
K2SN-MSS: An Efficient Post-Quantum Signature (Full Version)
Sabyasachi Karati

∗

School of Computer Sciences

National Institute of Science Education and Research, India

skarati@niser.ac.in

Reihaneh Safavi-Naini

Department of Computer Science

University of Calgary, Canada

rei@ucalgary.ca.

ABSTRACT
With the rapid development of quantum technologies, quantum-

safe cryptography has found significant attention. Hash-based sig-

nature schemes have been in particular of interest because of (i)

the importance of digital signature as the main source of trust

on the Internet, (ii) the fact that the security of these signatures

relies on existence of one-way functions, which is the minimal

assumption for signature schemes, and (iii) they can be efficiently

implemented. Basic hash-based signatures are for a single message,

but have been extended for signing multiple messages. In this paper

we design a Multi-message Signature Scheme (MSS) based on an

existing One-Time Signature (OTS) that we refer to as KSN-OTS.

KSN uses SWIFFT, an additive homomorphic lattice-based hash

function family with provable one-wayness property, as the one-

way-function and achieves a short signature. We prove security

of our proposed signature scheme in a new strengthened security

model (multi-target multi-function) of MSS, determine the system

parameters for 512 bit classical (256 bit quantum) security, and

compare parameter sizes of our scheme against XMSS, a widely

studied hash based MSS that has been a candidate for NIST stan-

dardization of post-quantum signature scheme. We give an efficient

implementation of our scheme using Intel SIMD (Single Instruction

Multiple Data) instruction set. For this, we first implement SWIFFT

computation using a SIMD parallelization of Number Theoretic

Transform (NTT) of elements of the ring Zp [X]/(X n̂ + 1), that can
support different levels of parallelization. We compare efficiency of

this implementation with a comparable (security level) implemen-

tation of XMSS and show its superior performance on a number of

efficiency parameters.

KEYWORDS
OTS, Merkle Tree, NTT, SWIFFT, Cover-Free Family, SIMD.

Sabyasachi Karati and Reihaneh Safavi-Naini

1 INTRODUCTION
Cryptographic primitive Digital signatures [16] form the basis of

establishing trust over the Internet. Today’s commonly used sig-

natures are RSA, DSA and ECDSA [14], and use the hardness of

Integer Factorization and Discrete Logarithm problems as the basis

of security. Shor [37] gave efficient quantum algorithms for both

the problems which make these signature schemes insecure against

quantum computers. The recent call by security agencies [38] has

resulted in efforts by IETF [4], NIST [34] and other organizations

to move to post-quantum algorithms, and this has made develop-

ment of post-quantum secure digital signature of high importance.

∗
The work was done while the author was a post-doctoral fellow at the Department of

Computer Science, University of Calgary, Canada.

As the digital signatures form the backbone of trust on the Inter-

net, it is essential to employ quantum-safe signature algorithms

to extend this trust into the future. To provide security against

quantum computers, digital signature schemes may use computa-

tional assumptions such as the hardness of decoding of random

codes [11], or finding short vectors in lattices [17], for which no

efficient quantum algorithm is known today. Such schemes will

remain secure as long as no efficient quantum algorithms for the

underlying problems are found. However, these signatures suffer

from inefficient computation, large signature length and/or public

keys, or unproven security [7].

Quantum-safe digital signature schemes can be based on One-

Way-Functions (OWF) which are known to be the minimum as-

sumption for digital signatures [36], and is expected to provide

long-term security assurance. Hash-based signature schemes use

hash function families as OWF. OTS, introduced by Lamport in

1979 [25], uses a secret and public key-pair to sign a single message.

In Lamport’s construction, the secret key is a set of random binary

strings, called component secret keys, and the public key is obtained

by applying a OWF to each component secret key. A message is as-

sociated with a subset of component keys and signature will be the

set of secret component keys associated with the subset. Security

of the scheme depends on the hardness of inverting the OWF. The

main advantages of OTS are: (i) it can be built using any OWF, and

(ii) the signing and the verification are fast [40]. The sizes of the

keys and the signature, however, can be significantly larger than

today’s digital signatures such as RSA, DSA or ECDSA.

To sign 2
h
messages, one needs to use a OTS scheme with 2

h

different keys. Using a Merkle tree [29], the public keys of the 2
h

OTSs can be hashed into a single short public key. A signature now

will include the signature that is generated by a OTS, together with

a list of nodes in the Merkle tree which are required to compute the

OTS public key to the root of the Merkle tree. A signed message

will have an index/address that will indicate the position of OTS

public key in the set of leaves of the Merkle tree, that will be used

for authentication path verification.

In [13], a generic construction of a multi-message signature from

a OTS using Merkle tree is given and the security of MSS is reduced

to the security of the OTS and the second pre-image resistance of the

hash function. The construction, known as SPR-MSS, is particularly

attractive because it relaxes the requirement on the hash function

(second pre-image instead of one-wayness and collision-freeness),

and has been the basis of widely studied construction of multi-

message signature scheme XMSS [9, 19]. XMSS (eXtended Merkle

Signature Scheme) uses W-OTS
+
[30] as the one-time signature.

XMSS is a prime candidate of standardization [33] of quantum-safe

secure signature schemes by NIST [34] and IETF [4]. In [21], it was

shown that the security model of MSS must be strengthened to

realistically capture all the hash values that become available to

xxx, yyy, zzz Sabyasachi Karati and Reihaneh Safavi-Naini

the adversary in a MSS setting and can significantly improve their

success chance of a forgery. The new security notion is captured by

multi-target-multi-function preimage (or second-preimage) prop-

erty in [21].

In [24], Kalach and Safavi-Naini introduced a hash-based OTS

scheme, called as KSN-OTS, that reduces the number of secret key

components of Lamport’s system [25] by using a 1-CFF (Cover-

Free-Family - See Definition 3.1). KSN-OTS has a short signature

because of using a family of homomorphic (additive) hash func-

tions called SWIFFT that allows the component secret keys of a

message be combined. KSN-OTS security proof reduces unforgeabil-

ity of the signature to the collision resistance of SWIFFT. KSN-OTS

has short signature length, and fast signing and verification (Table

1 of [24]). The main computation step in KSN-OTS is the com-

putation of SWIFFT function that needs m̂ multiplications over

R = Zp [X]/(X
n̂ + 1). The fastest method of implementing ring

multiplication uses Number Theoretic Transform (NTT) [26] to

transform the ring elements to vectors of dimension n̂, and allows

ring multiplication and addition to become component-wise vector

multiplication and addition modulo p.

1.1 Our Contribution
We design K2SN-MSS, a multi-message signature scheme, using an

approach that is inspired by SPR-MSS [13], and prove its security

using the notion of multi-target, multi-function pre-image and

second pre-image resistance. We use SWIFFT as the hash function

for KSN-OTS and also the Merkle tree. This has the benefit of using

a single optimized code for the whole construction. However it

requires addressing a number of challenges, including the need

to introduce a new operation, called Merge, for constructing the

Merkle tree to compensate for the mis-match between parameter

sizes of SWIFFT and the SPR-MSS construction. We prove that use

of this operation does not affect security of the construction.

We implement the signature scheme using an efficient imple-

mentation of SWIFFT which relies on an efficient implementation

of NTT. We use SIMD parallelization to achieve low level instruc-

tional efficiency. SWIFFT and KSN-OTS are highly parallelizable

algorithms that can be further parallelized at higher levels (process

level).

To compare our results with XMSS, we will obtain concrete

security parameters of K2SN-MSS taking into account security

level and parameters of existing implementations of XMSS. Our

results show that K2SN-MSS has 3 times faster key generation,

signature generation and verification. It however has 5% larger

public key and 4 times longer signature.

1.1.1 K2SN-MSS. Our construction uses a modified construction

of SPR-MSS in two ways: (i) the Merge operation is used in each

tree node to combine the hash output of the lower level, and (ii)

different hash keys and random pads are used at each node and so

each node is effectively using a different hash function. We prove

that with these modifications, the resulting MSS is secure in the

multi-function multi-target attack model, and the security of the

scheme reduces to the multi-function multi-target preimage and

second-preimage resistance of the underlying hash function.

1.1.2 K2SN-MSS implementation. K2SN-MSS consists of three al-

gorithms: key generation, signing and verification algorithms. To

generate component secret keys, hash keys and random pads of

the Merkle tree, ChaCha20 pseudo-random function family (PRF)

is used. ChaCha20 is a state-of-the-art PRF which takes 40-bytes

input seed and can generate output of 128 bytes long [6]. We choose

parameters of SWIFFT such that it provides 512-bit classical (256-bit

quantum) security for K2SN-MSS against existential unforgeabil-

ity in chosen message attack (EUF-CMA) (See Section 3.3). We

implement the following code modules

• Key generation algorithm, that uses Chacha20 as a sub-

module, and computes the component secret keys, hash

keys and the random pads. SWIFFT hash function was used

to compute the component public keys, and construct the

Merkle tree.

• We implemented the 1-CFF Algorithm [8] to determine the

subset of component keys that are associated with a message.

This module is called in signing and verification, both.

• The signing and the verification algorithms use ChaCha20,

SWIFFT, and the 1-CFF algorithm above.

The time for key generation, signing and verification is dominated

by the time required for calculating the hash function SWIFFT.

Below we briefly describe our efficient implementation of SWIFFT

using SIMD instructions.

1.1.3 Efficient implementation of SWIFFT using SIMD. Ring multi-

plication over the ringR dominates the computation cost of SWIFFT

function. For the efficient implementation of multiplication in the

ring R, we use NTT. We show that the computation of NTT trans-

formation can be parallelized using SIMD, with different levels of

parallelization that is parametrized by δ , denoting simultaneous

computation of 2
δ
components of the output vector. The paral-

lelization can be used for δ = 0 (no parallelization) to δ = 6 (full

parallelization for the ring R with n̂ = 64). The parallelization

in [5, 28, 31] is an instance of our general approach with δ = 3.

We show the result of SWIFFT function with δ = 4 that leads to

25% higher speed compared to [31]. Our implementations of NTT

computation can be with, or without, precomputation. The former

approach results in improved speed but the memory requirement

grows double-exponentially O (22
δ
) in the value of δ . Thus we

consider precomputation when the required memory is acceptable.

For efficient verification of KSN-OTS (and also K2SN-MSS), we

also implemented gSWIFFT (generalized input SWIFFT) that allows

non-binary input strings. This extension was introduced in [24]

and is used in our work.

1.1.4 Evaluation of K2SN-MSS. We compare performance of K2SN-

MSS with XMSS for 2
h
messages, each of length 256 bits, and

security parameter n = 512-bit. We use SWIFFT function with

parameters m̂ = 16, n̂ = 64, p = 257 (Sec Section 2.5). As we

will discuss in Section 2.2, these parameters allow us to have a

fair comparison in terms of functionality and security level, with

XMSS. Additionally, they allow us to compare our implementation

of SWIFFT with the existing SWIFFT implementation in [28].

It shows that K2SN-MSS has smaller processing time for all algo-

rithms: key generation, signing and verification. The corresponding

times for K2SN-MSS are 2.76, 2.89 and 2.65 times faster than XMSS.

K2SN-MSS: An Efficient Post-Quantum Signature (Full Version) xxx, yyy, zzz

On the other hand, the signature length of K2SN-MSS is approxi-

mately 4 times larger than that of XMSS. Public and secret key sizes

of the two schemes are comparable (almost same). Thus the two

schemes will have complementary speed/signature size properties,

while enjoying similar security guarantee.

Table 1: Comparison between XMSS and K2SN-MSS scheme
at 512-bit classical security level

Name K2SN-MSS/SWIFFT-16-avx2 XMSS/SHA512/w = 16 [15]

Key Generation (ms) 526069 1452600

Signing (ms) 4.70 13.57

Verification (ms) 0.34 0.90

Signature Size 21331 Bytes 5571 Bytes

Secret Key Size Seed Seed

Public Key Size 152 Bytes 144 Bytes

We note that although we implemented KSN-OTS using a single

hash function, but the homomorphic property of SWIFFT is only

required in the verification of KSN signatures and one can use a

different hash function, such as SHA2-512, for the construction of

the Merkle tree. Our choice of SWIFFT for Merkle tree is further

discussed in Section 7.

2 PRELIMINARIES
We use the following notations and function definitions.

• n ∈ N: Security parameter whereN denotes the set of natural

numbers.

• m ∈ N: Length of the messages in bits.

• m̂, n̂ ∈ N: Parameters of SWIFFT hash function family.

• p: Prime integer.

• t : The number of component key-pairs for the OTS we em-

ploy. We assume t = 2
ℓ
for some positive integer ℓ and

log
2

(t
t
2

)
⩾ m.

• h: Merkle tree height. The K2SN-MSS is designed to sign 2
h

messages.

• ∥: concatenation of two binary strings.

• ⊕: bit-wise XOR of two binary strings.

• ⊕p : component-wise modulo p addition of two vectors of

same length.

• ⊙p : component-wise modulo p multiplication of two vectors

of same length.

• Fn =
{
fk : {0, 1}2n → {0, 1}2n | k ∈ {0, 1}n

}
is pseudo-random

function family and will be used in KSN-OTS and K2SN-MSS.

• Fn =
{
fk : {0, 1}n → {0, 1}n | k ∈ {0, 1}n

}
is pseudo-random

function family and will be used in W-OTS
+
and XMSS.

