
Forgery Attack on mixFeed in the Nonce-Misuse
Scenario

Mustafa Khairallah

School of Physical and Mathematical Sciences
Nanyang Technological University

mustafam001@e.ntu.edu.sg

Abstract. mixFeed [CN19] is a round 1 candidate for the NIST Lightweight Cryp-
tography Standardization Project. It is a single-pass, nonce-based, AES-based
authenticated encryption algorithms. The authors claim that while there are no
guarantees for security in terms of confidentiality in case of nonce-misuse (repetition),
the integrity security still holds up to 232 data complexity. In this report, this claim
is not true in case the plaintext length is non-zero (≥ 16 bytes to be exact). We show
a forgery attack that requires only two encryption queries with the same nonce and
34 bytes of data.
Keywords: AEAD · forgery · mixFeed · Nonce Misuse · collision

1 Introduction
mixFeed [CN19] is an AES-based AEAD algorithm submitted to round 1 of the NIST
Lightweight Cryptography Standardization Process. It uses a hybrid feedback structure,
where half the input to the block cipher comes directly from the plaintext, while the
other half is generated from the previous block cipher call and the plaintext in a CBC-like
manner. On page 4, section 3, of [CN19], the authors make the claim that there is no
conventional privacy security in case of nonce misuse. However, the integrity security
remains until 232 data in case of nonce misuse.

While it is not clear in the brief submission document how this bound was calculated,
we believe through our analysis that is should be derived through a similar analysis of the
integrity of the encrypted CBC-MAC [Vau00, PR00] (with 64 bits of random feedback
between every two consecutive block-cipher calls). However, our analysis show that this
claim may only be true for the case when the plaintext size is less than 16 bytes, which is a
very restrictive scenario. In the next section, we show a simple forgery attack that requires
only 32 bytes of plaintext and succeeds with probability 1 after only 1 nonce repetition.

2 Attack on the mixFeed AEAD mode in the Nonce-Misuse
model

1. Generate an associated data string A and a plaintext string M of 32 bytes, divided
into 4 words of 8 bytes each: M0, M1, M2, M3.

2. Generate a plaintext string M
′ of 32 bytes, divided into 4 words of 8 bytes each:

M
′

0, M
′

1, M
′

2, M
′

3.

3. Send the following query to the encryption oracle: (N, A, M), storing the ciphertex-
t/tag pair (C, T ), where C consists of 4 words of 8 bytes each.

mailto:mustafam001@e.ntu.edu.sg


2 Forgery Attack on mixFeed in the Nonce-Misuse Scenario

EKa
EKb

EKc

M0

C0

M1

C1

M2

C2

M3

C3

δM

T

Figure 1: Trace of the first encryption query

EKa
EKb

EKc

M
′
0

C
′
0

M
′
1

C
′
1

M
′
2

C
′
2

M
′
3

C
′
3

δM

T
′

Figure 2: Trace of the second encryption query

4. Send the following query to the encryption oracle: (N, A, M
′), storing the ciphertex-

t/tag pair (C ′
, T

′), where C
′ consists of 4 words of 8 bytes each.

5. Calculate a ciphertext string C
′′ = (C0, C1, C2 ⊕ M2 ⊕ M

′

2, C
′

3).

6. Send the following challenge query to the decryption oracle: (N, A, C
′′
, T ′). The

decryption succeed with probability p = 1.

2.1 Attack Details
In order to understand why the attack works, we trace the intermediate values in the
targeted part of the execution for the encryption and decryption queries. In Figures 1
and 2, we show the encryption calls for M and M

′ . The goal on the attacker is to match
the chaining values at the input of the second encryption in the challenge query. Due
to the hybrid feedback structure, different strategies need to be used for different words
of the ciphertext. For the ciphertext feedback branch (bottom branch of Figure 3), we
simply change C3 to C

′

3, which directly decides the imput to the block cipher in the
decryption process. For the plaintext feedback branch (top branch of Figure 3), using
C

′′

2 = C2 ⊕ M2 ⊕ M
′

2 as the ciphertext word leads M
′

2 at the input of the block cipher,
since C2 ⊕ M2 is the output of the block cipher in the previous call (1). Hence, the second
encryption call matches the second encryption call from 2. Since all the calls before this
call match 1 and all the calls afterwards match 2, using the same Tag T

′ from 2 leads to
successful forgery attack.

