i) | coll(i)

]
≤

1
2h . We conclude that the the probability that the decryption succeeds is lowerbounded by P1 − L

2h .
Next, we bound the probability that for Cl(I, I ′) = far a decryption under I would succeed with

I ′. Notice that decryption is not successful if for any i it holds that T[i] 6= T′[i]; we lowerbound the
probability of this event, and for each

Pr
[

(∀i ∈ |L|) tagcoll(i)
]
≥ 1−

∑
i∈[|L|]

Pr [ tagcoll(i) ] ≥ 1−
∑
i∈[|L|]

Pr
[
coll(i) ∨ (coll(i) ∧ tagcoll(i))

]
≥ 1−

∑
i∈[|L|]

(
Pr
[
coll(i) ∨ (coll(i) ∧ tagcoll(i))

])
≥ 1−

∑
i∈[|L|]

(
Pr [ coll(i) ] + Pr

[
tagcoll(i)) | coll(i)

])
≥ 1− (P2 +

|L|
2h

) .

For the correctness of the fuzzy search procedure we note that if (C, Tags) ∈ C for some (C, Tags)←
Mask(P, I,M) and I ′ ∈ D then C ∈ FuzzyS(C, DS,Query(I ′)) if and only if Tags and Query(I ′) overlap
on at least one position. Compatibility between (D, close) and H ensures that these collisions happen
with probability at least P1 if Cl(I, I ′) = Cl and at most P2 if Cl(I, I ′) = far.

Since p1 > p2, by increasing k and L (L much faster than k) we can make P1 very close to 1 and
P2 very close to 0. For some fixed parameters L, k ∈ N, we refer to the above extension of an LSH
function family as an (L, k)-eLSH function family.

B Proof of Theorem 4.2

Proof idea. We prove the theorem by exhibiting a simulator which (roughly) works as follows. The
simulator (who does not have access to M) creates a “fake” database where each individual ciphertext
is an encryption of 0 under a fresh randomly chosen key. The tags associated to each ciphertext are
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uniformly generated, but subject to the constraints that the overlap between tags is consistent with
the leak information that the simulator is given as input. The simulator runs the adversary A on this
fake database and outputs whatever that adversary outputs.

The argument that the view of the adversary in the real game is close to the one provided by the
simulator follows a standard “game-hopping” technique [9] where we incrementally change how the
view of the adversary is computed. In the first hop, we change how the tags are computed by selecting
them at random, as explained above. Here we rely on the unpredictability of the entries in H(M) to
argue that the probability that the adversary notices the change is upper bounded by a collision in the
random oracle calls. In the next step we first replace each of the keys used with keys selected uniformly
at random (without respecting the overlapping patterns of the real keys) and the real messages that are
encrypted with some fixed message. The key-hiding and plaintext-privcacy property of the encryption
scheme guarantees that the adversary does not notice the difference. Finally, in the next step, instead
of encrypting real messages from M we encrypt some fixed-length message.

The overall idea behind the simulator that we exhibit is as follows. Recall that in the basic scheme,
for each entry (I,M) = (I[i],M[i]) ∈ D a ciphertext is formed from a ”parallel” encryption of M under
keys of the form H(gi(I)) (with gi the components of the extended LSH defined by the parameters of
the scheme) together with a set of tags, each of the form 〈i, G(gi(I))〉:

E(H(g1(I)),M)|| . . . ||E(H(gL(I)),M)||{〈1, G(g1(I[i]))〉, 〈l, . . . , G(gL(I[i]))〉} .

For each query Q the adversary obtains the set of tags {G(g1(Q)), . . . , G(gL(Q))}.
The leakage function only provides the simulator with information regarding the overlap between

the different sets of tags (belonging to ciphertext and/or queries), but nothing else – recall that we
have assumed that the lengths of I,Q and the size of entries in M are all public.