• cm : A function that, on an input ofm-bit, generates a row of

the 1-CFF function family table.

2.1 Hash Function

Definition 2.1. Hash Function Family [21]. Let n ∈ N be the

security parameter. Let n′ = n + nϵ ∈ poly(n) and k ∈ poly(n).
Then we define a hash function familyHn as:

Hn =
{
HK : {0, 1}2n 7→ {0, 1}n

′}
K ∈R {0,1}k

.

For example, in SHA nϵ = 0. On the other hand, in SWIFFT with

parameters m̂ = 16, n̂ = 64 and p = 257, nϵ = 64.

Definition 2.2. PreimageResistance (PR) [21]. This is the stan-
dard notion of preimage resistance where we define the success

probability of an adversary B against preimage resistance of a hash

function familyHn as:

Succ

pr

H
(B) = Pr[K

$

←− {0, 1}n
′

,x
$

←− {0, 1}2n ,

y = HK (x);

x ′
$

←− B (K ,y) : y = HK (x ′)].
Definition 2.3. Second-Preimage Resistance (PR) [21]. This

is the standard notion of second-preimage resistance where we

define the success probability of an adversary B against preimage

resistant of a hash function familyHn as:

Succ

spr

H
(B) = Pr[K

$

←− {0, 1}n
′

,x
$

←− {0, 1}2n ;

x ′
$

←− B (K ,y) : x ′ , x ∧ HK (x) = HK (x ′)].
Definition 2.4. Multi-function, Multi-target Preimage Re-

sistance (MM-PR) [21]. We define the success probability of an

adversary B against multi-function multi-target preimage resistant

of a hash function familyHn which is parameterized by the number

of targets as:

Succ

mm-pr

H ,q′ (B) = Pr[Ki
$

←− {0, 1}n
′

,xi
$

←− {0, 1}2n ,

yi = HKi (xi), 0 < i ⩽ q′;

(j,x ′)
$

←− B ((K1,y1), . . . , (Kq′ ,yq′)) :

yj = HKj (x
′)].

Definition 2.5. Multi-function,Multi-target Second-Preimage
Resistance (MM-SPR) [21]. We define the success probability of

an adversaryB againstmulti-functionmulti-target second-preimage

resistant of a hash function familyHn which is parameterized by

the number of targets as:

Succ

mm-spr

H ,q′ (B) = Pr[Ki
$

←− {0, 1}n
′

,xi
$

←− {0, 1}2n ,

0 < i ⩽ q′;

(j,x ′)
$

←− B ((K1,x1), . . . , (Kq′ ,xq′)) :

x ′ , x j ∧ HKj (x j) = HKj (x
′)].

Definition 2.6. InSecMM-SPR (H ,q,q′): This is defined as the

maximum success probability for any attacker B against the multi-

function multi-target second-preimage resistant of Hn with q′

targets after q queries as

InSec
MM-SPR (Hn ,q,q

′) = max

B

{
Succ

mm-spr

Hn,q′
(B)
}
.

For more details we refer the reader to [21].

2.2 XMSS and W-OTS+

XMSS [9] is a hash-based signature scheme that extends the one

time signature W-OTS
+
to a multi-message signature scheme using

Merkle tree construction. The construction was proposed in [9]

and the security was reduced to the second-preimage resistance of

the hash function that was used in the Merkle tree and the security

of the W-OTS
+
. XMSS

MT
[20] extends XMSS to multiple layer

xxx, yyy, zzz Sabyasachi Karati and Reihaneh Safavi-Naini

tree where each layer root node is signed using W-OTS
+
. It allows

for a virtually unlimited number of signatures, while it preserves its
desirable properties [20] of XMSS. This provides signature and key

generation computation time and signature size trade-off which

allow the users to choose parameters to match their requirements.

XMSS is a special case of XMSS
MT

. In [21], XMSS is proposed that

provides security against multi-function-multi-target preimage (or

second preimage) attacks. The new security requirement for the

signature schemes is given in Appendix 2.1 and is used in our

security analysis. There are several implementations for XMSS [3,

15]. We compare our implementation with the implementation

in [15] because this takes the multi-function-multi-attack notion of

security into consideration. Also, this is the only implementation

which takes advantage of SIMD parallelization and reports the

fastest result. On the other hand, choice of the parameters for

SWIFFT hash function leads to 512-bit classical (256-bit quantum)

security of K2SN-MSS in multi-function-multi-target model and it

should be noted that there is no existing software of XMSS
MT

at

the same security level.

2.3 W-OTS+

XMSS signature scheme uses W-OTS
+
[9] as the OTS scheme. The

public key and signature of W-OTS
+
is computed through random

walks in a function family Fn = { fk : {0, 1}n 7→ {0, 1}n | k ∈
{0, 1}n }. For a k, x ∈ {0, 1}n and e ∈ N, the random walk is defined

as:

f 0k (x) = k, f ik (x) = fk’ (x), where k’ = f i−1k (x).

For anm-bit message, andWinternitz parameterw , define following

parameters

l = l1 + l2, l1 =

⌈
m

log
2
(w)

⌉
, l2 =

⌊
log

2
(l1 (w − 1))

log
2
(w)

⌋
+ 1. (1)

The secret key of W-OTS
+
is SK = {x0, x1, . . . , xl−1} where each

xi is a binary string of length n (that is generated by using a pseudo-

random function on a random seed), and the corresponding public

key is PK = {x, f w−1x0 (x), f w−1x1 (x), . . . , f w−1xl−1 (x)}, where x is a

randomly generated element from {0, 1}n .

To sign a message mes, first the message is written in basew as,

mes = {b0,b1, . . . ,bl1−1}. Next a checksum C =
∑l1−1
i=0 (w − 1 − bi)

in basew is calculated, C = {bl1 ,bl1+1, . . . ,bl−1}, and appended to

the message to obtain b = {b0,b1, . . . ,bl−1}.

The signature ofb isσmes = {σ0,σ1, . . . ,σl−1} = { f
b0
x0 (x), f

b1
x1 (x),

. . . , f
bl−1
xl−1 (x)}, resulting in an l×n-bit signature. Verification is done

by checking

PK
?

= { f w−1−b0σ0 (x), f w−1−b1σ1 (x), . . . , f w−1−bl−1σl−1 (x)}.

2.4 XMSS: A Secure Merkle Tree MSS
Construction [21]

In this section we describe XMSS briefly which is an instantiation

of SPR-MSS with W-OTS
+
and also takes the multi-function-multi-

target security model of hash functions into consideration. Let W-

OTS
+
be a secure one-time signature scheme with 2

ℓ
component

secret keys (and the corresponding component public keys). To

design an MSS for 2
h
messages, 2

h
instances of the W-OTS

+
will

be used as follows. Let the secret key SK i and public key PK i of

the i-th instance of the W-OTS
+
be,

SK i = {xi0 , xi1 , . . . , xi
2
ℓ−1
}; xi j ∈ {0, 1}

n , and

PK i = {xi , yi0 , yi1 , . . . , yi
2
ℓ−1
}; xi , yi j ∈ {0, 1}

n .

To sign the i-th message, the i-th instance of the W-OTS
+
is used.

The construction uses a Merkle tree of height h + ℓ, and attaches a

random binary string of length 2n for each node of the tree, denoted

by vi, j where (i, j) denotes the j-th node from left at height i as

0 ⩽ i ⩽ h + ℓ and 0 ⩽ j ⩽ 2
i − 1. In our construction, we consider

that leaf nodes are at height h + ℓ and the root node is at the height
0. Similarly each node computation uses a different hash key ki, j
and random pad vi, j . The construction of the Merkle tree consists

of two types of trees: (i) Li trees and (ii)MSS tree.

(1) Construction of Li trees: Li is a Merkle tree of height ℓ

whose leaves are the component public keys of the i-th in-

stance of W-OTS
+
, that is {xi , yi0 , yi1 , . . . , yi

2
ℓ−1
}. Let yil, j

be a node of the tree where it is the j-th (0 ⩽ j ⩽ 2
l −1) node

from the left at height l (0 ⩽ l ⩽ ℓ) of the Li . Now we assign

yiℓ, j = yi j for 0 ⩽ j < 2
ℓ
. The nodes yil, j for 0 ⩽ l < ℓ are

computed as

yil, j = Hkil, j
((yil+1,2j ∥yil+1,2j+1) ⊕ vil, j), (2)

where Hk ∈ Hn , ∥ and ⊕ denote the concatenation and bit-

wise XOR of two binary strings, respectively. Let the root of

the Merkle tree Li be yh,i and then yh,i = yi0,0 .
(2) Construction ofMSS tree:MSS has height h and the leaf

nodes are the root nodes of theLi trees, that is {yh,0, yh,1, . . . ,
yh,2h−1}. The intermediate nodes and the root node of the

MSS are constructed in the similar way shown in equa-

tion (2). Let the root of theMSS tree be y0,0.

The pictorial view of the Merkle tree is given in the Figure 1 and

Figure 2.

All the random pads and all the hash keys can be generated

using a seed and pseudo-random number generator (PRG). From

the seed and the PRG, we can compute the random pad and the

hash key for a particular node using the index of the node in the

tree. Let the seed for hash key be hkseed and the seed of ran-

dom pads be rpseed. Also all the secret keys can be generated

using the PRG using another seed sk. The multi-message signa-

ture scheme has secret and public keys given by, SK = {sk} and
PK = {y0,0, hkseed, rpseed}, respectively. A signature consists of,

(i) the index of the message, i , (ii) the signature of the i-th W-OTS
+

on the message, (iii) the public key PK i of the i-th W-OTS
+
, and

(iv) a list of nodes ofMSS called authentication path which au-

thenticates the root of the L tree that corresponds to PK i , against

the root of the MSS tree, y0,0. As the public key of W-OTS
+

can be computed using the random walks in the function family

Fn from the W-OTS
+
signature, the XMSS signature does not in-

clude the aforementioned third component PK i of i-th instance of

W-OTS
+
. K2SN-MSS uses this structure of Merkle, and employ a

pseudo-random generator together with a random seed to generate

the secret key components. Hash keys and random pads are also

generated in a similar way.

K2SN-MSS: An Efficient Post-Quantum Signature (Full Version) xxx, yyy, zzz

yh,0

L0

yh,1

L1

yh,2

L2

yh,3

L3

yh,T−2

LT−2

yh,T−1

LT−1

· · ·

yh−1,0 yh−1,1
yh−1, T

2
−1

· · ·

yh−2,0

y1,0 y1,1

y0,0

Figure 1: Merkle Tree

yi+1,2j yi+1,2j+1

y′i, j = (yi+1,2j ∥yi+1,2j+1)

Hki, j (y
′
i, j ⊕ vi, j)

yi, j

ki, j vi, j

Figure 2: Intermediate node computation

2.5 SWIFFT: An Efficient Lattice-Based
Hash-Function

The SWIFFT family of hash functions [28] is defined by three

parameters: (i) n̂: a power of 2, (ii) m̂: a small integer, and (iii) p: a
prime (the construction works for non-prime also).

Let R be a ring as defined in the equation (3):

R = Zp [X]/(X n̂ + 1). (3)

A SWIFFT function of a given SWIFFT family is defined by m̂
elements, a0, a1, . . . , am̂−1 ∈ R called multipliers. The input of a
SWIFFT function is a binary string of length m̂n̂: the input is divided
into m̂ n̂-bit string, and each string is represented as an element of

R with binary coefficients. Let z = (z0, z1, . . . , zm̂−1) be a SWIFFT

input, where zi is a ring element with binary coefficients. Then

hash of z is computed as,

SWIFFT(z) =
m̂−1∑
i=0

(ai · zi) , (4)

where the multiplications and the additions are in the ring R. For

computational efficiency, the ring multiplications are performed

using NTT and so SWIFFT is written as equation (5):

SWIFFT(z) =
m̂−1∑
i=0

(
NTT(ai) ⊙p NTT(zi)

)
. (5)

Notice that we do not apply iNTT on the output of equation 5

to get back the same result as of equation 4. As FFT is linear and

bijective, there is no need to apply iNTT on the output of equation 5

as suggested in [28].

Security. SWIFFT is an efficient instantiation of the generalized

compact knapsack [32] proposed in [28]. It has been proved [32] that

the generalized compact knapsack is asymptotically one-way, and

this implies that the SWIFFT family also enjoys the same property.

It has been also proved [27, 35], that SWIFFT is asymptotically

collision resistant. In [28], it is proved that the security of a SWIFFT

function reduces to the security of the subset-sum problem.

2.5.1 gSWIFFT. We use a generalized version of SWIFFT func-

tion that takes input from Zm̂n̂
p (instead of {0, 1}m̂n̂

). Let the input

to gSWIFFT be z′ = (z′
0
, z′

1
, . . . , z′m̂−1) where z

′
i ∈ Z

n̂
p . The input

length of gSWIFFT is m̂n̂
⌈
log

2
(p)
⌉
bits. Similar to SWIFFT, we de-

fine gSWIFFT function as:

дSWIFFT(z′) =
m̂−1∑
i=0

(NTT(ai) ⊙p NTT(z′i)), (6)

gSWIFFT is used for efficient verification of KSN-OTS scheme

(Section 3.1).

