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Abstract. The Noise protocol framework is a suite of channel establishment protocols, of which
each individual protocol ensures various security properties of the transmitted messages, but keeps
specification, implementation, and configuration relatively simple. Implementations of the Noise
protocols are themselves, due to the employed primitives, very performant. Thus, despite its relative
youth, Noise is already used by large-scale deployed applications such as WhatsApp and Slack.
Though the specification describes and claims the security properties of the protocol patterns very
precisely, there has been no computational proof yet. We close this gap.
Noise uses only a limited number of cryptographic primitives which makes it an ideal candidate for
reduction-based security proofs. Due to its patterns’ characteristics as channel establishment pro-
tocols, and the usage of established keys within the handshake, the authenticated and confidential
channel establishment (ACCE) model (Jager et al. CRYPTO 2012) seems perfectly fit for an analy-
sis of Noise. However, the ACCE model strictly divides protocols into two non-overlapping phases:
the pre-accept phase (i.e., the channel establishment) and post-accept phase (i.e., the channel). Us-
ing the example of Noise, we show that this separation originates from the historic background of
the TLS 1.2 proof, rather than it depicting the natural core of a channel establishment protocol.
Similarly to TLS 1.3, Noise allows the transmission of encrypted messages as soon as a key is
established (for instance, before any authentication between parties has taken place).
By proposing a generalization of the original ACCE model, we catch security properties of these
earlier messages precisely. As our generalized model is aimed to capture security of multiple different
channel establishment protocols, we then add flexibility to the security definition, comparable to
the multi-stage key exchange model (Fischlin and Günther CCS 2014). We furthermore provide
a broad discussion on the relations among and dimensions of the considered security properties
as this plays a crucial role when defining security flexibly. Based on this, we observe that each
message sent during the channel establishment can add new security properties, while inheriting
those established in previous stages.
We give full security proofs for eight of the 15 basic Noise patterns to illustrate the flexibility and
validity of this approach.
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1 Introduction

Noise is a protocol framework introduced by Trevor Perrin [38] for establishing confidential channels
between two parties in various application scenarios, while using only a limited number of cryptographic
primitives. Like TLS 1.2, Noise makes use of the derived keys during channel establishment (or hand-
shake), which makes an analysis with respect to key indistinguishability as in traditional key exchange
models infeasible. As with TLS 1.2, the Noise framework focuses on channel establishment and not on
the establishment of a key, so the ACCE model [25] seems to capture the security of Noise perfectly.
Many of the Noise protocols, however, do not separate between the handshake and the channel itself
as strictly as modeled in ACCE. To allow the transmission of messages as early as possible (to avoid
latency costs), protocols like TLS 1.3 and Noise amalgamate handshake and channel (at cost of security
guarantees for these early messages). In this work, we show how to flexibilize the ACCE model, grasping
its core idea and applying it to the Noise framework to prove fine-grained security guarantees.

The Noise Framework The Noise protocol framework is a tool box for defining simple and lightweight
protocols for homogeneous environments. In this context, homogeneous means that all parties in the
environment agree upon the protocol (including mechanisms for long-term key distribution, protocol
version, employed cryptographic primitives, . . . ). In contrast, TLS allows the establishment of a channel
in highly federated environments, in which the information mentioned before is not previously known
to protocol participants. This induces highly complex implementations that contain version and cipher
suite negotiation as well as legacy code. Noise can disregard these issues (which in TLS regularly lead to
security vulnerabilities, e.g., [1, 37]) but still offers multiple protocol patterns that allow a developer to
choose a protocol fulfilling his or her application’s security needs and considering the respective use case
(long-term key distribution, latency, . . . ).

The Noise specification defines 15 core protocol patterns for different use cases, which may consist
of one, two, or three handshake messages (cf. Figure 1) – containing ephemeral and/or long-term Diffie-
Hellman shares and (if a key is already established) an AEAD ciphertext – and a channel. Each party
can have a long-term DH key pair, and potentially contributes one ephemeral DH key pair per protocol
execution. The different patterns of Noise can hence be seen as different distributions of the corresponding
two to four public DH shares to the handshake messages. The three-message patterns of Noise are novel
in the sense that classical three/four-message patterns for AKE protocols typically use only one DH key
exchange which is either static (TLS-DH) or ephemeral (signed DH, Station-to-Station protocol, TLS
1.3, TLS-DHE, IPsec IKE, SSH) combined with digital signatures (all of the above) or MACs (IPsec
IKE Phase 2 with forward-secrecy). Noise avoids authentication with MACs or digital signatures, and
provides entity authentication through long-term DH keys, key derivation, and AEAD.

Initiator A Responder B

“KEM-ACCE”=PKE

“ORKE-ACCE”

“AKE-ACCE”

ga, c0 = EncKDF(gaB)(g
a,m0)

gb, c1 = EncKDF(gaB ,gab)(g
a|c0|gb,m1)

c2 = EncKDF(gaB ,gab)(g
a|c0|gb|c1, gA)

c3 = EncKDF(gaB ,gab,gAb)(g
a|c0|gb|c1|c2,m3)

Fig. 1: The flexible structure of the Noise protocol framework, described conceptually with the XK pattern (three
passes) that bases on the NK pattern (two passes) that bases on the N pattern (one pass). gA and gB denote the
long-term public DH shares of parties A and B, ga and gb denote their ephemeral shares, and Enck(ad,m) is an
AEAD encryption.
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As a result, Noise is for its scope even more agile than TLS, allowing tailored protocols for multiple
use-cases with various security properties – making security analysis in a single static model difficult.
Resulting from its efficiency and flexibility, Noise is used by largely deployed protocols such as What-
sApp [23, 42] (for client to server communication), Wiregurard [13, 15], Slack, Amazon AWS1, and is
potentially an ideal candidate for protecting the transport layer in IOT networks. Despite being dis-
tributed in applications used regularly by billions of users, there has not been a computational proof of
Noise’s security.2

Flexibility for ACCE Originally the ACCE model was developed with the strict separation between
key establishment and communication channel in mind. The security of ACCE, however, does not require
this separation, because it only targets on the confidentiality of transmitted messages and the authen-
tication among communicating parties. Furthermore, the ACCE model as introduced requires mutual
authentication for a channel. Krawczyk et al. [30] introduced a variant of the ACCE model, denoted
SACCE, allowing them to analyze protocols with unilateral authentication. In addition, Lychev et al.
[35] developed the two-stage ACCE model, denoted QACCE, to capture the security of QUIC. However,
since QACCE is tailored specifically to the QUIC protocol, the model is barely applicable for the analysis
of other protocols.

In order to generalize the idea of an ACCE model for the analysis of other channel establishment
protocols then, it is important to overcome historic remnants of ACCE such as separation of channel
establishment and channel, a dedicated session key3, or strictly enforced authentication and security
guarantees for all transmitted messages. In our model, we carefully focus on grasping the core idea of a
channel establishment protocol in order to find a security notion that is not influenced by the specific
protocol being analyzed.

Although the separation between handshake phase and channel phase is not a necessary property of
channel establishment protocols, it is natural that a protocol that establishes a channel immediately (i.e.,
with the first protocol message) cannot fulfill the same security guarantees as protocols that take multiple
round-trips before allowing the confidential transmission of payload. This intuition can be compared
to different security levels that are achieved by key encapsulation mechanisms (KEM), one-round-key
exchanges (ORKE), and authenticated key exchanges (AKE) as depicted in Figure 1. For example, one
message patterns (i.e., KEM-DEM constructions) are, among other deficiencies, subject to replay attacks
if not equipped with expensive key update mechanisms such as in [20]. As a result, such attacks must
be considered when designing an appropriate security model. Our model takes these different stages of
security goals into account by adding flexibility to the ACCE notion.

Since the Noise framework, on the one hand, directly complies with our syntax of a flexible ACCE
and, on the other hand, defines multiple patterns with different, fine-grained security properties, we see
it as an optimal candidate for verifying the agility of our generalization and flexibilization of the ACCE
model.
Contributions Our contributions can be summarized as follows:
– We generalize and flexibilize ACCE by finding its core idea and removing remnants of historic con-

structions (such as a separation between handshake and channel, a single dedicated session key, or
required authentication goals).

– We prove flexible ACCE security for the majority of Noise framework’s standard protocol patterns,
considering multiple fine-grained security properties of patterns. By focusing on the security of the
established channels instead of the established session keys, this allows us to comprehend security
claims of the Noise specification. Due to limited cryptographic primitives and similar patterns in
Noise, this results in clear proofs.

– We thereby propose a comprehensible methodology to analyze channel establishment protocols with
multiple stages, fulfilling different security properties.

– As modeling and defining security generically and flexibly requires the considered security properties
to be well-understood, we provide a broad discussion on the interplay and dimensions of confidential-
ity and authenticity. In Appendices B and C we shed a light on the relations among authentication

1 Both Slack and AWS use it in internal server-to-server communication.
2 Except for the single pattern that is employed in the Wireguard protocol [15, 34].
3 Think of a protocol that enforces the separation of the direction of the channel by using public key encryption
instead of a symmetric key; hence a symmetric key is not necessarily part of the channel. We generalize it to
a session state of each session participant.
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and KCI resistance as well as attacks against long-term secrets and the ephemerally utilized random-
ness, which is also valuable for related primitives such as key exchange.

1.1 Related Work

Computational security proofs for real world protocols have a long history (e.g., [12, 14, 15, 16, 30, 36]).
As described earlier, due to the usage of the channel key in the handshake of TLS 1.2, the ACCE
model was introduced by Jager et al. [26] (which was later also used in [3, 6, 7, 8, 33]) as a proof
of key indistinguishability was impossible without considering a modified protocol variant. To further
analyze the security of TLS 1.2 without client authentication, Krawczyk et al. [30] and Kohlar et al. [29]
independently proposed a variant of the ACCE model.

The issue of analyzing real world protocols that use the established key within the handshake has
been bypassed in the past by modifying the protocol for the analysis [12, 15, 36]. While a certain fraction
in the key exchange community is of the opinion that ACCE is the lesser alternative to modeling and
analyzing protocols that do not carefully divide handshake and channel, we see it as an opportunity to
elaborate accurate and precise statements on the security of communicated payload within a channel.

The multi-stage key exchange model by Fischlin and Günther [16] extends the Bellare-Rogaway
model [2] (further extended by [14, 17]) similarly as we extend the original ACCE model. In addition
to the issue of key-usage during the handshake in Noise (as in TLS 1.2 or Signal), the multi-stage key
exchange model is too restrictive to be applied here: Authentication is only modeled flexibly as far as
necessary for the respective analyzed protocols (QUIC in [16], TLS 1.3 in [14, 17]. Furthermore, extended
security properties such as Key Compromise Impersonation (KCI) resistance are not captured.

Giesen et al. [18] extended the ACCE model to consider multiple stages during a protocol execution
to analyze TLS renegotiation. Besides its static security definition(s) and in addition to inheriting other
unnecessary remnants of the ACCE model, all stages necessarily consist of separate handshake and chan-
nel phases (making it unapplicable for generic multi-stage protocols). Another step towards considering
stages in ACCE was taken by Lychev et al. [35] and more recently by Chen et al. [11]. Their QACCE
and msACCE models are, however, strongly tailored to the respectively analyzed protocols (QUIC and
TLS 1.3). Blazy et al. [4] also proposed very recently a multistage ACCE model to analyze a ratcheting
protocol (related to Signal). Similarly, their model strongly depends on the analyzed protocol, pursuing
a contrary strategy to ours (i.e., a specialized instead of a generic model).

Previous to our work, Dowling and Paterson [15] examined the WireGuard key exchange protocol [13],
itself based upon a single variant of Noise called pattern IKpsk2. They show that analyzing WireGuard in
a key-indistinguishability-based security framework is impossible, as the protocol relies on an encrypted
message using the established session keys to act as a key-confirmation message. They instead modify
the WireGuard key exchange protocol to morally capture the key confirmation message, and prove the
modified construction secure. Recently Lipp et al. [34] confirmed the security of the WireGuard protocol
by an automated analysis with CryptoVerif. Using this tool, they were able to produce a computational
proof of security. Independently and concurrent to our work, Kobeissi and Bhargavan [27, 28] published
a framework for the formal verification (and automatic code generation) of Noise patterns. In particular,
they formalize Noise patterns and use transition logic to create symbolic models of dynamically chosen
Noise patterns to allow automatic verification using ProVerif. This is a strong indication for Noise’s
security but the approach and the results can barely be compared with computational, reduction-based
proofs with respect to generic security models. As their verification of all base Noise patterns is conducted
automatically with respect to the security statements from the Noise specification and we provide a
reduction-based proof of security in a generalized, flexible computational model manually, we see these
two approaches to be complementary.4

4 Please note that symbolic analyses disregard the actual representation of the cryptographic building blocks’ in-
put and output values. Thus, in symbolic analyses, cryptographic primitives are highly idealized. Consequently,
while reduction-based proofs provide relations to well studied hardness assumptions, symbolic analyses assume
“unconditional” security of a protocol’s building blocks. Nevertheless, automatic proofs are less error-prone
and better scalable.
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2 Preliminaries

Here we formalize the notation and provide intuitions for security assumptions that we will utilize in our
analysis of the Noise Protocol Framework. Standard assumptions and security notions such as collision
resistance for hash functions, security of pseudo-random functions, and the full definition of the PRF-
Oracle-Diffie-Hellman assumption can be found in Appendix A.

2.1 Notation

The following notation will be used throughout the paper. For q ∈ N by [q] we denote the set {1, · · · , q}.
For a function F : {0, 1}a → {0, 1}b, a describes the input length and b describes the output length of the
function. If a or b take the value ∗ we say that the function is defined for inputs or outputs of arbitrary
length. Let S be a finite set and let |S| be its size. We say a value x is chosen uniformly at random by
x ←$ S. Let A be a probabilistic algorithm, we let y ←$ A(x1, ...) denote running A on input (x1, ...)
with uniformly chosen random coins, and assigning the output to y. If A is a deterministic algorithm,
then y ← A(x1, ...) denotes that y is computed by A using (x1, ...) as input. By y ←[r] A(x1, ...) we
denote that a probabilistic algorithm A is invoked deterministically by consuming its random coins from
r. Consumed random coins are afterwards removed from r.5 ε is the empty string and ⊥ is a special
element indicating no input or no output.

2.2 The PRF-Oracle-Diffie-Hellman Assumption

The PRF-ODH assumption was introduced by Jager et al. [25]. Brendel et al. [5] published a generalization
of the PRF-ODH assumption and its variants. In our proof we will use the generic PRF-ODH assumption
as defined in Appendix A. Intuitively, the PRF-ODH assumption says that a PRF, which is keyed by a
value derived from a DH key exchange of two DH shares, outputs a pseudo random value even though
an adversary has oracle access to the PRF under different combinations of these DH shares.

3 The Noise Protocol Framework

The Noise Protocol Framework (hereafter referred to as “Noise”) is a specification that describes a
framework with which two party channel establishment protocols can easily be instantiated for multiple
purposes. The core of the framework is represented by the definition of 15 base protocol patterns, the
exact descriptions of which can be found in Appendix F. Each of these patterns employs only four
underlying cryptographic primitives: a Diffie-Hellman group, a hash function, a key derivation function,
and an AEAD cipher. Depending on how these cryptographic primitives are combined, the channel
establishment protocols achieve different cryptographic properties. The main properties are:

1. Authentication and integrity,
2. Key compromise impersonation (KCI) resistance,
3. Forward-secrecy, and
4. Resistance against replay attacks.

Another interesting security property that is achieved by the protocols, but not explicitly claimed, is:

5. Resistance against reveals of random coins of the session participants.

The 15 patterns mainly differ in the setup in which they can be deployed. There are patterns that
do not require the initial distribution of users’ long-term public keys (and either insist on the authenti-
cation of users by transmitting these keys either in plaintext or encrypted, or alternatively to disregard
authentication altogether), and patterns that are based on the previous distribution of users’ public keys.
The out-of-band mechanism for public-key distribution is outside the scope of the specification, but one
can imagine scenarios in which these keys are manually configured, can be acquired from a trusted third
party, or are shipped with the respective application that uses Noise.
5 In common notation this short cut would be denoted by: r∗‖r ← r; y ← A(x1, ...; r∗).
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While historic protocols strictly separated key establishment and channel, recent specifications (such
as TLS 1.3) also allow these phases to be interleaved. This allows the early transmission of payload data
but results in reduced – and perhaps staged – levels of security for this data. The Noise specification
provides a detailed description of security properties for the data transmission in each round-trip of the
handshake and for the channel of each pattern.

While a key feature of Noise is the omission of a negotiation of a pattern or the negotiation of the
exact employed cryptographic algorithms (in contrast to TLS, Noise is intended to be used in settings in
which all participants are configured equally), recent discussions on the mailing list consider negotiation
as a feature in the future6 – which we will not regard in our analysis. Also outside the scope of our
analysis, Noise allows further features such as symmetric pre-shared keys.

Implementation Assumptions The Noise specification provides suggestions for some implementation de-
tails (but does not mandatorily require them). For our analysis, we assume that the protocol implemen-
tation follows these suggestions:

– No padding is employed (i.e., the length of the plaintext message is the same as the length of the
encrypted message), and

– If an algorithm is called irregularly (an initiator receives before sending once, a party waits for
ciphertext but encryption is invoked, decryption fails, . . . ), then the respective algorithm outputs an
empty state and aborts.

3.1 Noise Protocol Patterns

Here we explain the details of Noise, necessary to understand the core protocols and their properties.
A pattern is defined by the knowledge of each participant regarding the long-term public key (or static

public key) of the respective partner (before the handshake and during the handshake). For unidirectional
(i.e., one-message) patterns, the single letter of the pattern name indicates whether the initiator’s long-
term public key is not defined (N), trans(X)mitted during the handshake (X), or known by the receiver
in advance (K). It is clear that, for unidirectional patterns, the receiver’s long-term public key needs to
be known by the initiator in advance since otherwise no payload can be encrypted to the receiver. In
the two-letter names of interactive patterns, the first letter indicates whether the initiator’s long-term
public key is not defined, X-mitted, or known by the responder, and the second letter indicates the
same for the responder towards the initiator. So in the XK pattern, the initiator knows the responder’s
long-term public key in advance and the responder obtains the initiator’s long-term public key during
the handshake. At the top of Figure 2 (in which we depict three example Noise patterns) it is denoted
that the initiator knows the responder’s long-term public key and the responder knows its long-term
secret key for patterns N and NK a priori. For pattern XK, the initiator additionally knows its own secret
key (for which the public key is sent to the responder during the protocol execution).

Finally, the Noise specification distinguishes whether the long-term public key is sent in plaintext
or encrypted (for the former, the letter would be I instead of X). The specification defines all pairwise
letter-combinations among the three variants N, X, K, the unidirectional patterns N, X, K, and the three
variants in which the initiator sends its long-term DH share in plaintext (i.e., I_).

The handshake of a Noise pattern always starts with the initialization of the local state. This local
state contains:

1. a boolean that indicates the session’s role (initiator/responder),
2. the pattern name,
3. potentially the session owner’s long-term DH exponent and DH share (X, gX),
4. potentially the intended partner’s long-term public DH share gY ,
5. potentially the session’s ephemeral DH exponent and DH share (x, gx),
6. potentially the peer’s ephemeral public DH share gy,
7. the chaining key ck,
8. the hash variable h,
9. the key(s) k (or ki, kr for the channel), and

10. the nonce(s) n (or ni, nr).
6 https://moderncrypto.org/mail-archive/noise/2018/001495.html
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A: gB , only in XK: (A, gA) B: (B, gB)

Handshake
Initialization

h← H(Noise name)
ck ← h; n← 0
h← H(h || ad)
h← H(h || gB)

1

2

3

4

–”–

N Handshake

a←$ Zp; h← H(h || ga)
(ck , k0)← KDF(ck , gaB , 2)
c0 ←$ Enc(k0, n, h,m0)
h← H(h || c0)

5

6

7

8 –”–
ga, c0

NK Handshake

b←$ Zp; h← H(h || gb)
(ck , k1)← KDF(ck , gab, 2)
c1 ←$ Enc(k1, n, h,m1)
h← H(h || c1)

9

10

11

12 –”–
gb, c1

XK Handshake

c2 ←$ Enc(k1, n+ 1, h, gA)
h← H(h || c2)
(ck , k2)← KDF(ck , gAb, 2)
c3 ←$ Enc(k2, n, h,m0)
h← H(h || c3)

13

14

15

16

17 –”–
c2, c3

Channel
Initialization

(ki, kr)← KDF(ck , ε, 2)
ni ← 0; nr ← 0

18

19
(kr, ki)← KDF(ck , ε, 2)
ni ← 0; nr ← 0

Channel

C0 ←$ Enc(ki, ni, h,M0)
ni ← ni + 1

20

21 –”–
C0

Fig. 2: Fully specified N,NK and XK patterns. mi are payload messages sent during the handshake; Mi are payload
messages sent after the handshake; ad is associated data with which the handshake is initiated; –”– denotes that
the respective operations for receipt are processed. Handshake initialization, channel initialization, and channel
are part of all patterns.

These values are set, considering the pattern name, associated data ad, and a priori known long-term
public DH shares of the partners (see Figure 2 lines 1-4).

For each handshake message (note that we refer to these messages as ciphertexts hereafter) the
following operations can be conducted:

(a) the generation of an ephemeral DH exponent and the transmission of the respective DH public share,
(b) the plain or encrypted transmission of a long-term DH share,
(c) the computation of a DH secret from a public DH share of the partner and their own DH exponent.

The actual operations in the protocol for operation (a) are 1. the sampling of a DH exponent, 2. the
hashing of its public share into h, and 3. the transmission of this public share to the partner (lines 5,9).
In case (b), the sender’s long-term DH share is encrypted under the current key k and the ciphertext
is hashed into h and sent to the partner (lines 13-14). For patterns in which the long-term DH share is
sent in plaintext, this DH share is hashed into h instead. If (c) a DH secret value was computed, the
current ck together with the DH secret value, computed using the initiator’s κi key and the responder’s
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κr key (where κi and κr are one of the ephemeral and long-term DH share each), is given as input to an
invocation of KDF (lines 6,10,15).

For each handshake ciphertext in which a key k was already computed, a ciphertext under this
current key k is derived by encrypting a payload m or (if no payload exists yet) an empty string ε. This
ciphertext is sent to the partner and also hashed into h. The current value of h is associated data for
every encryption (lines 7-8,11-12,16-17).

After all handshake ciphertexts are processed, the channel is initialized with a symmetric key for
each direction, derived by invoking the KDF on the current chaining key ck (lines 18-19). In one-message
patterns such as N, payload can however only be sent in one direction.

Flexibility in N, NK, XK Figure 2 depicts the three Noise patterns N, NK, and XK. As it can be seen, the
XK pattern adds one further handshake ciphertext to the NK pattern such that the initiator is authenti-
cated, and the NK pattern adds one handshake ciphertext to the N pattern, such that the responder is
authenticated and a bidirectional forward secure channel is established.

4 Flexible ACCE Framework

The original ACCE model [25] and our generalization focus on the definition of authentication and confi-
dentiality of messages, transmitted via a bidirectional communication protocol (channel establishment).
However in [25], traditional security goals like authentication and forward-secrecy are required to be
reached before the actual channel is established. This requirement seems to originate from the specific
protocol for which ACCE was designed, Transport Layer Security (TLS 1.2).

Here we first provide a generic definition of the cryptographic primitive fACCE, then describe the
standard execution environment in which its security is analyzed, further explain how we add flexibility
to the adversary model with respect to the considered security properties, and finally define security of
fACCE.

4.1 ACCE Primitive Description

In the following we provide a definition of the primitive flexible ACCE. Intuitively, it is a protocol that
establishes a secure channel. Both, the establishment of the channel and the transmission of payload
through the channel, are handled by the same algorithms7. The special ‘security level’-output of encryp-
tion and decryption signals which security properties are reached by the current algorithm invocation
(e.g., to a higher level application). We further explain this below.

Definition 1 (Flexible ACCE). A flexible ACCE protocol fACCE is a tuple of algorithms fACCE =
(KGen, Init,Enc,Dec) defined over a secret key space SK, a public key space PK, and a state space ST .
The syntax of an fACCE protocol is as follows:

– KGen→$ (sk, pk) generates a long-term key pair where sk ∈ SK, pk ∈ PK.
– Init(sk, ppk, ρ, ad) →$ st initializes a session to begin communication, where sk (optionally) is the

caller’s long-term secret key, ppk (optionally) is the long-term public key of the session partner,
ρ ∈ {i, r} is this session’s role (i.e., initiator or responder), ad is data associated with this session,
and sk ∈ SK ∪ {⊥}, ppk ∈ PK ∪ {⊥}, ad ∈ {0, 1}∗, st ∈ ST .

– Enc(sk, st,m) →$ (st′, c, ς) continues the protocol execution in a session and takes message m to
output new state st′, ciphertext c, and stage ς that indicates the security for the transmission via c
of the input message, where sk ∈ SK ∪ {⊥}, st, st′ ∈ ST ,m, c ∈ {0, 1}∗, ς ∈ N.

– Dec(sk, st, c) →$ (st′,m, ς) processes the protocol execution in a session triggered by c and outputs
new state st′, message m, and stage ς that indicates the security for the output message during
transmission via c, where sk ∈ SK ∪ {⊥}, st ∈ ST , st′ ∈ ST ∪ {⊥},m, c ∈ {0, 1}∗, ς ∈ N. If st′ = ⊥
is output, then this denotes a rejection of this ciphertext.

7 One could further imagine that updates of the channel state, for reaching security properties such as forward-
secrecy or post-compromise security, are processed by these algorithms.
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Notes on the Syntax Our syntax differs from previous approaches to ACCE protocols that originated from
notions of composition. We instead see fACCE as a primitive that is potentially built from authenticated
key exchange (AKE) and secure channel protocols, but not necessarily cleanly separated into the “pre-
accept” phase that establishes secrets and a “post-accept” phase that securely transmits payloads. We
directly model all communication (handshake and payload transmission) via algorithms Enc and Dec
which not only capture the secure channel but also handshake operations for the channel establishment.
As the bytes sent over the network do not need to be further specified, we simply call them ciphertexts
even though payload is not necessarily encrypted. We similarly view a single dedicated session key as a
legacy of instantiating ACCE protocols via the composition of AKE and channel protocols. Since there
are ways to secure the transmission of payload data other than simply using a symmetric key – consider
asymmetric channels that use public key cryptography – we entirely subsume session-specific information
in the session state. To capture unilateral-authenticated or unauthenticated establishment of a secure
channel, not every participant of a session needs to use a long-term key pair. Furthermore, as ACCE
protocols are not specifically aimed to hide the length of payload, we drop length-hiding properties from
our syntax (see [25]).

Finally, we assume that the protocol outputs a stage number ς with every encryption and decryption.
This ς indicates the ‘security level’ of the transmitted message (e.g., towards an upper layer application).
In the case of an ACCE protocol in which all security properties are reached at once, this stage number
is equivalent to distinguishing between the pre- and post-accept phase. In case of multi-stage protocols, a
security classification can be useful information for an upper layer application that can then decide when
to transmit confidential content. Since there exists no other indication to differentiate multiple stages
based on our syntax8, it is essentially necessary for defining security that the protocol itself outputs the
stage numbers. We define as a convention that for output stage numbers ς = 0 no security properties
(especially no confidentiality) for the respectively transmitted payload is reached.

Please note that the syntax (and our security definition) leaves it to the specific protocol how far
it enforces a ping-pong communication within a session. If the protocol only allows encryptions after
decryptions, then we assume that the protocol enforces this by aborting on invalid algorithm invocations.
If the protocol automatically responds on received ciphertexts, we assume that the environment (in
our security experiment this is depicted by the adversary) handles this. Furthermore, we only consider
protocols with FIFO channels (i.e., enforcing correct message order and prohibiting message omissions).
In Appendix C.1 we describe how to extend our model to capture protocols that tolerate unreliable
underlying networks.

We define the correctness of an fACCE protocol below. Intuitively an fACCE protocol is correct if
messages, decrypted and received through the established channel, were equally sent to this channel by
the partner. We assume without loss of generality that the output stage numbers monotonically increase
during a session. In Appendix D Figure 7 we define correctness in a pseudocode notation to provide more
clarity.

Definition 2 (Correctness of fACCE). An fACCE protocol is correct if, for some (ski, pki), (skr, pkr) ∈
((SK × PK) ∪ {(⊥,⊥)})2 and Init(ski, pkr, i, ad) →$ sti, Init(skr, pki, r, ad) →$ str with ad ∈ {0, 1}∗,
it holds for all sequences ((op0, ρ0,m0), . . . , (opn, ρn,mn)) (for all 0 ≤ l ≤ n with opl ∈ {e, d}, ρl ∈
{i, r},ml ∈ {0, 1}∗) that are executed for opl = e by invoking Enc(skρl , stρl ,ml) →$ (stρl , cl, ς l),
MSC ρ ← MSCρ‖(ml, ς l, cl), and for opl = d by invoking (ml

◦, ς
l, cl)‖MSC ρ̄ ← MSC ρ̄,Dec(skρl , stρl , cl)→$

(stρl ,ml
∗, ς

l
∗), that if ml

∗ 6= ⊥, then ml
∗ = ml

◦ and ς l∗ = ς l, and that for all l∗ < l with opl = opl∗ = e and
ρl
∗ = ρl it holds that ς l∗ ≤ ς l.

4.2 Execution Environment

Here we describe the execution environment for our fACCE security experiment. In our model we allow
the analysis of multiple security properties, and indeed allow these properties to be reached at different
points during the protocol execution. As such we follow a similar approach as the multi-stage key ex-
change (MSKE) model. An important difference between the models is that the MSKE model is itself
8 One could imagine that the round-trips in the protocol may serve as stages. However, one can only define
round-trips in a protocol execution if both session participants can be observed (which is not the case when
considering active adversaries).
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based upon standard Bellare-Rogaway key exchange frameworks, and allows the analysis of security goals
for each key separately. The fACCE model does not assess the security of individual keys, but instead
makes use of the stage numbers ς output to assess the security of each transmitted message. This means
that one can specify for each stage which security properties need to be reached by the protocol in order
to provide security. As a result, while one security property may not be reached in an early stage (and
thus the adversary could trivially attack communication in this stage), later stages may reach this secu-
rity property. Consequently, we need to separate the security experiment challenges that the adversary
is to solve in each stage. We therefore define stage-specific challenge bits and freshness flags (opposed
to one single challenge bit and a static freshness condition). The latter are dynamically checked and
modified during the security game.

Further differences from the MSKE model are that we use a generic partnering notion (instead of
protocol-dependent session identifiers), define authentication flexibly (e.g., unilateral authentication does
not necessarily mean server authentication), provide a metric to meaningfully compare security state-
ments of differing yet similar protocols, and due to the ACCE nature of our model, provide statements
on ‘internally used’ symmetric keys (for which composition results of the MSKE models can naturally
provide no generic guarantees).

We consider a set of nP parties each (potentially) maintaining a long-term key pair {(sk1, pk1),
. . . , (sknP

, pknP
)}, (ski, pki) ∈ SK × PK. In addition to the key pair, a variable corr i ∈ {0, 1} is stored

for every party i ∈ [nP ] by the security experiment, which indicates whether the respective secret key
was given to the adversary (via OCorrupt, see Section 4.4).

Each party can participate in up to nS sessions. We denote both the set of variables that are specific
for a session s of party i as well as the identifier of this session as πsi . In addition to the local variables
specific to each protocol, we list the set of per-session variables that we require for our model below. In
order to derive or modify a variable x of session π we write π.x to specify this variable.

– ρ ∈ {i, r}: The role of the session in the protocol execution (i.e., initiator or responder).
– pid ∈ [nP ]: The session partner’s identifier.
– ad: Data associated with this session (provided as parameter at session initialization to Init).
– Te[·], Td[·] ∈ {0, 1}∗: Arrays of sent or received ciphertexts. After every invocation of Enc or Dec of

a session πsi , the respective ciphertext is appended to πsi .Te or πsi .Td respectively.
– st ∈ ST : All protocol-specific local variables9.
– rand ∈ {0, 1}∗: Any random coins sampled by this session participant.
– (b1, b2, b3, ...): A vector of challenge bits the adversary is to guess (one bit for each stage).
– (fr1, fr2, fr3, ...): A vector of freshness flags indicating whether the security of a stage in the session

is considered to have been trivially broken by adversarial behavior.
– rr ∈ {0, 1}: A flag indicating whether the session-specific random coins have been revealed to the

adversary.10

At the beginning of the game, for all sessions πsi the following initial values are set: πsi .Te, πsi .Td, ← ε,
πsi .rr ← 0, πsi .fr ς∗ ← 1 for all ς∗ ∈ N, and πsi .rand ←$ {0, 1}∗, πsi .bς∗ ←$ {0, 1} for all ς∗ ∈ N are
sampled.

Furthermore a set of ciphertexts Rpl ← ∅ is maintained in the security game, that are declared to
initiate a non-fresh (replayed) session.

Partnering In order to define security in a flexible manner, we need to define partnering for sessions in the
environment. Partnering is defined over the ciphertexts provided to/by the adversary via the oracles that
let sessions encrypt and decrypt (OEnc,ODec). Intuitively, a session has an honest partner if everything
that the honest partner received via ODec was sent by the session via OEnc (without modification)
and vice versa, and at least one of the two parties received a ciphertext at least once11. This definition
considers the asynchronous nature of the established channel, leading to a matching conversation-like
partnering definition for fACCE.
9 For Noise these are (cf. Figure 2) the key(s) k or ks, kr, the chaining key ck, the hash value h, the ephemeral
exponent, and the nonce(s) n or ns, nr – but only as long as they need to be stored.