The idea for the simulator construction is to run the adversary A on an input where tags and
ciphertexts are fake: since (as we will argue) the actual values of the tags are unpredictable the
simulator will selects fresh tags in a way consistent with the information about their overlap. Similarly,
encryptions will be encryptions of some fixed string, say 0, each encryption using a fresh key. A fake
ciphertext would then be of the form

E(K1,0)|| . . . ||E(KL,0)||{〈1, T1〉, 〈2, T2〉, . . . , 〈L, TL〉}.

with keys Ki distinct (even across different entries in the encrypted database) and with the tags
satisfying the different equalities captured by the function L.

Since, the values of gi(I) and gi(Q) (for I ∈ I, Q ∈ Q) are unpredictable, even given L(I,Q) (since

H̃∞(H(M) | L(M)) ≥ l), the only way for the adversary to observe that the values corresponding
to the random oracles have been replaced by random strings is to query one of these values to the
random oracle. By the assumption, for each individual query to the random oracle(s), the likelihood
of a collision is 1

2l and a union bound gives an overall distinguishing advantage at most
qG,H

2l . Since
per the discussion above the keys used for encryption are unpredictable, the adversary will notice a
difference only if it breaks the security of the underlying symmetric encryption scheme.

Recall that we have defined the leaking function for the scheme as: leak(P, I,Q) as the map
L : [n]→ P([|I|+ |Q|])× [L] defined by

L(t) = {(i, u) | 〈u, T [t]〉 ∈ I[i]} ∪ {〈j + |I|, u〉 | 〈u, T [t]〉 ∈ Q[j]} .

To describe the simulator it is more convenient to work with the “converse” function which as-
sociates to each I[i] and Q[j] the set of indexes of tags. By abuse of notation we write L−1 for this
function. L−1 : [|I|+ |Q|]× [L]→ P([n]) defined by L−1((i, u)) = t iff L(t) = (i, u).

The simulator is described in Figure 6. Its preamble samples values for the keys and the tags that
could occur in the system: there are at most L distinct key used for each entry in I and there are at
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Algorithm S(P,L)

For (i, l) ∈ [|I|]× [L] do

set Ki,l
$←{0, 1}h

For 1 ≤ i ≤ n

select T [i]
$←{0, 1}h

For i = 1, . . . , |I| do
For l = 1 . . . L do

C[i][l]
$←Mask(Ki,l,0)

Tags[i]← Tags[i] ∪ {〈l, T [L−1(i, l)]〉}
E[i]← C[i]||Tags[i]

For j = 1 . . . |Q| do
For l = 1 . . . L do
T[j]← T[j] ∪ {〈l, T [L−1(j + |I|, l)]〉}

info
$←A(P,E,T)

Figure 6: Simulator for the security of the Basic KlFS scheme.

Exp0
Π,M(A)

For i = 1, . . . , L do
For j = 1, . . . , k do

hi,j(.)
$←H, gi[j]← hi,j(.)

g = (g1(·), g2(·), . . . , gL(·))
P ← k‖L‖g
(I,M,Q, target)

$←M

For j = 1, . . . , |I| do Tags← ∅
For i = 1, . . . , L do

C[i]
$←E(H(gi(I[j])),M[j])

Tags← Tags ∪ {〈i, G(gi(I[j])〉}
E[j]← C‖Tags

For j = 1, . . . , |Q| do Tags← ∅
For i = 1, . . . , L do

Tags← Tags ∪ {〈i, G(gi(Q[j])〉}
T[j]← Tags

info
$←AG,H(P,E,T)

Return info
?
= target

Exp1
Π,M(A)

For i = 1, . . . , L do
For j = 1, . . . , k do

hi,j(.)
$←H, gi[j]← hi,j(.)

g = (g1(·), g2(·), . . . , gL(·))
P ← k‖L‖g
(I,M,Q, target)

$←M

For j = 1, . . . , |I| do Tags← ∅
For i = 1, . . . , L do

C[i]
$←E(H(gi(I[j])),M[j])