2.5.2 Parallelizing SWIFFT Implementation using SIMD . Efficient

implementation of K2SN-MSS requires efficient implementation of

SWIFFT computation that consists of m̂ ring multiplications, fol-

lowed by ring additions. Thus efficient implementation of ring mul-

tiplication is essential for the efficient implementation of K2SN-MSS.

We show how to parallelize each ring multiplication using SIMD

instructions of Intel Intrinsics. The level of parallelization is deter-

mined by the parameter δ , which indicates 2
δ
output components

will be computed simultaneously. In our setting, the parallelization

level δ , can be chosen in the range δ = 0 (no parallelization at all)

to δ = 6 corresponding to the full parallelization for ring R with

n̂ = 64.

Intel Intrinsics for SIMD Intel introduced SIMD instruction set

MultiMedia eXtension (MMX) in their processors in 1997. MMX

has been later extended to Streaming SIMD Extensions (sse) like
sse2, sse3 upto sse4.2. We use Advanced Vector Extensions (avx)
and in particular avx2 intrinsic. For more details see [18]. The

achievable level of parallelization will depend on the specific set

of instructions that will be chosen for the implementation. For 16

fold parallelization (δ = 4), we use 16 16-bit multiplication SIMD

instruction together with 16-bit addition, subtraction and other

operations such as shift. More details are in Section 5.

3 K2SN-MSS CONSTRUCTION
We first give an overview of KSN-OTS [24] and then describe

K2SN-MSS, and prove its security in using the stronger notion of

multi-function multi-target security.

3.1 KSN: An Efficient Post-Quantum OTS
We propose an MSS based on KSN [24], an OTS scheme with two

building blocks: a cover-free-family and SWIFFT hash function

family.

Aw-Cover-Free Family (w-CFF) is a set system defined as follows.

Definition 3.1. Let (X,B) be a set system,whereX = {x1,x2, . . . ,xt }
is a set of t elements and B = {B1,B2, . . . ,Be } be a set of e subsets
of X and the size of each Bi is k . If for all ∆ ⊂ {1, 2, . . . , e} with

|∆| = w and for all i < ∆, we have
���Bi ∖

⋃
j ∈∆ Bj

��� ⩾ 1 then we

call that the set system is a k-uniformw-Cover-free family with t
elements and e subsets, in shortw-CFF(t , e,k).

The SWIFFT hash function family is additive homomorphic and

for two binary inputs x1 and x2 of length m̂n̂, satisfying

SWIFFT(x1) + SWIFFT(x2) = дSWIFFT(x1 ⊕p x2),

xxx, yyy, zzz Sabyasachi Karati and Reihaneh Safavi-Naini

where addition SWIFFT(x1)+SWIFFT(x2) is in ringR , and addition
x1 ⊕p x2 is a component-wise modulo p addition of two vectors

of length m̂n̂. This property is used in KSN signature scheme [24]

to achieve fast signing and verification, and short signature. An

overview of the scheme is given below. We use a pseudo-random

function family Fn : { fk : {0, 1}2n 7→ {0, 1}2n | k ∈ {0, 1}n } to
generate component secret keys (instead of uniform selection from

{0, 1}2n).

Consider a message space consisting ofm-bit strings. The secret

key and the public key of KSN-OTS scheme consists of t compo-
nent keys, where t is an even integer satisfying log

2

(t
t
2

)
⩾ m. A

component secret is a 2n bit random string and so the total secret

key length is 2tn bits. The component secret keys in practice (and

in our implementation) are generated by applying f ∈ Fn on an

initial seed. Thus the secret key can be considered as the seed of

the PRG. The hash key k of SWIFFT is m̂ multipliers which are ring

elements and are chosen uniformly at random from {0, 1}n̂⌈log2 (p)⌉ .

The signature scheme consists of three algorithms: KeyGen, Sign
and Verify. The parameters of SWIFFT function (m̂, n̂ and p) and
the pseudo-random function family Fn will be chosen to achieve

the required security level. A function fsk () is chosen from Fn , and
sk is kept secret (this can be seen as the seed of the pseudo-random

function).

Key Generation. The KeyGen generates the secret key SK and

the public key PK as given in Algorithm 1. The i-th component

secret key is computed as fsk (i + 1). This is the same as the secret

key generation in XMSS [9].

Algorithm 1 Key Generation (KeyGen(1n))

(1) Choose sk as a seed uniformly at random from {0, 1}n .

(2) For i = 0, 1, . . . , t − 1, compute xi as xi = fsk (i + 1).
(3) For i = 0, 1, . . . , t − 1, compute yi as yi = SWIFFTk (xi).
(4) Return Secret Key SK = sk and Public Key PK =

{y0, y1, . . . , yt−1}.

Signature Generation. The Sign takes anm-bit message mes
and computes the signature σmes using Algorithm 2.

Algorithm 2 Signature Generation (Sign(mes,SK))

(1) For i = 0, 1, . . . , t − 1, compute xi as xi = fSK (i + 1).
(2) Compute Bmes = cm (mes), where Bmes = {i0, i1, . . . , i t

2
−1},

and i j < i j+1 for all 0 ⩽ j ⩽ t
2
− 2.

(3) Compute σmes = xi0 ⊕p xi1 ⊕p · · · ⊕p xi t
2
−1
; Return σmes.

Signature Verification. The verification algorithm given by

Algorithm 3, takes a message and signature pair (mes,σmes), and
outputs Accept or Reject.

In [24], it has been proved that the KSN scheme is secure under

the collision-resistance of the hash function. The security theorem

is as given below:

Theorem 3.2. [24] If A is a quantum adversary that (ϵ,τ)-wins
the unforgeability security game for KSN scheme, thenA can be used
to (ϵc ′,τ + c)-find function collisions where c, c ′ are constants.

Algorithm 3 Signature Verification (Verify(mes,σmes,PK))

(1) Compute B′mes = cm (mes).
(2) If σmes[i] ⩽

t
2
,∀0 ⩽ i < m̂n̂ (σmes[i] denotes the i-th com-

ponent of the vector σmes), then continue else Reject.
(3) Compute σ ′mes = yi0 + yi1 + · · · + yi t

2
−1

(addition in R), and

i j ∈ B
′
mes.

(4) If σ ′mes = дSWIFFTk (σmes), then Accept, else Reject.

Definition 3.3. Strong Unforgeability. Let A has queried on a

messageM during the query phase of the security game and σ be

the signature of the message. In the strong unforgeability game, A

is considered to be successful even if it can return a signature σ ∗ of
the messageM where σ ∗ , σ .

SWIFFT hash function used in KSN-OTS is itself highly paral-

lelizable and this leads to higher speed of K2SN-MSS compared to

XMSS that is based on W-OTS
+
that uses l random walks in the

function family Fn which are inherently sequential. Comparison

of the two signature schemes is given in Section 6.2.

3.2 K2SN-MSS construction
K2SN-MSS extends the KSN-OTS tomulti-message signature scheme

and uses SWIFFT as the underlying hash function. However, SWIFFT

compresses 2n bits to n + nϵ bits and so concatenation of two out-

puts (in a node of the Merkle tree) results in 2n + 2nϵ bits. We

introduce a function Merge that effectively slides one string over

the other and XORs the overlapping part, to generate a 2n-bit string.
The overlapping part of the two strings is XOR-ed. For our chosen

parameters n = 512 and nϵ = 64.

Merge(y1, y2) = hin−nϵ (y1)∥ (low2nϵ (y1) ⊕ hi2nϵ (y2))
∥lown−nϵ (y2), (7)

where (i) y1 and y2 are (n + nϵ)-bit strings, (ii) hil (y) is the most

significant l bits of y and (iii) lowl (y) is the least significant l bits
of y. The function Merge is used to calculate y′j,i Figure 2 instead

of simple concatenation.

Lemma 3.4. Let f be a random oracle which outputs (n + nϵ)-bit
long random strings. Let Oc and Om be two oracles defined as follows:
On a query,Oc outputs a 2n-bit long stringy which is computed asy =

lown (x1)∥lown (x2) : x1,x2
$

←− f . On the other hand, Om outputs
a 2n-bit long string y′ which is computed as y′ = Merge(x1,x2) :

x1,x2
$

←− f . Then Oc and Om are indistinguishable.

Proof. The proof depends on the following facts: (i) a substring

of a random string is a random string, and (ii) concatenation and

XOR of two random strings are also random. The job of a attacker is

to distinguish the oracles from a given string from one of the oracles.

As f and д are two indistinguishable random functions, x1, x2, x
′
1

and x ′
2
are all random strings with indistinguishable distributions.

Therefore, y and y′ will also have indistinguishable distributions.
If the attacker can distinguish the oracle from the output string

with non-negligible probability, then the attacker can distinguish

between f and д which contradicts the hypothesis. □

K2SN-MSS: An Efficient Post-Quantum Signature (Full Version) xxx, yyy, zzz

3.2.1 Algorithms. K2SN-MSS consists of three algorithms: K2SN.KeyGen,
K2SN.Sign and K2SN.Verify.

Key Generation: K2SN.KeyGen uses two function families: Fn
and SWIFFT as given in Algorithm 4. Here n is the length of the

seed of the PRG that is used for secret key generation and is the

security parameter of K2SN-MSS. During computation of each node

in the tree a different hash key has been used. The public key length

is n + nϵ + hkseed + rpseed bits.

Algorithm 4 Key Generation of K2SN-MSS (K2SN.KeyGen(1n))

(1) Choose randomly, (i) sk ∈ {0, 1}n , (ii) hkseed ∈ {0, 1}n and

(iii) rpseed ∈ {0, 1}n .
(2) For i = 0, 1, . . . ,T − 1 (where T = 2

h
) /* Construction of Li

trees */

(a) For each Li tree, compute ski = lown (fsk (i + 1)).
(b) For j = 0, 1, . . . , t − 1, (t = 2

ℓ
), compute secret key com-

ponents of the i-th signature as, xi j = fski (j + 1).
(c) For j = 0, 1, . . . , t − 1, compute the public key component

of i-th signature as, yi j = SWIFFTki (xi j).
(d) Compute yh,i , the root of the Merkle tree Li from leaves

yi0 , yi1 , . . . , yit−1 . All the remaining nodes of the Li tree

are computed with a new random pad and hash key.

(3) The roots of the Li trees are the leaf nodes of the

Merkle tree MSS at height h. Denote the nodes by

yh,0, yh,1, . . . , yh,T−1, and construct the Merkle treeMSS

using different hash keys and random pads. The root of the

tree is denoted by y0,0.
(4) Return, (i) Secret key SK = sk, and (ii) Public key PK =

{y0,0, hkseed, rpseed}.

Signature Generation. For the i-th message,mes, the signature
σmes = (i, pk,PK i ,Auth), where i, 1 ≤ i ≤ 2

h
is the index of the

signature, pk is the sum of the secret key components associated

with Bmes, PK i is the set of component public keys of the i-th
signature (i-th instance of KSN) and Auth contains the nodes of

theMSS tree that are required for verification of Li root. The

computations of pk, PK i and Auth are given in Algorithm 5. The

signature length consists of h-bits to represent i , (
⌊
log

2
(t
2
)
⌋
+ 1) ×

2n bits to represent pk, PK i consisting of t outputs of SWIFFT

resulting in t (n + nϵ) bits, and h(n + nϵ) bits to represent Auth
which consists of the h sibling nodes. In total signature size is

|σmes | = h + n ×
(
2

(⌊
log

2

(
t
2

)⌋
+ 1
)
+ t + h

)
+ nϵ × (t + h) bits.

Signature Verification. To verify σmes = (i, pk,PK i ,Auth),
first pk is verified againstPK i using the KSN verification algorithm

(Algorithm 3), and then PK i is authenticated against y0,0, the root
of theMSS Merkle tree using the Auth. The algorithm is given in

Algorithm 6.

3.3 K2SN-MSS Security

Theorem 3.5. If H is a 2
h (2ℓ − 1) multi-function multi-target

second-preimage resistant hash function then K2SN-MSS is (ϵ, 2h ,τ)
secure against Strong Existential Unforgeable under Chosen Message
attack (SUF-CMA). This means that for any forger A with success

Algorithm 5 Signature Generation of K2SN-MSS

(K2SN.Sign(i,mes,SK))

(1) Compute the seed ski for the Li tree as ski = fsk (i + 1).
(2) Compute Bmes = cm (mes) and let Bmes = {i0, i1, . . . , i t

2
−1}

such that i j < i j+1 for all 0 ⩽ j ⩽ t
2
− 2.

(3) For j = 0, 1, . . . , t − 1, compute the component secret keys

of the i-th KSN-OTS as xi j = fski (j + 1).
(4) Compute the component public keys of the i-th KSN-OTS

as PK i = {yi j = SWIFFTk (xi j), j = 0, 1, . . . , t − 1}.
(5) pk = xi0 ⊕p xi1 ⊕p · · · ⊕p xi t

2
−1
, where i j ∈ Bmes.

(6) Let yh,i be the root of the Merkle tree Li . The Auth contains

the sibling nodes of theMSS Merkle tree from yh,i to the

root y0,0.
(7) Return σmes = (i, pk,PK i ,Auth).

Algorithm 6 Signature Verification of K2SN-MSS

(K2SN.Verify(mes,σmes))

(1) Let σmes = (i, pk,PK ′i ,Auth).
(2) Compute Bmes = cm (mes) and and let Bmes =

{j0, j1, . . . , j t
2
−1} such that jk < jk+1 for all 0 ⩽ k ⩽ t

2
− 2.