10 Please note that this variable is only necessary for the full model, described in Appendix B.
11 Note that this definition of honest partnering is symmetric (i.e., if a session πsi has an honest partner πtj , then

this πtj has πsi as an honest partner as well).
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Definition 3 (Honest Partner). πtj is an honest partner of πsi if πsi .pid = j, πtj .pid = i, πsi .ρ 6= πtj .ρ,
πsi .ad = πtj .ad, πsi .Td is a prefix of πtj .Te, and πtj .Td is a prefix of πsi .Te where at least one prefix is
not empty (i.e., for a = |πtj .Td|, b = |πsi .Td| such that a > 0 if πsi .ρ = i and b > 0 if πsi .ρ = r then
∀ 0 ≤ α < a : (πsi .Te[α] = πtj .Td[α]) and ∀ 0 ≤ β < b : (πsi .Td[β] = πtj .Te[β])). If πsi already received
ciphertexts from πtj, then πtj is an honest partner of πsi only if there exists no other honest partner π∗ of
πsi (i.e., if b > 0 then there is no π∗ such that π∗ is an honest partner of πsi and π∗ 6= πtj).

We provide a corresponding pseudocode definition of function Partner(i, s) that computes the honest
partner(s) of a session πsi in Appendix D Figure 7. Please note that after encrypting without decrypting
yet, the initiator may have multiple honest partners (if the resulting ciphertexts are forwarded to multiple
sessions). Due to the last requirement in Definition 3, our partnering notion requires that after decrypting
once, there must only exist one honest partner anymore.

In Appendix C.1 we discuss the advantages and drawbacks of our partnering notions as well as
extensions to consider unreliable networks.

4.3 Flexible Security Notion

Our model enables us to analyze levels of authentication and confidentiality – even for different stages
within one protocol execution. Our framework allows us to distinguish precisely if and when (a) Au-
thentication and Integrity, (b) KCI resistance, (c) Forward-secrecy, (d) Resistance against randomness
reveal, and (e) Resistance against replay attacks are reached.

In order to keep the presentation of the model comprehensible, we initially disregard the security
properties KCI resistance and resistance against randomness reveal in the main body but describe the
full model in Appendix B. Our full proofs of the Noise protocol patterns in Appendix E correspond to
the full model.

As the MSKE model [16] also considers multiple security properties stage-wise, it defines security
properties for each stage separately. This makes sense for protocols that may increase and decrease
security levels after reaching certain security properties, but for protocols that monotonically increase
security properties, a simpler notion suffices12. Since most real-world protocols adhere to this, our secu-
rity definition is indexed by ten integers, called counters, (aui, aur, kci, kcr, fs, eck, rli, rlr, rpi, rpr)
that indicate from which stage the respective property is achieved. Since properties can be established
asymmetrically (e.g., a responder authenticates itself to an unauthenticated initiator in the first stage),
some counters are indexed by role ρ ∈ {i, r} (for initiator and responder respectively). One can think of
each counter as a reference ‘rung’ on the ‘ladder’ of stages from which on the specified security property
is achieved by the respectively analyzed protocol. Thus, as soon as the protocol output a certain stage
that equals a counter (the protocol says, it reached the indicated ‘rung’ on the ‘ladder’), all messages that
are transmitted thereafter reach the corresponding security property. As described above, we regard and
explain the counters that are necessary for the full model (kci, kcr, eck, rli, rlr) only in Appendix B.
We describe the (remaining) counters below:

1. auρ defines the stage required for ρ to be authenticated. This means that it is hard to break the
authenticity and integrity of ciphertexts from a party with role ρ (i.e., parties with role ρ̄ reject
ciphertexts if the origin is not an honest partner) if the stage number ς (output by Dec for the peer
with ρ̄) is greater or equal to auρ.

2. fs defines the stage from which forward-secrecy (with respect to both session participants’ long-term
secrets) is reached. It is hard, for a stage ς ≥ fs, to break the confidentiality of ciphertexts, even if
both parties were corrupted (or unless one of the session participants’ random coins were revealed
to the adversary; see the full model).13

3. rpρ defines the stage from which a fully revealed session state of ρ cannot be used to replay and
reestablish the session. Our partnering definition already forbids replay attacks – except for the first
ciphertext(s) from an initiator to a responder. These ‘unpreventably’ replayed ciphertexts establish
secrets in the local session state of the sender and receivers such that these local states might be

12 We make use of this but one can easily extend our model to allow analyses of protocols with decreasing security
properties.

13 We remark that there are more fine grained variants of forward-secrecy (such as e.g., forward-secrecy with
respect to only one session participant’s long-term secret) on which we comment in Appendix C.5.
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dependent. The local state of a session for which stage ς ≥ rpρ was reached, hence, must not
contain secrets that affect the communication’s security of non-partnered sessions. Essentially this
defines when the session state is independent from other non-partnered sessions such that messages,
encrypted or decrypted under this state, are confidential even though other non-partnered sessions’
states are obtained by the adversary.14

We remark that our partnering notion already excludes protocols from consideration that allow replay
attacks for ciphertexts sent by an initiator that has already received a ciphertext once, and for any
ciphertext sent by a responder. Thus, only replays of ciphertexts, sent by an initiator to (multiple)
responder(s) without any reply from the latter, must be considered in the security experiment. These
replay attacks cannot be prevented if the receiver’s long-term secret is defined static (which we do in
contrast to e.g., [20]) and the initiator has never received a ciphertext. Our definition of replay attack
resistance consequently focuses on the security damage that is caused by such replay attacks: it considers
how soon the secrets, established by a (replayed) ciphertext, are independent among the sender and the
receivers of this replayed ciphertext. Hence, a session’s secrets are recovered from a replay attack if they
cannot be used to obtain information on other sessions’ secrets.

If a property is never reached in the specified protocol, then the respective counter is set to ∞ (e.g.
for protocol with unauthenticated initiators, aui =∞).

4.4 Adversarial Model

In order to model active attacks in our environment, we provide the OInit,OEnc,ODec oracles to an
adversary A, who can use them to control communication among sessions, together with the oracles
OCorrupt, OReveal, (and in the full model ORevealRandomness) which are all answered by the security
experiment.

Since our security definition becomes simpler and more clear by considering trivial attacks during the
execution of the security game (not only as a separate freshness condition evaluated after the adversary
terminated), we describe the excluded trivial attacks and rewarded real attacks inline. The considered
security properties are denoted as bullet point symbols below (in case they are not generically applicable).

While a fraction of previous work (especially in ACCE) defined integrity (and authentication) prop-
erties together with confidentiality goals within one game (based on the dense DAE notion of Rogaway
and Shrimpton [41]), we treat these two properties similar to the original AEAD notion of Rogaway
[40]: the game maintains a win flag (to indicate whether the adversary broke authenticity or integrity
of ciphertexts) and embeds challenge bits in the encryption (in order to model indistinguishability of
ciphertexts). In order to win the security game, adversary A either has to trigger win← 1 or output the
correct challenge bit πsi .bς of a specific session stage ς at the end of the game.

– OInit(i, s, j, ρ, ad) initializes a session πsi (if not yet initialized) of party i to party j, invoking
fACCE.Init(ski, pkj , ρ, ad) →[πs

i
.rand] π

s
i .st under πsi .rand. It also sets πsi .ρ ← ρ, πsi .pid ← j, and

πsi .ad ← ad. This oracle provides no return value. All subsequent invocations of Enc,Dec of this
session participant use πsi .rand for obtaining randomness. Finally, the freshness flags are updated by
invoking Freshfs() (see Figure 3).

– OEnc(i, s,m0,m1) triggers the encryption of message mb for b = πsi .bς by invoking Enc(ski, πsi .st,mb)
→[πs

i
.rand] (st′, c, ς) for an initialized πsi if |m0| = |m1| and for ς = 0 (i.e., confidentiality is not yet

achieved) it must hold that m0 = m1. It updates the session specific variables πsi .st ← st′, returns
(c, ς) to the adversary, and appends c to πsi .Te if encryption succeeds.

– ODec(i, s, c) triggers invocation of Dec(ski, πsi .st, c) →[πs
i
.rand] (st′,m, ς) for an initialized πsi and

returns (m, ς) if πsi has no honest partner, or returns ς otherwise (since challenges from the encryption
oracle would otherwise be trivially leaked). Finally c is appended to πsi .Td if decryption succeeds.
Excluding trivial attacks:
fs: Since decryption can change the honesty of partners, the freshness flags are updated regarding

corruptions by invoking Freshfs() (see Figure 3).
14 Please note that this does not only cover replayability of payloads but also, how long secrets in a session state

can be leaked to allow replaying and comprehending another session. One could extend the precision regarding
replayability by further considering properties such as post-compromise security, whether the long-term key
was already used, or whether asymmetric cryptography is used (which we consider not useful in this setting).
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au: The consideration of trivial attacks regarding authentication are a combination of the stage at
which the protocol reaches authentication and corruptions of the participants’ long-term secrets.
If the received ciphertext was not sent by a session of the intended partner (i.e., there exists no
honest partner) and
1. party i is corrupted (i.e., corr i = 1), then all following stages are marked un-fresh (πsi .fr ς∗ ← 0

for all ς ≤ ς∗), since this is a KCI attack.15

2. neither party i nor the session’s intended partner are corrupted (i.e., corr i = corrπs
i
.pid

= 0) and authentication of the partner was not reached yet (i.e., ς < auπ
s
i .ρ̄), then all

following stages are marked un-fresh until authentication will be reached (πsi .fr ς∗ ← 0 for
all ς ≤ ς∗ < auπ

s
i .ρ̄), since this is a (temporary) trivial impersonation of the partner towards

πsi .16

3. only the session’s intended partner is corrupted (i.e., corrπs
i
.pid = 1 6= corr i) and authenti-

cation of the partner was not reached yet or is reached with this received ciphertext (i.e.,
ς ≤ auπ

s
i .ρ̄), then all following stages are marked un-fresh (πsi .fr ς∗ ← 0 for all ς ≤ ς∗), since

this is (and will continue to be) a trivial impersonation of the partner towards πsi .
Rewarding real attacks:
au: Similarly to detecting trivial attacks, real attacks are rewarded by considering when authentica-

tion is reached in the respective protocol execution and if the participants’ long-term secrets are
corrupted.
The adversary breaks authentication (and thereby win← 1 is set) if the received ciphertext was
not sent by a session of the intended partner but was successfully decrypted (i.e., there exists no
honest partner and the output state is st′ 6= ⊥), the stage is still fresh (πsi .fr ς = 1), and
1. this is the first authenticated ciphertext (ς = auπ

s
i .ρ̄), and neither party i nor the intended

partner is corrupted (corr i = corrπs
i
.pid = 0), or

2. this is a later authenticated ciphertext (ς > auπ
s
i .ρ̄) and party i is not corrupted (corr i = 0)

as this would otherwise be a KCI attack.
– OCorrupt(i) → ski outputs the long-term secret key ski of party i, sets corr i ← 1, and updates the

freshness flags by invoking Freshfs().
– OReveal(i, s)→ πsi .st outputs the current session state πsi .st.
Excluding trivial attacks:
• Revealing the session-state trivially leaks sufficient information to solve embedded challenge
bits17. Hence πsi .fr ς∗ ← 0 is set for all stages ς∗.

• Similarly sufficient information is leaked to solve challenge bits embedded in ciphertexts to and
from all honest partners πtj (and to impersonate πsi towards them). As such, πtj .fr ς∗ ← 0 is set
for all stages ς∗ of these honest partners.

rp: In case the revealed secrets enable the adversary to obtain secrets of non-partnered sessions due
to a replay attack (ς < rpπ

s
i .ρ where ς was output by πsi ’s last OEnc or ODec query) then the

first ciphertext in this session is declared to induce non-fresh sessions via Rpl ← Rpl ∪{c} where
c ← πsi .Te[0] if πsi .ρ = i or c ← πsi .Td[0] if πsi .ρ = r (such that all sessions starting with this
ciphertext are also marked non-fresh)18.

Freshness regarding Corruptions The definition of forward-secrecy, based on counter fs, is straight
forward: if either the own long-term secrets or the intended partner’s long-term secrets were corrupted
(i.e., corr i = 1 ∨ corrπs

i
.pid = 1), then only stages that provide forward-secrecy are marked fresh for

the respective session (i.e., πsi .fr ς∗ ← 0 for all ς∗ < fs). We formally define this property via function
15 Please note that in the reduced model (in contrast to the full model in Appendix B), resistance against KCI

attacks is not required.
16 If the partner authenticates later, then the protocol must ensure that this early trivial impersonation is detected.

Consequently, this attack is not treated trivial anymore after the partner’s authentication.
17 Since we do not consider forward-secrecy within sessions, the secret session state is considered to harm security

of the whole session lifetime independent of when the state is revealed.
18 One can easily define this trivial attack more specifically depending on whether this first ciphertext is authenti-

cated and/or designated to a certain party. Depending on that, the secrets established by this ciphertext would
only be valid among specific session (cf. [22]). For clarity and simplicity, we generically treat the ciphertext
replayable solely. Please note that a state, revealed before the first ciphertext was sent/received (i.e., c = ε),
should not harm security of other sessions.
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Freshfs() (see Figure 3) because this simplifies the definition of freshness in the full model (via Freshfull())
in which also sessions’ random coins can be revealed.

Freshfs():
For all i ∈ [nP ], for all s ∈ [nS ]:

ctr← min(ς∗ : πsi .frς∗ = 1)
If corr i = 1 ∨ corrπs

i
.pid = 1:

ctr← max(ctr, fs)
πsi .frς∗ ← 0 for all ς∗ < ctr

Fig. 3: Function for updating freshness flags after each oracle invocation, only considering long-term secrets’
corruption. Freshfull() that defines freshness also under the reveal of random coins can be found in Figure 5.

4.5 Security Definition

The notion of fACCE security is captured as a game played by an adversary A in which the sessions
are implemented as described above. At the beginning of the game, nP long-term key pairs (pki, ski)
∀i ∈ [nP ] are generated via fACCE.KGen and the respective public keys are provided to A as a parameter
on the invocation (i.e., the start of the game). A interacts with the game via the queries described above
and eventually terminates, potentially outputting a tuple (i, s, ς, b′).

We can now turn to defining the security of a fACCE protocol. Straightforwardly, a fACCE protocol
is secure if it is correct and the advantage of any PPT algorithm A in guessing a challenge bit b for a
fresh stage or breaking authentication or integrity is negligible.

Definition 4 (Flexible ACCE Security).We say that an adversary A breaks a flexible ACCE protocol
fACCE with authentication stages (aui, aur), forward-secrecy stage fs, and replayability resistance stages
(rpi, rpr), when A terminates and outputs (i, s, ς, b′), if there either exists a session πsi such that πsi .bς =
b′, πsi .fr ς = 1, and πsi .Te[0] /∈ Rpl for πsi .ρ = i, or πsi .Td[0] /∈ Rpl for πsi .ρ = r respectively, or
win = 1. We define the advantage of an adversary A breaking a flexible ACCE protocol fACCE as
AdvfACCE

A = (2 · Pr[πsi .bς = b′]− 1) + Pr[win = 1].

4.6 Mapping Stages to Round-Trips

The indication of stages by the protocol (and the respective related security properties) does not provide
meaningful information for a classification of protocols. For example, it might be tempting to compare
protocols and only consider those that provide a confidential channel within one round-trip. As a con-
sequence, we map stages to round-trips in which they are reached (in an honest execution). This does
not only help for comparison, but also helps to highlight impossibilities or tradeoffs (such as reaching
authentication quickly while, against an active attacker, identity hiding is preserved). The number of
round-trips, in which stages are reached, are actually separated into half-round-trips (i.e. a goal can be
reached with RT 0.5, 1, 1.5, 2, . . . or is implicitly reached, indicated by 0).

Example The Noise pattern XK depicted in Figure 2 has four stages (one for each handshake ciphertext).
The properties reached with the last handshake ciphertext equal for messages transmitted later in the
protocol. In this pattern, the responder is authenticated towards the initiator in round-trip 1 (with
ciphertext gb, c1), while authentication in the other direction is reached in round-trip 1.5 when c2, c3
are transmitted. We denote this by RT(aur) = 1 and RT(aui) = 1.5 (with aur = 2, aui = 3). Since the
ephemeral DH values are mixed into the key material within the first round-trip (i.e., with handshake
ciphertexts ga, c0 and gb, c1), forward-secrecy is reached for this and all subsequent round-trips. Hence
we have RT(fs) = 1, fs = 2.
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4.7 On the Necessity of one Holistic Model

Our definition of flexible ACCE considers multiple security properties simultaneously (as opposed to hav-
ing separate definitions for each regarded security property). While the reduced model, presented above,
is still similarly comprehensible (or complex) as usual key exchange models, the full version, presented in
Appendix B, requires more effort to be understood. In order to reduce complexity, it could seem useful to
regard the security properties independently and then assemble the results. In the following we explain
why this approach produces more complexity, less comprehensibility, and is partially impossible.

Certainly confidentiality and authenticity themselves are not immediately dependent – and actually
our model treats successful adversaries differently, depending on which of both properties has been broken.
However, if protocols are considered that are not immediately resistant against replay attacks (and hence
this is an own security property), or if the adversary is allowed to reveal sessions’ random coins (and hence
the resistance against these attacks is also an own security property), then these considerations affect
both, confidentiality and authenticity. These additional considerations are particularly further dimensions
of confidentiality and authenticity rather than distinct security properties (and thus cannot be analyzed
independently). For example, KCI resistance is not an orthogonal security property but only a dimension
of authenticity. Similarly, resistance against replay attacks refers to a dimension of authenticity (that
crucially also affects confidentiality). As these dimensions of confidentiality and authenticity additionally
affect each other, a security definition that captures only a subset of them cannot be assembled with
another disjoint security definition subset. Finally, as for example trivial attacks against authenticity
invalidate confidentiality challenges, it is reasonable to consider both properties within one definition.

We describe an example protocol in Appendix C.3 Figure 6 that (without a proof) provides authen-
tication under secure randomness (i.e., aui = x < ∞, x ≤ eck = y ≤ ∞) and confidentiality under
randomness reveal (i.e., eck = z < x <∞, aui =∞), but not both properties simultaneously (i.e., there
is an attack for defining aui = x and eck = z in the same analysis). This depicts that in a model with
a reduced subset of properties (as in our reduced model that forbids randomness reveal) one can derive
different results than in the full model (in which randomness can be revealed). We emphasize that the
counters in our theorems all hold for the full model, even though we provide proof sketches with respect
to the reduced model.

Intuitively, the example protocol from Appendix C.3 Figure 6 requires for authentication fresh ran-
domness that can only be revealed after the respective party is authenticated. Confidentiality can, how-
ever, be achieved even if the randomness is revealed at the protocol start. Due to revealing the randomness
early, an adversary can impersonate the authenticating party during the protocol run. Thus, independent
definitions and analyses can result in meaningless security statements.

5 Protocol Analyses

In this section, we provide an overview of our results of analyzing the Noise Protocol framework in our
new fACCE model. Our main contribution is the full proofs of Noise Patterns N, NN, NX, NK, and X, XN,
XX, XK. To demonstrate the robustness of our security model and how the proof structure mirrors the
construction of the Noise Patterns, we give a detailed look of the proofs of Noise Patterns N, and NK
in the reduced model here. We extend these proofs, considering further security properties in the full
model, together with the proofs for the remaining mentioned patterns in Appendix E.

We chose Noise Patterns N and NK because (due to their simplicity) they comprehensibly provide an
idea of the general proof structure and they show how Noise patterns can be built upon another. As the
handshake of NK extends N’s handshake by a half round-trip, the former also achieves further security
properties.

Generic Proof Structure The modular design of the Noise Protocol Framework allow us to write proofs
that have a reasonably generic structure. While the proof for each specific Noise Pattern is distinct, each
proof is, on a high level, split into two cases:

– The adversary has forged a ciphertext successfully, and sent it to a session that does not detect the
forgery (or abort the protocol run). This case may be further split into multiple cases depending on
which ciphertext in the Noise Pattern the adversary has managed to forge.

– The adversary has guessed the challenge bit correctly when it terminates the experiment.
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As specific freshness conditions need to hold for each case, as otherwise forging a ciphertext or
guessing the challenge bit is trivial, we determine which OCorrupt/OReveal (and in the full model
ORevealRandomness) queries cannot have been issued. Thus each case has a distinct pair of OCorrupt/OReveal
queries that have not been issued to the session πsi and its partner session (where πsi has either accepted
the forged ciphertext, or the adversary has output (i, s, ς, b′)). In both cases we use a tailored PRF-ODH
assumption, depending on which pair of queries (targeting long-term DH shares, state secrets, or, in the
full model, ephemeral DH shares that depend on random coins) have not been issued, to replace the
appropriate Diffie-Hellman public values and shared Diffie-Hellman secrets (using the ODH oracles to
compute any additional secrets using the DH secret keys, if necessary). Afterwards, we iteratively replace
intermediate secrets derived during the protocol execution using PRF assumptions on the underlying key
derivation function. Finally, we use a single (or potentially series of) AEAD assumptions to replace the
encryptions of ciphertexts sent to, and decryption of ciphertexts arriving at, the session πsi . Any adver-
sary capable of distinguishing these changes is able to break one of the underlying assumptions used,
and depending on which case we are in, either:

– The adversary is unable to forge a ciphertext to the session πsi , or
– The adversary is unable to guess the challenge bit b with non-negligible probability.

This (high-level) description effectively captures the strategy we use to prove our statements about
the Noise Patterns that we analyze.

Mapping Noise’s Security Statements to our Model’s Counters First we introduce the stage counters
(aui, aur, fs, rpi, rpr), (kci, kcr, eck, rli, rlr)19, used in our theorems of each proof, that define the
exact modeled security. We also explain how they relate to the round-trips in the protocol execution
of the respective Noise pattern. For each of the base patterns of the Noise specification, the stage at
which the respective security property is reached is listed in Table 1. As stage numbers ς, output by the
Enc,Dec algorithms, are defined as integers, we assume the Noise patterns to output a counter as stage
number with every algorithm invocation, starting by 1 and always incremented by 1 until no further
security properties are reached.20 As a result, also in presence of an adversary, the stage numbers during
the handshake match twice the round-trip in which they are output by Enc or Dec respectively.

The counters/round-trips for authentication and KCI resistance (auρ, kcρ) are directly lifted from
the Noise specification [38]. As the definition of the remaining security properties deviate from the
specification (or are not specified there at all), these are the first round-trips and stages that achieve the
respective goals.

While, regarding forward-secrecy, the Noise specification differentiates among role dependent weak
and strong variants of long-term secrets’ corruptions, our consideration of forward-secrecy focuses on the
relation between corruptions of long-term secrets and the reveal of sessions’ random coins. Consequently,
the counter fs is only partially derived from the Noise specification.

Resistance against replay attacks in the Noise specification only considers the adversary’s ability to
successfully let multiple sessions receive the same sent ciphertext. However, local state variables (like an
ephemeral symmetric encryption key or a DH exponent), established by a ciphertext, can be exploited
by an adversary to attack other sessions that sent or received the same (replayed) ciphertext. Such state
variables may stay in the local state even after the replay attack “is over” (i.e., after only a unique
honest partner exist). As the adversary is allowed to the reveal the local state, our definition of replay
attack resistance goes beyond others in the literature (e.g., [17]) and the Noise specification: it says that
resistance against replay attacks is reached if the local state of a session is independent of any other
session’s state (except from the respective unique honest partner).

5.1 Proof Sketch of Noise Pattern N

Theorem 1. The Noise protocol N is flexible-ACCE-secure protocol with authentication levels au =
(∞,∞), forward-secrecy fs = ∞, and replay resistance rp = (∞,∞) where ς = 1 is output with the
19 The latter are only relevant for the proofs in the full model.
20 Thus the first encryption of the initiator and the first decryption of the responder output 1, the responder’s

first encryption and the initiator’s first decryption output 2, and so on. Note that, during the handshake, Noise
patterns run in a strict alternating form.
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aui aur fs rpi rpr kci kcr eck rli rlr

N∗ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 ∞
X∗ 1 ∞ ∞ ∞ ∞ ∞ ∞ 1 1 ∞
K 1 ∞ ∞ ∞ ∞ ∞ ∞ 1 1 ∞
NN∗ ∞ ∞ 2 2 0 ∞ ∞ ∞ ∞ ∞
NK∗ ∞ 2 2 2 2 ∞ 2 ∞ 1 ∞
NX∗ ∞ 2 2 2 0 ∞ 2 ∞ 2 ∞
XN∗ 3 ∞ 2 2 0 3 ∞ ∞ ∞ 3
XK∗ 3 2 2 2 2 3 2 ∞ 1 3
XX∗ 3 2 2 2 0 3 2 ∞ 2 3
KN 3 ∞ 2 2 0 3 ∞ ∞ ∞ 2
KK 1 2 2 2 2 3 2 1 1 2
KX 3 2 2 2 0 3 2 ∞ 2 2
IN 3 ∞ 2 2 0 3 ∞ ∞ ∞ 2
IK 1 2 2 2 2 3 2 1 1 2
IX 3 2 2 2 0 3 2 ∞ 2 2

Table 1: Stages at which the respective security properties are reached. In an honest execution, stage x is reached
(and thus returned by the protocol via output ς) at round-trip RT(x) = x/2.The right half of columns depicts the
counters for security properties that are only considered in the full model. auρ, kcρ were extracted from Noise’s
specification [38]; fs, rpρ are related to their definition in the specification (but adapted to our model). rlρ, eck
were defined purely with respect to the model. We give proofs for the patterns marked with a ∗.

first ciphertext and ς > 1 for all remaining in an honest execution. That is, for an adversary A against
the flexible ACCE security game (defined in section 4) one can efficiently define adversaries Bcoll against
the collision resistance of H, BPRF-ODH against the PRF-ODH assumption ms-PRF-ODH with respect to
group G and KDF, Baead against the AEAD security of AEAD, and Bprf against the PRF security of KDF
with:

AdvfACCE
N,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

PnS ·
(

Advprf
KDF,Bprf

+Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ 2 · Advaead
AEAD,Baead

)
Proof (Sketch).
We give below a sketch of the proof of Noise Pattern N. For the full details of the proof, see Appendix E.1.
First, recall that the adversary breaks authentication (and thus, sets win← 1) if the received ciphertext
was not sent by a session owned by the intended partner, but was successfully decrypted. Since in N, only
the initiator sends encrypted ciphertexts, we can restrict our focus to a responder party that successfully
decrypts ciphertexts from a non-honest partner. However, by the security experiment, it is required that
if win ← 1 in the responder session in any given stage, the stage must still be fresh. Since the initiator
never authenticates (i.e., aui = ∞), A injecting the ciphertext from a non-honest partner would cause
πsi .fr ς ← 0 ∀ ς, and thus Pr[win← 1] = 0. Now we can turn our focus to an adversary attempting to guess
the challenge bit b for an initiator session (since the responder session never encrypts in Noise Pattern
N, and thus the behavior of a responder session is independent of its challenge bits). If A terminates and
outputs a tuple (i, s, ς ′, b′), where πsi .ρ = i, and πsi .fr1 = 1 then A cannot issue a OCorrupt(πsi .pid)
query as fs =∞, and aur =∞. We show that under such restrictions, A has a negligible advantage in
guessing a challenge bit b for the session πsi .

We begin with the standard fACCE experiment defined in Section 4. In Game 1, the challenger
aborts on hash collisions, and thus this modification is reduced to the collision resistance of H.

In the next two games (Game 2, Game 3) we guess the index (i, s) of the session πsi , as well as
the index j of the honest partner πtj and abort if either A terminates and outputs (i∗, s∗, ς, b′) such that
(i∗, s∗) 6= (i, s), or if A initialises πsi such that πsi .pid 6= j. In what follows, the challenger playing the
fACCE game “knows” at the beginning of the experiment the index of the session that A will target,
and its intended partner j.

In Game 4 the challenger replaces the value of ck, k0 with uniformly random values c̃k, k̃0 in the test
session πsi and its honest partner (if one exists). This change is reduced to the PRF-ODH assumption
under the ephemeral DH share of πsi and the long-term DH share of j, since neither its state can be
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revealed, nor j can be corrupted without marking the stages un-fresh. Since rp = ∞, however, the
reduction also has to simulate sessions πt∗j where ga, c0 (the ciphertext sent by πsi ) is replayed to πt∗j .
The reduction simply sets the value of ck, k0 in such sessions to c̃k, k̃0 to ensure consistency.

In Game 5 the challenger replaces the function KDF(c̃k, ε, 2) used to compute ki, kr := KDF(c̃k, ε, 2)
in πsi and its honest partner (if one exists). This replaces the values ki, kr with uniformly random values
k̃i, k̃r via the PRF assumption of KDF since byGame 4, c̃k is already uniformly random and independent
of the protocol flow.

In Game 6 the challenger flips a bit b̄ and encrypts mb̄ in the first invocation of OEnc by πsi , instead
of mπs

i
.b1 . This change is reduced to the AEAD security of the encryption under the key k̃0. Since k̃0 is

uniformly random and independent (by Game 4), this change is sound.
In Game 7, (and similarly to Game 6) the challenger flips again a bit b̄ and encrypts mb̄ in the all

remaining invocations of OEnc by πsi instead of mb where b is πsi .bς∗ for all ς∗ > 1. This change is reduced
to the AEAD security of the encryption under the key k̃i. Since k̃i is uniformly random and independent
(by Game 5), this change is sound.

In Game 7, the behavior of πsi is independent of the test bits πsi .b1, πsi .b2 thus A has no advantage
in guessing either, and thus summing our probabilities we find our result.

5.2 Proof Sketch of Noise Pattern NK

Theorem 2. The Noise protocol NK is flexible-ACCE-secure protocol with authentication levels au =
(∞, 2), forward-secrecy fs = 2, and replay resistance rp = (2, 2). That is, for an algorithm A against the
flexible ACCE security game (defined in section 4) one can efficiently define adversaries Bcoll against the
collision resistance of H, BPRF-ODH against the PRF-ODH assumptions ms-PRF-ODH and nn-PRF-ODH
with respect to group G and KDF, Baead against the AEAD security of AEAD, and Bprf against the PRF
security of KDF with:

AdvfACCE
NK,nP ,nS ,A ≤ 2 · Advcoll

H,Bcoll
+ n2

PnS

(
Advprf

KDF,Bprf
+ 2 · Advaead

AEAD,A

+ 2 · Advms-PRF-ODH
G,p,KDF,BPRF-ODH

)
+ n2

Pn
2
S

(
2 · Advprf

KDF,Bprf

+ Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ 2 · Advaead
AEAD,A

)
Proof (Sketch).
We split the analysis into three cases:

1. Case A: A causes to set win← 1 when πsi processes the ciphertext gb, c1 (i.e when πsi with πsi .ρ = i
outputs ς = 2 during a decryption call).

2. Case B: A causes πsi to set win← 1 when πsi processes the first ciphertext ga, c0 (i.e when πsi with
πsi .ρ = r outputs ς = 1 during a decryption call).

3. Case C: A outputs (i, s, ς ′, b′) but does not cause πsi to set win← 1 when πsi processes the ciphertext
gb, c1 (if πsi .ρ = i) or when πsi processes the ciphertext ga, c0 (if πsi .ρ = r).

We begin by treating Case A. We know in this case that A cannot have issued a
OCorrupt(πsi .pid) query because breaking authentication of a corrupted peer is a trivial attack (as
aur = 2). In order to set win← 1 for πsi as defined above, the value of πsi .fr2 must, however, be 1.

The first three games (Game 1,2,3) proceed identically to the proof of N. That is, we abort when
a hash-collision is detected, and guess the index (i, s) of the session πsi , as well as the index j of the
intended partner.

In Game 4, we introduce an abort event that occurs if win ← 1 in the test session. Afterwards,
in Game 5, the challenger replaces the value of ck, k0 with uniformly random values c̃k, k̃0 in the test
session πsi and its honest partner (if one exists). This change is reduced to the PRF-ODH assumption
under the ephemeral DH share of πsi and the long-term DH share of j, since neither its state can be
revealed, nor j can be corrupted without marking the stages un-fresh. The reduction also must simulate
sessions πt∗j where ga, c0 (the ciphertext sent by πsi ) is replayed to πt∗j . It therefore sets the computation
of ck, k0 in such sessions to c̃k, k̃0 to ensure consistency.
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In Game 6 the challenger replaces the concretely computed values ck, k1 in πsi and its honest partner
(if one exists), with uniformly random values c̃k, k̃1. As by Game 4 the input c̃k is already chosen
uniformly random, distinguishing this game from the previous one can be reduced to the PRF security
of the KDF.

In Game 7, the challenger flips a bit b̄ and encrypts mb̄ in the first invocation of OEnc by πsi instead
of mb where b is πsi .b1. This change is reduced to the AEAD security of the encryption under the key k̃0.

Game 8 proceeds identically to Game 7, except that it responds to OEnc or ODec queries directed
to πsi or πtj outputting ς = 2 from A (i.e. when using the key k̃1) as opposed to using the key k̃0 and it
aborts if πsi receives gb, c1 but has no honest partner. This is reduced to the AEAD security of the AEAD
scheme.

Note that by Game 8 we abort if no honest session owned by j has output gb, c1. Thus in Game 8,
A has no advantage in triggering the event abortwin due to πsi processing gb, c1.

We now treat Case B and note A cannot cause πsi such that πsi .ρ = r and πsi .fr1 = 1 to set win← 1,
as aui =∞. We can now treat Case C.