Tags← Tags ∪ {〈i, G(gi(I[j])〉}
E[j]← C‖Tags

For j = 1, . . . , |Q| do Tags← ∅
For i = 1, . . . , L do

Tags← Tags ∪ {〈i, G(gi(Q[j])〉}
T[j]← Tags

info
$←AG,H(P,E,T)

If bad then Return 0

Return info
?
= target

Figure 7: In Exp1
Π,M event bad is set to true if for some i and j, adversary A queries H on a value

gi(I[j]) or queries G with gi(I[j]) or gi(Q[j]) calculated elsewhere in the experiment.

most n tags (see above). Then, for each entry i in I it creates a fake ciphertext: it encrypts 0 under
each of the different L keys Ki,l and associates a set of tags, one for each tag identity leaked in L[i].

For our analysis it is convenient to work with stronger notions of security for the underlying SE
scheme, both in terms of plaintext privacy as well as key-hiding property. For plaintext privacy we
consider a multi-key, multi-message setting where one considers an adversary who repeatedly issues
pairs of messages to a set of encryption oracles, each oracle keyed with an independently generated
key. The oracles (consistently) return encryptions of the left or that of the right message and the goal
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Exp2
Π,M(A)

For i = 1, . . . , L do
For j = 1, . . . , k do

hi,j(.)
$←H, gi[j]← hi,j(.)

g = (g1(·), g2(·), . . . , gL(·))
P ← k‖L‖g
(I,M,Q, target)

$←M

For j = 1, . . . , |I| do Tags← ∅
For i = 1, . . . , L do

C[i]
$←E(H(gi(I[j])),M[j])

Tags← Tags ∪ {〈i, G(gi(I[j]))〉}
E[j]← C‖Tags

For j = 1, . . . , |Q| do Tags← ∅
For i = 1, . . . , L do

Tags← Tags ∪ {〈i, G(gi(Q[j]))〉}
T[j]← Tags

For i = 1 to n do T [i]← {0, 1}l

For j = 1, . . . , |I| do
C‖Tags← E[j]
E[j]← C‖{〈l, T [L−1(j, l)〉] | l ∈ [L]}

For j = 1, . . . , |Q| do
T[j]← {〈l, T [L−1(l, |I|+ j)] | l ∈ [L]}

info
$←AG,H(P,E,T)

If bad then Return 0

Return info
?
= target

Exp3
Π,M(A)

For i = 1, . . . , L do
For j = 1, . . . , k do

hi,j(.)
$←H, gi[j]← hi,j(.)

g = (g1(·), g2(·), . . . , gL(·))
P ← k‖L‖g
(I,M,Q, target)

$←M

For j = 1 . . . |I| do
For i = 1 . . . L do

If gi(I[j]) = gi0(I[j0]) for some (i0, j0) ≤ (i, j)
Then Ki,j ← Ki0,j0

Else Ki,j ← {0, 1}λ
For j = 1, . . . , |I| do Tags← ∅
For i = 1, . . . , L do

C[i]
$←E(Ki,j ,M[j])

Tags← Tags ∪ {〈i, G(gi(I[j]))〉}
E[j]← C‖Tags

For j = 1, . . . , |Q| do Tags← ∅
For i = 1, . . . , L do

Tags← Tags ∪ {〈i, G(gi(Q[j]))〉}
T[j]← Tags

For i = 1 to n do T [i]← {0, 1}l

For j = 1, . . . , |I| do
C‖Tags← E[j]
E[j]← C‖{〈l, T [L−1(j, l)〉] | l ∈ [L]}

For j = 1, . . . , |Q| do
T[j]← {〈l, T [L−1(l, |I|+ j)] | l ∈ [L]}

info
$←AG,H(P,E,T)

If bad then Return 0

Return info
?
= target

Figure 8: In Exp2
Π,M proceeds as Exp1

Π,M – the tags that occur in ciphertexts and queries are
replaced with independently selected random strings, but to preserving the overlap between tags, as
specified by the leakage function L which is evaluated given the real tags. Exp3

Π,M is identical with

Exp2
Π,M except that symmetric encryption keys are selected uniformly and independently at random,

subject to the same equality patterns as when computed within oracle H.

of the adversary is to guess which message the oracles encrypt. This notion is equivalent with one
where the adversary only has access to a single encryption oracle via a reduction that incurs a loss
proportional to the number of encryption oracles.