(3) If pk[i] ⩽ t
2
,∀0 ⩽ i < m̂n̂, then Continue else Reject.

(4) Let PK ′i = {y
′
0
, y′

1
, . . . , y′t−1} ∈ σmes.

(5) Compute pk′ = y′j0 + y
′
j1 + · · · + y

′
j t
2
−1

, where the additions

are in the ring R.

(6) If pk′ = дSWIFFTk (pk), then Continue, else Reject.
(7) Compute the root of the Merkle tree Li where the leaf nodes

are y′
0
, y′

1
, . . . , y′t−1 and with the hash keys and random pads

used during signing. The hash keys and random pads can be

easily regenerated from the published seed. Let the root of

the Merkle tree Li be y′h,i .
(8) Compute the root of theMSS Merkle tree from y′h,i using

Auth as

y′
l, i

2

= SWIFFTkl, i
2

(Merge(y′l+1,i ,Auth[h − l]) ⊕ vl, i
2

),

where i = 0 (mod 2),

y′
l, i−1

2

= SWIFFTkl, i−1
2

(Merge(Auth[h − l], y′l+1,i) ⊕ vl, i−1
2

),

where i = 1 (mod 2),

where Auth[h − l] denotes the (h − l)-th node of the Auth.
(9) If y′

0,0 = y0,0 (where y0,0 is the published root of theMSS

Merkle tree as a part of PK), then Accept, else Reject.

probability ϵ against K2SN-MSS after 2h query in time τ . The upper
bound of ϵ is

ϵ ⩽
InSecMM-SPR (H , 2h , 2h (1 + 2ℓ))

ϵ ′
, where

ϵ ′ = (1 − 2−2n − 2−m) (1 − 2−2n) ·max
{
2
−2h

2
−2(h+ℓ) , (1 − 2−2h)2−2(h+ℓ)

}
.

where q1,q ≤ 2
h , and q2 ≤ 2

h+ℓ − 1 respectively.

Proof. Our security derivation is game-based derivation. Let

A is a PPT adversary who has the success probability of ϵ after

making q queries in time τ . Let B be another PPT algorithm which

xxx, yyy, zzz Sabyasachi Karati and Reihaneh Safavi-Naini

tries to find a second preimage from a target list of tuples (xi ,yi ,ki)
with yi = Hki (xi). B divides this list in two lists of lengths q1 and

q2 where q1 ⩽ 2
h
and q2 < 2

h+ℓ
. B uses A as a subroutine. Let,

(1) the tuples of the list of length q1 be (x
p
i ,y

p
i ,k

p
i), and

(2) other q2 tuples be (x
s
i ,y

s
i ,k

s
i).

LetT = 2
h
and t = 2

ℓ
. The security game has three phases: (i) Setup

Phase, (ii) Query Phase, and (iii) Answer Phase. The description of

the phases are given below.

(1) Setup.
(a) B chooses q1 distinct values uniformly at random from

{0, 1, . . . ,T − 1} and let this list be Γ = {c0, c1, . . . , cq1−1}.
Each ci of Γ denotes the ci -th instance of KSN-OTS.

(b) B sets each k
p
i as the hash key of the ci -th instance of

KSN-OTS. For the remaining KSN-OTS, it chooses hash

keys uniformly at random.

(c) Let (SK i ,PK i) be the secret and public key pair of i-th
instance of KSN-OTS. Now B chooses the SK i uniformly

at random and computes PK i .

(d) B choosesq1 values uniformly at random from {0, 1, . . . , t−
1} and and let this list be Ψ = {d0,d1, . . . ,dq1−1}. Each el-

ement di of Ψ denotes the di -th component of the secret

key and public key of ci -th instance of KSN-OTS.

(e) B then replaces the di -th component secret key and public

key of ci -th instance of KSN-OTS by x
p
i and y

p
i respec-

tively.

(f) B chooses q2 nodes from authentication Merkle tree de-

noted by their positions as (ai ,bi) where ai denotes the
height in the tree andbi denotes thebi -th node at height ai
from left.ai ∈R {0, 1, . . . ,h+ℓ−1} andbi ∈R {0, 1, . . . , 2

ai−

1} such that no two (ai ,bi) pairs are the same. Let the list

be ϒ = {(a0,b0), (a1,b1), . . . , (aq2−1,bq2−1)}.
(g) B sorts the (ai ,bi) pairs by the increasing values of ai

and let the sorted list be (a′i ,b
′
i). Now if there are multiple

nodes with same height, then sort them by bi . Let the
sorted list be ϒ′ = {(a′

0
,b ′

0
), (a′

1
,b ′

1
), . . . , (a′q2−1,b

′
q2−1)}.

(h) B then constructs the authentication Merkle tree in the

following fashion:

(i) The leaf nodes of the Merkle tree are the components of

the PK i for 0 ⩽ i ⩽ 2
h − 1. All the leaves are at height

h + ℓ where the height of the root node is 0.
(ii) B chooses the hash keys and the random pads uniformly

at random for all the nodes except the node (a′i ,b
′
i)s of

the Merkle tree.

(iii) From the leaf nodes, B starts constructing the tree upto

height a′
0
−1. Except the nodes (a′i ,b

′
i) ∈ ϒ

′
who has the

same height as a′
0
, B computes all the nodes of the layer

a′
0
normally. For the nodes (a′i ,b

′
i) ∈ ϒ′ with a′i = a′

0
,

it sets the value of ya′i ,b
′
i
as ysj from the target list of

the second-preimage, hash key as ksj and computes the

random pad as

va′i ,b′i = xsj ⊕ (Merge(ya′i+1,2b
′
i
,ya′i+1,2b

′
i+1

)),

because we know that ysj = SWIFFTksj
(xsj).

(iv) After completing the layer a′
0
, B continues to compute

the authentication Merkle tree faithfully until the next

height a′i in the list ϒ′ and repeats the step (iii) for new

a′i .
(i) After completing the construction of theMSS tree, B

publishes all the hash-key and the random pads along with

positions of the nodes for which they have been used and

the root of theMSS tree.

(2) Query.
(a) B answers q queries of A.

(b) Let the set of messages be {M0,M1, . . . ,Mq−1}, whereMi
is the message of i-th query.

(c) B returns the signature si = (i,σi ,PK i , Authi) corre-
sponding to the message Mi under the i-th instance of

KSN-OTS.

(3) Answer.
(a) In this phaseA returns (M∗, s∗) where (M∗, s∗) , (Mi , si)

for all 0 ⩽ i ⩽ q − 1.
(b) Let s∗ = (i∗,σ ∗,PK ∗, Auth∗).
(c) If K2SN.Verify(M∗, s∗) = 1, then Continue, else failure.
(d) If i∗ ∈ Γ, there are three possibilities:

(i) M∗ = Mi∗ , which implies s∗ , si∗ . This case has also
two different situations.

(A) (PK ∗, Auth∗) = (PK i∗ , Authi∗): This implies forgery

of the i∗-th instance of KSN-OTS.

• Ifdi∗ ∈ BM∗ , thenB computes the second preimage

of (x
p
i∗ ,y

p
i∗ ,k

p
i∗) and returns it.

• elseif di∗ < BM∗ , then B returns failure.
(B) (PK ∗, Auth∗) , (PK i∗ , Authi∗): This implies that

B found at least one collision during the verification

of PK ∗ under Auth∗.
• If a node for any (ai ,bi) ∈ ϒ got calculated during

verification and the B found a new image for the

node which is different from the value used to com-

pute the tree, then B found a second-preimage for

the node yai ,bi .
• If a node for any (ai ,bi) ∈ ϒ got calculated during

verification and its image is the same as the value

used to compute the tree, then B returns failure.
(ii) M∗ , Mi∗ , but s

∗ = si∗ . This implies forgery of the i∗

instance of KSN-OTS.

(A) If di∗ ∈ BM∗ , then B computes the second preimage

of (x
p
i∗ ,y

p
i∗ ,k

p
i∗) and returns it.

(B) As di∗ < BM∗ , then B returns failure.
(iii) M∗ , Mi∗ , but s

∗ , si∗ . This case has also two different

situations.

(A) (PK ∗, Auth∗) = (PK i∗ , Authi∗): This implies forgery

of the i∗ instance of KSN-OTS.
• Ifdi∗ ∈ BM∗ , thenB computes the second preimage

of (x
p
i∗ ,y

p
i∗ ,k

p
i∗) and returns it.

• else if di∗ < BM∗ , then B returns failure.
(B) (PK ∗, Auth∗) , (PK i∗ , Authi∗): This implies that

B found at least one collision during the verification

of PK ∗ under Auth∗.
• If a node for any (ai ,bi) ∈ ϒ got calculated during

verification and then B found a new image for

the node which is different from the value used to

K2SN-MSS: An Efficient Post-Quantum Signature (Full Version) xxx, yyy, zzz

compute the tree, then B found a second-preimage

for the node yai ,bi .
• If a node for any (ai ,bi) ∈ ϒ got calculated during

verification and its image is the same as the value

used to compute the tree, then B returns failure.
(e) If i∗ < Γ, there are three possibilities:

(i) M∗ = Mi∗ which implies s∗ , si∗ . This case has also
two different situations.

(A) (PK ∗, Auth∗) = (PK i∗ , Authi∗): This implies forgery

of the i∗ instance of KSN-OTS. Then B returns fail-
ure.

(B) (PK ∗, Auth∗) , (PK i∗ , Authi∗): This implies that

B found at least one collision during the verification

of PK ∗ under Auth∗.
• If a node for any (ai ,bi) ∈ ϒ got calculated during

verification and then B found a new image for the

node which is different from the value used to com-

pute the tree, then B found an second-preimage

for the node yai ,bi .
• If a node for any (ai ,bi) ∈ ϒ got calculated during

verification and its image is the same as the value

used to compute the tree, then B returns failure.
(ii) M∗ , Mi∗ , but s

∗ = si∗ . This implies forgery of the i∗

instance of KSN-OTS. Then B returns failure.
(iii) M∗ , Mi∗ , but s

∗ , si∗ . This case has also two different

situations.

(A) (PK ∗, Auth∗) = (PK i∗ , Authi∗): This implies forgery

of the i∗ instance of KSN-OTS. Then B returns fail-
ure.

(B) (PK ∗, Auth∗) , (PK i∗ , Authi∗): This implies that

B found at least one collision during the verification

of PK ∗ under Auth∗.
• If a node for any (ai ,bi) ∈ ϒ got calculated during

verification and then B found a new image for

the node which is different from the value used to

compute the tree, then B found a second-preimage

for the node yai ,bi .
• If a node for any (ai ,bi) ∈ ϒ got calculated during

verification and its image is the same as the value

used to compute the tree, then B returns failure.

Now we compute the success probability of B.

• Case 3.d: As the elements of the list Γ is chosen at random,

then the probability of that i∗ ∈ Γ is q1/2
h
. Now we analyze

the three different cases under this situation.

– Case 3.d.i: There are 2m (m denotes the length of the mes-

sage space in bits) possible combinations of the messages

and messages space is uniformly random. Therefore, the

probability of M∗ = Mi∗ is 2
−m

. Case A happens with

probability smaller than 2
−2n

. Because the min-entropy

of the distribution of σ is at least 2
−2n

[24, 40] and there-

fore, the probability that the A will get another σ ∗ is at
most 2

−2n
. If case A happens, then di∗ ∈ 1CFF (M

∗) has
probability 1/2 and then B found a second-preimage of

the (xdi∗ ,ydi∗ ,kdi∗) of the q1 targets. Notice that the case
A and B are complementary to each other and then B hap-

pens with at least probability (1 − 2−2n) [13]. In case of B,

there must be one call to SWIFFT between the KSN-OTS

public key and the root node where the output for the

forgery by the pigeonhole principle and the correct signa-

ture agree for the first time and let the node be (a∗,b∗) ∈ ϒ.
As the nodes of ϒ are distributed uniformly at random over

the tree, the probability that collision happens exactly at

the node (a∗,b∗) is q2/2
h+ℓ −1. As the input data depends

on previously computed outputs of SWIFFT, it must dif-

fer. Hence, for challenge pair (ya∗,b∗ ,ka∗,b∗), the input to
this call to SWIFFT is a second preimage for xa∗,b∗ , that
B returns breaking MM-SPR of SWIFFT. Notice that all

the events under Case 3.d.i are mutually exclusive. Hence

maximum success probability of B under case 3.d.i is

2
−m ·max

{
2
−2n × 2−1, (1 − 2−2n) × q22

−(h+ℓ)
}
.

As 2n >> h, 2n >> ℓ, the maximum success probability

here is

q2 (1 − 2
−2n)

{
2
−(h+ℓ+l)

}
.

– Case 3.d.ii: This case essentially reduces to the problem

of finding a different t/2-subset of elements in the SK i∗

that sums to σi∗ . Again, this requires at least one element

in {0, 1}2n . The probability of this even is upper bounded

by one over the number of possible distinct t/2- subset
sums, meaning in the order of 2

−2n
.

