
In Pursuit of Clarity In Obfuscation

Prologue

The messy birth of multilinear maps in the paper “Candidate Multilinear Maps from Ideal Lat-
tices” by Garg, Gentry, and Halevi [GGH13a] appeared to some elements of the cryptographic
research community in 2012 as the fulfillment of a prophecy foretold. Surely this was at last
the mathematical promised land that had been glimpsed in the advent of bilinear maps about
a decade earlier, but had remained elusive in the interim. There was an energy in the air.
Suddenly theoreticians were whispering amongst themselves at conferences and moving with a
sense of urgency that seemed unnatural. A single word began to emerge from the whispers to
become a battle cry: Obfuscation.

For unsuspecting graduate students, what then ensued was a dizzying dance of dramatic
claims and relentless conference deadlines. When the dust finally settles, the human cost will
perhaps best be quantified in consumed cups of coffee or extinguished whiteboard markers. The
gain might ultimately be as grand as a once-in-a-lifetime breakthrough, or as modest as a pile
of a little-used theorems worth hardly more than the paper they are written on. That story is
yet to be fully written.

What we would like to tell here instead is a story that every scientist has lived, but only few
have fully told. We want to tell the story of how we set out to solve a history-making problem,
and came out of the experience not with a solution, but with a different understanding of history.
We want to walk you, dear reader, through the intricate details of failure and the insights we
learned along the way. But not just so you can avoid our mistakes - quite the contrary. So that
when you as a scientist set out upon your own grand quest and fail time and time again along
the way, you will know you have some cheerful company.

Chapter 1: The Prophecy

The desire to obfuscate programs has likely been around nearly as long as programs themselves.
In the early days of computer programming, many programmers were consumed with the joy of
watching their creations spring to life. But surely there were a few schemers among them who
yearned to make functional but unreadable code as a way of ensuring their indispensability. The
intuitive appeal of an obfuscated program becomes more primal if we think about programs
as extensions of the human beings who develop them. A well-obfuscated program is a loyal
servant: it does all of the tasks you delegate, while closely guarding all of your secrets. It can
automatically send flowers to your lover while rebuffing the intrusions of your snooping spouse.
Obfuscation represents one of the most human traits that programs have left to master: the
ability to lie by omission.

The dream of obfuscation wafted into the cryptographic landscape alongside the discovery
of public key cryptography. In the seminal paper of Diffie and Hellman [DH76], program
obfuscation is suggested as a possible means to turn a private key encryption scheme into a
public key encryption scheme. If we could take the encryption program of a private key scheme

1



(which will have the secret key embedded in it) and sufficiently mask its inner workings so that it
does not reveal unnecessary information about the key against a resource-bound attacker, then
we could safely publish this obfuscated encryption program as a public key. But the concrete
public key encryption scheme proposed by Diffie and Hellman did not work this way. They left
it as an open question whether such an approach could be made to work. This thought dangled
before the minds of cryptographers for decades, like a lure on a dog racing track.

Next in the old testament of obfuscation, there came some bad news. A formal study of
program obfuscation, undertaken by Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan,
and Yang in 2001 [BGI+01], established that arguably the most natural formulation of the
problem is impossible to solve. To understand the crux of their result, we must ponder how to
rigorously define what secure program obfuscation should mean. Intuitively, a well-obfuscated
piece of code should leak no more information than the bare minimum it must need to perform
its function. It is tempting to say that having access to obfuscated code that computes a
function f should be like having access to f “in a black box.” This is like a magic 8-ball notion
of security: you imagine that you can ask the magic black box for f(x) on any particular input x
of your choosing, and it spits out y = f(x) seemingly out of thin air. There are no intermediary
steps of the computation that you can observe, and no differences in the running time, or energy
consumption, etc.

Of course, this impenetrable black box is a fantasy. We know real code does not behave like
this. Nonetheless, we might hope to achieve what is called “Virtual Black Box Obfuscation,”
meaning that a person who is handed the actual obfuscated code cannot manage to do anything
with it that they could not also do if given this magical black box instead. If we can achieve
this for a particular function f , then it is true that the real code is not really a black box, but
it effectively behaves like one.