Similarly, as far as key-hiding is concern we use a stronger definition that considers an adversary
who specifies the number of ciphertexts it wants to be challenged on, and a ”pattern” specifying which
of the ciphertexts should use the same key. The adversary then needs to distinguish between a set of
ciphertexts where the keys follow the specified pattern from another where each individual encryption
key is generated independently at random. A standard argument shows that security in this sense can
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Exp4
Π,M(A)

For i = 1, . . . , L do
For j = 1, . . . , k do

hi,j(.)
$←H, gi[j]← hi,j(.)

g = (g1(·), g2(·), . . . , gL(·))
P ← k‖L‖g
(I,M,Q, target)

$←M

For j = 1 . . . |I| do
For i = 1 . . . L do

Else Ki,j ← {0, 1}λ

For j = 1, . . . , |I| do Tags← ∅
For i = 1, . . . , L do

C[i]
$←E(Ki,j ,M[j])

Tags← Tags ∪ {〈i, G(gi(I[j]))〉}
E[j]← C‖Tags

For j = 1, . . . , |Q| do Tags← ∅
For i = 1, . . . , L do

Tags← Tags ∪ {〈i, G(gi(Q[j]))〉}
T[j]← Tags

For i = 1 to n do T [i]← {0, 1}l

For j = 1, . . . , |I| do
C‖Tags← E[j]
E[j]← C‖{〈l, T [L−1(j, l)〉] | l ∈ [L]}

For j = 1, . . . , |Q| do
T[j]← {〈l, T [L−1(l, |I|+ j)] | l ∈ [L]}

info
$←AG,H(P,E,T)

If bad then Return 0

Return info
?
= target

Exp5
Π,M(A)

For i = 1, . . . , L do
For j = 1, . . . , k do

hi,j(.)
$←H, gi[j]← hi,j(.)

g = (g1(·), g2(·), . . . , gL(·))
P ← k‖L‖g
(I,M,Q, target)

$←M

For j = 1 . . . |I| do
For i = 1 . . . L do

Else Ki,j ← {0, 1}λ

For j = 1, . . . , |I| do Tags← ∅
For i = 1, . . . , L do

C[i]
$←E(Ki,j ,0)

Tags← Tags ∪ {〈i, G(gi(I[j]))〉}
E[j]← C‖Tags

For j = 1, . . . , |Q| do Tags← ∅
For i = 1, . . . , L do

Tags← Tags ∪ {〈i, G(gi(Q[j]))〉}
T[j]← Tags

For i = 1 to n do T [i]← {0, 1}l

For j = 1, . . . , |I| do
C‖Tags← E[j]
E[j]← C‖{〈l, T [L−1(j, l)〉] | l ∈ [L]}

For j = 1, . . . , |Q| do
T[j]← {〈l, T [L−1(l, |I|+ j)] | l ∈ [L]}

info
$←AG,H(P,E,T)

If bad then Return 0

Return info
?
= target

Figure 9: In Exp4
Π,M keys Ki,j are selected independently at random and in Exp5

Π,M each C[i] is an
encryption of 0 rather than M[i]

be reduced to security when the adversary is only allowed to see two ciphertexts via a reduction that
incurs a loss proportional to the number of ciphertexts the adversary is allowed to request. Below, the
advantage functions for IND-CPA and key-hiding security refer to security in the sense defined here.

To analyze the distance between the output distribution of the real experiment with A and of
the ideal one with S we proceed as follows. Below we write Exp0

Π,M(A) for Expprv-real
Π,M (A). First,

we consider a modified variant of the experiment Exp0
Π,M(A) where the experiment returns 0 if the

adversary queries the random oracles G,H on values calculated elsewhere in the experiment; otherwise
it behaves as usual. The definitions of Exp0

Π,M(A) and Exp1
Π,M(A) are in Figure 7.