– Case 3.d.iii: As the cases 3.d.1, 3.d.ii and 3.d.iii are mu-

tually exclusive, then then the probability of this case

approximately (1 − 2
−m − 2

−2n). Suppose that case A

has occurred. This happens with probability smaller than

2
−2n

[24, 40]. Indeed, σi∗ is not known to the adversary,

and it requires at least one uniformly distributed secret

value in {0, 1}2n since | BM∗ \ BMi∗ |⩾ 1. The only thing

A knows about σi∗ is that it is the sum of at least one

uniformly secret 2n-dimensional binary vector and other

values in [t/2 − 1]
2n

, which may be part of σi∗ . Now
di∗ ∈ BM∗ has probability 1/2. Notice that the case A and

B are complementary to each other and then B happens

with at least probability (1 − 2−2n) [13]. Now if A occurs

then di∗ ∈ BM∗ happens with probability 1/2 as there are

exactly half of the messages of the total message space

whose 1CFF includes di∗ . Now if B occurs, then B returns

breaking MM-SPR of SWIFFT with probability q2/2
h+ℓ .

Therefore, total probability of B to achieve success under

case 3.d.iii is

(1 − 2−m − 2−2n) ·max

{
2
−2n × 1/2, (1 − 2−2n)q2/2

h+ℓ
}
.

As 2
−2n ≈ 0, the maximum success probability here re-

duces to

(1 − 2−m − 2−2n) · (1 − 2−2n)q22
−(h+ℓ) .

Therefore, the maximum success probability of B under case

3.d will be

q12
−h

max

{
q2 (1 − 2

−2n)2−(h+ℓ+l) , 2−2n , (1 − 2−m − 2−2n)·

(1 − 2−2n)q22
−(h+ℓ)

}

= q12
−h (1 − 2−m − 2−2n) · (1 − 2−2n)q22

−(h+ℓ) .

xxx, yyy, zzz Sabyasachi Karati and Reihaneh Safavi-Naini

• Case 3.e:As the elements of the list Γ is chosen at random,

then the probability of that i∗ < Γ is 1 − q1/2
h
. Now we

analyze the three different cases under this situation.

– Case 3.e.i: This happens with probability with 2
−m

. As

case A here is exactly the same as the case 3.d.A, the case

A will happen with probability 2
−2n

. Then case B happens

with probability (1 − 2−2n) given that case case 3.d.a has

occurred. Then B returns breaking MM-SPR of SWIFFT

with probability q22
−(h+ℓ)

. Therefore, success probability

of B here is

2
−m × (1 − 2−2n) × q22

−(h+ℓ) .

– Case 3.e.ii: This case essentially as the same as 3.d.ii,

meaning the probability of this event is 2
−2n

.

– Case 3.e.iii: This happens with probability with (1 −
2
−2n −2−m). Case B happens with probability with atleast

1 − 2
−2n

given that case case 3.e has occurred. Then B

returns breaking MM-SPR of SWIFFT with probability

q2/2
h+ℓ . Therefore, maximum success probability of B

here is

(1 − 2−2n − 2−m) × (1 − 2−2n) × q22
−(h+ℓ) .

Therefore, the probability of success under case 3.e is

(1 − q12
−h) (1 − 2−2n − 2−m) (1 − 2−2n)q22

−(h+ℓ) .

If we assume the success probability of A is ϵ , then the success

probability of B is ϵ · ϵ ′ where

ϵ ′ = max{max. success probability under Case 3.e,

max. success probability under Case 3.e}

= (1 − 2−2n − 2−m) (1 − 2−2n) ·max

{
q12
−hq22

−(h+ℓ) ,

(1 − q12
−h)q22

−(h+ℓ)
}

Putting q1 = 2
h
and q2 = 2

h+ℓ
, we get that

ϵ ′ = (1−2−2n−2−m) (1−2−2n)·max

{
2
−2h

2
−2(h+ℓ) , (1 − 2−2h)2−2(h+ℓ)

}
.

For a target list of length q′ after q queries, the success probability

of B is upper-bounded by InSec
MM-SPR (H ,q,q′) and that implies

ϵ ⩽ InSec
MM-SPR (H , 2h , 2h (1 + 2ℓ))/ϵ ′. □

□

Estimating security level of K2SN-MSS. In [21] it was argued that

(See Equation (16) of [21]), if a hash function H is considered as

random oracle, then

InSec
MM-SPR (H ,q,q′) =

(q + 1)q′

2
n′ ,

whereHK : {0, 1}2n 7→ {0, 1}n
′

.

In K2SN-MSS, we instantiate H by SWIFFT with parameters

m̂ = 16, n̂ = 64 and p = 257. Therefore, n′, the size of the hash
output is 576 bits.

For h = 20, ℓ = 9, m = 256, n = 512 and n′ = 576, we have

(1 − 2−2n − 2−m) (1 − 2−2n) ≈ 1, and so,

ϵ ⩽
2
40 (1 + 29)2−576

max

{
2
−40

2
−58, (1 − 2−40)2−58

} ≈ 2
−469.

The bit-security of the signature scheme is computed as log
2
(ϵ/τ) [9],

where τ is the time (measured in the number of hash evaluation)

required for key generation, q signature generations, q verifica-

tions and the time required for A to forge a signature [40]. Key

generation requires 2
h+ℓ+1 − 1 computations of SWIFFT, signing

2
h
signatures requires 2

h × (h + 1) × 2ℓ+1 hash computations and

verification of 2
h
signatures requires 2

h × (h + 2ℓ+1) hash compu-

tations [13]. Therefore, the lower bound on τ is

τ ⩾ 2
h+ℓ+1 + 2h × (h + 1) × 2ℓ+1 + 2h × (h + 2ℓ+1) ≈ 2

35

and the bit-security of KSN-MMS for the given parameters will be

504.

4 SIMD PARALLELIZATION OF NTT

Our implementation of K2SN-MMS uses SIMD parallelization of

SWIFFT. In the following we show how ring multiplication, which

is the most costly operation in SWIFFT, can be parallelized using

SIMD instructions of avx2. We use the level of parallelization as a

parameter that can be chosen based on the setting.

Notations.Wewill denote a vector by bold lowercase alphabet (e.g.

z, βββ). By a single subscript, we denote a vector of dimension 64 (e.g.

zi is a vector of length 64). If we use two subscript separated by a “,”,
then it denotes a vector of length 2

δ
. We denote the kth component

of a vector zi (or zi, j) as zi [k] (or zi, j [k]). We use ⊕p and ⊙p as

defined in Section 2. The main computation of K2SN-MSS is the

computation of SWIFFT. We describe our SIMD parallelization of

this computation for the following parameters:

n̂ = 64,m̂ = 16,p = 257 and ω = 42 (mod 257),

These are the parameters given in [5, 28]. For these parameters, the

output of SWIFFT and дSWIFFT are elements of Z64
257

. The input to

SWIFFT is from Z1024
2

and to дSWIFFT is from Z1024
257

. An input vec-

tor z is mapped into elements of R by partitioning the vector z into
16 sub-vectors of dimension 64 each, such that z = (z0, z1, . . . , z15) ,
where each zi can be represented as a ring element. Further assume

that each zi = (zi,0, zi,1, . . . , zi,63), with zi, j ∈ Z2 (or zi, j ∈ Z257).
Let a0, a1, . . . , am̂−1 be the multipliers of a SWIFFT function. Then

the hash of z is computed by equation (4) as

∑
15

i=0 ai · zi . This com-

putation in practice is by equation (5) as

∑
15

i=0 NTT(ai)⊙p NTT(zi)
and so mainly computation of NTT.

Let yi be the NTT of zi given by yi = NTT(zi) = (yi,0,yi,1, . . . ,
yi,63). Our objective is to parallelize the computation of yi =
NTT(zi) for 0 ⩽ i ⩽ 15. We introduce a parameter δ that de-

termines the level of parallelization: that is a δ -parallelized compu-

tation of NTT, performs operation on 2
δ
components of the vector

yi . We divide yi into 64

2
δ vectors of dimension 2

δ
such that yi =(

yi,0, yi,1, . . . , yi, 64

2
δ −1

)
, where yi, ℓ =

(
yi,2δ ·ℓ+0,yi,2δ ·ℓ+1, . . . ,

yi,2δ ·ℓ+2δ−1
)
for 0 ⩽ ℓ ⩽ 64

2
δ −1. Therefore, each yi, j is j

th
0

compo-

nent of the vector yi, j1 for some 0 ⩽ j0 ⩽ 2
δ −1 and 0 ⩽ j1 ⩽

64

2
δ −1.

We rewrite the j of equation (8) as j = j0 + 2
δ j1, where 0 ⩽ j0 ⩽

2
δ − 1 and 0 ⩽ j1 ⩽

64

2
δ − 1. As a consequence, k of the equation (8)

has to broken down into k0 and k1 as k = k0 +
64

2
δ k1, where 0 ⩽

K2SN-MSS: An Efficient Post-Quantum Signature (Full Version) xxx, yyy, zzz

k0 ⩽
64

2
δ − 1 and 0 ⩽ k1 ⩽ 2

δ − 1. Now we compute each yi, j as,

yi, j =
63∑
k=0

(zi,kω
k)ω2jk ,∀j, 0 ⩽ j ⩽ 63. (8)

The equation (8) can be restated as:

yi, j0+2δ j1 =

63∑
k=0

(zi,kω
k)ω2jk

(9)

=

64

2
δ −1∑
k0=0

(
ω2

δ+1
) j1k0

· y′j0,k0
, (10)

where
y′j0,k0

= α j0,k0 · βj0,k0 , (11)

α j0,k0 = ω (2j0+1)k0 , (12)

βj0,k0 =

2
δ−1∑
k1=0

(
ω

64

2
δ k1 (1+2j0)zi,k0+ 64

2
δ k1

)
. (13)

Forδ -parallelization, let yi, j1 = (yi,2δ ·j1+0,yi,2δ ·j1+1, . . . ,yi,2δ ·j1+2δ−1).

We compute the components of the vectors yi, j1 in parallel for

0 ⩽ j1 ⩽
64

2
δ − 1. From equation (10), we know yi,2δ ·j1+j0 (for

0 ⩽ j0 ⩽ 2
δ − 1) can be expressed as

∑ 64

2
δ −1

k0=0

(
ω2

δ+1
) j1k0

· y′j0,k0
.

Therefore, the vector yi, j1 can be written as

yi, j1 =
*...
,

64

2
δ −1∑
k0=0

(
ω2

δ+1
) j1k0

· y′
0,k0
, . . . ,

64

2
δ −1∑
k0=0

(
ω2

δ+1
) j1k0

· y′
2
δ−1,k0

+///
-

.

(14)

Thus the vector yi, j1 can be computed from the vector y′j0,k0 =

(y′
0,k0
,y′

1,k0
, . . . ,y′

2
δ−1,k0

) by multiplications by scalars (ω2
δ+1

) j1k0 ,

0 ⩽ k0 ⩽
64

2
δ − 1.

On the other hand, each component y′j0,k0
of the vector y′j0,k0

depends onα j0,k0 and βj0,k0 through the equation (11). Thus, we can
express the vector y′j0,k0 as y

′
j0,k0
= (α

0,k0 · β0,k0 ,α1,k0 · β1,k0 , . . . ,

α
2
δ−1,k0 · β2δ−1,k0), which can be viewed as the component-wise

multiplication of the vectors ααα j0,k0 = (α
0,k0 ,α1,k0 , . . . ,α2δ−1,k0),

and βββ j0,k0 = (β
0,k0 , β1,k0 , . . . , β2δ−1,k0).

The vectorsααα j0,k0 can be precomputed as they do not depend on

the input string. If z ∈ Z1024
2

, the vectors βββ j0,k0 can be precomputed

or computed in real-time during the execution and this depends on

the level of parallelization. To compute vectors yi in parallel, we

first compute vectors y′j0,k0 from ααα j0,k0 , and βββ j0,k0 , and then using

equation (14), compute the vectors yi, j1 from the vectors y′j0,k0 .
Details are in Section 4.1.

4.1 Parallelization of NTT when zi ∈ Z64
2

(bNTT2δ (·))
For zi ∈ Z64

2
, the computation is called bNTT − 2

δ (·), and given

below.

(1) Precomputation of vectorsααα j0,k0 : Define vectorsααα j0,k0 =

(α
0,k0 ,α1,k0 , . . . ,α2δ−1,k0) ∈ Z

2
δ

257
,whereα j0,k0 is defined by

equation (12) for 0 ⩽ k0 ⩽
64

2
δ − 1. The vectors ααα j0,k0 can

have
64

2
δ possible values depending on the value of k0. Let

Λ1 be the precomputation table where rows of the table are

the vectors ααα j0,k0 . There are k0 rows of the table Λ1 which

are indexed by k0.
(2) Precomputation of vectors βββ j0,k0 : Define vectors βββ j0,k0 =

(β
0,k0 , β1,k0 , . . . , β2δ−1,k0) ∈ Z

2
δ

257
, where βj0,k0 is defined

by equation (13). For a given k0, βββ j0,k0 can have 2
2
δ
possible

values depending on the combination of the bits

zi,k0 =
(
zi,k0+ 64

2
δ ·0
, zi,k0+ 64

2
δ ·1
, . . . , zi,k0+ 64

2
δ ·(2

δ−1)

)
, (15)

that can be easily precomputed and stored. Let the precom-

putation table Λ2 with these entries be indexed from 0 to

2
2
δ
−1. We can choose an entry from the table by the decimal

value of zi,k0 computed from the expression,

dec
2
δ (zi,k0) = zi,k0+ 64

2
δ ·0

2
0 + · · · + zi,k0+ 64

2
δ ·(2

δ−1)2
2
δ−1.