We follow standard procedure and define an abort event to trigger when we find1 a hash-collision,
guess the index (i, s) of the session πsi , and the index (j, t) of the honest partner πtj . By Case A and
Case B, there must exist such an honest partner for the beginning of stage ς = 3.

In what follows, we assume without loss of generality that πsi is the initiator session. The analysis
where πsi is the responder session follows identically, except for a change in notation.

At this point, we need to split the analysis into two sub-cases:

1. Case C.1: A has not issued a OCorrupt(j) query.
2. Case C.2: A has potentially issued a OCorrupt(j) query.

In Case C.1 Game 4, we replace ck, k0 with uniformly random values c̃k, k̃0 in πsi and its honest
partner which can be reduced to the PRF-ODH assumption (as in Case A, Game 4).

In Game 5 and Game 6, we replace the values ck, k1 with uniformly random values c̃k, k̃1, and
subsequently replace ki, kr with uniformly random values k̃i, k̃r via the PRF assumption on KDF.

Game 7 and Game 8 proceed identically to Case C Game 6 but flip and use independent challenge
bits when answering queries to OEnc if key k̃0 is used in stage ς = 1 (Game 7) and when keys k̃i, k̃r
are used in stage ς = 3. Furthermore Game 8 aborts if πsi processes a ciphertext in ς = 3 but there
exists no honest partner. The modifications in both games are reduced to the AEAD security. In Case
C.1, Game 8, the behavior of πsi is independent of the test bits πsi .b1, πsi .b3 and A has no advantage in
setting win← 1 for the initiator.

We now treat Case C.2, in which we know that A potentially has issued a OCorrupt(j) query. Since
fs = 2, by Table 3 any adversary that issues a OCorrupt(j) sets πsi .fr1 ← 0 and outputting (i, s, 1, b′)
will lose A the game. As a result, in Case C.2 we cannot prove the security of payload data sent in the
first ciphertext.

In Game 4, we replace the computation of ck, k1 with uniformly random values c̃k, k̃1 in πsi and
its honest partner, which is reduced to the PRF-ODH assumption based on the ephemeral DH shares of
both sessions. We follow in Game 5 by replacing ki, kr with uniformly random values k̃i, k̃r via a PRF
assumption on KDF.

Game 6 proceeds similarly to Case C.1 Game 7 by encrypting mb̄ for a randomly flipped bit b̄
when using the key k̃1. Finally, Game 7 proceeds identically to Case C.1 Game 8 by encrypting mb̄′

for another randomly flipped bit b̄′ when Enc and Dec would output ς = 3 (i.e. when using the keys
k̃i, k̃r). Furthermore Game 7 also aborts if πsi processes a ciphertext in ς = 3 but there exists no honest
partner. The modifications in both games are reduced to the AEAD security.

In Case C.2, Game 7, the behavior of πsi is independent of the test bits πsi .b2, πsi .b3 as well as
setting win← 1 when πsi processes a ciphertext is aborted, and thus A has no advantage in winning the
game. It is possible for A to later issue a OCorrupt(j) query, in this case πsi .fr1 ← 0, πtj .fr1 ← 0, and A
cannot win by outputting the tuple (i, s, 1, b′).

6 Discussion

In our work, we introduced a flexible authenticated and confidential channel establishment (fACCE)
security model that extracts the core idea of an ACCE protocol, and generalizes to capture a range of fine-
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grained security guarantees. We demonstrate the robustness of the novel fACCE model by considering
the Noise Protocol framework, and proving the security of eight separate Noise Patterns, each with
distinct security goals and guarantees in the face of varying threat models.

Many Noise patterns attempt some form of identity hiding, by using early established keys to encrypt
and exchange long-term public keys, the examination of which we leave for future work. Similarly, Noise
includes many pattern modifiers that extend the 15 base Noise patterns, for instance, the use of preshared
keys, which we also leave for future work.

It is important to note that the aim of our model is explicitly not to propose the next super-strong
notion of security (since all security properties except confidentiality can be analyzed optionally but not
all independently), but to propose a generic model- and proof-approach.

As the main reason for basing a protocol analysis on an ACCE model is the design of the specific
analyzed protocol (i.e., the use of keys during the key establishment), it is surprising that all previous
ACCE model definitions were heavily influenced by the concept of composing a channel establishment
protocol from a key exchange protocol and a channel protocol. Consequently, our results systematize and
contribute to the understanding of the generic – composition-independent – primitive confidential and
authenticated channel establishment since we provide the first generic syntax definition for this primitive
and illustrate how to flexibly define security for it.
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A Further Security Assumptions

A.1 Collision-Resistant Hash Functions

Definition 5 (Collision-resistant hash function). A collision-resistant hash function is a determin-
istic algorithm H : {0, 1}∗ → {0, 1}λ which, given a bit string m outputs a hash value w ← H(m) in the
hash space {0, 1}λ. We define the advantage of an adversary A breaking the collision-resistance of the
hash function H is Advcoll

H,A = Pr
[
(m,m′)← A : H(m) = H(m′),m 6= m′

]
.

A.2 Pseudo-Random Function Security

Definition 6 (PRF Security). A pseudo-random function family is a collection of deterministic func-
tions PRF = {PRF : K ×M → Z}. Given a key k in the keyspace K and a bit string m ∈ M, PRF
outputs a value y in the output space Z. We define the security of a pseudo-random function family in
the following game between a challenger C and an adversary A:

1. C samples a key k ←$ K and a bit b uniformly at random.
2. A can now query C with polynomially-many distinct mi values, and receives either the output yi ←

PRF(k,mi) (when b = 0) or yi ←$ Z (when b = 1).
3. A terminates and outputs a bit b′.

We say that A wins the PRF security game if b′ = b and define the advantage of an adversary A in
breaking the pseudo-random function security of a PRF family PRF as Advprf

PRF,A = |2 · Pr[b′ = b]− 1|.

Intuitively, a PRF is secure if for all PPT algorithms A, Advprf
PRF,A is negligible.

A.3 AEAD security

In the following, we will provide a definition of authenticated encryption with associated data as given
in [40].

Definition 7 (AEAD scheme). We define an authenticated encryption scheme with associated data
(AEAD) as a tuple of algorithms AEAD = (KGen,Enc,Dec) defined over a key space K, nonces N ,
messages M and additional data AD. The encryption algorithm Enc is a deterministic algorithm that
takes strings k ∈ K, n ∈ N , ad ∈ AD and m ∈ M and returns a string c = Enc(k, n, ad,m). The
decryption algorithm Dec is a deterministic algorithm that takes strings k ∈ K, n ∈ N , c ∈ {0, 1}∗ and
ad ∈ AD and returns a string m = Dec(k, n, ad, c) or ⊥. We require that Dec(k, n, ad,Enc(k, n, ad,m)) =
m for all k ∈ K, n ∈ N , ad ∈ AD and m ∈M.

In the following, we will provide an all-in-one definition of the security for authenticated encryption
with associated data.

Definition 8 (AEAD security). Let AEAD = (KGen,Enc,Dec) be an AEAD scheme. Let INIT0 be
the security experiment (see Figure 4) with b set to 0 and INIT1 be the security experiment with b set to
1. We say that the adversary wins the AEAD game if b′ = b and define the advantage function

Advaead
AEAD,A := |Pr [1← A|b = 1]− Pr [1← A|b = 0]| .

Intuitively AEAD is secure, if for all PPT algorithms A it holds that Advaead
AEAD,A is negligible.

A.4 The PRF-Oracle-Diffie-Hellman Assumption

In this section we introduce the definition of the PRF-ODH assumption.

Definition 9 (Generic PRF-ODH Assumption). Let G be a cyclic group of order q with generator g.
Let PRF : G×M → K be a function from a pseudo-random function family that takes a group element
k ∈ G and a salt value m ∈ M as input, and outputs a value y ∈ K. We define a security notion,
lr-PRF-ODH security, which is parameterised by: l, r ∈ {n, s,m} indicating how often the adversary is
allowed to query “left” and “right” oracles (ODHu and ODHv), where n indicates that no query is allowed,
s that a single query is allowed, and m that multiple queries are allowed to the respective oracle. Consider
the following security game G lr-PRF-ODH

PRF,G,p,A between a challenger C and an adversary A.
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Init(1λ) Enc(n, ad,m0,m1)
k ←$ KGen c0 = Enc(k, n, ad,m0)
b←$ {0, 1} c1 = Enc(k, n, ad,m1)
S ← {} if (c0 = ⊥) ∨ (c1 = ⊥):
b′ ←$ AEnc(),Dec() return ⊥
return (b = b′) else

S ← S ∪ {(n, ad, cb)}
Dec(n, ad, c) return cb
if (b = 0):

return ⊥
if (Dec(k, n, ad, c) 6= ⊥)

∧((n, ad, c) /∈ S):
return m

else return ⊥

Fig. 4: Security experiment for AEAD schemes AEAD = (KGen,Enc,Dec).

1. The challenger C samples u←$ Zp and provides g, gu to the adversary A.
2. If l = m, A can issue arbitrarily many queries to oracle ODHu, as follows:

– ODHu: on a query of the form (S, x), the challenger first checks if S /∈ G and returns ⊥ if this
is the case. Otherwise, it computes y ← PRFλ(Su, x) and returns y.

3. Eventually, A issues a challenge query x∗. The challenger C samples v ←$ Zp and it is required that,
for all queries (S, x) to ODHu made previously, if S = gv, then x 6= x∗. This is to prevent trivial wins
by A. C samples a bit b←$ {0, 1} uniformly at random, computes y0 = PRFλ(guv, x∗), and samples
y1 ←$ {0, 1}λ uniformly at random. The challenger returns yb to A.

4. Next, A may issue (arbitrarily interleaved) queries to oracles ODHu and ODHv. These are handled
as follows:
– ODHu: on a query of the form (S, x), the challenger first checks if S /∈ G or if (S, x) = (gv, x∗)

and returns ⊥ if either holds. Otherwise, it returns y ← PRFλ(Su, x).
– ODHv: on a query of the form (T, x), the challenger first checks if T /∈ G or if (T, x) = (gu, x∗)

and returns ⊥ if either holds. Otherwise, it returns y ← PRFλ(T v, x).
5. At some point, A outputs a guess bit b′ ∈ {0, 1}.

We say that the adversary wins Gsym-lr-PRF-ODH
PRF,G,p,A if b′ = b and define the advantage function

Advlr-PRF-ODH
PRF,G,p,A = |2 · Pr[b′ = b]− 1|.

Intuitively, the lr-PRF-ODH assumption holds if the advantage Advlr-PRF-ODH
PRF,G,p,A of any PPT adversary A is

negligible.

A.5 Symmetric Generic PRF-Oracle-Diffie-Hellman Assumption

Here we give the symmetric variant of the generic PRF-ODH assumption, introduced by Dowling and
Paterson [15] to analyze the WireGuard Protocol. Since WireGuard is built upon the Noise Protocol
Framework (and in particular, the pre-shared key variant of Noise Pattern XX, the inclusion of the
assumption in our proofs is natural.

Definition 10 (Symmetric generic PRF-ODH Assumption). Let G be a cyclic group of order q
with generator g. Let PRF : G×M→ K be a function from a pseudo-random function family that takes
a group element k ∈ G and a salt value m ∈ M as input, and outputs a value y ∈ K. We define a
security notion, sym-lr-PRF-ODH security, which is parameterised by: l, r ∈ {n, s,m} indicating how often
the adversary is allowed to query “left” and “right” oracles (ODHu and ODHv), where n indicates that no
query is allowed, s that a single query is allowed, and m that multiple queries are allowed to the respective
oracle. Consider the following security game Gsym-lr-PRF-ODH

PRF,G,p,A between a challenger C and adversary A.

1. The challenger C samples u, v ←$ Zp and provides g, gu, gv to the adversary A.
2. If l = m, A can issue arbitrarily many queries to oracle ODHu, and if r = m and sym = Y to the

oracle ODHv. These are implemented as follows:

24



– ODHu: on a query of the form (S, x), the challenger first checks if S /∈ G and returns ⊥ if this
is the case. Otherwise, it computes y ← PRFλ(Su, x) and returns y.

– ODHv: on a query of the form (T, x), the challenger first checks if T /∈ G and returns ⊥ if this
is the case. Otherwise, it computes y ← PRFλ(T v, x) and returns y.

3. Eventually, A issues a challenge query x∗. It is required that, for all queries (S, x) to ODHu made
previously, if S = gv, then x 6= x∗. Likewise, it is required that, for all queries (T, x) to ODHv made
previously, if T = gu, then x 6= x∗. This is to prevent trivial wins by A. C samples a bit b←$ {0, 1}
uniformly at random, computes y0 = PRFλ(guv, x∗), and samples y1 ←$ {0, 1}λ uniformly at random.
The challenger returns yb to A.

4. Next, A may issue (arbitrarily interleaved) queries to oracles ODHu and ODHv. These are handled
as follows:
– ODHu: on a query of the form (S, x), the challenger first checks if S /∈ G or if (S, x) = (gv, x∗)

and returns ⊥ if either holds. Otherwise, it returns y ← PRFλ(Su, x).
– ODHv: on a query of the form (T, x), the challenger first checks if T /∈ G or if (T, x) = (gu, x∗)

and returns ⊥ if either holds. Otherwise, it returns y ← PRFλ(T v, x).
5. At some point, A outputs a guess bit b′ ∈ {0, 1}.

We say that the adversary wins Gsym-lr-PRF-ODH
PRF,G,p,A if b′ = b and define the advantage function

Advsym-lr-PRF-ODH
PRF,G,p,A = |2 · Pr[b′ = b]− 1|.

Intuitively, the sym-lr-PRF-ODH assumption holds if the advantage Advsym-lr-PRF-ODH
PRF,G,p,A of any PPT adver-

sary A is negligible.

B Model with KCI Resistance and Randomness Reveal

The full model, that we use to proof security of the Noise patterns, additionally considers KCI resis-
tance (indicated by counters kci, kcr) and resistance against randomness reveal (indicated by counters
eck, rli, rlr). We describe these counters below:

1. kcρ defines the stage required for KCI resistance of ρ to be reached. It is hard, for a stage ς ≥ kcρ,
to break authenticity of ciphertexts to a party with ρ even if it was corrupted.

As defined in the main body, for forward-secrecy it is required to be hard, for a stage ς ≥ fs, to break
the confidentiality of ciphertexts, unless one of the session participants’ random coins were revealed to
the adversary (or even if both parties were corrupted).
In combination with considering reveals of a session’s random coins, we further introduce the following
two kinds of stage counters (that supplement each other in a disjunction):

2. eck defines the stage from which payloads are confidential unless one of the session participants was
corrupted (or even if both participants’ random coins were revealed; cf. eCK model [31])21.

3. rlρ defines the stage from which payloads are confidential unless the random coins of participant
with role ρ were revealed or the long-term secret of the session partner (with role ρ̄) was corrupted
(or even if the random coins of ρ̄ were revealed and ρ was corrupted).

The distinction between these four counters (fs, eck, rlρ) makes sense when considering that the session
secret can be computed based on pairwise combinations among ephemeral secrets and long-term secrets
of the two session participants.

21 While we agree with common critique of the eCK model that it does not depict insecure randomness generators,
it is evident that there are threats that are depicted by a revelation of the random coins used in a session. An
example would be the extended random extension implemented in some TLS libraries (cf. [10, 19]) or a random
oracle, used to derive random coins on a low entropy input (such as the current time).
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Additional Partner Notion The reveal of random coins of a session (that is only considered in this full
model) does not only affect current honest partners (see Definition 3) but also sessions that previously
were honest partners of the session for which the randomness was revealed. Thus we must define Previous
Honest Partner for the full model below:

Definition 11 (Previous Honest Partner). We say that πtj is a previous honest partner of πsi if
πsi .pid = j, πtj .pid = i, πsi .ρ = πtj .ρ̄, πsi .ad = πtj .ad, πsi .Td and πtj .Te have a common prefix, and
πtj .Td and πsi .Te have a common prefix where at least one prefix is not empty (i.e., for a ≤ |πtj .Td|,
b ≤ |πsi .Td| such that a > 0 if πsi .ρ = i and b > 0 if πsi .ρ = r then ∀ 0 ≤ α < a : (πsi .Te[α] = πtj .Td[α])
∧∀0 ≤ β < b : (πsi .Td[β] = πtj .Te[β])).

We provide a pseudocode definition of function PrevPartner(i, s) that computes the previous honest
partner(s) of a session πsi in Appendix D Figure 7. The main differences towards honest partner are
that: (a) In previous honest partners a and b can be less than or equal |πtj .Td| and |πsi .Td| respectively
(meaning that πsi and πtj were honest partners once) and due to this; (b) It is not (and actually cannot
be) required that there exists only one previous honest partner.

B.1 Adversarial Model

In our full model, the adversary has – in addition to calling OInit,OEnc,ODec,OCorrupt,OReveal – the
ability to reveal sessions’ random coins via the oracle ORevealRandomness. Below we describe the oracles
that the adversary can call in the full model, including the security experiment’s internal treatment
of trivial and real attacks. The only difference in the oracles OInit,OEnc,OCorrupt,OReveal of the full
model towards the reduced model in the main body (see Section 4) is that Freshfull() is invoked to update
the freshness flags instead of Freshfs(). The computation of the freshness flag via Freshfull() is described
below in Subsection B.2, Table 3, and Figure 5. Consequently we do not describe these negligibly modified
oracles in full details here again.

– ODec(i, s, c) triggers invocation of Dec(ski, πsi .st, c) →[πs
i
.rand] (st′,m, ς) for an initialized πsi and

returns (m, ς) if πsi has no honest partner (since challenges from the encryption oracle would otherwise
be trivially leaked), or returns ς otherwise. Finally c is appended to πsi .Td if decryption succeeds.
Excluding trivial attacks: In Table 2 we provide an overview over the trivial and successful attacks
with respect to authentication and KCI resistance.

fs, eck, rlρ: Since decryption can change the honesty of partners, the freshness flags are updated regarding
corruptions and the reveal of random coins by invoking Freshfull() (see Table 3 and Figure 5).

au, kc: To exclude trivial attacks regarding authentication and KCI resistance, it is important to note
that attacks against the latter only make sense when considering the former as the main goal.
Trivial attacks are then a combination of reached goals by the protocol and corruptions of the
participants’ long-term secrets.
If the received ciphertext was not sent by a session of the intended partner (i.e., there exists no
honest partner) and authentication of the partner
1. was not reached yet (i.e., ς < auπ

s
i .ρ̄), then all following stages are marked un-fresh until au-

thentication will be reached (πsi .fr ς∗ ← 0 for all ς ≤ ς∗ < auπ
s
i .ρ̄), since this is a (temporarily)

trivial impersonation of the partner towards πsi .
2. is reached with this ciphertext (i.e., ς = auπ

s
i .ρ̄), and

(a) intended partner πsi .pid is corrupted (corrπs
i
.pid = 1), then all following stages are marked

un-fresh (πsi .fr ς∗ ← 0 for all ς ≤ ς∗), since this is a trivial impersonation of the partner
towards πsi .

(b) intended partner πsi .pid is not corrupted, party i is corrupted, and KCI resistance is not
reached yet (i.e., ς < kcπ

s
i .ρ, corrπs

i
.pid 6= corr i = 1), then all following stages are marked

un-fresh until KCI resistance would be reached (πsi .fr ς∗ ← 0 for all ς ≤ ς∗ < kcπ
s
i .ρ),

since this is a (temporarily) trivial key compromise impersonation of the partner towards
πsi .22

3. was reached before, but KCI resistance is not reached yet, and party i is corrupted (i.e.,
auπ

s
i .ρ̄ < ς < kcπ

s
i .ρ, corr i = 1), then all following stages are marked un-fresh until KCI

resistance would be reached (πsi .fr ς∗ ← 0 for all ς ≤ ς∗ < kcπ
s
i .ρ), since this is a (temporarily)

trivial key compromise impersonation of the partner towards πsi .22

22 Obviously when KCI resistance is reached, key compromise impersonation is no longer considered trivial.

26



4. is reached or was reached before, and the session’s random coins were revealed (i.e., auπ
s
i .ρ̄ ≤ ς,

πsi .rr = 1), then all following stages are marked un-fresh (πsi .fr ς∗ ← 0 for all ς ≤ ς∗), since
this is a trivial impersonation of the partner towards πsi .23

kc The game requires a session to defend a trivial KCI attack as soon as KCI resistance is reached.
If, after trivially breaking authenticity by conducting a KCI attack, the adversary corrupts the
partner πsi .pid to continue this trivial impersonation, this necessarily needs to be marked as such.
Hence, if the received ciphertext was not sent by a session of the intended partner (i.e., there
exists no honest partner), KCI resistance is reached with this ciphertext (ς = kcπ

s
i .ρ), and the

intended partner is corrupted (corrπs
i
.pid = 1), then all following stages are marked un-fresh

(πsi .fr ς∗ ← 0 for all ς ≤ ς∗), since this is a trivial impersonation of the partner towards πsi .
Rewarding real attacks:

au, kc: Similarly to detecting trivial attacks, real attacks are rewarded by considering the goals that are
defined to be reached by the protocol and the corruptions of the participants’ long term secrets.
The adversary breaks authentication (and thereby win← 1 is set) if the received ciphertext was
not sent by a session of the intended partner but was successfully decrypted (i.e., there exists
no honest partner and the output state is st′ 6= ⊥), the stage is still fresh (πsi .fr ς = 1), πsi ’s
randomness was not revealed (πsi .rr = 0)23, and
1. this is the first authenticated ciphertext (ς = auπ

s
i .ρ̄), the intended partner πsi .pid is not

yet corrupted, and, if KCI resistance was not reached yet, then party i is not yet corrupted
(corrπs

i
.pid = 0 and if ς < kcπ

s
i .ρ then corr i = 0), or

2. this is a later authenticated ciphertext (ς > auπ
s
i .ρ̄) and, if KCI resistance was not reached

yet, then party i is not yet corrupted (if ς < kcπ
s
i .ρ then corr i = 0).

– ORevealRandomness(i, s) → rand outputs the randomness πsi .rand sampled by party i in its session
πsi . The session is marked πsi .rr ← 1 and the freshness flags are updated by invoking Freshfull().

ς < auπ
s
i .ρ̄ ς = auπ

s
i .ρ̄

ς < kcπ
s
i .ρ

ς = auπ
s
i .ρ̄

ς = kcπ
s
i .ρ

ς > auπ
s
i .ρ̄

ς < kcπ
s
i .ρ

ς > auπ
s
i .ρ̄

ς = kcπ
s
i .ρ

ς > kcπ
s
i .ρ

corr i = corrpid = 0 auπ
s
i .ρ̄ win win win win win

corr i = 0 ∧ corrpid = 1 ∞ ∞ ∞ win win win
corr i = 1 ∧ corrpid = 0 kcπ

s
i .ρ kcπ

s
i .ρ win kcπ

s
i .ρ win win

corr i = corrpid = 1 ∞ ∞ ∞ ∞ ∞ win

Table 2: Definition of trivial and successful attacks regarding authentication and KCI resistance based on the
corruption of the receiver and its intended partner on the receipt of a forged ciphertext. For trivial attacks the
value in the cell ctr denotes the first stage for which the freshness flag is not erased: ∀ς ≤ ς∗ < ctr : πsi .frς∗ ← 0.
A successful attack is denoted by cells containing win, meaning that if πsi .frς = 1 and the state st output by πsi ’s
invocation of Dec is not ⊥, then win← 1 is set. Note that always auρ̄ ≤ kcρ.
As long as KCI resistance is not yet reached, the corrupted sender’s long-term secret can help the adversary to
impersonate the sender towards the receiver (and thereby a trivial impersonation can still be conducted). Only if
authentication with KCI resistance is reached, the sender’s long-term secret can be corrupted without affecting
security.
Please note that the counters in the second last row denote a shortcut compared to the textual definition of the
trivial attacks.

B.2 Freshness regarding Corruption and Reveal of Randomness

Based on the definition of the counters fs, eck, rli, and rlr, the effects of corruptions and the revelation
of sessions’ random coins can be mapped onto the freshness flag πsi .fr ς of all sessions πsi (note that this
is stage dependent). To determine the freshness of a session πsi , the corruption of the session owner’s
long-term secrets (i.e. corr i), the intended partner’s long-term secrets (i.e., corrπs

i
.pid), the revelation of

the sessions’ own random coins (i.e., πsi .rr), and the revelation of honest partners’ random coins (i.e.,
πtj .rr ; j = πsi .pid by definition) need to be considered. Not only do the current honest partners affect the
23 We discuss on this trivial attack and its necessity, in Appendix C.4. One can think of it as a KCI attack based

on the receiver’s ephemeral secrets (instead of its long-term secrets).
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Freshness of
πsi based on:

corrπs
i
.pid = 1 πtj .rr = 1 πtj .rr = 1

∧corrπs
i
.pid = 1

min(rlπ
s
i .ρ̄, fs) min(rlπ

s
i .ρ, eck) ∞

corr i = 1 min(rlπ
s
i .ρ, fs) fs rlπ

s
i .ρ ∞

πsi .rr = 1 min(rlπ
s
i .ρ̄, eck) rlπ

s
i .ρ̄ eck ∞

πsi .rr = 1
∧corr i = 1

∞ ∞ ∞ ∞

Table 3: Freshness of session πsi is defined over corruptions of both parties i, πsi .pid and randomness reveals
of the session and its (previous) honest partner(s) πtj denoted in the first row and column. The respective cells
denote from which stage on security is reached under these conditions.

security of a session, but also sessions that were honest partners previously. In Table 3, the stage from
which on security is reached is defined based on the corruptions and revelations of random coins of both
session participants. The cells immediately result from the definition of the counters fs, eck, rlρ. The
oracle description above updates the freshness flags based on this table via function Freshfull() (defined
in Figure 5).

Freshfull():
For all i ∈ [nP ], for all s ∈ [nS ]:

ctr← min(ς∗ : πsi .frς∗ = 1)
If corrπs

i
.pid = 1:

ctr←max min(rlπ
s
i .ρ̄, fs)

If ∃(j, t) ∈ PrevPartner(i, s) : πtj .rr = 1:
ctr←max min(rlπ

s
i .ρ, eck)

If (corrπs
i
.pid = 1 and ∃(j, t) ∈ PrevPartner(i, s) :

πtj .rr = 1) or (corrπs
i
.pid = 1 and πsi .rr = 1):

ctr←∞
If corr i = 1:

ctr←max min(rlπ
s
i .ρ, fs)

If corrπs
i
.pid = 1:

ctr←max fs
If ∃(j, t) ∈ PrevPartner(i, s) : πtj .rr = 1:

ctr←max rlπ
s
i .ρ

If πsi .rr = 1:
ctr←max min(rlπ

s
i .ρ̄, eck)

If corrπs
i
.pid = 1:

ctr←max rlπ
s
i .ρ̄

If ∃(j, t) ∈ PrevPartner(i, s) : πtj .rr = 1:
ctr←max eck

πsi .frς∗ ← 0 for all ς∗ < ctr

Fig. 5: Function for updating freshness flags after each oracle invocation based on Table 3 in the full model.
x←max y is a shortcut notion for x← max(x, y). For the definition of function PrevPartner(i, s) see Figure 7.

In Appendix C.5 we provide a discussion on the meaning of revealed random coins and consider
reasonable critique of the eCK model. We therefore propose an alternative to revealing random coins
and describe how our model can be adapted respectively (which results in an even stronger adversary).

B.3 Security Definition

The security definition of fACCE in the full model equals Definition 4 except that also counters (kci, kcr,
eck, rli, rlr) are considered:
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Definition 12 (Flexible ACCE Security). We say that an adversary A breaks a flexible ACCE
protocol fACCE with authentication stages (aui, aur), key compromise impersonation resilience stages
(kci, kcr), forward-secrecy stage fs, eCK security stage eck, stages for confidentiality based on long-
term secrets and random coins respectively (rli, rlr), and replayability resistance stages (rpi, rpr), when
A terminates and outputs (i, s, ς, b′), there either exists a session πsi such that πsi .bς = b′, πsi .fr ς = 1,
and πsi .Te[0] /∈ Rpl for πsi .ρ = i or πsi .Td[0] /∈ Rpl for πsi .ρ = r respectively, or win = 1. We define the
advantage of an adversary A breaking a flexible ACCE protocol fACCE as AdvfACCE

A = (2 · Pr[πsi .bς =
b′]− 1) + Pr[win = 1].

Intuitively, a flexible ACCE protocol fACCE is secure if it is correct and AdvfACCE
A is negligible for all

probabilistic algorithms A running in polynomial-time.

C Further Discussion of our Model

The security definition of channel establishment protocols can be flexibilized infinitely. Also the properties
of channels in the literature (and in practice) are very diverse while our model captures a simplified variant
related to AEAD. In this section we provide discussions and descriptions for extensions to our model
which may help the reader to comprehend our definitional choices. Furthermore the full definition of
Previous Honest Partner is provided below.

C.1 Strengths and Weaknesses of Matching Conversation-like Partnering

It is important to note that our partnering notion is strong in the sense that it only applies to protocols
that protect the integrity of the whole transcript (comparably to the original ACCE model). This results
from matching conversation based partnering for the channel establishment and the integrity of cipher-
texts requirement of channel definitions related to AEAD. An implication of this notion is the necessity
of strong assumptions on the security of signatures and message authentication codes (for more details
we refer the interested reader to [32]). Since the partnering definition is crucial in terms of comparability
regarding protocols’ security, ambiguous, protocol specific partnering definitions are not an option in our
generic framework. Defining partnering via a session key is furthermore not possible since – as argued
before – a session key is not a necessary component of fACCE.

In order to slough off technical side effects of the partnering notion on the employed primitives, one
can relax the partnering definition by comparing the communicated content (i.e., the messages) instead
of the ciphertexts (i.e., the transcript seen on the network), similarly as the RCCA notion [9] relaxes
CCA security24. Either way, in a model that aims to provide comparable security statements for different
protocols, it is important to rely on a generic partnering definition (which our approach ensures).

Furthermore one can consider channel notions for unreliable underlying networks (such that reordering
and omissions are tolerated). Such notions could be instantiated with partnering definitions that base
on the comparison of the communicated payload instead of matching-conversation style.

C.2 Forward Secrecy within Sessions

While we capture authentication and key compromise impersonation generically, our definitions of
forward-secrecy and replay attack resistance are not as generic as they could be: While Noise only
reaches forward-secrecy with respect to the long-term keys, it does not implement measures for achiev-
ing forward-secrecy within a session with respect to the session state. Having a static state after the
handshake also affects the definition of replay attack resistance: if the state within a session would be
computed forward securely, the revelation of a state – while replay attacks are possible – would only
affect the security of sessions that have the same transcript or of which this transcript is a prefix. In
Noise – due to the lack of forward-secrecy in sessions – the revelation of a state affects all sessions with
the same session establishing ciphertext.

Our model disregards the continuous updates of the channel security. Such updates would make
sense when considering forward-secrecy or post compromise security within sessions. Channel notions
considering comparable properties have been proposed before and can be used to extend our model in
this direction:
24 This idea stems from discussions with Bertram Poettering at SKECH Workshop 2018.
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In order analyze protocols that allow the deterministic update of an established channel key (as in
TLS 1.3), Günther and Mazaheri [21] proposed a model that focuses on confidentiality and integrity
properties of channels with this feature. We see this as a further flexibilization of ACCE, not necessary
for the investigation of Noise because Noise updates channel keys only probabilistically and then keeps
the keys static until the end of the session.

Jaeger and Stepanovs [24] and Poettering and Rösler [39] propose strong models for defining security
in the presence of adversaries who can reveal the local state. Their model require forward-secrecy and
recovery before and after such state reveals respectively. In contrast, our notion considers a session to
be trivially broken as soon as the state was revealed. Interestingly, an extension with respect to these
properties is not straight forward since these works can disregard long-term keys of users (which need to
considered in channel establishment security notions).

C.3 Example Protocol for Model Justification

In Figure 6 we provide an artificial protocol to explain the problem of analyzing security based on
multiple isolated property definitions. The depicted protocol deterministically encrypts payload with
the first two ciphertexts and only afterwards authenticates the transcript with a signature. Under the
assumption that the signature scheme reveals the singing key if an adversary obtains a signature and the
respectively utilized random coins, authentication is only reached, if an adversary obtains these random
coins after party B received ciphertext c2. However, confidentiality of the payload would be provided
even though the randomness was revealed to the adversary even before ciphertext c0 is sent, as the
encryption scheme’s security is not harmed by revealing random coins.

Thus, by simply assembling the security counters of an analysis that only considers authentication
(without randomness reveal) and an analysis that only considers confidentiality under randomness reveal
(without authentication), one would obtain a false security statement for an analysis that considers
authentication, confidentiality, and resistance against reveal of randomness.

A: (A, gA), gB B: (B, gB), gA

(skA, vkA)←$ Gen c0 = Enc(gAB , n, vkA‖m0)

c1 = Enc(gAB , n+ 1,m1)

c2 = Sign(skA, c0‖c1)

Fig. 6: Example protocol that provides client authentication after receiving ciphertext c2 if randomness is revealed
only afterwards (i.e., aui = 3, eck > 3) but that provides confidentiality and no authentication under revealed
randomness from the first ciphertext on already (i.e., eck = 1, aui = ∞). The protocol bases on an IND-CCA
secure nonce-based symmetric encryption scheme with Enc(k, n,m) and an SUF-CMA secure signature scheme
(that leaks the secret key if the random coins for a signature are revealed).