Notice that these are queries of the form gi(I[j]) sent to oracle H (for some i, j) and queries of the
form gi(I[j]) or gi(Q[j]) sent to oracle G. Since by assumption these values have min-entropy l (even
against an adversary who has the information L(I,Q) – which is all the information passed as input
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to the simulator), and since there are L · (|I| + |Q|) tags (since there are L tags associated to each
ciphertext and each query) we have that

Pr
[
Exp0

Π,M(A) = 1
]
− Pr

[
Exp1

Π,M(A) = 1
]
≤ L · (|I|+ |Q|) · (qH + qG)

2l
.

In the next step, we consider experiment Exp2
Π,M(A) (formally described in Figure 8), where we

replace each of the tags calculated via calls to G by independently selected strings of appropriate
length (subject to the condition that equality patterns between strings are preserved). Subject to
event bad not being raised the distribution of the tags are identical in Exp1

Π,M(A) and Exp2
Π,M(A)

and therefore
Pr
[
Exp1

Π,M(A) = 1
]

= Pr
[
Exp2

Π,M(A) = 1
]
. (1)

In the next step we replace encryption keys calculated asH(gi(I[j])) by independently selected keys,
subject to preserving equality between keys. The resulting experiment, which we call Exp3

Π,M(A) is
in Figure 8. As above, if event bad is not raised (so the adversary did not issue any query gi(I[j]) to
H), the distribution of keys is identical in the two experiments, hence:

Pr
[
Exp2

Π,M(A) = 1
]

= Pr
[
Exp3

Π,M(A) = 1
]
. (2)

Next we consider experiment Exp4
Π,M(A) obtained by changing the way the encryption keys are

generated. Its definition is in Figure 9. Instead of selecting them in a way that preserves the overlaps,
we simply select each of them uniformly at random. The idea behind this transformation is that
the adversary should not observe the change of keys, if the encryption scheme SE is key-hiding.
Technically, we construct an adversary B against this property as follows: the adversary simulates all
of the execution of Exp3

Π,M(A), except that the encryptions of the messages in M are created using
the abilities that B when attacking key hiding: the adversary submits a key-pattern expressing the
desired key equality (essentially those corresponding to equal keys in the real execution).

If the keys used by the oracle follow the requested pattern then the view of A is as in Exp3
Π,M(A);

otherwise (i.e. the keys are each selected independently at random) the view of A is as in Exp4
Π,M(A).

Therefore B can break the key-hiding security of SE with the same probability that the outputs of
Exp3

Π,M(A) and Exp4
Π,M(A) are distinguished by D.

Pr
[
Exp3

Π,M(A) = 1
]
− Pr

[
Exp4

Π,M(A) = 1
]
≤ AdvkhSE(B) .

In the next step we modify Exp4
Π,M(A): for each ciphertext, instead of encrypting M[i] using SE

the experiment Exp5
Π,M(A) encrypts 0. The definition of Exp5

Π,M(A) is in Figure 9. Recall that
we have assumed that the length of entries in M is fixed and known – 0 is simply a message of this
length. In the variation where the length of entries in M varies and is part of the output of the leak
function we would encrypt some fixed message of the appropriate length. Since in both experiments
the encryption keys used by Mask are selected at random and the only difference are the messages
that these keys encrypt, if distance between the output distributions of Exp4

Π,M and Exp5
Π,M are

different we can use them to break the IND-CPA security of the underlying encryption scheme. That
is, we construct an adversary C such that:

Pr
[
Exp4

Π,M(A) = 1
]
− Pr

[
Exp5

Π,M(A) = 1
]
≤ Advind-cpa

SE (C) .

Finally we note that the output of Exp5
Π,M(A) is distributed identically with the output of Expprv-ideal

Π,M (S).
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C Proof of Theorem 5.1

The proof idea is the same as before: we construct a simulator that runs the adversary A on a fake
encrypted database, and argue that the adversary A does not distinguish between a real database and
the fake one.