(3) Computation of vectors y′j0,k0 : For 0 ⩽ j0 ⩽ 2
δ − 1, the

jth
0

component of yj0,k0 only depends on the j
th
0
-components

of the elements Λ1 (k0)s and Λ2 (dec2δ (zi,k0))s of 0 ⩽ k0 ⩽
64

2
δ − 1. Following the observation, we can compute, for 0 ⩽

k0 ⩽
64

2
δ − 1,

y′j0,k0 = Λ1 (k0) ⊙257 Λ2 (dec(zi,k0)). (16)

(4) Computation of the output vectors yi, j1 : Using the vec-
tors y′j0,k0 , 0 ⩽ k0 ⩽

64

2
δ − 1, the output vectors yi, j1 can be

computed as:

yi, j1 =

64

2
δ −1∑
k0=0

(ω16) j1k0y′j0,k0 ,∀0 ⩽ j1 ⩽
64

2
δ
− 1. (17)

In order to compute the vectors yi, j1 of the equation (17),

2
δ
vector multiplications are required and there are

64

2
δ such

vectors. Therefore, the computation is 64 vector multiplica-

tions.

Memory requirement of the precomputation: Required mem-

ory for the table Λ1 of vectors ααα j0,k0 is of O
(
64

2
δ

)
. The size of

the table Λ2 of vectors βββ j0,k0 is of order O
(
2
2
δ
)
. The memory re-

quirement is thus dominated by the size of the Λ2 and it increases

exponentially as δ increases.

4.2 Parallelization of NTT when zi ∈ Z64
257

(дNTT2δ (·))
The input to the functionдNTT is a vector inZ64

257
. The computation

of yi = дNTT(zi) is the same as the computation of the function

bNTT except for Step 2, for which we provide details below.

The components of zi,k0 in equation (15) are now elements from

Z257 and so vector zi,k0 =
(
zi,k0+ 64

2
δ ·0
, zi,k0+ 64

2
δ ·1
, . . . , zi,k0+ 64

2
δ ·(2

δ−1)

)
has 257

2
δ
possible values. If we processed the same as the com-

putation of bNTT, the size of the table Λ2 will be 2
2
3δ

which is

not acceptable. Therefore, we compute the required βββ j0,k0 vectors
during the computation of дNTT(·) as given in Algorithm 7.

Define function Select2δ (zi,k0 , j) = (zi,k0 [j], zi,k0 [j], . . . , zi,k0 [j]).
To compute vectors βββ j0,k0 as in Algorithm 7, we also require the

xxx, yyy, zzz Sabyasachi Karati and Reihaneh Safavi-Naini

following precomputed vectors

ωωωk1, j0 =

(
ω

64

2
δ k1 (1+2·0) ,ω

64

2
δ k1 (1+2·1) , . . . ,ω

64

2
δ k1 (1+2·(2

δ−1))
)

for 0 ⩽ k1 ⩽ 2
δ − 1.

Algorithm 7 Parallelized computation of βββ j0,k0

Input: (zi,0, . . . , zi, 64

2
δ −1

) and (ωωω0, j0 , . . . ,ωωω2
δ−1, j0);

Output: βββ j0,0,βββ j0,1, . . . ,βββ j0, 64

2
δ −1

;

βββ j0,k0 = βββ j0,k0 ⊕257
(
ωωωk1, j0 ⊙257 Select2

δ (zi,k0 ,k1)
)
, ∀0 ⩽

k0 ⩽
64

2
δ − 1,∀0 ⩽ k1 ⩽ 2

δ − 1

4.3 Optimization of the Step-4 of bNTT2δ and
дNTT2δ for δ = 3

To compute vectors yi, j1 of the equation (17), 64 vector multi-

plications are required. However, the particular choice of ω ≡
42 (mod 257), we haveω16 ≡ 2

2 (mod 257) and (ω16)4 ≡ −1 (mod 257).
This will remove the need for multiplication and simplify the com-

putations of yi, j1s of equation (17) using left shifts by 2 and addition
operations only. Table 2 includes the computations of the yi, j1 and
the expressions that involve only component-wise addition or sub-

traction. In Table 3, we list all the sub-expressions which we have to

compute to obtain the final expressions of Table 2. The expressions

of the Table 3 include component-wise addition or subtraction, left

shifts by 2, 4 and 6 only.

4.4 Optimization of the Step-4 of bNTT2δ and
дNTT2δ for δ = 4

For ω ≡ 42 (mod 257), we have ω32 ≡ 2
4 (mod 257) and (ω32)2 ≡

−1 (mod 257). We can simplify the computations of yi, j1s of equa-
tion (17) using left shifts by 4 and addition/subtraction operations

only, without any multiplication. Table 4 includes all the computa-

tions of the yi, j1 and all its the expressions involve only component-

wise addition or subtraction. On the other hand, Table 5 includes

all the sub-expressions which are required to compute the final

expressions of Table 4. Observe that the expressions of the Table 5

only need component-wise addition and subtraction and left shift

by 4.

4.5 Parallelizing SWIFFT with parameter δ
Let (z0, . . . , z15) and xS = (xS,0, . . . , xS, 64

2
δ −1

), xS,i ∈ Z2
δ

257
,∀i, be

the input and output of SWIFFT, respectively, and (a0, a1, . . . , a15)
denote the vector of multipliers. The pre-computation for SWIFFT

andдSWIFFT, both, will be forдNTT2δ (ai) = (Ai,0,Ai,1, . . . ,Ai, 64

2
δ
).

The computation of xS is given in the Algorithm 8.

In gSWIFFT-2
δ
, the input vector zi s are in Z64

257
, and the computa-

tion is given by Algorithm 9, where the inputs are processed by the

function дNTT2δ while the rest of the computation is the same as

in Algorithm 8. Note that NTT computations and SWIFFT function

Table 2: Final computations of yi, j1

j1 yi, j1 ∈ Z
8

257

0 y′′i,0 ⊕257 y
′′
i,1

1 y′′i,8 ⊕257 y
′′
i,9

2 y′′i,6 ⊕257 y
′′
i,7

3 y′′i,10 ⊕257 y
′′
i,11

4 y′′i,0 ⊖257 y
′′
i,1

5 y′′i,8 ⊖257 y
′′
i,9

6 y′′i,6 ⊖257 y
′′
i,7

7 y′′i,10 ⊖257 y
′′
i,11

Table 3: Sub-computations of yi, j1 of Table 2, where each y′′i, . ∈
Z8
257

. Component-wise left Shift is denoted by≪.

y′′i,0 = y′i,0 ⊕257 y
′
i,2 ⊕257 y

′
i,4 ⊕257 y

′
i,6

y′′i,1 = y′i,1 ⊕257 y
′
i,3 ⊕257 y

′
i,5 ⊕257 y

′
i,7

y′′i,2 = y′i,0 ⊖257 y
′
i,4

y′′i,3 =
(
y′i,1 ⊖257 y

′
i,5
)

y′′i,4 =
(
y′i,2 ⊖257 y

′
i,6
)
≪ 4

y′′i,5 =
(
y′i,3 ⊖257 y

′
i,7
)

y′′i,6 = y′i,0 ⊕257 y
′
i,4 ⊖257 y

′
i,2 ⊖257 y

′
i,6

y′′i,7 =
(
y′i,1 ⊕257 y

′
i,5 ⊖257 y

′
i,3 ⊖257 y

′
i,7
)
≪ 4

y′′i,8 = y′′i,2 ⊕257 y
′′
i,4

y′′i,9 = (y′′i,3 ≪ 2) ⊕257 (y′′i,5 ≪ 6)

y′′i,10 = y′′i,2 ⊖257 y
′′
i,4

y′′i,11 = (y′′i,3 ≪ 6) ⊕257 (y′′i,5 ≪ 2)

Table 4: Final computations of yi, j1

j1 yi, j1 ∈ Z
16

257

0 y′′i,0 ⊕257 y
′′
i,1

1 y′′i,2 ⊕257 y
′′
i,3

2 y′′i,0 ⊖257 y
′′
i,1

3 y′′i,2 ⊖257 y
′′
i,3

Table 5: Sub-computations of yi, j1 of Table 4, where each y′′i, . ∈
Z8
257

. Component-wise left Shift is denoted by≪.

y′′i,0 = y′i,0 ⊕257 y
′
i,2

y′′i,1 = y′i,1 ⊕257 y
′
i,3

y′′i,2 = y′i,0 ⊖257 y
′
i,2

y′′i,3 = (y′i,1 ⊖257 y
′
i,3) ≪ 4

evaluation only use vector operations ⊕257 and ⊙257 that are per-

formed on the vectors component-wise. The output vector of these

vector operations can be directly used for the next vector operation.

Thus the above 2
δ
-way parallelization of NTT implementation of

SWIFFT function is a suitable candidate for SIMD-based paralleliza-

tion. The choice of δ depends on the available intrinsic operations

that are required for integer SIMD operations.

We provide two new implementations of SWIFFT for δ = 3

and δ = 4 using avx2 intrinsic [22], supporting 256-bit registers

for integer operations. We refer to the two implementations as

SWIFFT-8-avx2 and SWIFFT-16-avx2, achieving 8-way and 16-way

K2SN-MSS: An Efficient Post-Quantum Signature (Full Version) xxx, yyy, zzz

Algorithm 8 SWIFFT-2
δ

Input: (z0, . . . , zm̂−1), zi ∈ Z642 ; (Ai,0, . . . ,Ai, 64

2
δ
), 0 ⩽ i ⩽ m̂ − 1;

Output: xS = (xS,0, . . . , xS, 64

2
δ −1

) ∈ Z64
257

;

(1) Compute yi = bNTT2δ (zi) = (yi,0, . . . , yi, 64

2
δ −1

), ∀0 ⩽

i ⩽ m̂ − 1;
(2) Compute ti, j = yi, j ⊙257Ai,1,∀0 ⩽ i ⩽ m̂−1,∀0 ⩽ j ⩽ 64

2
δ .

(3) xS,i = xS,i ⊕257 tj,i ,∀0 ⩽ i ⩽ 64

2
δ ,∀0 ⩽ j ⩽ m̂ − 1.

Algorithm 9 generalized SWIFFT-2
δ
, in short gSWIFFT-2

δ

Input: (z0, . . . , z15) where zi ∈ Z64
2

and

(
Ai,0, . . . ,Ai, 64

2
δ

)
for

0 ⩽ i ⩽ 15;

Output: xS =
(
xS,0, . . . , xS, 64

2
δ −1

)
∈ Z64

257
;

(1) Compute yi = дNTT2δ (zi) =
(
yi,0, . . . , yi, 64

2
δ −1

)
, ∀0 ⩽

i ⩽ 15.

(2) Compute ti, j = yi, j ⊙257 Ai,1,∀0 ⩽ i ⩽ 15,∀0 ⩽ j ⩽
64

2
δ − 1.

(3) Compute xS,i = xS,i ⊕257 tj,i ,∀0 ⩽ i ⩽ 64

2
δ − 1,∀0 ⩽ j ⩽

15.

parallelizations, respectively. SWIFFT-16-avx2 has the highest par-

allelization level to the date which gives the fastest implementation.

We obtained better implementation results for K2SN-MSS using

SWIFFT-16-avx2 than SWIFFT-8-avx2 and so in the following we

give implementation details of SWIFFT-16-avx2 only. We omit the

implementation details of SWIFFT-8-avx2 here due to page limits.

All implemented codes are publicly available at GitHub [23].

The existing benchmark implementation of SWIFFT in [31] cor-

responds to [5, 28]. The implementation uses δ = 3 and parallelizes

the code using sse2 [22] instructions of Intel processors. We refer

to this implementation as SWIFFT-8-sse2.

5 K2SN-MSS SOFTWARE IMPLEMENTATION
In this section, we provide the details of the implementation of the

software K2SN-MSS. Table 6 lists the values of the parameters used

for the software K2SN-MSS and also the functions are used.

The performance of K2SN-MSS is dominated by the computation

of SWIFFT. We describe our SIMD parallelization of this computa-

tion for the following parameters:

n̂ = 64,m̂ = 16,p = 257 and ω = 42 (mod 257),

that were given in [5, 28].

Our reasoning for these choices are below. Lyubashevsky et al.

reduced the SWIFFT function to the subset sum problem and used

k-list attack to compute the preimage of a SWIFFT function [28] in

practice.

This choice of parameters also allows us to compare our im-

plementation of SWIFFT against existing software of SWIFFT [31],

both for correctness and efficiency. Note that in Zp , 42 is a 2n̂ = 128-

th root of unity. Therefore, for NTT, we use ω = 42 (mod 257) and

Parameters
Symbol Value Meaning

n 512 Security parameter

m 256 Message Space

n̂ 64 Dimension of the ring R of SWIFFT

m̂ 16 Number of multipliers of SWIFFT

p 257 Prime of SWIFFT

t 262 optimized CFF for 256-bit messages

Functions
Name Description

Hash Function: SWIFFT {0, 1}n̂m̂ 7→ {0, 1}n̂⌈log2 (p)⌉

Hash Function: дSWIFFT {0, 1}n̂m̂⌈log2 (p)⌉ 7→ {0, 1}n̂⌈log2 (p)⌉

PRF ChaCha20 {0, 1}m̂n̂ 7→ {0, 1}m̂n̂

1CFF: cm {0, 1}m 7→ {i0, i1, . . . , i t
2
−1},

where each 0 ⩽ i j < t and i j1 , i j2
for any 0 ⩽ j1 < j2 <

t
2

Sizes
Name Lengths

Signature Size 21331 Bytes

Secret Key Size 40 Bytes

Public Key Size 152 Bytes

Table 6: K2SN-MSS parameters, functions and resulting sizes

show that with this choice of ω, multiplications reduce to bit-wise

left-shift operations and results efficient implementation.