C.4 Extensions to Authentication Consideration

Authentication and Trust on First Use As it is described in this Appendix, one can extend the granularity
of our security definition and of the flexibility of our model arbitrarily. Another option would be a more
precise notion of authentication. Our model distinguishes between unauthenticated, authenticated, and
KCI resistant protocols, in which the definition leaves it free when each property is reached during a
protocol run. Even though unauthenticated parties in a protocol can always be impersonated, often this
impersonation needs to be initiated early during the protocol run. One extension to our model would be
considering, at which point during a protocol run an active attacker cannot perform an impersonation
anymore even though the respective party never authenticates. This property is related to trust on first
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use and is especially valuable in settings in which protocol session take a long time. For our setting, we
regard the precision of our authentication consideration sufficient.25

Reveal of Random Coins during Authentication In our full model we require that for an authenticated
ciphertext, the random coins of the receiver of this ciphertext must not be revealed or an active attack
against this ciphertext is regarded as a trivial attack. One may think of this as a KCI attack based on
the ephemeral secrets of the receiver (instead of its long-term secrets). This trivial attack is tailored
to implicit authentication methods related to public key encryption. In contrast, for signature-based
authentication (as in Figure 6) it would be necessary that the randomness of the authenticated party’s
sessions are not revealed in order to rule out trivial attacks. Furthermore, if KCI resistance is not yet
reached (i.e., the receiver’s long-term key and the sender’s long-term key must not be corrupted to avoid
trivial attacks) but authentication bases itself on a NIKE among the communicating parties long-term
keys, it would not be necessary to forbid the reveal of the receiver session’s randomness.

One can indeed treat this issue more flexibly by introducing further variables that control the model.
We, however chose to consider only authentication methods related to public key encryption here since
it keeps the model comprehensible and in our analysis we consider Noise that bases on this method for
authentication.

By always including a NIKE among the long-term secrets of the communicating parties, Noise would
be secure even if the described restriction would not be included in the model.

C.5 Set Randomness instead of Reveal Randomness
While our model allows the adversary to reveal random coins, we see alternatives to this definitional
choice driven – among other reasons – by valid critique, which we describe below.

Revealing randomness models either the actual leakage of random coins to an adversary or a con-
struction that generates random coins via a random oracle on low entropy input. We believe that both
scenarios are motivated by real world threats (e.g., [10, 19]). However – as it might be misunderstood
– insecure randomness generators are not depicted by revealing the used random coins to an adversary.
The reason for this is: by sampling coins uniformly at random and then providing them to an adversary,
the distribution over which these sampling was conducted is still good. A weak randomness generator, in
contrast, provides ‘random’ coins from a bad (i.e., non-uniform) distribution. In some real world cases,
this distribution might even be chosen by the adversary.

To overcome this gap in the model, we propose to let the adversary set the random coins for chosen
sessions itself. The impact of this modification on the model, compared to the eCK model [31], is rather
small: mainly cells in Table 3, which define freshness with respect to the corruption of parties and the
manipulated (or revealed) randomness, need to be updated. The cells to be updated depend on the eck
counter that indicates from which point on the session secret is secure even if both session participants’
random coins were attacked. Providing full security only with the long-term secrets can indeed be achieved
even if, instead of revealing the randomness, the adversary can freely chose and set the random coins of
sessions. It can however only be achieved once: if two sessions among two parties A and B both depend
only on the security provided by the long-term secrets of A and B, then the adversary can let both
sessions run with the exact same secret. In this case, the adversary can trivially attack these sessions.
As a result, if for more than one session between two parties, both sides’ random coins were set by the
adversary, then none of these sessions is declared fresh in any stage.

Full Consideration of Corruptions and Randomness Reveals The consideration of corruptions and reveals
of sessions’ random coins in our model are limited to these two categories:
1. confidentiality unless one of the two session participant was corrupted (via counter fs),
2. confidentiality unless one of the two session participants’ random coins were revealed (via counter

eck), and
3. confidentiality unless the random coins of a session with role ρ were revealed or the peer was corrupted

(via counter rlρ).
In general there exist many more combinations with which the model can be extended (e.g., if a stage’s
secret can only be computed by one session participant asymmetrically such that the secrets of the other
participant will not help the adversary) but we see the considered ones as most practically relevant.
25 Related models such as the MSKE model define authentication less flexible and precise as, e.g., unilateral

authentication is fixed to authentication of the initiator.
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D Correctness and Partnering Definitions in Pseudocode

For full precision and more clarity, we provide pseudocode descriptions of definitions 2 (correctness),
3 (honest partner), and 11 (previous honest partner) in Figure 7. An fACCE scheme is correct if
Pr[Correct(bi, br) → 1] = 0 for some (bi, br) ∈ {0, 1}2 (depending on for whom the scheme provides
authentication).

The correctness game allows an unbounded adversary to play with the scheme’s algorithms. An
adversary, letting the decryption output an inconsistent pair of message and stage counter (m, ς) (or a
decreasing stage counter) in an ‘honest execution’, wins the correctness game.

The partnering functions compare all sessions’ partner identifier, role, associated data, and encrypted
and decrypted transcripts with the targeted session’s respective values. The corresponding sessions are
output as (previous) hones partners. As described in definitions 3 and 11, the decryption transcripts
must be (or must contain a common) prefix of the encryption transcripts with the (previous) honest
partner such that at least one prefix is not empty. After receiving once, there must at most exist one
unique honest partner.

Game Correct(bi, br)
gen ← 0; init ← 0
ski ← ⊥; pki ← ⊥; skr ← ⊥; pkr ← ⊥
sti ← ⊥; str ← ⊥; ςmax

i ← 0; ςmax
r ← 0

MSi ← ⊥; MSr ← ⊥; Ti ← ⊥; Tr ← ⊥
If bi = 1: (ski, pki)←$ KGen
If br = 1: (skr, pkr)←$ KGen
Invoke A(ski, pki, skr, pkr)
Abort with 0

Oracle Init(ad)
If gen = 0 ∨ init = 1 ∨ ad /∈ {0, 1}∗: Abort with 0
init ← 1
sti ←$ Init(ski, pkr, i, ad)
str ←$ Init(skr, pki, r, ad)
Return sti, str

Oracle Enc(ρ,m)
If init = 0 ∨ ρ /∈ {i, r} ∨m /∈ {0, 1}∗: Abort with 0
(stρ, c, ς)←$ Enc(skρ, stρ,m)
If ς < ςmax

ρ : Abort with 0
ςmax
ρ ← ς

MSρ ← MSρ‖(m, ς)
Tρ ← Tρ‖c
Return (stρ, c, ς)

Oracle Dec(ρ)
If init = 0 ∨ ρ /∈ {i, r}: Abort with 0
c‖Tρ ← Tρ
If c /∈ {0, 1}∗ \ {ε}: Abort with 0
(stρ,m, ς)←$ Dec(skρ, stρ, c)
(m∗, ς∗)‖MSρ ← MSρ
If m 6= ⊥ ∧ (m, ς) 6= (m∗, ς∗): Abort with 1

Partner(i, s)
partners ← ∅
For all j ∈ [nP ], t ∈ [nS ]:

a← |πtj .Td|
b← |πsi .Td|
If πsi .pid = j ∧ πtj .pid = i
∧πsi .ρ 6= πtj .ρ
∧πsi .ad = πtj .ad
∧∀0 ≤ α < a : πsi .Te[α] = πtj .Td[α]
∧∀0 ≤ β < b : πtj .Te[β] = πsi .Td[β]
∧(πsi .ρ = i ∧ a > 0 ∨ πsi .ρ = r ∧ b > 0):

partners ← partners ∪ {(j, t)}
If πsi .Td 6= ⊥ ∧ |partners| > 1:

Return ∅
Return partners

PrevPartner(i, s)
partners ← ∅
For all j ∈ [nP ], t ∈ [nS ]:

a← |πtj .Td|
b← |πsi .Td|
If πsi .pid = j ∧ πtj .pid = i
∧πsi .ρ 6= πtj .ρ
∧πsi .ad = πtj .ad
∧∃0≤a∗≤a : ∀0≤α<a∗ : πsi .Te[α] = πtj .Td[α]
∧∃0≤b∗≤b : ∀0≤β<b∗ : πtj .Te[β] = πsi .Td[β]
∧(πsi .ρ = i ∧ a∗ > 0 ∨ πsi .ρ = r ∧ b∗ > 0):

partners ← partners ∪ {(j, t)}
Return partners

Fig. 7: Pseudocode definitions of correctness, honest partnering, and previous honest partnering (see definitions 2,
3, and 11). It is assumed that the ‘‖’ symbol is not an element of the ciphertext space and that procedures Partner()
and PrevPartner() have access to the respective variables of the security experiment (except for parties’ long-term
keys and sessions’ local states).
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E Full Proofs

In this section we detail the full proofs for Noise patterns N, NK, NN, NX and X, XK, XN, XX.

E.1 N pattern

Theorem 3. The Noise protocol N is flexible-ACCE-secure protocol with authentication levels au =
(∞,∞), forward-secrecy fs = ∞, KCI resistance kc = (∞,∞), one-way-randomness-security rl =
(1,∞), eCK security = ∞, and replay resistance rp = ∞. That is, for an adversary A against the
flexible ACCE security game (defined in section 4) one can efficiently define adversaries Bcoll against
the collision resistance of H, BPRF-ODH against the PRF-ODH assumption ms-PRF-ODH with respect to
group G and KDF, Baead against the aead security of AEAD, and Bprf against the PRF security of KDF
with:

AdvfACCE
N,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

Pn
2
S ·
(

Advprf
KDF,Bprf

+Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ 2 · Advaead
AEAD,Baead

)

Initiator Responder

ck, h← H(N_label)
h← H(h‖ad), n← 0

h← H(h‖gB)
a←$ Zp

h← H(h‖ga)
ck0, k0 ← KDF(ck, gaB , 2), n← 0

c0 ← Enc(k0, 0, h,m0)
ga, c0

if Dec(k0, n, h, c0) = ⊥, abort
h← H(h‖c0)

ki, kr ← KDF(ck, ε, 2), n← 0
Payload Data

Fig. 8: Noise Pattern N :← s, . . . ,→ e, es.

Proof.

First, recall that the adversary breaks authentication (and thus, sets win← 1) if the received cipher-
text was not sent by a session owned by the intended partner, but was successfully decrypted. Since in
Noise Pattern N, only the initiator sends encrypted ciphertexts, we can restrict our focus to a responder
party that successfully decrypts a ciphertext from a non-honest partner. However, by the definition of
the security experiment, it is required that if win ← 1 in the responder session in any given stage, the
stage must still be fresh. Since the initiator never authenticates (i.e., aui =∞), the adversary injecting
the ciphertext from a non-honest partner would cause πsi .fr ς ← 0 ∀ ς, and thus Pr[win← 1] = 0. Now we
can turn our focus to an adversary attempting to guess the challenge bit b for an initiator session (since
the responder session never encrypts anything in Noise Pattern N, and thus the behavior of a responder
session is independent of its challenge bits). Note that in the Noise Protocol N where A terminates and
outputs a tuple (i, s, ς ′, b′), if πsi .ρ = i, and πsi .fr1 = 1 then A cannot issue either a OCorrupt(πsi .pid),
nor a ORevealRandomness(i, s) query, as fs = eck = rlr = ∞, and aur = ∞. We now show that under
such restrictions, A has a negligible advantage in guessing a challenge bit b for the session πsi . We begin
with the standard fACCE experiment:

AdvfACCE
N,nP ,nS ,A = Adv(break0).
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Game 1: In this game we define an abort event abortcoll if a hash collision occurs. We do so by
computing all hash values honestly and aborting if there exist two evaluations (in,H(in)), (în,H(în))
such that in 6= în but H(in) = H(în). The simulator Bcoll interacts with a hash-collision challenger,
outputting the collision if found. Thus:

Adv(break0) ≤ Advcoll
H,Bcoll

+ Adv(break1)

Game 2: In this game, we guess the index (i, s) of the session πsi , and abort if A terminates and
outputs (i∗, s∗, ς ′, b′) such that (i∗, s∗) 6= (i, s). Thus:

Adv(break1) = nPnS ·
(
Adv(break2)

)
.

Game 3: In this game, we guess the index j of the honest partner πtj and abort if A initializes πsi
such that πsi .pid 6= j. Thus:

Adv(break2) = nP
(
Adv(break3)

)
.

Game 4: In this game, we replace the computation of ck, k0 with uniformly random and independent
values c̃k, k̃0 in the test session πsi and its honest partner (if one exists) by defining a simulator BPRF-ODH
that interacts with an ms-PRF-ODH challenger in the following way:

Note that by Game 2, we know at the beginning of the experiment the index of session πsi such
that (i, s, ς ′, b′) is output by the adversary. Similarly, by Game 3, we know at the beginning of the
experiment the index of the intended partner πsi .pid of the session πsi . Thus, BPRF-ODH initializes a ms-
PRF-ODH challenger, embeds the DH challenge keyshare gu into the long-term public-key of party j,
embeds the DH challenge keyshare gv into the ephemeral public-key of session πsi and give pkj = gu to
the adversary with all other (honestly generated) public keys. Note that by the definition of this case,
A is not able to issue a OCorrupt(j) query, as eck = fs = rlr = ∞ and rli = 1. However, BPRF-ODH
must account for all sessions t such that party j must use the private key for computations. In the Noise
Protocol N, the long-term private keys are used to compute the following:

– In sessions where the party acts as the responder: ck, k0 ← KDF(ck, gxu, 2)

Dealing with BPRF-ODH’s computation of these values will be done in two ways:

– The other Diffie-Hellman private key x is a value that has been generated by another honest session.
BPRF-ODH can then use its own internal knowledge of x to complete the computations.

– The other Diffie-Hellman private key x is a value that is unknown to BPRF-ODH, as it has been
generated instead by the adversary.

In the second case, BPRF-ODH must instead use the ODHu oracle provided by the ms-PRF-ODH challenger,
specifically querying ODHu(ck, X), (where X is the Diffie-Hellman public keyshare such that the private
key is unknown to the challenger) which will output KDF(ck, Xu). We note that fs, rlr = ∞, and as
such BPRF-ODH never has to answer a OCorrupt(j) query nor answer a ORevealRandomness(i, s) query.

Since rp =∞, however, BPRF-ODH also has to simulate sessions πt∗j where gv, c0 (the ciphertext sent
by πsi ) is replayed to πt∗j . BPRF-ODH simply sets the computation of ck, k0 in such sessions to c̃k, k̃0 to
ensure consistency. Thus we have:

Adv(break3) ≤ Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break4)

Game 5: In this game we replace the function KDF(c̃k, ε, 2) used to compute ki, kr := KDF(c̃k, ε, 2)
in πsi and its honest partner (if one exists). Since, by Game 4, c̃k is uniformly random and independent
of the protocol flow, this replacement is sound. We thus replace the values ki, kr with uniformly ran-
dom values k̃i, k̃r. Distinguishing this change implies an algorithm breaking the prf security of the key
derivation function KDF, and thus:

Adv(break4) ≤ Advprf
KDF,Bprf

+ Adv(break5)

Game 6: In this game, the challenger flips a bit b̄ and uses b̄ instead of πsi .b1 when responding
to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output ς = 1 (i.e.
when using the key k̃0 replaced in Game 4). We do so by constructing an algorithm Baead that interacts

34



with an aead challenger in the following way: Baead acts exactly as in Game 5 except responding to
Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when ς = 1, (i.e. when using the key k̃0) and πtj is
the honest partner of πsi . Baead instead queries Enc(n, h,m0,m1) and Dec(n, h, c) to the aead challenger’s
oracles.

Since k̃0 is a uniformly random and independent value (by Game 4), and b̄ has an identical distri-
bution to πsi .b1, this change is indistinguishable. Thus,

Adv(break5) ≤ Advaead
AEAD,Baead

+ Adv(break6)

It follows now that any adversary capable of outputting a tuple (i, s, 1, b′) such that b′ = b̄ can be turned
into an adversary against the aead security of the AEAD scheme. We also note that the behavior of πsi is
now entirely independent of the challenge bit b1, and thus A can do no better than simply guessing b1.

Game 7: In this game, the challenger flips a bit b̄′ and uses b̄′ instead of πsi .b2 when responding
to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output ς = 2 (i.e.
when using the key k̃i replaced in Game 5). We do so by constructing an algorithm Baead that interacts
with an aead challenger in the following way: Baead acts exactly as in Game 6 except responding to
Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when ς = 2, (i.e. when using the key k̃i) and πtj is
the honest partner of πsi . Baead instead queries Enc(n, h,m0,m1) and Dec(n, h, c) to the aead challenger’s
oracles.

Since k̃i is a uniformly random and independent value (by Game 5), and b̄′ has an identical distri-
bution to πsi .b2, this change is indistinguishable. Thus,

Adv(break6) ≤ Advaead
AEAD,Baead

+ Adv(break7)

It follows now that any adversary capable of outputting a tuple (i, s, 1, b′) such that b′ = b̄ can be turned
into an adversary against the aead security of the AEAD scheme. We also note that the behavior of πsi is
now entirely independent of the challenge bit b2, and thus A can do no better than simply guessing b2.
Thus:

AdvfACCE
N,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

PnS ·
(

Advprf
KDF,Bprf

+Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ 2 · Advaead
AEAD,Baead

)
E.2 NK pattern

Theorem 4. The Noise protocol NK is flexible-ACCE-secure protocol with authentication levels au =
(∞, 2), forward-secrecy fs = 2, KCI resistance kc = (∞, 2), one-way-randomness-security rl = (1,∞),
eCK security eck = ∞, and replay resistance rp = (2, 2). That is, for an adversary A against the
flexible ACCE security game (defined in section 4) one can efficiently define adversaries Bcoll against the
collision resistance of H, BPRF-ODH against the PRF-ODH assumptions ms-PRF-ODH and nn-PRF-ODH
with respect to group G and KDF, Baead against the AEAD security of AEAD, and Bprf against the PRF
security of KDF with:

AdvfACCE
NK,nP ,nS ,A ≤ 2 · Advcoll

H,Bcoll
+ n2

PnS

(
Advprf

KDF,Bprf
+

Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Advaead
AEAD,A

)
+

n2
Pn

2
S

(
2 · Advprf

KDF,Bprf
+

Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ 3 · Advaead
AEAD,A

)
Proof.

We split the analysis into the following three cases:

– Case A: A causes πsi , where πsi .ρ = i, to set win ← 1 when πsi processes the ciphertext gb, c1 (i.e
when πsi outputs ς = 2 during a decryption call).
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Initiator Responder

ck, h← H(NK_label)
h← H(h‖ad), n← 0

h← H(h‖gB)
a←$ Zp

h← H(h‖ga)
ck0, k0 ← KDF(ck, gaB)

c0 ← Enc(k0, 0, h,m0)
ga, c0

if Dec(k0, n, h, c0) = ⊥, abort
h← H(h‖c0)

b←$ Zp
h← H(h‖gb)

ck1, k1 ← KDF(ck, gab), n← 0
c1 ← Enc(k1, n, h,m1)

gb, c1

if Dec(k1, n, h, c1) = ⊥, abort
h← H(h‖c1)

ki, kr ← KDF(ck1, ε, 2), n← 0
Payload Data

Fig. 9: Noise Pattern NK :← s, . . . ,→ e, es.

– Case B: A causes πsi , where πsi .ρ = r, to set win ← 1 when πsi processes the first ciphertext ga, c0
(i.e when πsi outputs ς = 1 during a decryption call).

– Case C: A outputs (i, s, ς ′, b′) and A does not cause πsi to set win ← 1 when πsi processes the
ciphertext gb, c1 (if πsi .ρ = i) or when πsi processes the ciphertext ga, c0 (if πsi .ρ = r).

It is clear that

AdvfACCE
NK,nP ,nS ,A ≤ AdvfACCE,CA

NK,nP ,nS ,A + AdvfACCE,CB
N,nP ,nS ,A

+ AdvfACCE,CC
NK,nP ,nS ,A

We begin by treating Case A. In order for πsi to set win← 1 as defined above, the value of πsi .fr2 must
be 1 and thus OCorrupt(πsi .pid) cannot have yet been issued by A as aur = 2 and πsi will output a stage
ς ← 2 when πsi decrypts c1. Similarly, A cannot have issued a ORevealRandomness(i, s) query, as one can
see when referring to Table 3 as ri = ∞ = eck. Thus we know in this case that A cannot have issued
either a ORevealRandomness(i, s) nor a OCorrupt(πsi .pid) query.

Case A, Game 0: This is the standard fACCE experiment.

AdvfACCE,CA
NK,nP ,nS ,A = Adv(break0).

Case A, Game 1: In this game we define an abort event abortcoll that triggers if a hash collision
occurs. We do so by efficiently defining an algorithm Bcoll that computes all hash values honestly, and
aborts if there exists two evaluations (in,H(in)), (în,H(în)) such that in 6= în but H(in) = H(în). Bcoll
interacts with a hash-collision challenger, outputting the collision if found. Thus:

Adv(break0) ≤ Advcoll
H,Bcoll

+ Adv(break1)

Case A, Game 2: In this game, we guess the index (i, s) of the session πsi , and abort if A terminates
and outputs (i∗, s∗, ς ′, b′) such that (i∗, s∗) 6= (i, s). Thus:

Adv(break1) = nPnS
(
Adv(break2)

)
.
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Case A, Game 3: In this game, we guess the index j of the intended partner πsi .pid and abort if A
initializes πsi such that πsi .pid 6= j. Thus:

Adv(break2) = nP
(
Adv(break3)

)
.

Case A, Game 4: In this game, we define an abort event abortwin if the session πsi sets the status
win← 1 when πsi processes the ciphertext gb, c1 (i.e when πsi outputs ς = 2). Note that the behaviour of
a test session πsi with πsi .ρ = i and πsi .b2 = 1 does not differ from a session with πsi .ρ = i and πsi .b2 = 0,
as the session only uses the challenge bit when it encrypts data, and πsi only decrypts data in stage ς = 1
(i.e. after sending the first ciphertext ga, c0, before it enters stage ς = 2 when successfully decrypting
gb, c1). It follows that the only difference is the advantage A causes between Game 3 and Game 4 is the
advantage A has in causing win = 1. Note that we do not need to bound the probability that A guesses
πsi .b3, as we are showing that an adversary that has caused πsi to output win ← 1 when processing the
ciphertext gb, c1 has negligible chance at reaching the point where the behaviour of the test session πsi
will differ depending on the test bit b3. We now bound Adv(abortwin). Thus:

Adv(break3) ≤ Adv(abortwin).

Case A, Game 5: In this game, we replace the computation of ck, k0 with uniformly random and
independent values c̃k, k̃0. We do so by defining an algorithm BPRF-ODH that interacts with a ms-PRF-ODH
challenger in the following way:

By Game 2, we know at the beginning of the experiment the index of session πsi such that (i, s, ς ′, b′)
is output by the adversary. Similarly, by Game 3, we know the index of the intended partner j of
the session πsi . Thus, BPRF-ODH initializes a ms-PRF-ODH challenger, embeds the DH challenge keyshare
gu into the long-term public-key of party j, embeds the DH challenge keyshare gv into the ephemeral
public-key of session πsi and give pkj = gu to the adversary with all other (honestly generated) public
keys. However, BPRF-ODH must account for all sessions t such that party j must use the private key for
computations. In the Noise Protocol NK, the long-term private keys are used to compute the following:

– In sessions where the party acts as the responder: ck, k1 ← KDF(ck, gxu, 2)

Dealing with BPRF-ODH’s computation of these values will be done in two ways:

– The other Diffie-Hellman private key x is a value that has been generated by another honest session.
BPRF-ODH can then use its own internal knowledge of x to complete the computations.

– The other Diffie-Hellman private key x is a value that is unknown to BPRF-ODH, as it has been
generated instead by the adversary

In the second case, BPRF-ODH must instead use the ODHu oracle provided by the ms-PRF-ODH challenger,
specifically querying ODHu(ck, X), (where X is the Diffie-Hellman public keyshare such that the private
key is unknown to the challenger) which will output KDF(ck, Xu). Since in Game 4, we abort if
abortwin is triggered by πsi while processing gb, c1 (and by Game 2 A must output (i, s, ς ′, b′)), by
Game 4 BPRF-ODH never has to answer a OCorrupt(j) query. In addition, since rli = ∞, eck = ∞,
BPRF-ODH also never has to answer a ORevealRandomness(i, s) query. However rpi, rpr = 1, and BPRF-ODH
also has to simulate sessions πt∗j where gv, c0 (the ciphertext sent by πsi ) is replayed to πt∗j . BPRF-ODH

sets the computation of ck, k0 in such sessions to c̃k, k̃0 to ensure consistency. In addition, within the
same session BPRF-ODH has to potentially simulate the computation of ck, k1 ← KDF(c̃k, gbv), where gb
may have been injected by A. In order to compute this, BPRF-ODH queries ODHv(c̃k, gb, 2) to simulate
this computation. Thus we have:

Adv(abortwin) ≤ Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break5)

Case A, Game 6: In this game we replace the function KDF(c̃k, gab, 2) used to compute ck, k1 :=
KDF(c̃k, gab, 2) in πsi and its honest partner (if one exists). Since, by Game 4, c̃k is uniformly random
and independent of the protocol flow, and this replacement is sound. We thus replace the values ck, k1
with uniformly random values c̃k, k̃1. Distinguishing this change implies an algorithm breaking the prf
security of the key derivation function KDF, and thus:

Adv(break5) ≤ Advprf
KDF,Bprf

+ Adv(break6)
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Case A, Game 7: In this game, the challenger flips a bit b̄ and uses b̄ instead of πsi .b1 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 1 (i.e. when using the key k̃0 replaced in Game 5). We do so by constructing an algorithm Baead
that interacts with an AEAD challenger in the following way: Baead acts exactly as in Game 5 except
responding to Enc or Dec queries directed to πsi or πtj (if an honest partner πtj exists) when πsi , πtj outputs
ς > 1 (i.e. when using the key k̃0 to Encrypt or Decrypt the first ciphertext). Baead instead forwards the
queries to the AEAD challenger’s oracles.

Since k̃0 is a uniformly random and independent value (by Game 5), and b̄ has an identical distri-
bution to πsi .b1, this change is indistinguishable. Thus,

Adv(break5) ≤ Advaead
AEAD,Baead

+ Adv(break6)

It follows now that any adversary capable of outputting a tuple (i, s, 1, b′) such that b′ = b̄ can be turned
into an adversary against the aead security of the AEAD scheme. We also note that the behavior of πsi is
now entirely independent of the challenge bit b1, and thus A can do no better than simply guessing b1.
Thus:

Adv(break6) ≤ Advaead
AEAD,Baead

+ Adv(break7)

Case A, Game 8: In this game, πsi will only set win ← 1 (and thus cause abortwin to occur)
if A is able to produce a ciphertext gb, c1 := gb,AEAD.Enc(k̃1, n, h,m) that decrypts without error.
We construct an algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts
exactly as in Game 7 except responding to both Enc(j, t, ad,m0,m1) and Dec(i, s, ad, c) queries directed
to an honest partner to πsi , πtj (if such a session exists) and πsi when πsi .ς = 1 from A (i.e. when using the
key k̃1). Baead instead queries Dec(n, h, c) to the AEAD challenger’s oracles. Note that if there does not
exist a matching session πtj to πsi that output such a ciphertext, then if c1 can be successfully decrypted,
this will reveal the bit b sampled by the AEAD challenger, allowing Baead to break the AEAD security
game.

An adversary capable causing win ← 1 can thus break the aead security of the AEAD scheme. Since
k̃1 is a uniformly random and independent value (by Game 6), this change is indistinguishable. Thus,

Adv(break7) ≤ Advaead
AEAD,Baead

+ Adv(break8)

Note that the additional-data field of c1 contains h = H(H(H(H(H(H(NK-_label‖ad)‖gB)‖ ga)‖c0)‖gb).
By Game 1 we abort the experiment if A causes a hash-collision to occur, and by Game 8 there must
exist an honest session owned by j that has output c1. Thus inGame 8, A has no advantage in triggering
the event abortwin due to πsi processing (gb, c1), and we find:

AdvfACCE,CA
NK,nP ,nS ,A ≤Advcoll

H,Bcoll
+ n2

PnS ·
(

Advprf
KDF,Bprf

+ · Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ 2 · Advaead
AEAD,Baead

)
We now treatCase B.A inCase B cannot cause πsi such that πsi .ρ = r and πsi .fr1 = 1 to set win← 1,

as aui = ∞. If there does not exist some session πtj such that πsi .pid = j and πsi .Td[1] = πtj .Te[1], then
πsi .fr1 ← 0 and thus win is not set to 1.

In the next case, we know that if πsi .ρ = i (πsi .ρ = r respectively) then the ciphertexts (ga, c0)
((gb, c1) respectively) received by πsi was the output of an honest partner. We can now treat Case C.

Case C, Game 0: This is the standard fACCE experiment.

AdvfACCE,CC
NK,nP ,nS ,A = Adv(break0).

Case C, Game 1: In this game we define an abort event abortcoll if a hash collision occurs. We
do so by computing all hash values honestly and aborting if there exists two evaluations (in,H(in)),
(în,H(în)) such that in 6= în but H(in) = H(în). The simulator Bcoll interacts with a hash-collision
challenger, outputting the collision if found. Thus:

Adv(break0) ≤ Advcoll
H,Bcoll

+ Adv(break3)
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Case C, Game 2: In this game, we guess the index (i, s) of the session πsi , and abort if A terminates
and outputs (i∗, s∗, ς ′, b′) such that (i∗, s∗) 6= (i, s). Thus:

Adv(break1) = nPnS ·
(
Adv(break2)

)
.

Case C, Game 3: In this game, we guess the index (t, j) of the honest partner πtj and abort if πtj
is not the honest partner of πsi . Note that by Case A and Case B, there must exist such an honest
partner. Thus:

Adv(break2) = nPnS ·
(
Adv(break3)

)
.

At this point, we need to split the analysis into the two following sub-cases. Note that in what
follows, we assume without loss of generality that πsi is the initiator session. The analysis where πsi is
the responder session follows identically, up to a change in notation.

– Case C.1: A has potentially issued a ORevealRandomness(j, t) but not issued either a OCorrupt(j)
or ORevealRandomness(i, s) query.

– Case C.2: A has potentially issued a OCorrupt(j) query but has not issued either a
ORevealRandomness(i, s) or a ORevealRandomness(j, t) query. Note that sinceAmay issue a OCorrupt(j)
query, then πsi .fr1 ← 0, and thus A has no advantage in outputting (i, s, 1, b′). If A did not issue a
OCorrupt(j) query, then the security analysis reverts to Case C.1.

It is clear that

AdvfACCE,CC
NK,nP ,nS ,A ≤ max

(
AdvfACCE,CC.1

NK,nP ,nS ,A ,AdvfACCE,CC.2
NK,nP ,nS ,A

)
Case C.1, Game 4: In this game, we replace the computation of ck, k0 with uniformly random and
independent values c̃k, k̃0 in the test session πsi and its honest partner by defining a simulator BPRF-ODH
that interacts with a ms-PRF-ODH challenger as described in Case A.1, Game 5. Thus:

Adv(break3) ≤ Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break4)

Case C.1, Game 5: In this game we replace the function KDF(c̃k, gab, 2) used to compute ck, k1 :=
KDF(c̃k, gab, 2) in πsi and its honest partner. Since, by Game 4, c̃k is uniformly random and indepen-
dent of the protocol flow, this replacement is sound. We thus replace the values ck, k1 with uniformly
random values c̃k, k̃1. Distinguishing this change implies an algorithm breaking the prf security of the
key derivation function KDF, and thus:

Adv(break4) ≤ Advprf
KDF,Bprf

+ Adv(break5)

Case C.1, Game 6: In this game we replace the function KDF(c̃k, ε, 2) used to compute ki, kr :=
KDF(c̃k, ε, 2). Since, by Game 5, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ki, kr with uniformly random values k̃i, k̃r. Distinguish-
ing this change implies an algorithm breaking the prf security of the key derivation function KDF, and
thus:

Adv(break5) ≤ Advprf
KDF,Bprf

+ Adv(break6)

Case C.1, Game 7: In this game, the challenger flips a bit b̄ and uses b̄ instead of πsi .b1 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 1 (i.e. when using the key k̃0 replaced in Game 4). We do so by constructing an algorithm Baead
that interacts with an AEAD challenger in the following way: Baead acts exactly as in Game 6 except
responding to Enc(n, h,m0,m1) (or Dec(n, h, c)) queries directed to πsi (or πtj respectively) when πsi or
πtj would output ς = 1 (i.e. when using the key k̃0). Baead instead forwards the queries to the AEAD
challenger.

Since k̃0 is a uniformly random and independent value (by Game 4), and b̄ has an identical distri-
bution to πsi .b1, this change is indistinguishable. Thus,

Adv(break6) ≤ Advaead
AEAD,Baead

+ Adv(break7)
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We note now that if A terminates and outputs a tuple (i, s, ς ′, b′) at the end of the game (where
ς ′ = 1), then the behavior of πsi is independent of the test bit πsi .b1 and thus the adversary has no
strategy better than simply guessing the random bit πsi .b1. We continue by showing that the adversary
similarly has no advantage in guessing πsi .b3.