The Barak et al. paper showed that this cannot comprehensively be achieved. In retrospect,
their counterexample is reasonably intuitive. The thing you can always do with code that
computes a function f and sometimes cannot do with a black box for f is ... drum roll please...
produce code that computes the function f . This is a bit more subtle than it seems, so let’s
walk through this slowly.

For some functions f , it may be easy to derive code for computing f from access to a black
box version. A basic example is a function with a very small input space. If f is a function
from two bits to 1 bit, for example, like XOR, than you can simply make an exhaustive table
that tells you exactly what f outputs for each possible input:

x y x ⊗ y

0 0 0
0 1 1
1 0 1
1 1 0

This lookup table can serve as “code that computes the function f := ⊗”, and it satisfies
this very strong notion of virtual black box obfuscation. The table obviously tells you no more
about f than you can learn by asking a black box, because all you have to do is ask the box for
the outputs on each of the 4 possible input pairs. As input spaces get larger, however, a look
up table that simply lists the function output for each input diverges farther and farther from
our internalized notion of what constitutes “code.” A table that is too large to be stored in
any plausible amount of memory does not really pass muster if we want a usable representation
of a function f . For this reason, we tend to limit our selves to functions and code that can
be represented in size polynomial in the input length. That is to say, if we allow inputs that
are n-bit strings, we want code that can be stored and computed in time poly(n), not 2n, etc.

2



Similarly, when we think about querying a black box that computes a function, we will limit
ourselves to poly(n) queries.

For concreteness, let’s consider a fixed input length of n = 512 bits. We will define a function
Cα,β : {0, 1}n → {0, 1}n that takes in an input x of length 512 and outputs a value y that is also
of length 512. The behavior of Cα,β will be determined by α and β, which will be hard-coded
constants also of length 512. The code of Cα,β will simply check if the input x = α. If so, it
output β. If not, it will output a string of 0’s. In other words, pseudocode for Cα,β might look
like:

if x = α, output β
else, output 0n

In this form, it is clear that the code gives away more than a black box for computing Cα,β

would, since we limit ourselves to querying the box at most poly(n) times. There are 2n possible
values of x, so if α is chosen uniformly at random and unknown to us, we are highly unlikely
to discover if by querying poly(n) values for x. Thus, the black box version of Cα,β should
effectively hide α (and β as well), while this pseudocode version reveals both.

It may seem hard to imagine how any piece of code that performs a check like “if x = α”
could possibly avoid revealing α. But actually we can hope to do this part with fairly standard
cryptographic tools. If we choose a suitable hash function H, we can replace a check like “if
x = α” with “if H(x) = H(α)”. Now the hard-coded constant in the code is H(α), not α itself.
So if H is a one-way function (meaning that it is hard to find α given only H(α), then our code
can effectively hide α despite performing this check.

The problem appears as we try to get fancier. Let’s define another function Dα,β that takes
in a piece of code and tests whether or not that code computes the function Cα,β . At this point,
you should object - how could such a Dα,β be defined compactly? Won’t it need to exhaustively
test the input code on all possible values? And what if the input code doesn’t always terminate?
Well, let’s cut ourselves some slack. Let’s imagine that Dα,β merely runs the input code on α
and a polynomial number of other random inputs, each for a polynomial number of steps. If
the input code spits out β on input α in that amount of time, and all other tested inputs spit
out 0n in that amount of time, then Dα,β outputs 1. Otherwise, Dα,β outputs 0.

Now let’s imagine what would happen if we could obtain obfuscated code that computes
Cα,β , which we’ll denote by O(Cα,β), and obfuscated code that computes Dα,β , which we’ll
denote by O(Dα,β). Let’s continue to suppose that α,β are uniformly random from {0, 1}n and
unknown to us. We can run O(Dα,β) on O(Cα,β) and get an output of 1, since the obfuscated
code for Cα,β should still behave as Cα,β does, and hence should pass the tests performed by
O(Dα,β). However, if we were instead given two black boxes, one that computed Cα,β and one
that computed Dα,β , and were only able to query them for a poly(n) number of times, it would
be nearly impossible for us to discover a way to make either box output 1!