For m̂ = 16 and n̂ = 64, the input and output of SWIFFT are, 1024

and 576 bits, respectively. Therefore, SWIFFT is a hash function

which compresses 2n bits to n + nϵ with n = 512 and nϵ = 64.

Our implemented software is for 256-bit messages. Relaxing the

condition
t
2
<

p
2
by 3, we choose

t
2
= 131, such that t becomes the

smallest even positive integer 262 where log
2

(
262

131

)
⩾ 256. There-

fore we use t = 262 for our software. We start with by providing

the implementation details using intel avx2 intrinsic.
On the other hand, choice of these parameters for SWIFFT hash

function leads to 512-bit classical (256-bit quantum) security of

K2SN-MSS in multi-function-multi-target model. Therefore, we can

only compare our implemented signature scheme against hash-

based signature schemes which provide same level of security in

the same security model. The most optimized implementation of

XMSS at the same security level is given in [15]. It should be noted

that there is no existing software of XMSS
MT

and SPHINCS at the

same security level.

5.1 SWIFFT-16-avx2
In the implementation of 16-way parallelization, each 256-bit regis-

ter __m256i is partitioned into 16 blocks of 16-bit each. The input

strings are over Z257, where each element is 9-bit. The resulting

vector of 16 Z257-elements is stored in a register. This is called

packing. After completing the computation, the register content is

moved to an array of integers. This is called unpacking.
Wewill denote packed integers as vectors of (int0, int1, . . . , int15),

each inti up to 16-bit. Here, unless otherwise stated, vectors are of

dimension 16. Initially, each of the 16-bit blocks contains an element

of Z257 which is represented by 9-bit. The result of vector addition

and multiplication must be reduced modulo p = 257. The Details

xxx, yyy, zzz Sabyasachi Karati and Reihaneh Safavi-Naini

of the avx2 implementations of modular reduction, and the three

main vector operations addition, subtraction and multiplication are

given in Appendix ?? and the code is publicly available at [23].

5.2 Modular Reduction
Weuse two types ofmodular reductions referred to as LazyReduced16
and Reduced16. In LazyReduced16 the output vector can have

components that are negative integers, while the components of

Reduced16 output vector are integers in the range [0,p−1]. LazyReduced16
is a faster operation but the negative output may not be accepted

as the input in the next operation such as shifting and so we use

LazyReduced16 when negative output is acceptable by the next

operation.

(1) LazyReduced16: Let c = (c0, c1, . . . , c15). Each component

ci of c can be written as ci = ci,0 + ci,1 · 2
8 = (ci,0 − ci,1) +

ci,1 · (2
8 + 1). Therefore ci = ci,0 − ci,1 (mod p). Note that

the i-th component, depending on the values of ci,0 and

ci,1, can be negative or positive. The _mm256_and_si256
instruction computes the bit-wise AND of two __m256i reg-

isters. Letmask255 be a vector of length 16, and each com-

ponent being 255. Applying _mm256_and_si256 on c and
mask255, results in the vector c0 = (c0,0, c1,0, . . . , c15,0). The
_mm256_srli_epi16 performs right-shift on packed 16-bit

integers of __m256i.We compute c1 = _mm256_srli_epi16(c, 8).
Let c1 = (c0,1, c1,1, . . . , c15,1). We obtain the lazy reduced

vector ĉ as _mm256_sub_epi16(c0, c1), where _mm256_sub_epi16
performs subtraction on packed 16-bit integers of two __m256i
registers.

(2) Reduced16: Let ĉ = {ĉ0, ĉ1, . . . , ĉ15} = LazyReduced16(c).
To determine if the i-th component of the reduced vector ĉ
is negative, we use c′ = _mm256_cmpgt_epi16(ĉ, allone),
where allone is a vector of all −1 component. If ĉi ⩾ 0,

then c′i = −1, else it is 0. Thus we obtain c∗ with 0 and

-1 components, and 0 components corresponding to nega-

tive components of c′. Let p be a vector of length 16, each

component being p = 257. By applying _mm256_and_si256
on p and c′, we obtain a vector whose i-th component is

p modulo p if ĉi < 0, else 0. To obtain ĉ modulo p, we
use _mm256_add_epi16(p′ and ĉ), to add p′ and ĉ where

_mm256_add_epi16 performs additions on packed 16-bit in-

tegers of the two __m256i registers.

For two vectors a = (a0,a1, . . . ,a15) and b = (b0,b1, . . . , b15),
we perform the following vector operations.

5.3 Modular Vector Addition (⊕257)
The addition of the vectors is performed by _mm256_add_epi16
and then performing the modular reduction on the result.

5.4 Modular Vector Subtraction (⊖257)
First add the vector kp (each component kp, for an appropriate

choice of integer k), to the vector a such that all components of the

vector (a + kp) − b are positive. The vector subtraction operation

is done by the instruction _mm256_sub_epi16. Because of adding
kp, the positive components of (a− b) will become large and so we

perform a modular reduction at the end to reduce the components

to 9-bit representation.

5.5 Modular Vector Multiplication (⊙257)
Each ai and bi is 9-bit long and so ci = ai · bi may need more than

16-bits to represent, and this will result in an overflow. To overcome

this problem, ci is divided into two parts, ci = ci,0 + ci,1 · 2
16
, and

the reduction is computed as:

ci = ci,0 + ci,1 · 2
8 (28 + 1) − ci,1 · 2

8

= ci,0 − ci,1 (2
8 + 1) + ci,1 = ci,0 + ci,1 (mod 257).

The maximum value of ai and bi is 256. If both ai and bi are 256
then only ci,1 becomes 1 and ci,0 is zero. For all other combinations

of ai and bi , ci,1 is 0.
Let c0 = {c0,0, c1,0, . . . , c15,0} and c1 = {c0,1, c1,1, . . . , c15,1}. We

compute the vector c0 using the instruction _mm256_mullo_epi16,
and c1 using the instruction _mm256_mulhi_epu16 from the a and
b. Then we perform modular reduction Reduced16 on the vector c0.
The final vector is c∗. Adding c∗ and c1 gives the desired reduced

vector.

5.6 Implementation of the function Select16
The Select function takes an input vector of length 16 and out-

puts a vector of length 16 whose each component is the same

as the one of the selected component of the input vector by an

index as described in Section 4.2. This has been implemented us-

ing _mm256_permutevar8x32_epi32 as avx2 does not provide a

permutation operation on 16-bit __m256i register data, and so,

implementations of Select16() and Select8() are different. For

Select16(), we use the set of vectors {s0, s1, . . . , s7} where each
si , i = 0, 1, . . . , 7 is an 8-dimensional vector with each component i
as si = (i, i, . . . , i). Let a = (a2·0,a2·0+1,a2·1,a2·1+1, . . . ,a2·7,a2·7+1)
be the input to Select() function. First we select the i-th pair (a2·i ,a2·i+1)
of a using the instruction _mm256_permutevar8x32_epi32, and
construct the vector ai as

ai = _mm256_permutevar8x32_epi32(ai , si)
= (a2·i ,a2·i+1, . . . ,a2·i ,a2·i+1).

To select the 2ith component of a, we first compute the vector ai,0 =
(a2·i , 0, . . . ,a2·i , 0) using the instruction _mm256_and_si256 on the
vectors ai and the vector (−1, 0, . . . ,−1, 0). Applying _mm256_srli_epi32
on ai,0 for 16-bits, we get a′i,0 = (0,a2·i , . . . , 0,a2·i). If we perform

_mm256_or_si256 on ai,0 and a′i,0, the resulting vector will be the

output of the select function for 2i . Similarly, we perform the select

operation for (2i + 1)th components.

5.7 Further Details
Reduction is a costly operation. In the following, we show how

the number of reductions can be reduced. In bNTT16 computation

of Algorithm 8, multiplications in step 3 are accompanied by a

LazyReduced16 and so the components of the vectors y′i, j are in
the range [−256,+255]. To compute the vectors yi, j in step 4, we do

not perform reduction for vector addition and subtraction, and sub-

traction uses kp for k = 2
2
and 2

5
. This results in the components

of the output vector to be at most 14-bit long. The multiplications

t′i, j = yi, j ⊙257 A′i, j in Algorithm 8 are implemented using the

above vector multiplication followed by a Reduced16 operation,

resulting in each component of the output vector to be 9-bits and

so no further reduction for the additions x′S,i = x′S,i ⊕257 t′i, j is

K2SN-MSS: An Efficient Post-Quantum Signature (Full Version) xxx, yyy, zzz

needed. This results in vectors whose components are at most 13-bit

long. Finally, we use Reduced16 on the vector x′S,i to produce the

final result where components of x′S,i are all at most 9 bits.

These optimizations reduce the number of reduction operations.

Figures 2, 3, 4 and 5 show that the total number of vector operations

that are required for steps 3 and 4 of 16-way parallelization of NTT

is significantly smaller than the number of operations required for

8-way parallelization, and this leads to a substantial speedup of the

implementation of SWIFFT-16-avx2.

5.8 Implementation of Cover-Free-Family
KSN uses a 1-CFF which is obtained by taking all subsets of size

t/2 from a set of size t and so one can use a log
2

(t
t/2

)
bit message

space. Each subset corresponds to a particular message. For efficient

encoding of messages however, we use the algorithm proposed

in [8, 12, 40].

5.9 Implementation of Pseudo-Random
Function

We use ChaCha20 [6] as the pseudo-random function family Fn .
ChaCha20 is an state-of-the-art stream-cipher which we use to

generate the seed of each KSN-OTS from secret-key of K2SN-MSS,

and all the component secret keys of the OTS instances. We use the

avx2-based implementation of ChaCha20 from supercop [2]
1
.

6 EXPERIMENTS
We used the following platform for our implementations and ex-

periments:

Skylake: Intel®Core™i7-6700 4-core CPU @ 3.40GHz running.

The timing experiments are performed on a single core. The OS

is 64-bit Ubuntu-18.04 LTS and C codes were compiled by GCC

version 7.3.0. The code of the software is available at [23]. Dur-

ing the experiments, the turbo boost and hyper-threading were

turned off. The cache warm-up was done by 25000 iterations and

the measurements are taken as the median over 100000 iterations.

6.1 Performance Comparison of SWIFFT
Implementations

We have implemented all the parallelized version of the SWIFFT

function using 16-bit avx2 intrinsic instructions. Each element of

Z257 is represented by 9-bit. The SWIFFT evaluations were com-

puted over 1024-bit data blocks. The generalized SWIFFT function

uses 9 × 1024 bit data blocks as input. The output in both cases is a

9 × 64 = 576 bits string. For binary versions of SWIFFT-8-avx2 and

SWIFFT-16-avx2, we require approximately 8KB and 2MB mem-

ory for the precomputation tables, respectively. The Time Stamp

Counter (TSC) was read from the CPU to RAX and RDX registers

using RDTSC instruction. All the experimental results are listed in

Table 7. The results show that SWIFFT-8-avx2 and SWIFFT-16-avx2
are approximately 8% and 25% faster than the previous implemen-

tation in [5, 28]. Based on these results, we use SWIFFT-16-avx2
for K2SN-MSS.

1
The software is implemented by D. J. Bernstein and R. Dolbeau and available in the

directory “supercop-20171218/crypto_stream/chacha20/dolbeau/amd64-avx2”

Function Name Intrinsic Flag Binary Version Generalized Version

Total clk clk/byte Total Clk clk/byte

SWIFFT-8-sse2 [31] mavx2 1150 8.98 - -

SWIFFT-8-avx2 [this paper] mavx2 1047 8.17 11435 9.93

SWIFFT-16-avx2 [this paper] mavx2 866 6.77 9535 8.27

Table 7: Required clock cycles (clk) for various SWIFFT im-
plementation.

6.2 Performance Comparison of KSN and
W-OTS+

KSN-OTS andW-OTS
+
are the OTS that are used in K2SN-MSS and

XMSS respectively. We compare both of them at n = 512. For the W-

OTS
+
, we used the code for XMSS [19], available at [1, 3]. The Time

Stamp Counter reading did not work with the XMSS code of [1,

3]. We instead used clock() function of “time.h” header file. Our

measurement is the average over 1,000,000 iterations. The results of

performance comparison of KSN-OTS and W-OTS
+
are in Table 8

and it shows that, the key generation of KSN is approximately 22

times faster than that of W-OTS
+
, while signing and verification are

approximately 23 and 167 times faster than those of W-OTS
+
. This

performance is due to the simple signing operation (generation of

component secret keys and component-wise vector addition) and

efficient implementation of дSWIFFT that is used in the verification

operation of KSN-OTS.