Case C.1, Game 8: In this game, the challenger flips a bit b̄′ and uses b̄′ instead of πsi .b3 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 3 (i.e. when using the keys k̃i, k̃r replaced in Game 6). In this game, in session πsi we construct
an algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 6 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 3 (i.e. when using the keys k̃i, k̃r). Baead instead forwards the queries to
the AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since k̃i, k̃r are uniformly random and independent values, this change is sound. Thus,

Adv(break7) ≤ Advaead
AEAD,Baead

+ Adv(break8)

In Case C.1, Game 8, the behavior of πsi is independent of all test bits πsi .b1, πsi .b2, πsi .b3 and thus
A has no advantage in guessing b, nor in triggering win← 1. Thus:

AdvfACCE,CC.1
NK,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

Pn
2
S ·
(

2 · Advprf
KDF,Bprf

+Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ 3 · Advaead
AEAD,Baead

)
We now treat Case C.2. By the definition of this sub-case, we know that A has not issued both a
ORevealRandomness(i, s) and a ORevealRandomness(j, t) query, but has issued a OCorrupt(j) query. Since
fs = 2 and rlr =∞, by Table 3 any adversary that issues a OCorrupt(j) sets πsi .fr1 ← 0 and outputting
(i, s, 1, b′) will lose A the game. As a result, in Case 2 we cannot prove the security of payload data sent
in the first ciphertext, and instead focus on showing that an adversary’s advantage in guessing either
πsi .b2 and πsi .b3 is not negligibly greater than simply returning a randomly sampled bit b′.

Case C.2, Game 4: In this game, we replace the computation of ck, k1 with uniformly random and
independent values c̃k, k̃1. We do so by defining an algorithm BPRF-ODH that interacts with a nn-PRF-ODH
challenger in the following way:

Note that by Game 2, we know at the beginning of the experiment the index of session πsi such that
(i, s, ς ′, b′) is output by the adversary. Similarly, by Game 3, we know the index (j, t) of the honest partner
session πtj . Thus, BPRF-ODH initializes a nn-PRF-ODH challenger, embeds the DH challenge keyshare gu
into the ephemeral public-key of session πsi , embeds the DH challenge keyshare gv into the ephemeral
public-key of session πtj . Since we know that the ephemeral key gb received by πsi was output by the
honest partner πtj , we only need to use the private key u in a single case:

– ck, k0 ← KDF(ck, guB , 2)

Since the private key B is an honestly generated long-term private key, BPRF-ODH can then use its
own internal knowledge of B to complete the computation. For the honest partner πtj , by Case B
the ephemeral key ga received by πtj was output by the honest partner πtj , and BPRF-ODH needs only
replace the computation of ck, k1 with uniformly random and independent values c̃k, k̃1 output by the
nn-PRF-ODH challenger. Thus:

Adv(break3) ≤ Advnn-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break4)

Case C.2, Game 5: In this game we replace the function
KDF(c̃k, ε, 2) used to compute ki, kr := KDF(c̃k, ε, 2). Since, by Game 4, c̃k is uniformly random
and independent of the protocol flow, this replacement is sound. We thus replace the values ki, kr with
uniformly random values k̃i, k̃r. Distinguishing this change implies an algorithm breaking the prf security
of the key derivation function KDF, and thus:

Adv(break4) ≤ Advprf
KDF,Bprf

+ Adv(break5)
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Case C.2, Game 6: In this game, the challenger flips a bit b̄ and uses b̄ instead of πsi .b2 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 2 (i.e. when using the key k̃1 replaced in Game 4). We do so by constructing an algorithm Baead
that interacts with an AEAD challenger in the following way: Baead acts exactly as in Game 5 except
responding to Enc(n, h,m0,m1) (or Dec(n, h, c)) queries directed to πsi (or πtj respectively) when πsi or
πtj would output ς = 2 (i.e. when using the key k̃1). Baead instead forwards the queries to the AEAD
challenger.

Since k̃1 is a uniformly random and independent value (by Game 4), and b̄ has an identical distri-
bution to πsi .b2, this change is indistinguishable. Thus,

Adv(break5) ≤ Advaead
AEAD,Baead

+ Adv(break6)

We note now that if A terminates and outputs a tuple (i, s, ς ′, b′) at the end of the game (where
ς ′ = 2), then the behavior of πsi is independent of the test bit πsi .b2 and thus the adversary has no
strategy better than simply guessing the random bit πsi .b2. We continue by showing that the adversary
similarly has no advantage in guessing πsi .b3.

Case C.2, Game 7: In this game, the challenger flips a bit b̄′ and uses b̄′ instead of πsi .b3 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 3 (i.e. when using the keys k̃i, k̃r replaced in Game 5).In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 6 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 3 (i.e. when using the keys k̃i, k̃r). Baead instead forwards the queries to
the AEAD challenger’s oracles.

Since k̃i, k̃r are uniformly random and independent values (by Game 5), and b̄′ has an identical
distribution to πsi .b3, this change is indistinguishable. Thus,

Adv(break6) ≤ Advaead
AEAD,Baead

+ Adv(break7)

In Case C.2, Game 7, the behavior of πsi is independent of the (fresh) test bits πsi .b2 and πsi .b3 and
thus A has no advantage in guessing b, nor in triggering win← 1. Thus:

AdvfACCE,CC.2
NK,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

Pn
2
S ·
(

2 · Advaead
AEAD,Baead

+Advnn-PRF-ODH
KDF,G,p,BPRF-ODH

+ Advprf
KDF,Bprf

)
It is clear that AdvfACCE,CC.2

NK,nP ,nS ,A ≤ AdvfACCE,CC.1
NK,nP ,nS ,A ), thus AdvfACCE,CC

NK,nP ,nS ,A ≤ AdvfACCE,CC.1
NK,nP ,nS ,A )

E.3 NN Pattern

Theorem 5. The Noise protocol NN is flexible-ACCE-secure protocol with authentication levels au =
(∞,∞), forward-secrecy fs = 1, KCI resistance kc = (∞,∞), one-way-randomness-security rl =
(∞,∞), eCK security ∞, and replay resistance rp = (2, 0). That is, for an adversary A against the
flexible ACCE security game (defined in section 4) one can efficiently define adversaries Bcoll against the
collision resistance of H, BPRF-ODH against the PRF-ODH assumption nn-PRF-ODH with respect to group
G and KDF, Baead against the AEAD security of AEAD, and Bprf against the PRF security of KDF with:

AdvfACCE
NN,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

Pn
2
S ·
(

2 · Advaead
AEAD,Baead

+Advnn-PRF-ODH
KDF,G,p,BPRF-ODH

+ Advprf
KDF,Bprf

)
Proof. Note that in what follows, we assume without loss of generality that πsi is the initiator session.
The analysis where πsi is the responder session follows identically, except for a change in notation. In
order for the behavior of πsi to depend upon the test bit πsi .b, πsi .fr ς = 1∀ stages ς ≥ 1 and thus
ORevealRandomness(i, s) cannot have been issued by A as rli = ∞ and eck = ∞. In addition, since
aur = ∞ and aui = ∞, if A terminates and outputs a tuple (i, s, ς ′, b′) where πsi .fr1 = 1 then there
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Initiator Responder

ck, h← H(NN_label)
h← H(h‖ad), n← 0

a←$ Zp
h← H(h‖ga)

ga

b←$ Zp
h← H(h‖gb)

ck, k0 ← KDF(ck, gab, 2)
c0 ← Enc(k0, n, h,m0)

gb, c0

if Dec(k0, n, h, c0) = ⊥, abort
h← H(h‖c0)

ki, kr ← KDF(ck, ε, 2)n← 0
Payload Data

Fig. 10: Noise Pattern NN :→ e,← e, ee.

must exist some session πtj such that πsi .pid = j and πsi .Td[0] = πtj .Te[0], which means that A cannot
cause πsi to set win ← 1 (i.e. breaking authentication). Finally, the honest partner πtj (that must exist)
ORevealRandomness(j, t) cannot have been issued by A as rlr =∞ and eck =∞.
Game 0: This is the standard fACCE experiment.

AdvfACCE
NN,nP ,nS ,A = Adv(break0).

Game 1: In this game we define an abort event abortcoll that triggers if a hash collision occurs. We
do so by defining an algorithm Bcoll that computes all hash values honestly, and aborts if there exists
two evaluations (in,H(in)), (în,H(în)) such that in 6= în but H(in) = H(în). Bcoll interacts with a
hash-collision challenger, outputting the collision if found. Thus:

Adv(break0) ≤ Advcoll
H,Bcoll

+ Adv(break1)

Game 2: In this game, we guess the index (i, s) of the session πsi , and abort if A terminates and
outputs (i∗, s∗, ς ′, b′) such that (i∗, s∗) 6= (i, s). Thus:

Adv(break1) = nPnS ·
(
Adv(break2)

)
.

Game 3: In this game, we guess the index (j, t) of the honest partner πtj and abort if πsi receives
a ciphertext (gb, c0) such that πsi .Td[0] 6= πtj .Te[0]. By the argument given above, such a partner must
exist, and thus:

Adv(break2) = nPnS ·
(
Adv(break3)

)
.

Game 4: In this game, we replace the computation of ck, k0 with uniformly random and independent
values c̃k, k̃0. We do so by defining an algorithm BPRF-ODH that interacts with a nn-PRF-ODH challenger
in the following way: BPRF-ODH initializes a nn-PRF-ODH challenger, embeds the DH challenge keyshare
gu into the ephemeral public-key of session πsi , embeds the DH challenge keyshare gv into the ephemeral
public-key of session πtj . Since we know that the ephemeral key gb received by πsi was output by the
honest partner πtj , we only need to use the private key u in a single case:

– ck, k0 ← KDF(ck, gux, 2)

Since we know that the ephemeral key gb received by πsi was output by the honest partner πtj BPRF-ODH
can simulate this perfectly. In the case that A forwards gu or gv to another session, BPRF-ODH simply
uses its own internal knowledge of x to compute (gu)x. Thus:

Adv(break3) ≤ Advnn-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break4)
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Game 5: In this game we replace the function KDF(c̃k, ε, 2) used to compute ki, kr := KDF(c̃k, ε, 2)
in πsi and its honest partner. Since, by Game 4, c̃k is uniformly random and independent of the protocol
flow, this replacement is sound. We thus replace the values ki, kr with uniformly random values k̃i, k̃r.
Distinguishing this change implies an algorithm breaking the prf security of the key derivation function
KDF, and thus:

Adv(break4) ≤ Advprf
KDF,Bprf

+ Adv(break5)

Game 6: In this game, the challenger flips a bit b̄ and uses b̄ instead of πsi .b1 when responding
to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output ς = 1 (i.e.
when using the key k̃0 replaced in Game 4). We do so by constructing an algorithm Baead that interacts
with an AEAD challenger in the following way: Baead acts exactly as in Game 5 except responding to
Enc(n, h,m0,m1) (or Dec(n, h, c)) queries directed to πsi (or πtj respectively) when πsi or πtj would output
ς = 1 (i.e. when using the key k̃0). Baead instead forwards the queries to the AEAD challenger.

Since k̃0 is a uniformly random and independent value (by Game 4), and b̄ has an identical distri-
bution to πsi .b1, this change is indistinguishable. Thus,

Adv(break6) ≤ Advaead
AEAD,Baead

+ Adv(break7)

We note now that if A terminates and outputs a tuple (i, s, ς ′, b′) at the end of the game (where ς ′ = 1),
then the behavior of πsi is independent of the test bit πsi .b1 and thus the adversary has no strategy better
than simply guessing the random bit πsi .b1. We continue by showing that the adversary similarly has no
advantage in guessing πsi .b2.

Game 7: In this game, the challenger flips a bit b̄′ and uses b̄′ instead of πsi .b2 when responding to
Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output ς = 2 (i.e. when
using the keys k̃i and k̃r replaced in Game 5). We do so by constructing an algorithm Baead that interacts
with an AEAD challenger in the following way: Baead acts exactly as in Game 6 except responding to
Enc(n, h,m0,m1) (or Dec(n, h, c)) queries directed to πsi (or πtj respectively) when πsi or πtj would output
ς = 2 (i.e. when using the keys k̃i or k̃r). Baead instead forwards the queries to the AEAD challenger.

Since k̃i, k̃r are uniformly random and independent values (by Game 5), and b̄′ has an identical
distribution to πsi .b2, this change is indistinguishable. Thus,

Adv(break6) ≤ Advaead
AEAD,Baead

+ Adv(break7)

We note now that if A terminates and outputs a tuple (i, s, ς ′, b′) at the end of the game (where ς ′ = 2),
then the behavior of πsi is independent of the test bit πsi .b2 and thus the adversary has no strategy better
than simply guessing the random bit πsi .b2. In Game 7, the behavior of πsi is independent of the test
bits πsi .bς ∀ς ≥ 1 and thus A has no advantage in guessing such bits. Thus:

AdvfACCE
NN,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

Pn
2
S ·
(

2 · Advaead
AEAD,Baead

+Advnn-PRF-ODH
KDF,G,p,BPRF-ODH

+ Advprf
KDF,Bprf

)
E.4 XN Pattern

Theorem 6. The Noise protocol XN is flexible-ACCE-secure protocol with authentication levels au =
(3,∞), forward-secrecy fs = 2, KCI resistance kc = (3,∞), one-way-randomness-security rl = (∞, 3),
eCK security eck = ∞, replay resistance rp = (2, 0). That is, for an adversary A against the flexible
ACCE security game (defined in Section 4) one can efficiently define adversaries Bcoll against the collision
resistance of H, BPRF-ODH against the sym-ms-PRF-ODH and nn-PRF-ODH assumptions with respect to
group G and KDF, Baead against the AEAD security of AEAD, and Bprf against the PRF security of KDF
with:

AdvfACCE
XN,nP ,nS ,A ≤ 2 · Advcoll

H,Bcoll
+ n2

PnS ·
(

Advaead
AEAD,Baead

+ Advms-PRF-ODH
KDF,G,p,BPRF-ODH

)
+n2

Pn
2
S ·
(

max
(

Advprf
KDF,Bprf + Advsym-ms-PRF-ODH

KDF,G,p,BPRF-ODH
+ 2 · Advaead

AEAD,Baead

)
,(

2 · Advprf
KDF,Bprf + Advnn-PRF-ODH

KDF,G,p,BPRF-ODH
+ 3 · Advaead

AEAD,Baead

))
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Initiator Responder

ck, h← H(XN_label)
h← H(h‖ad), n← 0

a←$ Zp
h← H(h‖ga)

ga

b←$ Zp
h← H(h‖gb)

ck, k0 ← KDF(ck, gab, 2)
c0 ← Enc(k0, 0, h,m0)

gb, c0

if Dec(k0, n, h, c0) = ⊥, abort
h← H(h‖c0)

c1 ← Enc(k0, 1, h, gA)
h← H(h‖c1)

ck, k1 ← KDF(ck, gAb, 2), n← 0
c2 ← Enc(k1, 0, h,m1)

c1, c2

if Dec(k0, n, h, c1),Dec(k1, n, h, c2) = ⊥
abort

h← H(h‖c2)
ki, kr ← KDF(ck1, ε, 2), n← 0

Payload Data

Fig. 11: Noise Pattern XN :→ e,← e, ee,→ s, se.

Proof.
We split the analysis into the following three cases:

– Case A: A outputs (i, s, ς ′, b′) (where πsi .ρ = i) and A causes πsi to set win← 1 when πsi processes
the second ciphertext gb, c0 (i.e when πsi outputs ς = 2 during a decryption call).

– Case B: A outputs (i, s, ς ′, b′) (where πsi .ρ = r) and A causes πsi to set win← 1 when πsi processes
the third ciphertext c1, c2 (i.e when πsi outputs ς = 3 during a decryption call).

– Case C: A outputs (i, s, ς ′, b′) and A does not cause πsi to set win ← 1 when πsi processes the
ciphertext gb, c0 (if πsi .ρ = i) or when πsi processes the ciphertext c1, c2 (if πsi .ρ = r).

We begin by treating Case A. A in Case A cannot cause πsi such that πsi .ρ = i and πsi .fr2 = 1 to
set win← 1, as aur =∞. There must exist some session πtj such that πsi .pid = j and πsi .Td[1] = πtj .Te[1],
otherwise πsi .fr1 ← 0 and thus win is not set to 1.

We now turn to treating Case B. In order for πsi to set win ← 1 in Case B, πsi .fr3 = 1 and thus
OCorrupt(πsi .pid) cannot yet have been issued by A as kcr = ∞ > aui = 3, and πsi will output ς = 3
when decrypting c1, c2. Similarly, A also cannot have issued a ORevealRandomness(i, s) query as rlr = 3
and eck =∞.

Case B, Game 0: This is the standard fACCE experiment.

AdvfACCE,CB
XN,nP ,nS ,A = Adv(break0).

Case B, Game 1: In this game we define an abort event abortcoll that triggers if a hash collision
occurs. We do so by defining an algorithm Bcoll that computes all hash values honestly, and aborts if
there exists two evaluations (in,H(in)), (în,H(în)) such that in 6= în but H(in) = H(în). Bcoll interacts
with a hash-collision challenger, outputting the collision if found. Thus:

Adv(break0) ≤ Advcoll
H,Bcoll

+ Adv(break1)
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Case B, Game 2: In this game, we guess the index (i, s) of the session πsi , and abort if A terminates
and outputs (i∗, s∗, ς ′, b′) such that (i∗, s∗) 6= (i, s). Thus:

Adv(break1) = nPnS ·
(
Adv(break2)

)
.

Case B, Game 3: In this game, we guess the index (j) of the intended partner πtj and abort if A
initializes πsi with πsi .pid 6= j. Thus:

Adv(break2) = nP ·
(
Adv(break3)

)
.

Case B, Game 4: In this game, we define an abort event abortwin if the session πsi sets the status
win ← 1 when πsi processes the ciphertext c1, c2 (i.e when πsi outputs ς = 3). Note that the behavior of
a test session πsi with πsi .ρ = r and πsi .b3 = 1 does not differ from a session with πsi .ρ = r and πsi .b3 = 0,
as the session only uses the challenge bit when it encrypts data, and πsi only decrypts data in stage
ς = 3 (i.e. after sending the ciphertext gb, c0, before it enters stage ς = 3 when successfully decrypting
c1, c2). It follows that the only difference is the advantage A causes between Game 3 and Game 4 is the
advantage A has in causing win = 1, and the advantage that A has in guessing πsi .b2. Note that we do
not need to bound the probability that A guesses πsi .b4, as we are showing that an adversary that has
caused πsi to output win← 1 when processing the ciphertext c1, c2 has negligible chance at reaching the
point where the behavior of the test session πsi will differ depending on the test bit b4. In what follows,
we divide the proof into two further subcases:

– We first bound Adv(break4), (the advantage of A in guessing πsi .b2, which we refer to as Case B.1),
and

– We separately bound Adv(abortwin) (which we refer to as Case B.2).

Thus:
Adv(break3) ≤ Adv(abortwin) + Adv(break4).

Case B.1, Game 4: In this game, we replace the computation of ck, k0 with uniformly random and
independent values c̃k, k̃0. We do so by defining an algorithm BPRF-ODH that interacts with a ns-PRF-ODH
challenger in the following way: BPRF-ODH initializes a ns-PRF-ODH challenger, embeds the DH challenge
keyshare gu into the ephemeral public-key of session πtj , embeds the DH challenge keyshare gv into the
ephemeral public-key of session πsi . In Noise Protocol XN, the ephemeral private keys are used to compute
the following:

– ck, k0 ← KDF(ck, gxv, 2)
– ck, k1 ← KDF(ck, gyv, 2)

Dealing with BPRF-ODH’s computation of these values will be done in two ways:

– The other Diffie-Hellman private key x, y is a value that has been generated by another honest
session, or is the long-term private key of another session. BPRF-ODH can then use its own internal
knowledge of x and y to complete the computations.

– The other Diffie-Hellman private key x is a value that is unknown to BPRF-ODH, as it has been
generated instead by the adversary

In the second case, BPRF-ODH must instead use the ODHv oracle provided by the ns-PRF-ODH challenger,
specifically querying ODHv(ck, X), (where X is the Diffie-Hellman public keyshare such that the private
key is unknown to the challenger) which will output KDF(ck, Xu). Thus:

Adv(break3) ≤ Advns-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break4)

Case B.1, Game 5: In this game, the challenger flips a bit b̄ and uses b̄ instead of πsi .b2 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 2 (i.e. when using the key k̃0 replaced in Game 4). We do so by constructing an algorithm Baead
that interacts with an AEAD challenger in the following way: Baead acts exactly as in Game 4 except
responding to Enc(n, h,m0,m1) (or Dec(n, h, c)) queries directed to πsi (or πtj respectively) when πsi or
πtj would output ς = 2 (i.e. when using the key k̃0). Baead instead forwards the queries to the AEAD
challenger.
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Since k̃0 is a uniformly random and independent value (by Game 4), and b̄ has an identical distri-
bution to πsi .b2, this change is indistinguishable. Thus,

Adv(break6) ≤ Advaead
AEAD,Baead

+ Adv(break7)

We note now that if A terminates and outputs a tuple (i, s, ς ′, b′) at the end of the game (where ς ′ = 2),
then the behavior of πsi is independent of the test bit πsi .b2 and thus the adversary has no strategy better
than simply guessing the random bit πsi .b2. Thus:

Adv(break5) ≤ Advaead
AEAD,Baead

We now turn to bounding the advantage of A in causing win← 1.
Case B.2, Game 5: In this game, we replace the computation of ck, k1 with uniformly random

and independent values c̃k, k̃1. We do so by defining an algorithm BPRF-ODH that interacts with a
sym-ms-PRF-ODH challenger in the following way:

Note that by Game 2, we know at the beginning of the experiment the index of session πsi such that
(i, s, ς ′, b′) is output by the adversary. Similarly, by Game 3, we know at the beginning of the experiment
the index of the intended partner j of the session πsi . Thus, BPRF-ODH initializes a sym-ms-PRF-ODH
challenger, embeds the DH challenge keyshare gu into the long-term public-key of party j, embeds the
DH challenge keyshare gv into the ephemeral public-key of session πsi and give pkj = gu to the adversary
with all other (honestly generated) public keys. Note that by the definition of this case, A is not able
to issue a OCorrupt(j) query. However, BPRF-ODH must account for all sessions t such that party j must
use the private key for computations. In the Noise Protocol XN, the long-term private keys are used to
compute the following:

– In sessions where the party acts as the initiator: ck, k1 ← KDF(ck, gxu, 2)

Dealing with BPRF-ODH’s computation of these values will be done in two ways:

– The other Diffie-Hellman private key x is a value that has been generated by another honest session.
BPRF-ODH can then use its own internal knowledge of x to complete the computations.

– The other Diffie-Hellman private key x is a value that is unknown to BPRF-ODH, as it has been
generated instead by the adversary

In the second case, BPRF-ODH must instead use the ODHu oracle provided by the sym-ms-PRF-ODH
challenger, specifically querying ODHu(ck, X), (where X is the Diffie-Hellman public keyshare such that
the private key is unknown to the challenger) which will output KDF(ck, Xu). Similarly, BPRF-ODH must
account for the fact that the private key of gv (the ephemeral public-key of πsi ) is actually used before the
computation of ck, k1. In particular, it is used earlier in the protocol to compute ck, k0 := KDF(ck, gav),
where ga may have been contributed by A. In this case, in order to compute ck, k0, BPRF-ODH must instead
use the ODHv oracle provided by the sym-ms-PRF-ODH challenger, specifically querying ODHv(ck, ga),
which will output KDF(ck, gav). After processing c1, c2, πsi will output stage ς = 3, and so A cannot
issue a OCorrupt(j) query before πsi processes ciphertext c1, c2. In addition, since in Case B, we abort
if abortwin is triggered by πsi while processing c1, c2 (and by Game 2 A must output (i, s, ς ′, b′)), by
Game 4 BPRF-ODH never has to answer a OCorrupt(j) query. In addition, since rlr = 3, BPRF-ODH also
never has to answer a ORevealRandomness(i, s) query. Thus we have:

Adv(abortwin) ≤ Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break5)
Case B.2, Game 6: In this game, πsi will only set win ← 1 if A is able to produce a cipher-

text c1, c2 that decrypts without error. In session πsi we construct an algorithm Baead that interacts
with an AEAD challenger in the following way: Baead acts exactly as in Game 5 except responding to
Dec(i, s, ad, c) queries from A when πsi would output ς = 2 (i.e. when using the key k̃1). Baead instead
queries Dec(n, h, c) to the AEAD challenger’s oracles.

An adversary capable causing win ← 1 can break the AEAD security of the AEAD scheme. Since k̃1
is a uniformly random and independent value, this change is sound. Thus,

Adv(break5) ≤ Advaead
AEAD,Baead

+ Adv(break6)

Note that the additional-data field of c2 contains h = H(H(H(H(H(H(XN_label‖ad)‖ga)‖gb)‖c0)‖c1).
By Game 1 we abort the experiment if A causes a hash-collision to occur, and by Game 6 we abort
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if no honest session πtj has output c2. Thus in Game 6, A has no advantage in triggering the event
abortwin due to πsi processing (c1, c2). Thus:

AdvfACCE,CB
XN,nP ,nS ,A ≤ Advcoll

H,Bcoll
+n2

PnS ·
(

2 · Advaead
AEAD,Baead

+Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Advns-PRF-ODH
KDF,G,p,BPRF-ODH

)
In the next case, we know that the session πsi such that A terminates and outputs (i, s, ς ′, b′) has an

honest partner when πsi outputs ς = 1 (if πsi .ρ = i or when πsi outputs ς = 3 (if πsi .ρ = r). We can now
treat Case C.

Case C, Game 0: This is the standard fACCE experiment.

AdvfACCE,CC
XN,nP ,nS ,A = Adv(break0).

Case C, Game 1: In this game we define an abort event abortcoll if a hash collision occurs. We
do so by computing all hash values honestly and aborting if there exists two evaluations (in,H(in)),
(în,H(în)) such that in 6= în but H(in) = H(în). The simulator Bcoll interacts with a hash-collision
challenger, outputting the collision if found. Thus:

Adv(break0) ≤ Advcoll
H,Bcoll

+ Adv(break1)

Case C, Game 2: In this game, we guess the index (i, s) of the session πsi , and abort if A terminates
and outputs (i∗, s∗, ς ′, b′) such that (i∗, s∗) 6= (i, s). Thus:

Adv(break1) = nPnS ·
(
Adv(break2)

)
.

Case C, Game 3: In this game, we guess the index (t, j) of the honest partner πtj and abort if πtj is
not the honest partner of πsi when πsi outputs ς = 2 when processing the ciphertext gb, c0 (if πsi .ρ = i)
or when πsi outputs ς = 3 when processing the ciphertext c1, c2 (if πsi .ρ = r). Note that by Case A and
Case B, there must exist such an honest partner. Thus:

Adv(break2) = nPnS ·
(
Adv(break3)

)
.

At this point, we need to split the analysis into the two following sub-cases. Note that in what
follows, we assume without loss of generality that πsi is the initiator session. The analysis where πsi is
the responder session follows identically, except for a change in notation.

– Case C.1: A has not issued both a OCorrupt(i) query and an ORevealRandomness(j, t) query. Note
that since A may issue a ORevealRandomness(i, s) query, then πsi .fr1 ← 0, and thus A has no
advantage in outputting (i, s, 1, b′). If A did not issue a ORevealRandomness(i, s) query, then the
security analysis reverts to Case C.2.

– Case C.2: A has not issued both a ORevealRandomness(i, s) and a ORevealRandomness(j, t) query.

It is clear that

AdvfACCE,CC
XN,nP ,nS ,A ≤ max

(
AdvfACCE,CC.1

XN,nP ,nS ,A ,AdvfACCE,CC.2
XN,nP ,nS ,A

)
Case C.1, Game 4: In this game, we replace the computation of ck, k1 with uniformly random and

independent values c̃k, k̃1 in the test session πsi and its honest partner by defining a simulator BPRF-ODH
that interacts with a sym-ms-PRF-ODH challenger as described in Case B Game 5. Thus:

Adv(break3) ≤ Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break4)

Case C.1, Game 5: In this game we replace the function KDF(c̃k, ε, 2) used to compute ki, kr :=
KDF(c̃k, ε, 2). Since, by Game 4, c̃k is uniformly random and independent of the protocol flow, this re-
placement is sound. We thus replace the values ki, kr with uniformly random values k̃i, k̃r. Distinguishing
this change implies an algorithm breaking the prf security of the KDF scheme, and thus:

Adv(break4) ≤ Advprf
KDF,Bprf

+ Adv(break5)
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Case C.1, Game 6: In this game, the challenger flips a bit b̄ and uses b̄ instead of πsi .b3 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 3 (i.e. when using the key k̃1) replaced in Game 4). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 4 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 3 (i.e. when using the key k̃1). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since k̃1 is a uniformly random and independent value, this change is sound. Thus,

Adv(break5) ≤ Advaead
AEAD,Baead

+ Adv(break6)

In Case C.1, Game 6, the behavior of πsi is independent of test bit πsi .b3. We do the same for πsi .b4:
Case C.1, Game 7: In this game, the challenger flips a bit b̄′ and uses b̄′ instead of πsi .b4 when

responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 4 (i.e. when using the keys k̃i, k̃r) replaced in Game 5). In this game, in session πsi we construct
an algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 6 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 4 (i.e. when using the keys k̃i, k̃r). Baead instead forwards the queries
to the AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since k̃i, k̃r are uniformly random and independent values, this change is sound. Thus,

Adv(break6) ≤ Advaead
AEAD,Baead

+ Adv(break7)

In Case C.1, Game 7, the behavior of πsi is independent of the test bits πsi .bς , where ς ≥ 3 and
thus A has no advantage in guessing these challenge bits, nor in causing πsi to set win← 1. Thus:

AdvfACCE,CC.1
XN,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

Pn
2
S ·
(

Advprf
KDF,Bprf

+Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

+ 2 · Advaead
AEAD,Baead

)
We now treat Case C.2. Case C.2, Game 4: In this game, we replace the computation of ck, k0
with uniformly random and independent values c̃k, k̃0. We do so by defining an algorithm BPRF-ODH that
interacts with a nn-PRF-ODH challenger in the following way:

Note that by Game 2, we know at the beginning of the experiment the index of session πsi such that
(i, s, ς ′, b′) is output by the adversary. Similarly, by Game 3, we know the index (j, t) of the honest partner
session πtj . Thus, BPRF-ODH initializes a nn-PRF-ODH challenger, embeds the DH challenge keyshare gu
into the ephemeral public-key of session πtj , embeds the DH challenge keyshare gv into the ephemeral
public-key of session πsi . Since we know that the ephemeral key gb received by πsi was output by the
honest partner πtj , we only need to use the private key u in a single case:

– ck, k1 ← KDF(ck, guA, 2)

Since the private key A is an honestly generated long-term private key, BPRF-ODH can then use its
own internal knowledge of A to complete the computation. For the honest partner πtj , by Case B
the ephemeral key ga received by πtj was output by the honest partner πsi , and BPRF-ODH needs only
replace the computation of ck, k0 with uniformly random and independent values c̃k, k̃0 output by the
nn-PRF-ODH challenger. Thus:

Adv(break3) ≤ Advnn-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break4)

Case C.2, Game 5: In this game we replace the function KDF(c̃k, gaB , 2) used to compute ck, k1 :=
KDF(c̃k, gaB , 2). Since, by Game 4, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ck, k1 with uniformly random values c̃k, k̃1. Distin-
guishing this change implies an algorithm breaking the prf security of the key derivation function KDF,
and thus:

Adv(break4) ≤ Advprf
KDF,Bprf

+ Adv(break5)
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Case C.2, Game 6: In this game we replace the function KDF(c̃k, ε, 2) used to compute ki, kr :=
KDF(c̃k, ε, 2). Since, by Game 5, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ki, kr with uniformly random values k̃i, k̃r. Distinguish-
ing this change implies an algorithm breaking the prf security of the key derivation function KDF, and
thus:

Adv(break5) ≤ Advprf
KDF,Bprf

+ Adv(break6)

Case C.2, Game 7: In this game, the challenger flips a bit b̄ and uses b̄ instead of πsi .b2 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 2 (i.e. when using the key k̃0) replaced in Game 4). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 6 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 2 (i.e. when using the key k̃0). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃0 is a uniformly random and independent value, and the bit b̄ has the same distribution
as πsi .b2, this change is sound. Thus,

Adv(break6) ≤ Advaead
AEAD,Baead

+ Adv(break7)

In Case C.2, Game 7, the behavior of πsi is independent of the test bit πsi .bς , where ς = 2 and thus
A has no advantage in guessing this challenge bit.

Case C.2, Game 8: In this game, the challenger flips a bit b̄′ and uses b̄′ instead of πsi .b3 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 3 (i.e. when using the key k̃1) replaced in Game 5). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 7 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 3 (i.e. when using the key k̃1). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃1 is a uniformly random and independent value, and the bit b̄′ has the same distribution
as πsi .b3, this change is sound. Thus,

Adv(break7) ≤ Advaead
AEAD,Baead

+ Adv(break8)

In Case C.2, Game 8, the behavior of πsi is independent of the test bit πsi .bς , where ς = 3 and thus
A has no advantage in guessing this challenge bit.