2.2 Example
We have verified our attack using the reference implementation of mixFeed [CN19]. We
generated the example forgery shown below.



Mustafa Khairallah 3

EKa
EKb

EKc

M0

C0

M1

C1

M
′
2

C
′′
2

= C2 ⊕M2 ⊕M
′
2

M
′′
3

C
′
3

δM

T
′

Figure 3: Trace of the challenge decryption query

The two encryption queries are:

Count = 1
Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E
PT = 000102030405060708090A0B0C0D0E0F

101112131415161718191A1B1C1D1E1F
AD = 000102030405060708090A0B0C0D0E0F
CT = F4C757EEC527CAF2083A4E0E3548EB46

83EA28AB2C68D70AA9A90EF42CA6451E
324946C94446C53C5C77E661FCE80750

Count = 2
Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E
PT = 00081018202830384048505860687078

80889098A0A8B0B8C0C8D0D8E0E8F0F8
AD = 000102030405060708090A0B0C0D0E0F
CT = F4CE45F5E10AFCCD407B145D592D9531

4E21C4BB0B694B376CC43C361BA8B89A
2C55A84A127C07C611B2E35175B7E28C

And the challenge ciphertext is

CT = F4C757EEC527CAF2083A4E0E3548EB46
4E21C4BB0B694B377178C437D053ABF9
2C55A84A127C07C611B2E35175B7E28C

where the decryption oracle outputs

PT = 000102030405060708090A0B0C0D0E0F
DDDAFE0333148A2AC0C8D0D8E0E8F0F8

3 Instantiating the attack with different Associated data
strings

The attack can be also be instantiated using only 16 bytes of plaintext, where the encryption
queries have different associated data strings of equal number of bytes. The attacker can
then select the AD from one query with 8 bytes of the ciphertext and 8 bytes of the
plaintext taken from the other query to forge a decryption query.



4 Forgery Attack on mixFeed in the Nonce-Misuse Scenario

3.1 Example

Count = 1
Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E
PT = 000102030405060708090A0B0C0D0E0F
AD = 000102030405060708090A0B0C0D0E0F
CT = F4C757EEC527CAF2083A4E0E3548EB46

89E7DB42C6777B7BBAFE1ABB4022AF28

Count = 2
Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E
PT = 00081018202830384048505860687078
AD = 00081018202830384048505860687078
CT = BCBA409676B0679FB27F7F70D1A0A6D9

84AE15E2E3347E8886E59A759E43A0D9

CT = BCBA409676B0679F407B145D592D9531
84AE15E2E3347E8886E59A759E43A0D9

PT = 487C157BB792AB6A4048505860687078

4 Conclusion
In this report we showed that the claims of integrity of mixFeed in the nonce misuse case
are not true in general. In fact, it can only be true in case of empty (or potentially very
small) plaintext. This does not affect the security of mixFeed in the nonce respecting case.

References
[CN19] Bishwajit Chakraborty and Mridul Nandi. mixFeed. NIST Lightweight

Cryptography Project, 2019. https://csrc.nist.gov/Projects/
Lightweight-Cryptography/Round-1-Candidates.

[PR00] Erez Petrank and Charles Rackoff. Cbc mac for real-time data sources. Journal
of Cryptology, 13(3):315–338, 2000.

[Vau00] Serge Vaudenay. Decorrelation over infinite domains: the encrypted cbc-mac case.
In International Workshop on Selected Areas in Cryptography, pages 189–201.
Springer, 2000.

https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates

	Introduction
	Attack on the mixFeed AEAD mode in the Nonce-Misuse model
	Attack Details
	Example

	Instantiating the attack with different Associated data strings
	Example

	Conclusion