Just like for the basic scheme, we use access data to generate cryptographic keys (asHgk((Vi(I[j]))))
and tags (as G(Vi(I[j])))as ; the main difference is that we use the keys to encrypt shares of an en-
cryption key, which in turn is used to protect the data. Notice that security of the construction does
not rely on the security of the secret sharing scheme, since our assumption is that each individual
gk(Vi(I[j])) is unpredictable (given the inherent leakage). In particular, this implies that each of the
keys used to encrypt the key shares is unpredictable, so an adversary obtains no information even
about a single share. The secret sharing scheme is used however to enforce that only decrypting with
a close image (i.e. an image with sufficiently many overlapping features) succeeds.

The unpredictability assumption allows the simulator to produce fake ciphertexts based on the
information it learns from leakage function: For each entry I[i] and for each feature vector associated
to I[i], the simulator associates a collection of fake tags. These tags are selected independently at
random in such a way that the overlap of tags across features (and images) is consistent with the
information leaked by scheme. The symmetric encryption ciphertext uses a fresh random key, and
encrypts 0. To construct the encrypted shares, the simulator runs the secret sharing algorithm on a
key K ′ unrelated to K, and encrypts each of the resulting shares under a fresh encryption key. The
argument that this simulation is indistinguishable from the real encrypted database proceeds through
a similar sequence of game-hops.

In more detail, we start with the real execution and change it incrementally. First we change how
the tags and keys are calculated: for each of the n possible distinct tags and for each possible distinct
key we select a a random string of length h. Due to entropy of the individual values Vi(I[j]) and
Vi(Q[j]) used to derive the real tags and keys, the adversary will only see a difference with probability
L · f · (|I| + |Q|) · (qG + qH)/2l: there are f possible features associated to each element of I and Q
and for each feature vector Vi and for each function gj , the value gj(Vi) is queried to G. Oracle H is
queried with f ·L such values. Per our assumption, all of these values have minentropy l and therefore
an adversary could query the oracle on one of these values with probability:

f · L · (|I|+ |Q|) · qG
2l

+
f · L · |I| · qH

2l

≤ f · L · (|I|+ |Q|) · (qG + qH)

2l
.

In the above experiment, the keys used to encrypt shares still respect the overlap pattern that
the leakage function reveals. Next, we replace each of the keys with fresh ones (that do not respect
the pattern anymore). Any change in the output distribution of the adversary is then due to the
adversary observing this change. Formally, we build an adversary B against the key-hiding property
of the SE scheme, as described in the case of the basic scheme. The adversary simulates all of the
execution except when creating ciphertexts under these keys: for these ciphertexts the adversary uses
the key-hidding game (to which it specifies the overlapping pattern between keys).

In the next hop, we replace each encrypted key share with some fixed string of the same length.
The intuition is that since each of the keys used to encrypt the shares is unknown to the adversary
the only way for the adversary to notice a difference is to contradict IND-CPA security of the scheme.
Specifically, we can construct an adversary C against IND-CPA security of the SE scheme. The
adversary simulates the execution of the experiment perfectly except that whenever it needs to encrypt
some share, the adversary uses a left-right encryption oracle to obtain either an encryption of the share
or the encryption of a fixed message. The adversary uses a different oracle for each such encryption.
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In the last change we replace the encryptions of the messages in M with encryptions of 0. As
before, this hop is justified through IND-CPA security of the encryption scheme SE via a different
adversary E.

Notice that the proof does not rely on the security of the secret sharing scheme (indeed, key that
is used to encrypt the shares is unpredictable so an adversary obtains no information even about a
single share). The secret sharing scheme is used however to enforce that only decrypting with a close
image (i.e. an image with sufficiently many overlapping features) succeeds.

28


	Introduction
	Preliminaries
	Keyless Fuzzy Search (KlFS)
	Basic KlFS
	KlFS for Fuzzy Image Search
	New KlFS for Images
	Experimental Results
	Acknowledgements
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 5.1