Case C.2, Game 9: In this game, the challenger flips a bit b̄∗ and uses b̄∗ instead of πsi .b4 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 4 (i.e. when using the keys k̃i, k̃r) replaced in Game 6). In this game, in session πsi we construct
an algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 8 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 4 (i.e. when using the keys k̃i, k̃r). Baead instead forwards the queries
to the AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the keys k̃i, k̃r are uniformly random and independent values, and the bit b̄∗ has the same distri-
bution as πsi .b4, this change is sound. Thus,

Adv(break8) ≤ Advaead
AEAD,Baead

+ Adv(break9)

In Case C.2, Game 9, the behavior of πsi is independent of the test bit πsi .bς , where ς ≥ 2 and thus
A has no advantage in guessing any challenge bits, nor in causing πsi to set win← 1. Thus:

AdvfACCE,CC.2
XN,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

Pn
2
S ·
(

2 · Advprf
KDF,Bprf

+Advnn-PRF-ODH
KDF,G,p,BPRF-ODH

+ 3 · Advaead
AEAD,Baead

)
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E.5 NX Pattern

Theorem 7. The Noise protocol NX is flexible-ACCE-secure protocol with authentication levels au =
(∞, 2), forward-secrecy fs = 2, KCI resistance kc = (∞, 2), one-way-randomness-security rl = (2,∞),
eCK security eck = ∞ replay resistance rp = (2, 0). That is, for an adversary A against the flexible
ACCE security game (defined in Section 4) one can efficiently define adversaries Bcoll against the collision
resistance of H, BPRF-ODH against the sym-ms-PRF-ODH and nn-PRF-ODH assumptions with respect to
group G and KDF, Baead against the AEAD security of AEAD, and Bprf against the PRF security of KDF
with:

AdvfACCE
NX,nP ,nS ,A ≤ 2 · Advcoll

H,Bcoll
+ n2

PnS ·
(

Advaead
AEAD,Baead

+Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

)
+n2

Pn
2
S ·
(

max
(

Advprf
KDF,Bprf

+Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

+ 2 · Advaead
AEAD,Baead

)
,(

2 · Advprf
KDF,Bprf

+Advnn-PRF-ODH
KDF,G,p,BPRF-ODH

+ 3 · Advaead
AEAD,Baead

))

Initiator Responder

ck, h← H(NX_label)
h← H(h‖ad), n← 0

a←$ Zp
h← H(h‖ga)

ga

b←$ Zp
h← H(h‖gb)

ck, k0 ← KDF(ck, gab, 2)
c0 ← Enc(k0, n, h, g

B)
h← H(h‖c0)

ck, k1 ← KDF(ck0, g
aB , 2), n← 0

n← 0
c1 ← Enc(k1, n, h,m0)

gb, c0, c1

if Dec(k0, n, h, c0),Dec(k1, n, h, c1) = ⊥
abort

h← H(h‖c1)
ki, kr ← KDF(ck1, ε, 2), n← 0

Payload Data

Fig. 12: Noise Pattern NX :→ e,← e, ee, s, es.

Proof.
We split the analysis into the following three cases:

– Case A: A outputs (i, s, ς ′, b′) (where πsi .ρ = i) and A causes πsi to set win← 1 when πsi processes
the second ciphertext gb, c0, c1 (i.e when πsi outputs ς = 2 during a decryption call).

– Case B: A outputs (i, s, ς ′, b′) (where πsi .ρ = r) and A causes πsi to set win← 1 when πsi processes
the first ciphertext ga (i.e when πsi outputs ς = 2 during a decryption call).
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– Case C: A outputs (i, s, ς ′, b′) and A does not cause πsi to set win← 1 when πsi outputs ς = 2 during
a decryption call (if πsi .ρ = i) or when πsi outputs ς = 1 during a decryption call (if πsi .ρ = r).

We begin by treating Case A. In order for πsi to set win ← 1 in Case A, πsi .fr2 = 1 and thus
OCorrupt(πsi .pid) cannot yet have been issued by A as kcr = 2 = aur = 2, and πsi will output ς = 2 when
decrypting gb, c0, c1. Similarly, A also cannot have issued a ORevealRandomness(i, s) query as rlr =∞
and eck =∞.
Case A, Game 0: This is the standard fACCE experiment.

AdvfACCE,CA
NX,nP ,nS ,A = Adv(break0).

Case A, Game 1: In this game we define an abort event abortcoll that triggers if a hash collision
occurs. We do so by defining an algorithm Bcoll that computes all hash values honestly, and aborts if
there exists two evaluations (in,H(in)), (în,H(în)) such that in 6= în but H(in) = H(în). Bcoll interacts
with a hash-collision challenger, outputting the collision if found. Thus:

Adv(break0) ≤ Advcoll
H,Bcoll

+ Adv(break1)

Case A, Game 2: In this game, we guess the index (i, s) of the session πsi , and abort if A terminates
and outputs (i∗, s∗, ς ′, b′) such that (i∗, s∗) 6= (i, s). Thus:

Adv(break1) = nPnS
(
Adv(break2)

)
.

Case A, Game 3: In this game, we guess the party j of the intended partner of the test session πsi ,
and abort if πsi .pid 6= j. Thus:

Adv(break2) = nP
(
Adv(break3)

)
.

Case A, Game 4: In this game, we define an abort event abortwin if the session πsi sets the status
win← 1 when πsi processes the ciphertext gb, c0, c1 (i.e when πsi outputs ς = 2). Note that the behavior of
a test session πsi with πsi .ρ = i and πsi .b2 = 1 does not differ from a session with πsi .ρ = i and πsi .b2 = 0,
as the session only uses the challenge bit when it encrypts data, and πsi only decrypts data in stage ς = 2
(i.e. after sending the ciphertext ga, before it enters stage ς = 2 when successfully decrypting gb, c0, c1). It
follows that the only difference is the advantage A causes between Game 3 and Game 4 is the advantage
A has in causing win = 1, thus Adv(break4) = 0. Note that we do not need to bound the probability
that A guesses πsi .b2, as we are showing that an adversary that has caused πsi to output win ← 1 when
processing the ciphertext gb, c0, c1 has negligible chance at reaching the point where the behavior of the
test session πsi will differ depending on the test bit b2. In what follows, we bound Adv(abortwin). Thus:

Adv(break3) ≤ Adv(abortwin).

Case A, Game 5: In this game, we replace the computation of ck, k1 with uniformly random and
independent values c̃k, k̃1. We do so by defining an algorithm BPRF-ODH that interacts with a sym-ms-
PRF-ODH challenger in the following way:

Note that by Game 2, we know at the beginning of the experiment the index of session πsi such that
(i, s, ς ′, b′) is output by the adversary. Similarly, by Game 3, we know at the beginning of the experiment
the index of the intended partner πsi .pid of the session πsi . Thus, BPRF-ODH initializes a sym-ms-PRF-ODH
challenger, embeds the DH challenge keyshare gu into the long-term public-key of party j, embeds the
DH challenge keyshare gv into the ephemeral public-key of session πsi and give pkj = gu to the adversary
with all other (honestly generated) public keys. Note that by the definition of this case, A is not able
to issue a OCorrupt(j) query. However, BPRF-ODH must account for all sessions t such that party j must
use the private key for computations. In the Noise Protocol NX, the long-term private keys are used to
compute the following:

– In sessions where the party acts as the responder: ck, k1 ← KDF(ck, gxu, 2)

Dealing with BPRF-ODH’s computation of these values will be done in two ways:

– The other Diffie-Hellman private key x is a value that has been generated by another honest session.
BPRF-ODH can then use its own internal knowledge of x to complete the computations.

– The other Diffie-Hellman private key x is a value that is unknown to BPRF-ODH, as it has been
generated instead by the adversary
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In the second case, BPRF-ODH must instead use the ODHu oracle provided by the sym-ms-PRF-ODH
challenger, specifically querying ODHu(ck, X), (where X is the Diffie-Hellman public keyshare such that
the private key is unknown to the challenger) which will output KDF(ck, Xu). Similarly, BPRF-ODH must
account for the fact that the private key of gv (the ephemeral public-key of πsi ) is actually used before the
computation of ck, k1. In particular, it is used earlier in the protocol to compute ck, k0 := KDF(ck, gav),
where ga may have been contributed by A. In this case, in order to compute ck, k0, BPRF-ODH must instead
use the ODHv oracle provided by the sym-ms-PRF-ODH challenger, specifically querying ODHv(ck, ga),
which will output KDF(ck, gav). We note that aur = 1, and while processing gb, c0, c1, πsi will output
ς = 2, and so A cannot issue a OCorrupt(j) query before πsi processes ciphertext gb, c0, c1. In addition,
since in Case A, we abort if abortwin is triggered by πsi while processing gb, c0, c1 (and by Game 2 A
must output (i, s, ς ′, b′)), by Game 4 BPRF-ODH never has to answer a OCorrupt(j) query. Finally, since
rli = 2, BPRF-ODH also never has to answer a ORevealRandomness(i, s) query.Thus we have:

Adv(abortwin) ≤ Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break5)

Case A, Game 6: In this game, πsi will only set win ← 1 if A is able to produce a ciphertext
gb, c1, c2 := gb, c1,AEAD.Enc(k̃1, n, h,m) that decrypts without error. In session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 5 except responding to Dec(i, s, ad, c) queries from A when πsi would output ς = 2 (i.e. when
using the key k̃1). Baead instead queries Dec(n, h, c) to the AEAD challenger’s oracles.

An adversary capable causing win ← 1 can break the AEAD security of the AEAD scheme. Since k̃1
is a uniformly random and independent value, this change is sound. Thus,

Adv(break5) ≤ Advaead
AEAD,Baead

+ Adv(break6)

Note that the additional-data field of c1 contains h = H(H(H(H(NX_label‖ad)‖ga)‖gb)‖c0). By
Game 1 we abort the experiment if A causes a hash-collision to occur, and by Game 6 we abort if no
honest session owned by j has output c1. Thus in Game 6, A has no advantage in triggering the event
abortwin due to πsi processing (gb, c0, c1). Thus:

AdvfACCE,CA
NX,nP ,nS ,A ≤ Advcoll

H,Bcoll
+n2

PnS ·
(

Advaead
AEAD,Baead

+Advsym-mm-PRF-ODH
KDF,G,p,BPRF-ODH

)
In Case C, we know that the ciphertexts ga, c0, c1 received by πsi were output by an honest partner.

We can now treat Case B.
A in Case B cannot cause πsi such that πsi .ρ = r and πsi .fr1 = 1 to set win← 1, as aui =∞. There

must exist some session πtj such that πsi .pid = j and πsi .Td[1] = πtj .Te[1], otherwise πsi .fr1 ← 0 and thus
win is not set to 1.

We know that in the next case, the ciphertext ga was the output of some honest partner πtj . We can
now treat Case C.

Case C, Game 0: This is the standard fACCE experiment.

AdvfACCE,CC
NX,nP ,nS ,A = Adv(break0).

Case C, Game 1: In this game we define an abort event abortcoll if a hash collision occurs. We
do so by computing all hash values honestly and aborting if there exists two evaluations (in,H(in)),
(în,H(în)) such that in 6= în but H(in) = H(în). The simulator Bcoll interacts with a hash-collision
challenger, outputting the collision if found. Thus:

Adv(break0) ≤ Advcoll
H,Bcoll

+ Adv(break3)

Case C, Game 2: In this game, we guess the index (i, s) of the session πsi , and abort if A terminates
and outputs (i∗, s∗, ς ′, b′) such that (i∗, s∗) 6= (i, s). Thus:

Adv(break1) = nPnS ·
(
Adv(break2)

)
.
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Case C, Game 3: In this game, we guess the index (t, j) of the honest partner πtj and abort if πtj
is not the honest partner of πsi . Note that by Case A and Case B, there must exist such an honest
partner. Thus:

Adv(break2) = nPnS ·
(
Adv(break3)

)
.

At this point, we need to split the analysis into the two following sub-cases. Note that in what
follows, we assume without loss of generality that πsi is the initiator session. The analysis where πsi is
the responder session follows identically, except for a change in notation.

– Case C.1: A has not issued both a OCorrupt(j) query and an ORevealRandomness(i, s) query.
– Case C.2: A has not issued both a ORevealRandomness(i, s) and a ORevealRandomness(j, t) query.

Note that ifA issues a OCorrupt(j) query, then πsi .fr1 ← 0, and thusA has no advantage in outputting
(i, s, 1, b′). If A did not issue a OCorrupt(j) query, then the security analysis reverts to Case C.1.

Case C.1, Game 4: In this game, we replace the computation of ck, k1 with uniformly random and
independent values c̃k, k̃1 in the test session πsi and its honest partner by defining a simulator BPRF-ODH
that interacts with a sym-ms-PRF-ODH challenger as described in Case A, Game 5. Thus:

Adv(break3) ≤ Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break4)

Case C.1, Game 5: In this game we replace the function KDF(c̃k, ε, 2) used to compute ki, kr :=
KDF(c̃k, ε, 2). Since, by Game 4, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ki, kr with uniformly random values k̃i, k̃r. Distinguish-
ing this change implies an algorithm breaking the PRF security of the key derivation function KDF, and
thus:

Adv(break4) ≤ Advprf
KDF,Bprf

+ Adv(break5)

Case C.1, Game 6: In this game, the challenger flips a bit b̄ and uses b̄ instead of πsi .b2 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 2 (i.e. when using the key k̃1) replaced in Game 4). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 5 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 2 (i.e. when using the key k̃1). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃1 is a uniformly random and independent value, and the bit b̄ has the same distribution
as πsi .b2, this change is sound. Thus,

Adv(break5) ≤ Advaead
AEAD,Baead

+ Adv(break6)

In Case C.1, Game 6, the behavior of πsi is independent of the test bit πsi .bς , where ς = 2 and thus A
has no advantage in guessing these challenge bits.

Case C.1, Game 7: In this game, the challenger flips a bit b̄′ and uses b̄′ instead of πsi .b3 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 3 (i.e. when using the keys k̃i, k̃r) replaced in Game 5). In this game, in session πsi we construct
an algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 6 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 3 (i.e. when using the keys k̃i, k̃r). Baead instead forwards the queries
to the AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the keys k̃i, k̃r are uniformly random and independent values, and the bit b̄′ has the same distri-
bution as πsi .b3, this change is sound. Thus,

Adv(break6) ≤ Advaead
AEAD,Baead

+ Adv(break7)

In Case C.1, Game 7, the behavior of πsi is independent of the test bit πsi .bς , where ς ≥ 2 and thus
A has no advantage in guessing any challenge bits, nor in causing πsi to set win← 1. Thus:
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AdvfACCE,CC.1
NX,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

Pn
2
S ·
(

Advprf
KDF,Bprf

+Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

+ 2 · Advaead
AEAD,Baead

)
We now treat Case C.2.

Case C.2, Game 4: In this game, we replace the computation of ck, k0 with uniformly random and
independent values c̃k, k̃0. We do so by defining an algorithm BPRF-ODH that interacts with a nn-PRF-ODH
challenger in the following way:

Note that by Game 2, we know at the beginning of the experiment the index of session πsi such that
(i, s, ς ′, b′) is output by the adversary. Similarly, by Game 3, we know the index (j, t) of the honest partner
session πtj . Thus, BPRF-ODH initializes a nn-PRF-ODH challenger, embeds the DH challenge keyshare gu
into the ephemeral public-key of session πsi , embeds the DH challenge keyshare gv into the ephemeral
public-key of session πtj . Since we know that the ephemeral key gb received by πtj was output by the
honest partner πsi , we only need to use the private key u in a single case:

– ck, k1 ← KDF(ck, guB , 2)

Since the private key B is an honestly generated long-term private key, BPRF-ODH can then use its
own internal knowledge of B to complete the computation. For the honest partner πtj , by Case B
the ephemeral key ga received by πtj was output by the honest partner πsi , and BPRF-ODH needs only
replace the computation of ck, k0 with uniformly random and independent values c̃k, k̃0 output by the
nn-PRF-ODH challenger. Thus:

Adv(break3) ≤ Advnn-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break4)

Case C.2, Game 5: In this game we replace the function KDF(c̃k, gaB , 2) used to compute ck, k1 :=
KDF(c̃k, gaB , 2). Since, by Game 4, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ck, k1 with uniformly random values c̃k, k̃1. Distin-
guishing this change implies an algorithm breaking the prf security of the key derivation function KDF,
and thus:

Adv(break4) ≤ Advprf
KDF,Bprf

+ Adv(break5)

Case C.2, Game 6: In this game we replace the function KDF(c̃k, ε, 2) used to compute ki, kr :=
KDF(c̃k, ε, 2). Since, by Game 5, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ki, kr with uniformly random values k̃i, k̃r. Distinguish-
ing this change implies an algorithm breaking the prf security of the key derivation function KDF, and
thus:

Adv(break5) ≤ Advprf
KDF,Bprf

+ Adv(break6)

Case C.2, Game 7: In this game, the challenger flips a bit b̄ and uses b̄ instead of πsi .b1 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 1 (i.e. when using the key k̃0) replaced in Game 4). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 6 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 1 (i.e. when using the key k̃0). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃0 is a uniformly random and independent value, and the bit b̄ has the same distribution
as πsi .b1, this change is sound. Thus,

Adv(break6) ≤ Advaead
AEAD,Baead

+ Adv(break7)

In Case C.2, Game 7, the behavior of πsi is independent of the test bit πsi .bς , where ς = 1 and thus A
has no advantage in guessing these challenge bits.

Case C.2, Game 8: In this game, the challenger flips a bit b̄′ and uses b̄′ instead of πsi .b2 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
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ς = 2 (i.e. when using the key k̃1) replaced in Game 5). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 7 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 2 (i.e. when using the key k̃1). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃1 is a uniformly random and independent value, and the bit b̄′ has the same distribution
as πsi .b2, this change is sound. Thus,

Adv(break7) ≤ Advaead
AEAD,Baead

+ Adv(break8)

In Case C.2, Game 8, the behavior of πsi is independent of the test bit πsi .bς , where ς = 2 and thus A
has no advantage in guessing these challenge bits.

Case C.2, Game 9: In this game, the challenger flips a bit b̄∗ and uses b̄∗ instead of πsi .b3 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 3 (i.e. when using the keys k̃i, k̃r) replaced in Game 5). In this game, in session πsi we construct
an algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 8 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 3 (i.e. when using the keys k̃i, k̃r). Baead instead forwards the queries
to the AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the keys k̃i, k̃r are uniformly random and independent values, and the bit b̄∗ has the same distri-
bution as πsi .b3, this change is sound. Thus,

Adv(break8) ≤ Advaead
AEAD,Baead

+ Adv(break9)

In Case C.2, Game 9, the behavior of πsi is independent of the test bit πsi .bς , where ς ≥ 1 and thus
A has no advantage in guessing any challenge bits, nor in causing πsi to set win← 1. Thus:

AdvfACCE,CC.2
NX,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

Pn
2
S ·
(

2 · Advprf
KDF,Bprf

+Advnn-PRF-ODH
KDF,G,p,BPRF-ODH

+ 3 · Advaead
AEAD,Baead

)
E.6 X pattern

Theorem 8. The Noise protocol X is flexible-ACCE-secure protocol with authentication levels au =
(1,∞), forward-secrecy fs = ∞, KCI resistance kc = (∞,∞), randomness-security rl = (1,∞), eCK
security eck = 1, replay resistance rp = (∞,∞). That is, for an adversary A against the flexible ACCE
security game (defined in section 4) one can efficiently define adversaries Bcoll against the collision
resistance of H, BPRF-ODH against the sym-ms-PRF-ODH and nn-PRF-ODH assumptions with respect to
group G and KDF, Baead against the AEAD security of AEAD, and Bprf against the PRF security of KDF
with:

AdvfACCE
X,nP ,nS ,A ≤ 2 · Advcoll

H,Bcoll
+ n2

PnS ·
(

Advaead
AEAD,Baead

+ Advsym-mm-PRF-ODH
KDF,G,p,BPRF-ODH

)
+n2

Pn
2
S ·
(

max
(

Advprf
KDF,Bprf + Advsym-mm-PRF-ODH

KDF,G,p,BPRF-ODH
+ 2 · Advaead

AEAD,Baead

)
,(

2 · Advprf
KDF,Bprf + Advms-PRF-ODH

G,p,KDF,BPRF-ODH
+ 3 · Advaead

AEAD,Baead

))

Proof.
We split the analysis into the following two cases:

– Case A: A outputs (i, s, ς ′, b′) such that πsi .ρ = r and A causes πsi to set win← 1 when πsi processes
the first message flow ga, c0, c1 (i.e., when πsi outputs ς = 1).

– Case B: A doesn’t cause πsi to set win← 1 when πsi processes the first message flow ga, c0, c1.
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Initiator Responder

ck, h← H(X_label)
h← H(h‖ad), n← 0

h← H(h‖gB)
a←$ Zp

h← H(h‖ga)
ck, k0 ← KDF(ck, gaB , 2)

c0 ← Enc(k0, n, h, g
A)

h← H(h‖c0)
ck, k1 ← KDF(ck, gAB , 2), n← 0

c1 ← Enc(k1, n, h,m1)
ga, c0, c1

if Dec(k0, n, h, c0),Dec(k1, n, h, c1) = ⊥
abort

h← H(h‖c1)
ki, kr ← KDF(ck, ε, 2), n← 0

Payload Data

Fig. 13: Noise Pattern X :← s, . . . ,→ e, es, s, ss.

We begin by treating Case A. In order for πsi to set win← 1 in Case A, πsi .fr1 = 1 and thus OCorrupt(i)
cannot have been issued by A as kcr =∞ > aui = 1, which πsi outputs after processing the first message
flow, and in addition, OCorrupt(πsi .pid) cannot have yet been issued by A as aui = 1.
Case A, Game 0: This is the standard fACCE experiment.

AdvfACCE,CA
X,nP ,nS ,A = Adv(break0).

Case A, Game 1: In this game we define an abort event abortcoll that triggers if a hash collision
occurs. We do so by defining an algorithm Bcoll that computes all hash values honestly, and aborts if
there exists two evaluations (in,H(in)), (în,H(în)) such that in 6= în but H(in) = H(în). Bcoll interacts
with a hash-collision challenger, outputting the collision if found. Thus:

Adv(break0) ≤ Advcoll
H,Bcoll

+ Adv(break1)

Case A, Game 2: In this game, we guess the index (i, s) of the session πsi , and abort if A terminates
and outputs (i∗, s∗, ς ′, b′) such that (i∗, s∗) 6= (i, s). Thus:

Adv(break1) = nPnS
(
Adv(break2)

)
.

Case A, Game 3: In this game, we guess the party j of the intended partner of the test session πsi ,
and abort if πsi .pid 6= j. Thus:

Adv(break2) = nP
(
Adv(break3)

)
.

Case A, Game 4: In this game, we define an abort event abortwin if the session πsi sets the status
win← 1 when πsi processes the ciphertext ga, c0, c1 (i.e when πsi outputs ς = 1). Note that the behavior
of a test session πsi with πsi .ρ = r and πsi .b1 = 1 does not differ from a session with πsi .ρ = r and
πsi .b1 = 0, as the session only uses the challenge bit when it encrypts data, and πsi only decrypts data in
stage ς = 1 (i.e. outputs ς = 1 when successfully decrypting ga, c0, c1). It follows that the only difference
is the advantage A causes between Game 3 and Game 4 is the advantage A has in causing win = 1,
thus Adv(break4) = 0. Note that we do not need to bound the probability that A guesses πsi .b2, as we
are showing that an adversary that has caused πsi to output win ← 1 when processing the ciphertext
ga, c0, c1 has negligible chance at reaching the point where the behavior of the test session πsi will differ
depending on the test bit b2. In what follows, we bound Adv(abortwin). Thus:

Adv(break3) ≤ Adv(abortwin).
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Case A, Game 5: In this game, we replace the computation of ck, k1 with uniformly random and
independent values c̃k, k̃1. We do so by defining an algorithm BPRF-ODH that interacts with a sym-mm-
PRF-ODH challenger in the following way:

Note that by Game 2, we know at the beginning of the experiment the index of session πsi such that
(i, s, ς ′, b′) is output by the adversary. Similarly, by Game 3, we know at the beginning of the experiment
the index j of the intended partner j of the session πsi . Thus, BPRF-ODH initializes a sym-mm-PRF-ODH
challenger, embeds the DH challenge keyshare gu into the long-term public-key of party j, embeds the
DH challenge keyshare gv into the long-term public-key of party i and give pkj = gu, pki = gv to the
adversary with all other (honestly generated) public keys. Note that by the definition of this case, A is
not able to issue either OCorrupt(j) or OCorrupt(i) queries, as fs = ∞, au = (1,∞) and kc = (∞,∞).
However, BPRF-ODH must account for all sessions t (respectively s) such that party j (respectively party
i) must use the private key for computations. In the Noise Protocol X, the long-term private keys are
used to compute the following:

– In sessions where the party acts as the initiator: ck, k1 ← KDF(ck, guB , 2)
– In sessions where the party acts as the responder: ck, k0 ← KDF(ck, gau, 2), ck, k1 ← KDF(ck, gAu, 2)

Dealing with BPRF-ODH’s computation of these values will be done in two ways:

– The other Diffie-Hellman private key (be it a or A) is a value that has been generated by another
honest session. BPRF-ODH can then use its own internal knowledge of a or A to complete the compu-
tations.

– The other Diffie-Hellman private key is a value that is unknown to BPRF-ODH, as it has been generated
instead by the adversary

In the second case, BPRF-ODH must instead use the ODHu (respectively ODHv) oracle provided by the
sym-mm-PRF-ODH challenger, specifically querying ODHu(ck, X), (where X is the Diffie-Hellman public
keyshare such that the private key is unknown to the challenger) which will output KDF(ck, Xu). Thus
we have:

Adv(abortwin) ≤ Advsym-mm-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break5)

Case A, Game 6: In this game, πsi will only set win ← 1 if A is able to produce a ciphertext
ga, c0, c1 := ga, c0,AEAD.Enc(k̃1, n, h,m) that decrypts without error. In this game, we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 5 except responding to Dec(j, t, ad, c) queries directed to πsi when ς = 0 from A (i.e. when using
the key k̃1). Instead, Baead simply forwards these queries to the AEAD challenger.

An adversary capable of causing win ← 1 can break the AEAD security of the AEAD scheme. Note
that the additional-data field of c1 contains
h = H(H(H(H(X_label‖ad)‖gB)‖ga)‖c0). By Game 1 we abort the experiment if A causes a hash-
collision to occur, and by Game 6 we abort if no honest session owned by j has output c1. Thus in
Game 6, A has no advantage in triggering the event abortwin due to πsi processing (ga, c0, c1). Thus:

Adv(break5) ≤ Advaead
AEAD,Baead

AdvfACCE,CA
X,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

PnS ·
(

Advaead
AEAD,Baead

+Advsym-mm-PRF-ODH
KDF,G,p,BPRF-ODH

)
In the next case, we know that the ciphertext ga, c0, c1 received by πsi were output by an honest

partner. We can now treat Case B. Note that by Case A, if πsi .ρ = r we know that there must exist
some honest partner πtj such that πtj .Te[1] = πsi .Td[1]. Note that in Case B for πsi such that πsi .ρ = i
and πsi .fr1 = 1 there must exist some session πtj such that πsi .pid = j and πsi .Te[1] = πtj .Td[1], otherwise
πsi .fr1 ← 0.

Case B, Game 0: This is the standard fACCE experiment.

AdvfACCE,CB
X,nP ,nS ,A = Adv(break0).
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Case B, Game 1: In this game we define an abort event abortcoll that triggers if a hash collision
occurs. We do so by defining an algorithm Bcoll that computes all hash values honestly, and aborts if
there exists two evaluations (in,H(in)), (în,H(în)) such that in 6= în but H(in) = H(în). Bcoll interacts
with a hash-collision challenger, outputting the collision if found. Thus:

Adv(break0) ≤ Advcoll
H,Bcoll

+ Adv(break1)

Case B, Game 2: In this game, we guess the index (i, s) of the session πsi , and abort if A terminates
and outputs (i∗, s∗, ς ′, b′) such that (i∗, s∗) 6= (i, s). Thus:

Adv(break1) = nPnS
(
Adv(break1)

)
.

Case B, Game 3: In this game, we guess the index (t, j) of the honest partner πtj and abort if πtj
is not the honest partner of πsi . Note that there must exist such an honest partner. Thus:

Adv(break2) = nPnS ·
(
Adv(break3)

)
.

At this point, we need to split the analysis into the two following sub-cases. In what follows, we
assume without loss of generality that πsi is the initiator session. The analysis where πsi is the responder
session follows identically, except for a change in notation.

– Case B.1: A has not issued both a OCorrupt(i) and a OCorrupt(j) query. Note that if A issues a
ORevealRandomness(j, t) query at the beginning of the game, then πsi .fr1 ← 0, and thus A has no
advantage in outputting (i, s, 1, b′). If A did not issue a ORevealRandomness(j, t) query, then the
security analysis reverts to Case B.2.

– Case B.2: A has not issued both a OCorrupt(i) query and an ORevealRandomness(j, t) query.

Case B.1, Game 4: In this game, we replace the computation of ck, k1 with uniformly random
and independent values c̃k, k̃1. We do so defining a simulator BPRF-ODH that interacts with a sym-mm-
PRF-ODH challenger in the same way as Case A, Game 5. Thus we have:

Adv(break3) ≤ Advsym-mm-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break4)

Case B.1, Game 5: In this game we replace the function KDF(c̃k, ε, 2) used to compute ki, kr :=
KDF(c̃k, ikm, 2). Since, by Game 5, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ki, kr with uniformly random values k̃i, k̃r. Distinguish-
ing this change implies an algorithm breaking the PRF security of the key derivation function KDF, and
thus:

Adv(break4) ≤ Advprf
KDF,Bprf

+ Adv(break5)

Case B.1, Game 6: In this game, the challenger flips a bit b̄ and uses b̄ instead of πsi .b1 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 1 (i.e. when using the key k̃1) replaced in Game 4). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 5 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 1 (i.e. when using the key k̃1). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃1 is a uniformly random and independent value, and the bit b̄ has the same distribution
as πsi .b1, this change is sound. Thus,

Adv(break5) ≤ Advaead
AEAD,Baead

+ Adv(break6)

In Case B.1, Game 6, the behavior of πsi is independent of the test bit πsi .bς , where ς = 1 and thus
A has no advantage in guessing these challenge bits.

Case B.1, Game 7: In this game, the challenger flips a bit b̄′ and uses b̄′ instead of πsi .b2 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 2 (i.e. when using the keys k̃i, k̃r) replaced in Game 5). In this game, in session πsi we construct
an algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
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Game 6 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 2 (i.e. when using the keys k̃i, k̃r). Baead instead forwards the queries
to the AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the keys k̃i, k̃r are uniformly random and independent values, and the bit b̄′ has the same distri-
bution as πsi .b2, this change is sound. Thus,

Adv(break6) ≤ Advaead
AEAD,Baead

+ Adv(break7)

In Case B.1, Game 7, the behavior of πsi is independent of the test bit πsi .bς , where ς ≥ 1 and thus
A has no advantage in guessing any challenge bits, nor in causing πsi to set win← 1. Thus:

AdvfACCE,CB.1
X,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

Pn
2
S ·
(

Advprf
KDF,Bprf

+Advsym-mm-PRF-ODH
KDF,G,p,BPRF-ODH

+ 2 · Advaead
AEAD,Baead

)
We can now treat Case B.2.
Case B.2, Game 5: In this game, we replace the computation of ck, k0 with uniformly random and

independent values c̃k, k̃0. We do so by defining a simulator BPRF-ODH that interacts with a ms-PRF-ODH
challenger in the following way:

By the definition of this sub-case (Case B.2), we know that A has not issued a
ORevealRandomness(i, s) query, nor a OCorrupt(j) query. Additionally, by the analysis of Case A, we
know that there exists a session πtj that received ga without modification. Thus, BPRF-ODH initializes a
ms-PRF-ODH challenger, embeds the DH challenge keyshare gu into the long-term public-key of party
j, embeds the DH challenge keyshare gv into the ephemeral public-key of party i and give pkj = gu to
the adversary with all other (honestly generated) public keys. However, we must account for all sessions
t such that party j must use the private key for computations. In the Noise Protocol X, the long-term
private keys are used to compute the following:

– In sessions where the party acts as the initiator: ck, k1 ← KDF(ck, guB , 2)
– In sessions where the party acts as the responder: ck, k0 ← KDF(ck, gau, 2), ck, k1 ← KDF(ck, gAu, 2)

Dealing with BPRF-ODH’s computation of these values will be done in two ways:

– The other Diffie-Hellman private key (be it a, B or u) is a value that has been generated by an-
other honest session. BPRF-ODH can then use its own internal knowledge of v or x to complete the
computations.