KSN/SWIFFT-16-avx2 W-OTS
+
/SHA512/w = 16

Key Generation (µs) 164 3575

Signing (µs) 83 1872

Verification (µs) 10 1674

Secret Key/ (Bytes) 40 64

Public Key (Bytes) 4608 4352

Signature Sizes (Bytes) 1024 4288

Table 8: Performance Comparison of KSN andW-OTS+ in µs

Remark: We compare our implemented K2SN-MSS software

against the results of [15], but the code of [15] is not public.
2
[15]

reports the fastest result for XMSS.

6.3 Performance Comparison between
K2SN-MSS and XMSS

The timing measurements are done the same as in Section 6.2. We

compare our implemented software against the XMSS software

results available at [15]. We used the SWIFFT-16-avx2 implemen-

tation of K2SN-MSS. We compute the authentication path using

the TREEHASH algorithm of [10]. The results of the performance

comparisons are in Table 1 and it shows that the key generation,

signing and verification of K2SN-MSS are 2.76 times, 2.89 times and

2.65 times faster than the corresponding operations in XMSS [15],

respectively.

Remarks:
(1) The signature size of K2SN-MSS is comparable with the

signature sizes of the XMSS
MT

[20] and the SPHINCS [7], but

we can not compare K2SN against XMSS
MT

and SPHINCS

2
We tried to communicate the authors, but did not receive any reply yet.

xxx, yyy, zzz Sabyasachi Karati and Reihaneh Safavi-Naini

because the use of theMerkle tree is different in the two cases.

In K2SN-MSS and XMSS (single tree version of XMSS
MT

) use

only one layer of Merkle tree where XMSS
MT

and SPHINCS

uses multiple layers of Merkle tree.

(2) Even so, if wewant to compare K2SN-MSS against the XMSS
MT

and SPHINCS, we need optimized software of them for

n = 512. But in the literature, we could not find a single

implementation of XMSS
MT

and SPHINCS which provides

512-bit classical (256-bit quantum) security. Thus we are

unable to compare them.

(3) Our comparison is against the multi-buffer entries of the

third row of TABLE IV of [15]. It is due to the following

reasons:

(a) this is the only reported results for SHA512, where SWIFFT

output is 576 bits. This comparison is fair because of the

comparative sizes of the used hash functions.

(b) The experimental platform of [15] was

Skylake: Intel®Core™i7-6700 4-core CPU @ 4.0GHz

which is a faster machine than the machine used in our

experiments. Therefore, we believe that the comparisons

are made in Table 1 are valid and fair.

7 CONCLUDING REMARKS
Hash-based signatures are a strong alternative for post-quantum

signatures. We extended KSN-OTS for signing multiple messages

which is secure under multi-function multi-target attacks and gave

an efficient implementation using parallelization at the instruction

level, using a widely accessible technology of Intel. Our imple-

mentation also improves the state-of-the-art implementation of

SWIFFT and provides parallelization of NTT computation, both of

independent interest. Although our results are for concrete levels of

parallelization, but by providing implementation details we provide

a template for other parameters, for binary and non-binary input

vectors, and with or without precomputation. Our implementation

shows that K2SN-MSS is significantly faster than XMSS, which is

recently proposed as a candidate for standardization.

In our implementation we used SWIFFT both for KSN-OTS, and

the Merkle hash tree. Although SWIFFT is essential in KSN-OTS,

the Merkle tree is used to authenticate the public key PK i , against

the root of theMSS tree and we are not restricted to SWIFFT for

the hash function. Thus, for this tree one can use traditional hash

functions such as SHA512. Our choice of SWIFFT hash function

family for the construction of L trees andMSS has the following

advantages. Firstly, it reduces the complexity of the code: using

two different hash function families will increase the code com-

plexity and size. Secondly, SWIFFT has (asymptotic) provable se-

curity and this improves confidence in the security of the design.

Finally, SHA512 hash function family follows Merkle-Damgård con-

struction [39] which is inherently a sequential construction and

so not easily amenable to parallelization. SWIFFT function family,

however, is highly parallelizable, and can benefit from processor

architecture with longer registers to achieve higher speed.

REFERENCES
[1] [n. d.]. Hülsing. https://huelsing.wordpress.com/code/.

[2] [n. d.]. Supercop: Version 2017.12.18. https://bench.cr.yp.to/supercop.html.

[3] [n. d.]. xmss-reference. https://github.com/joostrijneveld/xmss-reference.

[4] 2018. The Internet Engineering Task Force. https://tools.ietf.org/html/rfc8391.

[5] Y. Arbitman, G. Dogon, V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen.

2008. SWIFFTX: A Proposal for the SHA-3 Standard. https://www.eecs.harvard.

edu/~alon/PAPERS/lattices/swifftx.pdfl.

[6] D. J. Bernstein. 2008. ChaCha, a variant of Salsa20.

[7] D. J. Bernstein, D. Hopwood, A. Hü lsing, T. Lange, R. Niederhagen, L. Pa-
pachristodoulou, P. Schwabe, and Z. W. O’Hearn. 2015. SPHINCS: Practical

Stateless Hash-Based Signatures. In Advances in Cryptology – EUROCRYPT (Lec-
ture Notes in Computer Science), Vol. 9056. Springer, 368–397.

[8] K. Bicakci, G. Tsudik, and B. Tung. 2003. How to construct optimal one-time

signatures. Journal of Computer Networks 43, 3 (2003), 339–349.
[9] J. Buchmann, E. Dahmen, and A. Hülsing. 2011. XMSS - A Practical Forward Se-

cure Signature Scheme Based onMinimal Security Assumptions. In Post-Quantum
Cryptography – PQCrypto (Lecture Notes in Computer Science), Vol. 7071. Springer,
117–129.

[10] J. Buchmann, E. Dahmen, andM. Schneider. 2008. Merkle Tree Traversal Revisited.

In Post-Quantum Cryptography - PQCrypto (Lecture Notes in Computer Science),
Vol. 5299. Springer, 63–78.

[11] N. Courtois, M. Finiasz, and N. Sendrier. 2001. How to Achieve a McEliece-based

Digital Signature Scheme. In Advances in Cryptology – ASIACRYPT (Lecture Notes
in Computer Science), Vol. 2248. Springer, 157–174.

[12] T. Cover. 1973. Enumerative Source Encoding. IEEE Transactions on Information
Theory 19, 1 (1973), 73–77.

[13] E. Dahmen, K. Okeya, T. Takagi, and C. Vuillaume. 2008. Digital Signatures Out

of Second-Preimage Resistant Hash Functions. In Post-Quantum Cryptography –
PQCrypto (Lecture Notes in Computer Science), Vol. 5299. Springer, 109–123.

[14] A. Das and C. E. Veni Madhavan. 2009. Public-Key Cryptography: Theory and
Practice. Pearson.

[15] A. K. D. S. de Oliveira, J. LÂťopez, and R. Cabral. 2017. High Performance of

Hash-based Signature Schemes. International Journal of Advanced Computer
Science and Applications 8, 3 (2017).

[16] W. Diffie and M. E. Hellman. 1976. New directions in cryptography. IEEE
Transactions on Information Theory 22, 6 (1976), 644–654.

[17] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. 2013. Lattice Signatures

and Bimodal Gaussians. In Advances in Cryptology – CRYPTO (Lecture Notes in
Computer Science), Vol. 8042. Springer, 40–56.

[18] A. Fog. 2016. Software optimization resources. http://agner.org/optimize/.

[19] A. Hülsing, D. Butin, S.-L. Gazdag, and A. Mohaisen. 2017. XMSS: Extended

Hash-Based Signatures. draft-irtf-cfrg-xmss-hash-based-signatures, work in

progress.

[20] A. Hülsing, L. Rausch, and J. Buchmann. 2013. Optimal Parameters for XMSS
MT

.

In Security Engineering and Intelligence Informatics: CD-ARES (Lecture Notes in
Computer Science), Vol. 8128. Springer, 194–208.

[21] A. Hülsing, J. Rijneveld, and F. Song. 2016. Mitigating Multi-target Attacks in

Hash-Based Signatures. In Public Key Cryptography – PKC (Lecture Notes in
Computer Science), Vol. 9614. Springer, 387–416.

[22] Intel. [n. d.]. https://software.intel.com/sites/landingpage/IntrinsicsGuide/#.

[23] K2SN-MSS. [n. d.]. https://github.com/anon1985/K2SN-MSS.

[24] K. Kalach and R. Safavi-Naini. 2016. An Efficient Post-Quantum One-Time

Signature Scheme. In Selected Areas in Cryptography – SAC (Lecture Notes in
Computer Science), Vol. 9566. Springer, 331–351.

[25] L. Lamport. 1979. Constructing Digital Signatures from a One Way Function.

technical report of SRI International.

[26] P. Longa and M. Naehrig. 2016. Speeding up the Number Theoretic Transform

for Faster Ideal Lattice-Based Cryptography. In Cryptology and Network Security
– CANS (Lecture Notes in Computer Science), Vol. 10052. Springer, 124–139.

[27] V. Lyubashevsky and D. Micciancio. 2006. Generalized Compact Knapsacks Are

Collision Resistant. In International Colloquium on Automata, Languages, and
Programming – ICALP (Lecture Notes in Computer Science), Vol. 4052. Springer,
144–155.

[28] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. 2008. SWIFFT: A

Modest Proposal for FFT Hashing. In Fast Software Encryption – FSE (Lecture
Notes in Computer Science), Vol. 5086. Springer, 54–72.

[29] R. C. Merkle. 1987. A Digital Signature Based on a Conventional Encryption

Function. InAdvances in Cryptology – CRYPTO (Lecture Notes in Computer Science),
Vol. 293. Springer, 369–378.

[30] R. C. Merkle. 1989. A Certified Digital Signature. In Advances in Cryptology –
CRYPTO (Lecture Notes in Computer Science), Vol. 435. Springer, 218–238.

[31] D. Micciancio. [n. d.]. https://github.com/micciancio/SWIFFT.

[32] D. Micciancio. 2007. Generalized Compact Knapsacks, Cyclic Lattices, and Effi-

cient One-Way Functions. Computational Complexity 16, 4 (2007), 365–411.

[33] D. Moody. [n. d.]. Stateful hash-based signatures.

[34] NIST. 2017. Post-Quantum Cryptography - Call for Propos-

als. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/

Post-Quantum-Cryptography-Standardization/Call-for-Proposals.

[35] C. Peikert and A. Rosen. 2006. Efficient Collision-Resistant Hashing from Worst-

Case Assumptions on Cyclic Lattices. In Theory of Cryptography Conference –

https://huelsing.wordpress.com/code/
https://bench.cr.yp.to/supercop.html
https://github.com/joostrijneveld/xmss-reference
https://tools.ietf.org/html/rfc8391
https://www.eecs.harvard.edu/~alon/PAPERS/lattices/swifftx.pdfl
https://www.eecs.harvard.edu/~alon/PAPERS/lattices/swifftx.pdfl
http://agner.org/optimize/
https://github.com/anon1985/K2SN-MSS
https://github.com/micciancio/SWIFFT
 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals

K2SN-MSS: An Efficient Post-Quantum Signature (Full Version) xxx, yyy, zzz

TCC (Lecture Notes in Computer Science), Vol. 3876. Springer, 145–166.
[36] J. Rompel. 1990. One-way functions are necessary and sufficient for secure

signatures. In ACM symposium on Theory of computing – STOC. ACM, 387–394.

[37] P. W. Shor. 1994. Algorithms for quantum computation: discrete logarithms and

factoring. In Proceedings 35th Annual Symposium on Foundations of Computer
Science. 124–134.

[38] T. Simonite. [n. d.]. MIT Technology Review.

[39] W. Sun, H. Guo, H. He, and Z. Dai. 2007. Design and optimized implementation

of the SHA-2(256, 384, 512) hash algorithms. In International Conference on ASIC.
IEEE, 858–861.

[40] G. M. Zaverucha and D. R. Stinson. 2011. Short one-time signatures. Advances in
Mathematics of Communications–AMC 5, 3 (2011), 473–488.

	Abstract
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Hash Function
	2.2 XMSS and W-OTS+
	2.3 W-OTS+
	2.4 XMSS: A Secure Merkle Tree MSS Construction xmsst
	2.5 SWIFFT: An Efficient Lattice-Based Hash-Function

	3 K2SN-MSS Construction
	3.1 KSN: An Efficient Post-Quantum OTS
	3.2 K2SN-MSS construction
	3.3 K2SN-MSS Security

	4 SIMD Parallelization of NTT
	4.1 Parallelization of NTT when ziZ264 (bNTT2())
	4.2 Parallelization of NTT when ziZ25764 (gNTT2())
	4.3 Optimization of the Step-4 of bNTT2 and gNTT2 for =3
	4.4 Optimization of the Step-4 of bNTT2 and gNTT2 for =4
	4.5 Parallelizing SWIFFT with parameter

	5 K2SN-MSS Software Implementation
	5.1 SWIFFT-16-avx2
	5.2 Modular Reduction
	5.3 Modular Vector Addition (257)
	5.4 Modular Vector Subtraction (257)
	5.5 Modular Vector Multiplication (257)
	5.6 Implementation of the function Select16
	5.7 Further Details
	5.8 Implementation of Cover-Free-Family
	5.9 Implementation of Pseudo-Random Function

	6 Experiments
	6.1 Performance Comparison of SWIFFT Implementations
	6.2 Performance Comparison of KSN and W-OTS+
	6.3 Performance Comparison between K2SN-MSS and XMSS

	7 Concluding remarks
	References