– The other Diffie-Hellman private key is a value that is unknown to BPRF-ODH, as it has been generated
instead by the adversary

In the second case, the challenger must instead use the ODHu oracle provided by the ms-PRF-ODH
challenger, specifically querying ODHu(ck, X), (where X is the Diffie-Hellman public keyshare such that
the private key is unknown to the challenger) which will output KDF(ck, Xu). Thus we have:

Adv(break4) ≤ Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break5)

Case B.2, Game 6: In this game we replace the function KDF(c̃k, gAB , 2) used to compute ck, k1 :=
KDF(c̃k, gAB , 2). Since, by Game 5, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ck, k1 with uniformly random values c̃k, k̃1. Distinguish-
ing this change implies an algorithm breaking the PRF security of the key derivation function KDF, and
thus:

Adv(break5) ≤ Advprf
KDF,Bprf

+ Adv(break6)

Case B.2, Game 7: In this game we replace the function KDF(c̃k, ε, 2) used to compute ki, kr :=
KDF(c̃k, ε, 2). Since, by Game 6, c̃k is uniformly random and independent of the protocol flow, this re-
placement is sound. We thus replace the values ki, kr with uniformly random values k̃i, k̃r. Distinguishing
this change implies an algorithm breaking the PRF security of the key derivation function KDF, and
thus:

Adv(break6) ≤ Advprf
KDF,Bprf

+ Adv(break7)
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Case B.2, Game 8: In this game, the challenger flips a bit b̄ and uses b̄ instead of πsi .b1 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 1 (i.e. when using the key k̃0) replaced in Game 5). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 7 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 1 (i.e. when using the key k̃0). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃0 is a uniformly random and independent value, and the bit b̄ has the same distribution
as πsi .b1, this change is sound. Thus,

Adv(break7) ≤ Advaead
AEAD,Baead

+ Adv(break8)

Case B.2, Game 9: In this game, the challenger flips a bit b̄′ and uses b̄′ instead of πsi .b1 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 1 (i.e. when using the key k̃1) replaced in Game 6). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 8 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 1 (i.e. when using the key k̃1). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃1 is a uniformly random and independent value, and the bit b̄′ has the same distribution
as πsi .b1, this change is sound. Thus,

Adv(break8) ≤ Advaead
AEAD,Baead

+ Adv(break9)

Case B.2, Game 10: In this game, the challenger flips a bit b̄∗ and uses b̄∗ instead of πsi .b2 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 2 (i.e. when using the keys k̃i, k̃r) replaced in Game 7). In this game, in session πsi we construct
an algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 9 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 2 (i.e. when using the keys k̃i, k̃r). Baead instead forwards the queries
to the AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the keys k̃i, k̃r are uniformly random and independent values, and the bit b̄∗ has the same distri-
bution as πsi .b2, this change is sound. Thus,

Adv(break9) ≤ Advaead
AEAD,Baead

+ Adv(break10)

In Case B.2, Game 10, the behavior of πsi is independent of the test bit πsi .bς , where ς ≥ 1 and
thus A has no advantage in guessing any challenge bits, nor in causing πsi to set win← 1. Thus:

AdvfACCE,CB.2
X,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

Pn
2
S ·
(

2 · Advprf
KDF,Bprf

+Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ 3 · Advaead
AEAD,Baead

)
E.7 XX pattern

Theorem 9. The Noise protocol XX is flexible-ACCE-secure protocol with authentication levels au =
(3, 2), forward-secrecy fs = 2, KCI resistance kc = (3, 2), randomness-security rl = (2, 3), eCK security
eck = ∞, replay resistance rp = (2, 0). That is, for an adversary A against the flexible ACCE security
game (defined in Section 4) one can efficiently define adversaries Bcoll against the collision resistance of
H, BPRF-ODH against the nn-PRF-ODH and sym-ms-PRF-ODH assumptions with respect to group G and
KDF, Baead against the AEAD security of AEAD, and Bprf against the PRF security of KDF with: More
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precisely:

AdvfACCE
XX,nP ,nS ,A ≤ 3 · Advcoll

H,Bcoll
+ n2

PnS ·
(

Advaead
AEAD,Baead

+ Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

)
+

max
((
n2
PnS

(
Advsym-ms-PRF-ODH

KDF,G,p,BPRF-ODH
+ Advaead

AEAD,Baead

)
,(

n2
Pn

2
S

(
Advnn-PRF-ODH

KDF,G,p,BPRF-ODH
+ Advaead

AEAD,Baead
+ 3 · Advprf

KDF,Bprf

)))
+

n2
Pn

2
S ·
(

max
((

Advprf
KDF,Bprf

+ 2 · Advaead
AEAD,Baead

+ Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

)
,(

2 · Advprf
KDF,Bprf

+ 3 · Advaead
AEAD,Baead

+ Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

)
,(

3 · Advprf
KDF,Bprf

+ 4 · Advaead
AEAD,Baead

+ Advnn-PRF-ODH
KDF,G,p,BPRF-ODH

)))

Initiator Responder

ck, h← H(XX_label)
h← H(h‖ad), n← 0

a←$ Zp
h← H(h‖ga)

ga

b←$ Zp
h← H(h‖gb)

ck, k0 ← KDF(ck, gab, 2)
c0 ← Enc(k0, n, h, g

B)
h← H(h‖c0)

ck, k1 ← KDF(ck, gaB , 2), n← 0
c1 ← Enc(k1, n, h,m0)

gb, c0, c1

if Dec(k0, n, h, c0),Dec(k1, n, h, c1) = ⊥
abort

h← H(h‖c1)
c2 ← Enc(k1, n, h, g

A)
h← H(h‖c2)

ck, k2 ← KDF(ck, gAb, 2), n← 0
c3 ← Enc(k2, n, h,m1)

c2, c3

if Dec(k1, n, h, c2),Dec(k2, n, h, c3) = ⊥
abort

h← H(h‖c3)
ki, kr ← KDF(ck, ε, 2), n← 0

Payload Data

Fig. 14: Noise Pattern XX :→ e,← e, ee, s, es,→ s, se.

Proof.
We split the analysis into the following three cases:

– Case A: A outputs (i, s, ς ′, b′) (where πsi .ρ = i) and A causes πsi to set win← 1 when πsi processes
the first ciphertext gb, c0, c1 (i.e., when πsi outputs ς = 1).

– Case B: A outputs (i, s, ς ′, b′) (where πsi .ρ = r) and A causes πsi to set win← 1 when πsi processes
the second ciphertext c2, c3 (i.e., when πsi outputs ς = 2).

– Case B: A outputs (i, s, ς ′, b′) and A does not cause πsi to set win ← 1 when πsi processes the
ciphertext gb, c0, c1 (if πsi .ρ = i) or when πsi processes the ciphertext c2, c3 (if πsi .ρ = r).
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We begin by treating Case A. In order for πsi to set win← 1 in Case A, πsi .fr1 = 1 and thus
OCorrupt(πsi .pid) cannot have been issued by A as aur = 2 and πsi will output πsi .ς = 1 after it processes
the ciphertext gb, c0, c1. Also, A cannot have issued a ORevealRandomness(i, s) query as rli = 2 and
eck =∞.

Case A, Game 0: This is the standard fACCE experiment.

AdvfACCE,CA
XX,nP ,nS ,A = Adv(break0).

Case A, Game 1: In this game we define an abort event abortcoll if a hash collision occurs. Thus:

Adv(break0) ≤ Advcoll
H,Bcoll

+ Adv(break1)

Case A, Game 2: In this game, we guess the index (i, s) of the session πsi , and abort if A terminates
and outputs (i∗, s∗, ς ′, b′) such that (i∗, s∗) 6= (i, s). Thus:

Adv(break1) = nPnS ·
(
Adv(break2)

)
.

Case A, Game 3: In this game, we guess the index (j) of the intended partner πsi .pid of the test
session πsi , and abort if πsi .pid 6= j. Thus:

Adv(break2) = nP ·
(
Adv(break3)

)
.

Case A, Game 4: In this game, we define an abort event abortwin if the session πsi sets the status
win ← 1 when πsi processes the ciphertext gb, c0, c1. In what follows, we bound the advantage of A in
triggering the event abortwin.

Adv(break3) ≤ Adv(abortwin) + Adv(break4).

Case A, Game 5: By the definition of this case, and the Noise Protocol XX we know that rli = 2
and kci = 3 > aur = 2 and πsi will only output ς = 1 when processing the ciphertext gb, c0, c1. In this
game, we replace the computation of ck, k1 with uniformly random and independent values c̃k, k̃1. We do
so by defining a simulator BPRF-ODH that interacts with a sym-ms-PRF-ODH challenger in the following
way:

By the definition of this case (Case A), we know that A has not issued a ORevealRandomness(i, s)
query, nor a OCorrupt(j) query. Thus, BPRF-ODH initializes a sym-ms-PRF-ODH challenger, embeds the
DH challenge keyshare gu into the long-term public-key of party j, embeds the DH challenge keyshare gv
into the ephemeral public-key of session πsi and give pkj = gu to the adversary with all other (honestly
generated) public keys. However, we must account for all sessions t such that party j must use the
private key for computations. In the Noise Protocol XX, the long-term private keys are used to compute
the following:

– In sessions where the party acts as the initiator: ck, k2 ← KDF(ck, gub, 2)
– In sessions where the party acts as the responder: ck, k1 ← KDF(ck, gau, 2)

Dealing with BPRF-ODH’s computation of these values will be done in two ways:

– The other Diffie-Hellman private key (be it a, or b) is a value that has been generated by another
honest session. BPRF-ODH can then use its own internal knowledge of a or b to complete the compu-
tations.

– The other Diffie-Hellman private key is a value that is unknown to BPRF-ODH, as it has been generated
instead by the adversary

In the second case, the challenger must instead use the ODHu oracle provided by the sym-ms-PRF-ODH
challenger, specifically querying ODHu(ck, X), (where X is the Diffie-Hellman public keyshare such that
the private key is unknown to the challenger) which will output KDF(ck, Xu).

In addition, earlier within the same session πsi BPRF-ODH has to simulate the computation of ck, k0 ←
KDF(ck, gbv), where gb may have been injected by A. In order to compute this, BPRF-ODH queries
ODHv(ck, gb, 2) to simulate this computation. Thus:

Adv(break4) ≤ Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break5)
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Case A, Game 6: In this game, πsi will only set win ← 1 if A is able to produce a ciphertext
gb, c0, c1 := gb, c0,AEAD.Enc(k̃1, n, h,m) that decrypts without error. In this game, we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 5 except responding to Dec(j, t, ad, c) queries directed to πsi when πsi would output ς = 1 from A
(i.e. when using the key k̃1). Instead, Baead simply forwards these queries to the AEAD challenger.

An adversary capable of triggering win← 1 can break the aead security of the AEAD scheme. Thus,

Adv(break5) ≤ Advaead
AEAD,Baead

+ Adv(break6)

Note that the additional-data field of c1 contains h = H(H(H(XX_label‖ad)‖ga)‖gb)‖c0). By Game 1
we abort if A causes a hash-collision to occur, and by Game 6 we abort if no honest session owned by
j has output c1. Thus, the probability that A triggers abortwin = 0 due to πsi processing (gb, c0, c1) is 0.
Thus:

AdvfACCE,CA
XX,nP ,nS ,A ≤ Advcoll

H,Bcoll
+n2

PnS ·
(

Advaead
AEAD,Baead

+ Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

)
Now, we treatCase B. In order for πsi to set win← 1 inCase B, πsi .fr3 = 1 and thus OCorrupt(πsi .pid)

cannot have yet been issued by A as aui = 3 and πsi will only output ς = 3 after decrypting the ciphertext
c2, c3. Also, A cannot have issued a ORevealRandomness(i, s) query as rlr = 3 and eck =∞.

Case B, Game 0: This is the standard fACCE experiment.

AdvfACCE,CB
XX,nP ,nS ,A = Adv(break0).

Case B, Game 1: In this game we define an abort event abortcoll if a hash collision occurs. Thus:

Adv(break0) ≤ Advcoll
H,Bcoll

+ Adv(break1)

Case B, Game 2: In this game, we guess the index (i, s) of the session πsi , and abort if A terminates
and outputs (i∗, s∗, ς ′, b′) such that (i∗, s∗) 6= (i, s). Thus:

Adv(break1) = nPnS ·
(
Adv(break2)

)
.

Case B, Game 3: In this game, we guess the index (j) of the intended partner πsi .pid of the test
session πsi , and abort if πsi .pid 6= j. Thus:

Adv(break2) = nP ·
(
Adv(break3)

)
.

Case B, Game 4: In this game, we define an abort event abortwin if the session πsi sets the status
win ← 1 when πsi processes the ciphertext c2, c3. In what follows, we bound the advantage of A in
triggering the event abortwin.

Adv(break3) ≤ Adv(abortwin) + Adv(break4).

Case B, Game 5: In this game, we replace the computation of ck, k2 with uniformly random and
independent values c̃k, k̃2. We do so by defining a simulator BPRF-ODH that interacts with a sym-ms-
PRF-ODH challenger in the following way:

By the definition of this case (Case B), we know that A has not issued a ORevealRandomness(i, s)
query, nor a OCorrupt(j) query. Thus, BPRF-ODH initializes a sym-ms-PRF-ODH challenger, embeds the
DH challenge keyshare gu into the long-term public-key of party j, embeds the DH challenge keyshare gv
into the ephemeral public-key of session πsi and give pkj = gu to the adversary with all other (honestly
generated) public keys. However, we must account for all sessions t such that party j must use the
private key for computations. In the Noise Protocol XX, the long-term private keys are used to compute
the following:

– In sessions where the party acts as the initiator: ck, k2 ← KDF(ck, gub, 2)
– In sessions where the party acts as the responder: ck, k1 ← KDF(ck, gau, 2)

Dealing with BPRF-ODH’s computation of these values will be done in two ways:
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– The other Diffie-Hellman private key (be it a, or b) is a value that has been generated by another
honest session. BPRF-ODH can then use its own internal knowledge of a or b to complete the compu-
tations.

– The other Diffie-Hellman private key is a value that is unknown to BPRF-ODH, as it has been generated
instead by the adversary

In the second case, the challenger must instead use the ODHu oracle provided by the sym-ms-PRF-ODH
challenger, specifically querying ODHu(ck, X), (where X is the Diffie-Hellman public keyshare such that
the private key is unknown to the challenger) which will output KDF(ck, Xu).

In addition, earlier within the same session πsi BPRF-ODH has to simulate the computation of ck, k0 ←
KDF(ck, gbv), where gb may have been injected by A. In order to compute this, BPRF-ODH queries
ODHv(ck, gb, 2) to simulate this computation. Thus:

Adv(break4) ≤ Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break5)

Case B, Game 6: In this game, πsi will only set win← 1 if A is able to produce a ciphertext c2, c3 :=
c2 AEAD.Enc(k̃2, n, h,m) that decrypts without error. We construct an algorithm Baead that interacts
with an AEAD challenger in the following way: Baead acts exactly as in Game 5 except responding to
Dec(n, h, c) queries directed to πsi when πsi would output ς = 3 from A (i.e. when using the key k̃2). Baead
instead queries Dec(n, h, c) to the AEAD challenger’s oracles.

An adversary capable of triggering win← 1 can break the aead security of the AEAD scheme. Thus,

Adv(break5) ≤ Advaead
AEAD,Baead

+ Adv(break6)

Note that the additional-data field of c3 contains h = H(H(H(H(H(H(XX_label)‖ad)‖ga)‖gb)‖c0)‖c1).
By Game 1 we abort if A causes a hash-collision to occur, and by Game 6 we abort if no honest session
owned by j has output c3. Thus, the probability that A triggers abortwin = 1 due to πsi processing (c2, c3)
is 0. Thus:

AdvfACCE,CB
XX,nP ,nS ,A ≤ Advcoll

H,Bcoll
+n2

PnS ·
(

Advaead
AEAD,Baead

+Advms-PRF-ODH
KDF,G,p,BPRF-ODH

)
Finally, we treat Case C.
Case C, Game 0: This is the standard fACCE experiment.

AdvfACCE,CC
XX,nP ,nS ,A = Adv(break0).

Case C, Game 1: In this game we define an abort event abortcoll if a hash collision occurs. We
do so by computing all hash values honestly and aborting if there exists two evaluations (in,H(in)),
(în,H(în)) such that in 6= în but H(in) = H(în). The simulator Bcoll interacts with a hash-collision
challenger, outputting the collision if found. Thus:

Adv(break0) ≤ Advcoll
H,Bcoll

+ Adv(break3)

Case C, Game 2: In this game, we guess the index (i, s) of the session πsi , and abort if A terminates
and outputs (i∗, s∗, ς ′, b′) such that (i∗, s∗) 6= (i, s). Thus:

Adv(break1) = nPnS ·
(
Adv(break2)

)
.

Case C, Game 3: In this game, we guess the index (t, j) of the honest partner πtj and abort if πtj
is not the honest partner of πsi . Note that by Case A and Case B, there must exist such an honest
partner. Thus:

Adv(break2) = nPnS ·
(
Adv(break3)

)
.

At this point, we need to split the analysis into the three following sub-cases. In what follows, we
assume without loss of generality that πsi is the initiator session. The analysis where πsi is the responder
session follows identically, except for a change in notation.
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– Case C.1: A has not issued both a OCorrupt(i) query and an ORevealRandomness(j, t) query. Note
that if A issues a ORevealRandomness(i, s), then πsi .fr1, π

s
i .fr2 ← 0, and thus A has no advantage

in outputting (i, s, 1, b′) or (i, s, 2, b′). If A did not issue a ORevealRandomness(i, s) query, then the
security analysis reverts to Case C.3. Similarly, if A issues a OCorrupt(j), then πsi .fr2 ← 0, and
thus A has no advantage in outputting (i, s, 2, b′). If A did not issue a OCorrupt(j) query, then the
security analysis reverts to Case C.2

– Case C.2: A has not issued both a OCorrupt(j) and a ORevealRandomness(i, s) query. Note that if A
issues a ORevealRandomness(i, s), then πsi .fr1, π

s
i .fr2 ← 0, and thus A has no advantage in outputting

(i, s, 1, b′) or (i, s, 2, b′). If A did not issue a ORevealRandomness(i, s) query, then the security analysis
reverts to Case C.3.

– Case C.3: A has not issued both a ORevealRandomness(i, s) and a ORevealRandomness(j, t) query.

Case C.1, Game 4: In this game, we replace the computation of ck, k2 with uniformly random and
independent values c̃k, k̃2 in the test session πsi and its honest partner by defining a simulator BPRF-ODH
that interacts with a sym-ms-PRF-ODH challenger as described in Case B Game 5. Thus:

Adv(break3) ≤ Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break4)

Case C.1, Game 5: In this game we replace the function KDF(c̃k, ε, 2) used to compute ki, kr :=
KDF(c̃k, ε, 2). Since, by Game 4, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ki, kr with uniformly random values k̃i, k̃r. Distinguish-
ing this change implies an algorithm breaking the PRF security of the key derivation function KDF, and
thus:

Adv(break4) ≤ Advprf
KDF,Bprf

+ Adv(break5)

Case C.1, Game 6: In this game, the challenger flips a bit b̄ and uses b̄ instead of πsi .b3 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 3 (i.e. when using the key k̃2) replaced in Game 4). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 5 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 3 (i.e. when using the key k̃2). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃2 is a uniformly random and independent value, and the bit b̄ has the same distribution
as πsi .b3, this change is sound. Thus,

Adv(break5) ≤ Advaead
AEAD,Baead

+ Adv(break6)

In Case C.1, Game 6, the behavior of πsi is independent of the test bit πsi .bς , where ς = 3 and thus A
has no advantage in guessing this challenge bit nor in causing πsi to set win← 1.

Case C.1, Game 7: In this game, the challenger flips a bit b̄′ and uses b̄′ instead of πsi .b4 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 4 (i.e. when using the keys k̃i, k̃r) replaced in Game 5). In this game, in session πsi we construct
an algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 6 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 4 (i.e. when using the keys k̃i, k̃r). Baead instead forwards the queries
to the AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the keys k̃i, k̃r are uniformly random and independent values, and the bit b̄′ has the same distri-
bution as πsi .b4, this change is sound. Thus,

Adv(break6) ≤ Advaead
AEAD,Baead

+ Adv(break7)

In Case C.1, Game 7, the behavior of πsi is independent of the test bit πsi .bς , where ς ≥ 3 and thus A
has no advantage in guessing these challenge bits (and all other challenge bits are not used during the
experiment as πsi .fr1 = πsi .fr2 = 0) nor in causing πsi to set win← 1. Thus:
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AdvfACCE,CC.1
XX,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

Pn
2
S ·
(

Advprf
KDF,Bprf

+Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

+ 2 · Advaead
AEAD,Baead

)
We now treat Case C.2.

Case C.2, Game 4: By the definition of this sub-case, we know that A has not issued both a
OCorrupt(j) and a ORevealRandomness(i, s) query. In this game, we replace the computation of ck, k1
with uniformly random and independent values c̃k, k̃1 in the test session πsi and its honest partner by
defining a simulator BPRF-ODH that interacts with a sym-ms-PRF-ODH challenger as described in Case
A Game 5. Thus:

Adv(break3) ≤ Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break4)

Case C.2, Game 5: In this game we replace the function KDF(c̃k, gAb, 2) used to compute ck, k2 :=
KDF(c̃k, gAb, 2). Since, by Game 4, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ck, k2 with uniformly random values c̃k, k̃2. Distin-
guishing this change implies an algorithm breaking the prf security of the key derivation function KDF,
and thus:

Adv(break4) ≤ Advprf
KDF,Bprf

+ Adv(break5)

Case C.2, Game 6: In this game we replace the function KDF(c̃k, ε, 2) used to compute ki, kr :=
KDF(c̃k, ε, 2). Since, by Game 5, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ki, kr with uniformly random values k̃i, k̃r. Distinguish-
ing this change implies an algorithm breaking the prf security of the key derivation function KDF, and
thus:

Adv(break5) ≤ Advprf
KDF,Bprf

+ Adv(break6)

Case C.2, Game 7: In this game, the challenger flips a bit b̄ and uses b̄ instead of πsi .b2 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 2 (i.e. when using the key k̃1) replaced in Game 4). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 6 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 2 (i.e. when using the key k̃1). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃1 is a uniformly random and independent value, and the bit b̄ has the same distribution
as πsi .b2, this change is sound. Thus,

Adv(break6) ≤ Advaead
AEAD,Baead

+ Adv(break7)

In Case C.2, Game 7, the behavior of πsi is independent of the test bit πsi .bς , where ς = 2 and thus A
has no advantage in guessing this challenge bit nor in causing πsi to set win← 1.

Case C.2, Game 8: In this game, the challenger flips a bit b̄′ and uses b̄′ instead of πsi .b3 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 3 (i.e. when using the key k̃2) replaced in Game 5). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 7 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 3 (i.e. when using the key k̃2). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃2 is a uniformly random and independent value, and the bit b̄ has the same distribution
as πsi .b3, this change is sound. Thus,

Adv(break7) ≤ Advaead
AEAD,Baead

+ Adv(break8)

In Case C.1, Game 6, the behavior of πsi is independent of the test bit πsi .bς , where ς = 3 and thus A
has no advantage in guessing this challenge bit nor in causing πsi to set win← 1.
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Case C.2, Game 9: In this game, the challenger flips a bit b̄∗ and uses b̄∗ instead of πsi .b4 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 4 (i.e. when using the keys k̃i, k̃r) replaced in Game 6). In this game, in session πsi we construct
an algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 8 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 4 (i.e. when using the keys k̃i, k̃r). Baead instead forwards the queries
to the AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the keys k̃i, k̃r are uniformly random and independent values, and the bit b̄′ has the same distri-
bution as πsi .b4, this change is sound. Thus,

Adv(break8) ≤ Advaead
AEAD,Baead

+ Adv(break9)

In Case C.2, Game 9, the behavior of πsi is independent of the test bit πsi .bς , where ς ≥ 2 and thus
A has no advantage in guessing these challenge bits (and the other challenge bit is not used during the
experiment as πsi .fr1 = 0) nor in causing πsi to set win← 1. Thus:

AdvfACCE,CC.2
XX,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

Pn
2
S ·
(

2 · Advprf
KDF,Bprf

+Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

+ 3 · Advaead
AEAD,Baead

)
Finally, we now treat Case C.3.
Case C.3, Game 4: By the definition of this sub-case, we know that A has not issued both a

ORevealRandomness(i, s) and a ORevealRandomness(j, t) query. In this game, we replace the computation
of ck, k0 with uniformly random and independent values c̃k, k̃0 in the test session πsi and its honest
partner by defining a simulator BPRF-ODH interacting with a nn-PRF-ODH challenger identically to Case
B.2 Game 5. Thus:

Adv(break3) ≤ Advnn-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break4)

Case C.3, Game 5: In this game we replace the function KDF(c̃k, gaB , 2) used to compute ck, k1 :=
KDF(c̃k, gaB , 2). Since, by Game 4, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ck, k1 with uniformly random values c̃k, k̃1. Distin-
guishing this change implies an algorithm breaking the prf security of the key derivation function KDF,
and thus:

Adv(break4) ≤ Advprf
KDF,Bprf

+ Adv(break5)

Case C.3, Game 6: In this game we replace the function KDF(c̃k, gAb, 2) used to compute ck, k2 :=
KDF(c̃k, gAb, 2). Since, by Game 5, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ck, k2 with uniformly random values c̃k, k̃2. Distin-
guishing this change implies an algorithm breaking the prf security of the key derivation function KDF,
and thus:

Adv(break5) ≤ Advprf
KDF,Bprf

+ Adv(break6)

Case C.3, Game 7: In this game we replace the function KDF(c̃k, ε, 2) used to compute ki, kr :=
KDF(c̃k, ε, 2). Since, by Game 6, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ki, kr with uniformly random values k̃i, k̃r. Distinguish-
ing this change implies an algorithm breaking the prf security of the key derivation function KDF, and
thus:

Adv(break6) ≤ Advprf
KDF,Bprf

+ Adv(break7)

Case C.3, Game 8: In this game, the challenger flips a bit b̄ and uses b̄ instead of πsi .b1 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 1 (i.e. when using the key k̃0) replaced in Game 4). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 7 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
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when πsi or πtj would output ς = 1 (i.e. when using the key k̃0). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃0 is a uniformly random and independent value, and the bit b̄ has the same distribution
as πsi .b1, this change is sound. Thus,

Adv(break7) ≤ Advaead
AEAD,Baead

+ Adv(break8)

In Case C.3, Game 8, the behavior of πsi is independent of the test bit πsi .bς , where ς = 1 and thus A
has no advantage in guessing this challenge bit nor in causing πsi to set win← 1.

Case C.3, Game 9: In this game, the challenger flips a bit b̄′ and uses b̄′ instead of πsi .b2 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 2 (i.e. when using the key k̃1) replaced in Game 5). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 8 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 2 (i.e. when using the key k̃1). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃1 is a uniformly random and independent value, and the bit b̄′ has the same distribution
as πsi .b2, this change is sound. Thus,

Adv(break8) ≤ Advaead
AEAD,Baead

+ Adv(break9)

In Case C.3, Game 9, the behavior of πsi is independent of the test bit πsi .bς , where ς = 2 and thus A
has no advantage in guessing this challenge bit nor in causing πsi to set win← 1.

Case C.3, Game 10: In this game, the challenger flips a bit b̄′′ and uses b̄′′ instead of πsi .b3 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 3 (i.e. when using the key k̃2) replaced in Game 6). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 9 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 3 (i.e. when using the key k̃2). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃2 is a uniformly random and independent value, and the bit b̄′′ has the same distribution
as πsi .b3, this change is sound. Thus,

Adv(break9) ≤ Advaead
AEAD,Baead

+ Adv(break10)

In Case C.3, Game 10, the behavior of πsi is independent of the test bit πsi .bς , where ς = 3 and thus
A has no advantage in guessing this challenge bit nor in causing πsi to set win← 1.

Case C.3, Game 11: In this game, the challenger flips a bit b̄∗ and uses b̄∗ instead of πsi .b4 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 4 (i.e. when using the keys k̃i, k̃r) replaced in Game 7). In this game, in session πsi we construct
an algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly
as in Game 10 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj
respectively) when πsi or πtj would output ς = 4 (i.e. when using the keys k̃i, k̃r). Baead instead forwards
the queries to the AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the keys k̃i, k̃r are uniformly random and independent values, and the bit b̄∗ has the same distri-
bution as πsi .b4, this change is sound. Thus,

Adv(break10) ≤ Advaead
AEAD,Baead

+ Adv(break11)

In Case C.2, Game 10, the behavior of πsi is independent of the test bit πsi .bς , where ς ≥ 1 and thus
A has no advantage in guessing these challenge bits nor in causing πsi to set win← 1. Thus:

AdvfACCE,CC.3
XX,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

Pn
2
S ·
(

3 · Advprf
KDF,Bprf

+Advnn-PRF-ODH
KDF,G,p,BPRF-ODH

+ 4 · Advaead
AEAD,Baead

)
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E.8 XK pattern

Theorem 10. The Noise protocol XK is flexible-ACCE-secure protocol with authentication levels au =
(3, 2), forward-secrecy fs = 2, KCI resistance kc = (3, 2), randomness-security rl = (1, 3), eCK security
eck = ∞, and replay resistance rp = (2, 2). That is, for an adversary A against the flexible ACCE
security game (defined in Section 4) one can efficiently define adversaries Bcoll against the collision
resistance of H, BPRF-ODH against the ms-PRF-ODH, nn-PRF-ODH and sym-ms-PRF-ODH assumptions
with respect to group G and KDF, Baead against the AEAD security of AEAD, and Bprf against the PRF
security of KDF with:

AdvfACCE
XK,nP ,nS ,A ≤ 3 · Advcoll

H,Bcoll
+ n2

PnS ·
(

Advprf
KDF,Bprf

+ Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

+2 · Advaead
AEAD,Baead

+ Advms-PRF-ODH
KDF,G,p,BPRF-ODH

)
+n2

Pn
2
S ·
(

max
((

3 · Advprf
KDF,Bprf

+ Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ 4 · Advaead
AEAD,Baead

)
,(

Advprf
KDF,Bprf

+ 2 · Advaead
AEAD,Baead

+ Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

)
,(

2 · Advprf
KDF,Bprf

+ 3 · Advaead
AEAD,Baead

+ Advnn-PRF-ODH
KDF,G,p,BPRF-ODH

)))

Initiator Responder

ck, h← H(XK_label)
h← H(h‖ad), n← 0

h← H(h‖gB)
a←$ Zp

h← H(h‖ga)
ck, k0 ← KDF(ck, gaB , 2), n← 0

c0 ← Enc(k0, n, h,m0)
ga, c0

if Dec(k0, n, h, c0) = ⊥, abort
h← H(h‖c0)

b←$ Zp
h← H(h‖gb)

ck, k1 ← KDF(ck, gab, 2)
c1 ← Enc(k1, n, h,m1)

gb, c1

if Dec(k1, n, h, c1) = ⊥, abort
h← H(h‖c1)

c2 ← Enc(k1, n, h, g
A)

h← H(h‖c2)
ck, k2 ← KDF(ck, gAb, 2)

c3 ← Enc(k2, n, h,m2)
c2, c3

if Dec(k1, n, h, c2),Dec(k2, n, h, c3) = ⊥
abort

h← H(h‖c3)
ki, kr ← KDF(ck2, ε, 2)

Payload Data

Fig. 15: Noise Pattern XK :← s, . . . ,→ e, es← e, ee→ s, se.

Proof.
We split the analysis into the following three cases:
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– Case A: A outputs (i, s, ς ′, b′) (where πsi .ρ = i) and A causes πsi to set win← 1 when πsi processes
the second ciphertext gb, c1 (i.e., when πsi outputs ς = 2).

– Case B: A outputs (i, s, ς ′, b′) (where πsi .ρ = r) and A causes πsi to set win← 1 when πsi processes
the third ciphertext c2, c3 (i.e., when πsi outputs ς = 3).

– Case B: A outputs (i, s, ς ′, b′) and A does not cause πsi to set win ← 1 when πsi processes the
ciphertext gb, c1 (if πsi .ρ = i) or when πsi processes the ciphertext c2, c3 (if πsi .ρ = r).

We begin by treating Case A.

Case A, Game 0: This is the standard fACCE experiment.

AdvfACCE,CA
XK,nP ,nS ,A = Adv(break0).

Case A, Game 1: In this game we define an abort event abortcoll if a hash collision occurs. Thus:

Adv(break0) ≤ Advcoll
H,Bcoll

+ Adv(break1)

Case A, Game 2: In this game, we guess the index (i, s) of the session πsi , and abort if A terminates
and outputs (i∗, s∗, ς ′, b′) such that (i∗, s∗) 6= (i, s). Thus:

Adv(break1) = nPnS ·
(
Adv(break2)

)
.

Case A, Game 3: In this game, we guess the index j of the honest partner πtj and abort if A
initializes πsi such that πsi .pid 6= j. Thus:

Adv(break2) = nP
(
break3).

Case A, Game 4: In this game, we define an abort event abortwin if the session πsi sets the status
win← 1 when πsi processes the second ciphertext gb, c1. In what follows, we bound the advantage of A
in triggering the event abortwin.

Adv(break3) ≤ Adv(abortwin) + Adv(break4).

Case A, Game 5: Note that by Game 2, we know at the beginning of the experiment the index
of session πsi such that (i, s, ς ′, b′) is output by the adversary. Similarly, by Game 3, we know at the
beginning of the experiment the index of the intended partner πsi .pid of the session πsi . Thus, BPRF-ODH
initializes a ms-PRF-ODH challenger, embeds the DH challenge keyshare gu into the long-term public-key
of party j, embeds the DH challenge keyshare gv into the ephemeral public-key of session πsi and give
pkj = gu to the adversary with all other (honestly generated) public keys. Note that by the definition
of this case, A is not able to issue a OCorrupt(j) query, as πsi will output ς = 2 after πsi processes the
ciphertext gb, c1, and aur = 2. However, BPRF-ODH must account for all sessions t such that party j must
use the private key for computations. In the Noise Protocol XK, the long-term private keys are used to
compute the following:

– In sessions where the party acts as the initiator: ck, k2 ← KDF(ck, gxu, 2)
– In sessions where the party acts as the responder: ck, k0 ← KDF(ck, gxu, 2)

Dealing with BPRF-ODH’s computation of these values will be done in two ways:

– The other Diffie-Hellman private key x is a value that has been generated by another honest session.
BPRF-ODH can then use its own internal knowledge of x to complete the computations.

– The other Diffie-Hellman private key x is a value that is unknown to BPRF-ODH, as it has been
generated instead by the adversary

In the second case, BPRF-ODH must instead use the ODHu oracle provided by the ms-PRF-ODH challenger,
specifically querying ODHu(ck, X), (where X is the Diffie-Hellman public keyshare such that the private
key is unknown to the challenger) which will output KDF(ck, Xu). We note that aur = 2, and only after
processing (gb, c1) will πsi output ς = 2, and so A cannot issue a OCorrupt(j) query before πsi processes
ciphertext gb, c1. In addition, since in Case A, πsi sets win and we abort if abortwin is triggered by πsi
while processing gb, c1 by Game 4 BPRF-ODH never has to answer a OCorrupt(j) query. In addition, since
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rlr = 3 and eck = ∞, in Case A BPRF-ODH also never has to answer a ORevealRandomness(i, s) query.
Thus we have:

Adv(break4) ≤ Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break6)

Case A, Game 6: In this game we replace the function KDF(c̃k, gab, 2) used to compute ck, k1 :=
KDF(c̃k, gab, 2). Since, by Game 5, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ck, k1 with uniformly random values c̃k, k̃1. Distin-
guishing this change implies an algorithm breaking the prf security of the key derivation function KDF,
and thus:

Adv(break5) ≤ Advprf
KDF,Bprf

+ Adv(break6)

Case A, Game 7: In this game, πsi will only set win← 1 if A is able to produce a ciphertext gb, c1 :=
gb,AEAD.Enc(k̃1, n, h,m) that decrypts without error. We construct an algorithm Baead that interacts
with an AEAD challenger in the following way: Baead acts exactly as in Game 6 except responding to
Dec(n, h, c) queries directed to πsi when πsi would output ς = 2 from A (i.e. when using the key k̃1). Baead
instead queries Dec(n, h, c) to the AEAD challenger’s oracles.

An adversary capable of causing win ← 1 can break the AEAD security of the AEAD scheme. Since
k̃1 is a uniformly random and independent value, this change is sound. Thus,

Adv(break6) ≤ Advaead
AEAD,Baead

+ Adv(break7)

Note that the additional-data field of c1 contains h = H(H(H(H(H(H(XK_label‖ad)‖gB)‖ga)‖c0)‖gb).
By Game 1 we abort the experiment if A causes a hash-collision to occur, and by Game 4 we abort if
no honest session owned by j has output c1. Thus, the probability that A triggers abortwin = 1 due to
πsi processing (gb, c1) is 0. Thus:

AdvfACCE,CA
XK,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

PnS ·
(

Advaead
AEAD,Baead

+Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Advprf
KDF,Bprf

)
We now treat Case B.

Case B, Game 0: This is the standard fACCE experiment.

AdvfACCE,CB
XK,nP ,nS ,A = Adv(break0).

Case B, Game 1: In this game we define an abort event abortcoll if a hash collision occurs. Thus:

Adv(break0) ≤ Advcoll
H,Bcoll

+ Adv(break1)

Case B, Game 2: In this game, we guess the index (i, s) of the session πsi , and abort if A terminates
and outputs (i∗, s∗, ς ′, b′) such that (i∗, s∗) 6= (i, s). Thus:

Adv(break1) = nPnS ·
(
Adv(break2)

)
.

Case B, Game 3: In this game, we guess the index j of the honest partner πtj and abort if A
initializes πsi such that πsi .pid 6= j. Thus:

Adv(break2) = nP
(
break3).

Case B, Game 4: In this game, we define an abort event abortwin if the session πsi sets the status
win ← 1 when πsi processes the ciphertext c2, c3. In what follows, we bound the advantage of A in
triggering the event abortwin.

Adv(break3) ≤ Adv(abortwin) + Adv(break4).

Case B, Game 5: In this game, we replace the computation of ck, k2 ← KDF(ck, gAb) with uniformly
random and independent values (c̃k, k̃2) in the test session πsi and its honest partner. Note that by
Game 2, we know at the beginning of the experiment the index of session πsi such that (i, s, ς ′, b′) is
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output by the adversary. Similarly, by Game 3, we know at the beginning of the experiment the index
(j, t) of the honest partner πtj of the session πsi . Thus, BPRF-ODH initializes a sym-ms-PRF-ODH challenger,
embeds the DH challenge keyshare gu into the long-term public-key of party i, embeds the DH challenge
keyshare gv into the ephemeral public-key of session πtj and give pki = gu to the adversary with all other
(honestly generated) public keys. Note that by the definition of this case, BPRF-ODH never has to answer a
OCorrupt(i) query nor a ORevealRandomness(j, t) query. However, BPRF-ODH must account for all sessions
s such that party i must use the private key for computations. In the Noise Protocol XK, the long-term
private keys are used to compute the following:

– In sessions where the party acts as the initiator: ck, k2 ← KDF(ck, gxu, 2)
– In sessions where the party acts as the responder: ck, k0 ← KDF(ck, gxu, 2)

Dealing with BPRF-ODH’s computation of these values will be done in two ways:

– The other Diffie-Hellman private key x is a value that has been generated by another honest session.
BPRF-ODH can then use its own internal knowledge of x to complete the computations.

– The other Diffie-Hellman private key x is a value that is unknown to BPRF-ODH, as it has been
generated instead by the adversary

In the second case, BPRF-ODH must instead use the ODHu oracle provided by the sym-ms-PRF-ODH
challenger, specifically querying ODHu(ck, X), (where X is the Diffie-Hellman public keyshare such that
the private key is unknown to the challenger) which will output KDF(ck, Xu). However, BPRF-ODH must
account for the fact that the private key of gv (the ephemeral public-key of πsi ) is actually used before the
computation of ck, k2. In particular, it is used earlier in the protocol to compute ck, k0 := KDF(ck, gav),
where ga may have been contributed by A. In this case, in order to compute ck, k0, BPRF-ODH must instead
use the ODHv oracle provided by the sym-ms-PRF-ODH challenger, specifically querying ODHv(ck, ga),
which will output KDF(ck, gav). Thus we have:

Adv(break4) ≤ Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break6)

Case B, Game 6: In this game, πsi will only set win← 1 if A is able to produce a ciphertext c2, c3 :=
c2,AEAD.Enc(k̃2, n, h,m) that decrypts without error. We construct an algorithm Baead that interacts
with an AEAD challenger in the following way: Baead acts exactly as in Game 5 except responding to
Dec(n, h, c) queries directed to πsi when πsi would output ς = 3 from A (i.e. when using the key k̃2). Baead
instead queries Dec(n, h, c) to the AEAD challenger’s oracles.

An adversary capable of causing win ← 1 can break the AEAD security of the AEAD scheme. Since
k̃1 is a uniformly random and independent value, this change is sound. Thus,

Adv(break5) ≤ Advaead
AEAD,Baead

+ Adv(break6)

Note that the additional-data field of c3 contains h = H(HH(H(H(H(H(H(XK_label‖ad)‖ gB)‖ga)‖c0)‖
gb)‖c1)‖c2). By Game 1 we abort the experiment if A causes a hash-collision to occur, and by Game 4
we abort if no honest session owned by j has output c3. Thus, the probability that A triggers abortwin = 1
due to πsi processing (c2, c3) is 0. Thus:

AdvfACCE,CB
XK,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

PnS ·
(

Advaead
AEAD,Baead

+Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

)
In the next case, we know that the ciphertexts (ga, c0), (gb, c1), (c2, c3) received by πsi and πtj were

output by honest partners. We can now treat Case C.
Case C, Game 0: This is the standard fACCE experiment.

AdvfACCE,CC
XK,nP ,nS ,A = Adv(break0).

Case C, Game 1: In this game we define an abort event abortcoll if a hash collision occurs. We
do so by computing all hash values honestly and aborting if there exists two evaluations (in,H(in)),
(în,H(în)) such that in 6= în but H(in) = H(în). The simulator Bcoll interacts with a hash-collision
challenger, outputting the collision if found. Thus:

Adv(break0) ≤ Advcoll
H,Bcoll

+ Adv(break3)
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Case C, Game 2: In this game, we guess the index (i, s) of the session πsi , and abort if A terminates
and outputs (i∗, s∗, ς ′, b′) such that (i∗, s∗) 6= (i, s). Thus:

Adv(break1) = nPnS ·
(
Adv(break2)

)
.

Case C, Game 3: In this game, we guess the index (t, j) of the honest partner πtj and abort if πtj
is not the honest partner of πsi . Note that by Case A and Case B, there must exist such an honest
partner. Thus:

Adv(break2) = nPnS
(
break3).

At this point, we need to split the analysis into the three following sub-cases. Note that in what
follows, we assume without loss of generality that πsi is the initiator session. The analysis where πsi is
the responder session follows identically, except for a change in notation.

– Case C.1: A has not issued both a OCorrupt(j) query and an ORevealRandomness(i, s) query. This
allows us to prove the security of all stages ciphertexts.

– Case C.2: A has not issued both a OCorrupt(i) query and an ORevealRandomness(j, t) query. Note
that if A issues a ORevealRandomness(i, s) query at the beginning of the game, then πsi .fr1, π

s
i .fr2 ←

0, and thus A has no advantage in outputting (i, s, 1, b′) or (i, s, 2, b′). This allows us to prove
the security of ciphertexts belonging to stages ς ≥ 3. Note that if A additionally did not issue a
ORevealRandomness(j, t) query, then the security analysis reverts to Case C.3, since πsi .fr2 = 1, and
we need to capture the security of the additional stage’s ciphertext.

– Case C.3: A has not issued both a ORevealRandomness(i, s) and a ORevealRandomness(j, t) query.
Note that if A issues a OCorrupt(j), then πsi .fr1 ← 0, and thus A has no advantage in outputting
(i, s, 1, b′). This allows us to prove the security of ciphertexts belonging to stages ς ≥ 3. Note that
if A additionally did not issue a OCorrupt(j) query, then the security analysis reverts to Case C.1
since πsi .fr1 = πsi .fr2 = 1, and we need to capture the security of the additional stages’ ciphertext.

Case C.1, Game 4: In this game, we replace the computation of ck, k0 ← KDF(ck, gaB) with
uniformly random and independent values (c̃k, k̃0) in the test session πsi and its honest partner. This
game proceeds identically to Case A Game 5. Thus we have:

Adv(break3) ≤ Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break4)

Case C.1, Game 5: In this game we replace the function KDF(c̃k, gab, 2) used to compute ck, k1 :=
KDF(c̃k, gab, 2). Since, by Game 4, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ck, k1 with uniformly random values c̃k, k̃1. Distin-
guishing this change implies an algorithm breaking the prf security of the key derivation function KDF,
and thus:

Adv(break4) ≤ Advprf
KDF,Bprf

+ Adv(break5)

Case C.1, Game 6: In this game we replace the function KDF(c̃k, gAb, 2) used to compute ck, k2 :=
KDF(c̃k, gAb, 2). Since, by Game 5, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ck, k2 with uniformly random values c̃k, k̃2. Distin-
guishing this change implies an algorithm breaking the prf security of the key derivation function KDF,
and thus:

Adv(break5) ≤ Advprf
KDF,Bprf

+ Adv(break6)

Case C.1, Game 7: In this game we replace the function KDF(c̃k, ε, 2) used to compute ki, kr :=
KDF(c̃k, ε, 2). Since, by Game 6, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ki, kr with uniformly random values k̃i, k̃r. Distinguish-
ing this change implies an algorithm breaking the prf security of the key derivation function KDF, and
thus:

Adv(break6) ≤ Advprf
KDF,Bprf

+ Adv(break7)

Case C.1, Game 8: In this game, the challenger flips a bit b̄ and uses b̄ instead of πsi .b1 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 1 (i.e. when using the key k̃0) replaced in Game 4). In this game, in session πsi we construct an
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algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 7 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 1 (i.e. when using the key k̃0). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃0 is a uniformly random and independent value, and the bit b̄ has the same distribution
as πsi .b1, this change is sound. Thus,

Adv(break7) ≤ Advaead
AEAD,Baead

+ Adv(break8)

In Case C.1, Game 8, the behavior of πsi is independent of the test bit πsi .bς , where ς = 1 and thus A
has no advantage in guessing this challenge bit nor in causing πsi to set win← 1.

Case C.1, Game 9: In this game, the challenger flips a bit b̄′ and uses b̄′ instead of πsi .b2 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 2 (i.e. when using the key k̃1) replaced in Game 5). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 8 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 2 (i.e. when using the key k̃1). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃1 is a uniformly random and independent value, and the bit b̄′ has the same distribution
as πsi .b2, this change is sound. Thus,

Adv(break8) ≤ Advaead
AEAD,Baead

+ Adv(break9)

In Case C.1, Game 9, the behavior of πsi is independent of the test bit πsi .bς , where ς = 2 and thus A
has no advantage in guessing this challenge bit nor in causing πsi to set win← 1.

Case C.1, Game 10: In this game, the challenger flips a bit b̄′′ and uses b̄′′ instead of πsi .b3 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 3 (i.e. when using the key k̃2) replaced in Game 6). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 9 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 3 (i.e. when using the key k̃2). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃2 is a uniformly random and independent value, and the bit b̄′′ has the same distribution
as πsi .b3, this change is sound. Thus,

Adv(break9) ≤ Advaead
AEAD,Baead

+ Adv(break10)

In Case C.1, Game 10, the behavior of πsi is independent of the test bit πsi .bς , where ς = 3 and thus
A has no advantage in guessing this challenge bit nor in causing πsi to set win← 1.

Case C.1, Game 11: In this game, the challenger flips a bit b̄∗ and uses b̄∗ instead of πsi .b4 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 4 (i.e. when using the keys k̃i, k̃r) replaced in Game 7). In this game, in session πsi we construct
an algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly
as in Game 10 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj
respectively) when πsi or πtj would output ς = 4 (i.e. when using the keys k̃i, k̃r). Baead instead forwards
the queries to the AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the keys k̃i, k̃r are uniformly random and independent values, and the bit b̄∗ has the same distri-
bution as πsi .b4, this change is sound. Thus,

Adv(break10) ≤ Advaead
AEAD,Baead

+ Adv(break11)

In Case C.2, Game 10, the behavior of πsi is independent of the test bit πsi .bς , where ς ≥ 1 and thus
A has no advantage in guessing these challenge bits nor in causing πsi to set win← 1. Thus:
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AdvfACCE,CC.1
XK,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

Pn
2
S ·
(

4 · Advaead
AEAD,Baead

+Advms-PRF-ODH
KDF,G,p,BPRF-ODH

+ 3 · Advprf
KDF,Bprf

)
We now treat Case C.2.

Case C.2, Game 4: In this game, we replace the computation of ck, k2 ← KDF(ck, gAb) with
uniformly random and independent values (c̃k, k̃2) in the test session πsi and its honest partner. This
game proceeds identically to Case B Game 5. Thus we have:

Adv(break3) ≤ Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Adv(break4)

Case C.2, Game 5: In this game we replace the function KDF(c̃k, ε, 2) used to compute ki, kr :=
KDF(c̃k, ε, 2). Since, by Game 4, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ki, kr with uniformly random values k̃i, k̃r. Distinguish-
ing this change implies an algorithm breaking the prf security of the key derivation function KDF, and
thus:

Adv(break4) ≤ Advprf
KDF,Bprf

+ Adv(break5)

Case C.2, Game 6: In this game, the challenger flips a bit b̄ and uses b̄ instead of πsi .b3 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 3 (i.e. when using the key k̃2) replaced in Game 4). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 5 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 3 (i.e. when using the key k̃2). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃2 is a uniformly random and independent value, and the bit b̄′′ has the same distribution
as πsi .b3, this change is sound. Thus,

Adv(break5) ≤ Advaead
AEAD,Baead

+ Adv(break6)

In Case C.2, Game 6, the behavior of πsi is independent of the test bit πsi .bς , where ς = 3 and thus A
has no advantage in guessing this challenge bit nor in causing πsi to set win← 1.

Case C.2, Game 7: In this game, the challenger flips a bit b̄′ and uses b̄′ instead of πsi .b4 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 4 (i.e. when using the keys k̃i, k̃r) replaced in Game 5). In this game, in session πsi we construct
an algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 6 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 4 (i.e. when using the keys k̃i, k̃r). Baead instead forwards the queries
to the AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the keys k̃i, k̃r are uniformly random and independent values, and the bit b̄′ has the same distri-
bution as πsi .b4, this change is sound. Thus,

Adv(break6) ≤ Advaead
AEAD,Baead

+ Adv(break7)

In Case C.2, Game 7, the behavior of πsi is independent of the test bit πsi .bς , where ς ≥ 3 and thus A
has no advantage in guessing these challenge bits (and the other challenge bits are not used during the
experiment as πsi .fr1 = πsi .fr2 = 0) nor in causing πsi to set win← 1. Thus:

AdvfACCE,CC.2
XK,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

Pn
2
S ·
(

2 · Advaead
AEAD,Baead

+Advsym-ms-PRF-ODH
KDF,G,p,BPRF-ODH

+ Advprf
KDF,Bprf

)
We now treat Case C.3.
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Case C.3, Game 4: In this game, we replace the computation of ck, k1 ← KDF(ck, gab) with
uniformly random and independent values (c̃k, k̃1) in the test session πsi and its honest partner. Note
that by Game 2, we know at the beginning of the experiment the index of session πsi such that (i, s, ς ′, b′)
is output by the adversary. Similarly, by Game 3, we know at the beginning of the experiment the index
(j, t) of the honest partner πtj of the session πsi . Thus, BPRF-ODH initializes a nn-PRF-ODH challenger,
embeds the DH challenge keyshare gu into the ephemeral public-key of session πsi , embeds the DH
challenge keyshare gv into the ephemeral public-key of session πtj and give pki = gu to the adversary
with all other (honestly generated) public keys. Note that by the definition of this case, BPRF-ODH never
has to answer a ORevealRandomness(j, t) query nor a ORevealRandomness(j, t) query. However, BPRF-ODH
must account for all sessions such that BPRF-ODH must use the private key for computations. In the Noise
Protocol XK, the ephemeral private keys are used to compute the following:

– In sessions where the party acts as the initiator: ck, k0 ← KDF(ck, guB , 2), ck, k1 ← KDF(ck, guv, 2)
– In sessions where the party acts as the responder: ck, k1 ← KDF(ck, guv, 2), ck, k0 ← KDF(ck, gAu, 2)

Dealing with BPRF-ODH’s computation of these values will be done in the following way:

– The other Diffie-Hellman private keys A, B are long-term private keys. BPRF-ODH can then use its
own internal knowledge of the private keys to complete the computations.

Thus we have:
Adv(break3) ≤ Advnn-PRF-ODH

KDF,G,p,BPRF-ODH
+ Adv(break4)

Case C.3, Game 5: In this game we replace the function KDF(c̃k, gAb, 2) used to compute ck, k2 :=
KDF(c̃k, gAb, 2). Since, by Game 4, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ck, k2 with uniformly random values c̃k, k̃2. Distin-
guishing this change implies an algorithm breaking the prf security of the key derivation function KDF,
and thus:

Adv(break4) ≤ Advprf
KDF,Bprf

+ Adv(break5)

Case C.3, Game 6: In this game we replace the function KDF(c̃k, ε, 2) used to compute ki, kr :=
KDF(c̃k, ε, 2). Since, by Game 5, c̃k is uniformly random and independent of the protocol flow, this
replacement is sound. We thus replace the values ki, kr with uniformly random values k̃i, k̃r. Distinguish-
ing this change implies an algorithm breaking the prf security of the key derivation function KDF, and
thus:

Adv(break5) ≤ Advprf
KDF,Bprf

+ Adv(break6)

Case C.3, Game 7: In this game, the challenger flips a bit b̄ and uses b̄ instead of πsi .b2 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 2 (i.e. when using the key k̃1) replaced in Game 4). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 6 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 2 (i.e. when using the key k̃1). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃1 is a uniformly random and independent value, and the bit b̄ has the same distribution
as πsi .b2, this change is sound. Thus,

Adv(break6) ≤ Advaead
AEAD,Baead

+ Adv(break7)

In Case C.3, Game 7, the behavior of πsi is independent of the test bit πsi .bς , where ς = 2 and thus A
has no advantage in guessing this challenge bit nor in causing πsi to set win← 1.

Case C.3, Game 8: In this game, the challenger flips a bit b̄′ and uses b̄′ instead of πsi .b3 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 3 (i.e. when using the key k̃2) replaced in Game 5). In this game, in session πsi we construct an
algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 7 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
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when πsi or πtj would output ς = 3 (i.e. when using the key k̃2). Baead instead forwards the queries to the
AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the key k̃2 is a uniformly random and independent value, and the bit b̄′ has the same distribution
as πsi .b3, this change is sound. Thus,

Adv(break7) ≤ Advaead
AEAD,Baead

+ Adv(break8)

In Case C.3, Game 8, the behavior of πsi is independent of the test bit πsi .bς , where ς = 3 and thus A
has no advantage in guessing this challenge bit nor in causing πsi to set win← 1.

Case C.3, Game 9: In this game, the challenger flips a bit b̄∗ and uses b̄∗ instead of πsi .b4 when
responding to Enc(i, s, ad,m0,m1) and Dec(j, t, ad, c) queries from A when Enc and Dec would output
ς = 4 (i.e. when using the keys k̃i, k̃r) replaced in Game 6). In this game, in session πsi we construct
an algorithm Baead that interacts with an AEAD challenger in the following way: Baead acts exactly as in
Game 8 except responding to Enc(n, h,m0,m1) or Dec(n, h, c) queries directed to πsi (or πtj respectively)
when πsi or πtj would output ς = 4 (i.e. when using the keys k̃i, k̃r). Baead instead forwards the queries
to the AEAD challenger’s oracles.

An adversary capable of distinguishing this change can break the aead security of the AEAD scheme.
Since the keys k̃i, k̃r are uniformly random and independent values, and the bit b̄∗ has the same distri-
bution as πsi .b4, this change is sound. Thus,

Adv(break8) ≤ Advaead
AEAD,Baead

+ Adv(break9)

In Case C.3, Game 9, the behavior of πsi is independent of the test bit πsi .bς , where ς ≥ 2 and thus
A has no advantage in guessing these challenge bits (and the other challenge bit is not used during the
experiment as πsi .fr1 = 0) nor in causing πsi to set win← 1. Thus:

AdvfACCE,CC.3
XK,nP ,nS ,A ≤ Advcoll

H,Bcoll
+ n2

Pn
2
S ·
(

3 · Advaead
AEAD,Baead

+Advnn-PRF-ODH
KDF,G,p,BPRF-ODH

+ 2 · Advprf
KDF,Bprf

)
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F Full Patterns

In this section we give a full algorithmic description of the Noise Protocol Framework Patterns.

Initiator Responder

ck, h← H(N_label)
h← H(h‖ad), n← 0

h← H(h‖gB)
a←$ Zp

h← H(h‖ga)
ck0, k0 ← KDF(ck, gaB , 2), n← 0

c0 ← Enc(k0, 0, h,m0)
ga, c0

if Dec(k0, n, h, c0) = ⊥, abort
h← H(h‖c0)

ki, kr ← KDF(ck, ε, 2), n← 0
Payload Data

Fig. 16: Noise Pattern N :← s, . . . ,→ e, es.

78



Initiator Responder

ck, h← H(NK_label)
h← H(h‖ad), n← 0

h← H(h‖gB)
a←$ Zp

h← H(h‖ga)
ck0, k0 ← KDF(ck, gaB)

c0 ← Enc(k0, 0, h,m0)
ga, c0

if Dec(k0, n, h, c0) = ⊥, abort
h← H(h‖c0)

b←$ Zp
h← H(h‖gb)

ck1, k1 ← KDF(ck, gab), n← 0
c1 ← Enc(k1, n, h,m1)

gb, c1

if Dec(k1, n, h, c1) = ⊥, abort
h← H(h‖c1)

ki, kr ← KDF(ck1, ε, 2), n← 0
Payload Data

Fig. 17: Noise Pattern NK :← s, . . . ,→ e, es.

Initiator Responder

ck, h← H(K_label)
h← H(h‖ad), n← 0

h← H(h‖gA)
h← H(h‖gB)

a←$ Zp
h← H(h‖ga)

ck, k0 ← KDF(ck, gaB , 2), n← 0
ck, k1 ← KDF(ck, gAB , 2), n← 0

c0 ← Enc(k1, n, h,m0)
ga, c0

if Dec(k1, n, h, c0) = ⊥, abort
h← H(h‖c0)

ki, kr ← KDF(ck, ε, 2), n← 0
Payload Data

Fig. 18: Noise Pattern K :→ s,← s, . . . ,→ e, es, ss.
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Initiator Responder

ck, h← H(KK_label)
h← H(h‖ad), n← 0

h← H(h‖gA)
h← H(h‖gB)

a←$ Zp
h← H(h‖ga)

ck, k0 ← KDF(ck, gaB , 2), n← 0
ck, k1 ← KDF(ck, gAB , 2), n← 0

c0 ← Enc(k1, 0, h,m0)
ga, c0

if Dec(k1, n, h, c0) = ⊥, abort
h← H(h‖c0)

b←$ Zp
h← H(h‖gb)

ck, k2 ← KDF(ck, gab, 2), n← 0
c1 ← Enc(k2, n, h,m1)

gb, c1

if Dec(k2, n, h, c1) = ⊥, abort
h← H(h‖c1)

ki, kr ← KDF(ck2, ε, 2), n← 0
Payload Data

Fig. 19: Noise Pattern KK :→ s,← s, . . . ,→ e, es, ss,← e, ee, se.

Initiator Responder

ck, h← H(X_label)
h← H(h‖ad), n← 0

h← H(h‖gB)
a←$ Zp

h← H(h‖ga)
ck, k0 ← KDF(ck, gaB , 2)

c0 ← Enc(k0, n, h, g
A)

h← H(h‖c0)
ck, k1 ← KDF(ck, gAB , 2), n← 0

c1 ← Enc(k1, n, h,m1)
ga, c0, c1

if Dec(k0, n, h, c0),Dec(k1, n, h, c1) = ⊥
abort

h← H(h‖c1)
ki, kr ← KDF(ck, ε, 2), n← 0

Payload Data

Fig. 20: Noise Pattern X :← s, . . . ,→ e, es, s, ss.
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Initiator Responder

ck, h← H(NX_label)
h← H(h‖ad), n← 0

a←$ Zp
h← H(h‖ga)

ga

b←$ Zp
h← H(h‖gb)

ck, k0 ← KDF(ck, gab, 2)
c0 ← Enc(k0, n, h, g

B)
h← H(h‖c0)

ck, k1 ← KDF(ck0, g
aB , 2), n← 0

n← 0
c1 ← Enc(k1, n, h,m0)

gb, c0, c1

if Dec(k0, n, h, c0),Dec(k1, n, h, c1) = ⊥
abort

h← H(h‖c1)
ki, kr ← KDF(ck1, ε, 2), n← 0

Payload Data

Fig. 21: Noise Pattern NX :→ e,← e, ee, s, es.
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Initiator Responder

ck, h← H(XK_label)
h← H(h‖ad), n← 0

h← H(h‖gB)
a←$ Zp

h← H(h‖ga)
ck, k0 ← KDF(ck, gaB , 2), n← 0

c0 ← Enc(k0, n, h,m0)
ga, c0

if Dec(k0, n, h, c0) = ⊥, abort
h← H(h‖c0)

b←$ Zp
h← H(h‖gb)

ck, k1 ← KDF(ck, gab, 2)
c1 ← Enc(k1, n, h,m1)

gb, c1

if Dec(k1, n, h, c1) = ⊥, abort
h← H(h‖c1)

c2 ← Enc(k1, n, h, g
A)

h← H(h‖c2)
ck, k2 ← KDF(ck, gAb, 2)

c3 ← Enc(k2, n, h,m2)
c2, c3

if Dec(k1, n, h, c2),Dec(k2, n, h, c3) = ⊥
abort

h← H(h‖c3)
ki, kr ← KDF(ck2, ε, 2)

Payload Data

Fig. 22: Noise Pattern XK :← s, . . . ,→ e, es← e, ee→ s, se.

Initiator Responder

ck, h← H(NN_label)
h← H(h‖ad), n← 0

a←$ Zp
h← H(h‖ga)

ga

b←$ Zp
h← H(h‖gb)

ck, k0 ← KDF(ck, gab, 2)
c0 ← Enc(k0, n, h,m0)

gb, c0

if Dec(k0, n, h, c0) = ⊥, abort
h← H(h‖c0)

ki, kr ← KDF(ck, ε, 2)n← 0
Payload Data

Fig. 23: Noise Pattern NN :→ e,← e, ee.
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Initiator Responder

ck, h← H(KN_label)
h← H(h‖ad), n← 0

h← H(h‖gA)
a←$ Zp

h← H(h‖ga)
ga

b←$ Zp
h← H(h‖gb)

ck, k0 ← KDF(ck, gab, 2)
ck, k1 ← KDF(ck, gAb, 2), n← 0

c0 ← Enc(k1, n, h,m0)
gb, c0

if Dec(k1, n, h, c0) = ⊥, abort
h← H(h‖c0)

ki, kr ← KDF(ck1, ε, 2), n← 0
Payload Data

Fig. 24: Noise Pattern KN :→ s, . . . ,→ e,← e, ee, se.

Initiator Responder

ck, h← H(KX_label)
h← H(h‖ad), n← 0

h← H(h‖gA)
a←$ Zp

h← H(h‖ga)
ga

b←$ Zp
h← H(h‖gb)

ck, k0 ← KDF(ck, gab, 2)
ck, k1 ← KDF(ck, gAb, 2), n← 0

c0 ← Enc(k1, n, h, g
B)

h← H(h‖c0)
ck, k2 ← KDF(ck, gaB , 2), n← 0

c1 ← Enc(k2, n, h,m0)
gb, c0, c1

if Dec(k1, n, h, c0),Dec(k2, n, h, c1) = ⊥
abort

h← H(h‖c1)
ki, kr ← KDF(ck, ε, 2), n← 0

Payload Data

Fig. 25: Noise Pattern KX :→ s, . . . ,→ e,← e, ee, se, s, es.
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Initiator Responder

ck, h← H(XX_label)
h← H(h‖ad), n← 0

a←$ Zp
h← H(h‖ga)

ga

b←$ Zp
h← H(h‖gb)

ck, k0 ← KDF(ck, gab, 2)
c0 ← Enc(k0, n, h, g

B)
h← H(h‖c0)

ck, k1 ← KDF(ck, gaB , 2), n← 0
c1 ← Enc(k1, n, h,m0)

gb, c0, c1

if Dec(k0, n, h, c0),Dec(k1, n, h, c1) = ⊥
abort

h← H(h‖c1)
c2 ← Enc(k1, n, h, g

A)
h← H(h‖c2)

ck, k2 ← KDF(ck, gAb, 2), n← 0
c3 ← Enc(k2, n, h,m1)

c2, c3

if Dec(k1, n, h, c2),Dec(k2, n, h, c3) = ⊥
abort

h← H(h‖c3)
ki, kr ← KDF(ck, ε, 2), n← 0

Payload Data

Fig. 26: Noise Pattern XX :→ e,← e, ee, s, es,→ s, se.
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Initiator Responder

ck, h← H(XN_label)
h← H(h‖ad), n← 0

a←$ Zp
h← H(h‖ga)

ga

b←$ Zp
h← H(h‖gb)

ck, k0 ← KDF(ck, gab, 2)
c0 ← Enc(k0, 0, h,m0)

gb, c0

if Dec(k0, n, h, c0) = ⊥, abort
h← H(h‖c0)

c1 ← Enc(k0, 1, h, gA)
h← H(h‖c1)

ck, k1 ← KDF(ck, gAb, 2), n← 0
c2 ← Enc(k1, 0, h,m1)

c1, c2

if Dec(k0, n, h, c1),Dec(k1, n, h, c2) = ⊥
abort

h← H(h‖c2)
ki, kr ← KDF(ck1, ε, 2), n← 0

Payload Data

Fig. 27: Noise Pattern XN :→ e,← e, ee,→ s, se.

Initiator Responder

ck, h← H(IN_label)
h← H(h‖ad), n← 0

a←$ Zp
h← H(h‖ga)
h← H(h‖gA)

ga, gA

b←$ Zp
h← H(h‖gb)

ck, k0 ← KDF(ck, gab, 2), n← 0
ck, k1 ← KDF(ck0, g

Ab, 2), n← 0
c0 ← Enc(k1, n, h,m0)

gb, c0

if Dec(k1, n, h, c0) = ⊥, abort
h← H(h‖c0)

ki, kr ← KDF(ck, ε, 2), n← 0
Payload Data

Fig. 28: Noise Pattern IN :→ e, s,← e, ee, se.
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Initiator Responder

ck, h← H(IK_label)
h← H(h‖ad), n← 0

h← H(h‖gB)
a←$ Zp

h← H(h‖ga)
ck, k0 ← KDF(ck, gaB , 2), n← 0

c0 ← Enc(k0, n, h, g
A)

h← H(h‖c0)
ck, k1 ← KDF(ck, gAB , 2), n← 0

c1 ← Enc(k1, n, h,m0)
ga, c0, c1

if Dec(k0, n, h, c0),Dec(k1, n, h, c1) = ⊥
abort

b←$ Zp
h← H(h‖gb)

ck, k2 ← KDF(ck, gab, 2), n← 0
ck, k3 ← KDF(ck, gAb, 2), n← 0

c2 ← Enc(k3, n, h,m1)
gb, c2

if Dec(k3, n, h, c2) = ⊥, abort
h← H(h‖c2)

ki, kr ← KDF(ck, ε, 2), n← 0
Payload Data

Fig. 29: Noise Pattern IK :← s . . .→ e, es, s, ss . . .← e, ee, se.

Initiator Responder

ck, h← H(IX_label)
h← H(h‖ad), n← 0

a←$ Zp
h← H(h‖ga)
h← H(h‖gA)

ga, gA

b←$ Zp
h← H(h‖gb)

ck, k0 ← KDF(ck, gab, 2)
ck, k1 ← KDF(ck0, g

Ab, 2), n← 0
c0 ← Enc(k1, n, h, g

B)
h← H(h‖c0)

ck, k2 ← KDF(ck, gaB , 2), n← 0
c1 ← Enc(k2, n, h,m0)

gb, c0, c1

if Dec(k1, n, h, c0),Dec(k2, n, h, c1) = ⊥
abort

h← H(h‖c1)
ki, kr ← KDF(ck, ε, 2), n← 0

Payload Data

Fig. 30: Noise Pattern IX :→ e, s,← e, ee, se, s, es.
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