This is of course the fancier way of saying that what one cannot do without code is produce
code. At least for classes of functions that include these kind of Cα,β , Dα,β examples. Faced
with this disappointing truth, cryptographers exhibited each of the 5 stages of grief:

Denial Well, maybe those commercial products for program obfuscation work in practice.
Let me try to break one.

ten minutes later...
Oh, nevermind.

Anger This counterexample is stupid pants.

3



Bargaining Ok, we can’t have virtual black box obfuscation. But maybe we can have some-
thing weaker? Dark Grey box obfuscation? Heather Gray box obfuscation? Pewter box obfus-
cation? Indistinguishability obfuscation1? Come on, please?

Depression I’m never going to get tenure from studying this at this rate.

Acceptance Forget obfuscation. Let’s go back to working on multi-authority, post-quantum,
identity-based, partially homomorphic, aggregate signatures. Someone will someday need them!

And that’s where the field stood, for over a decade. Until an obfuscated God appeared before
three wise men, Garg, Gentry, and Halevi, and told them to bring forth an age of multilinear
maps.

Chapter 2: The Flood

To understand multilinear maps and what they have to do with obfuscation, it’s best to start
with discrete log basics. We will let G denote a group of prime order p, generated by g.
We typically assume that the group G has an efficiently computable group operation and an
efficiently computable “zero test,” meaning that even if there are multiple ways to represent the
same element of G, we can recognize when two representations correspond to the same element.
This is equivalent to being able to recognize any suitable representation of the identity element,
g0.

The discrete logarithm problem can then be described as follows: we sample an exponent
a uniformly at random from Zp, and we compute ga. Given g and ga, the discrete logarithm
problem requires that we compute a. Clearly this can be done if given enough time, as Zp is
finite, and we could simply try all possibilities. But if p is sufficiently large, this brute-force
approach is not practical. Naturally, there are better approaches to computing a, some of which
work only for certain groups G. At this point, it is still strongly believed that there are good
choices for G which make computing ga from g and a easy but computing a from g and ga quite
hard. Hard enough that it can be assumed to be impractical.

We will assume that G is such a group. Then if we are given ga and gb, we can easily
compute ga+b, but it still is hard to compute a, b, or a+ b, at least when a and b are randomly
chosen. In some sense, this provides a bit of obfuscation: we know that we are adding in the
exponent, but we don’t know what the values are. This is kind of like hiding the hard-coded
constants in a piece of code, though we reveal what operation we are performing on them.

But to be useful, even obfuscated code should spit out the end result when it is done
computing. When we obtain ga+b, the result a+ b is still stuck in the exponent, and in general
it is hard to get it out. There are a few exceptions to this though - if we know that an exponent
is within a pre-determined polynomial range, for instance, we can find it exhaustively. And we
can always determine some very basic information about the exponent, like whether it is zero
or nonzero as an element of Zp.

This leads us to a potential way to obfuscate a very simple function: namely the character-
istic function of a point. We will let Pα denote the function from Zp to {0, 1} that is equal to
1 on α ∈ Zp and equal to 0 on all other inputs. If we provide the values g and gα, then the
function Pα can be computed on an arbitrary input x ∈ Zp by computing gx and comparing
this to gα. If the group G’s zero test tells us that these elements are the same, then P (x) = 1.
Otherwise, P (x) = 0.

1This one is real, as we shall see.

4



The discrete log assumption then asserts that if α is randomly chosen, we have obfuscated
our function Pα at least to the extent that the hard-coded value α cannot be efficiently extracted
from the code. It is tempting to see how far we can push this kind of trick. We’d like to be
able to perform more complex computations in the exponent of a group in such a way that
only the final function result can be efficiently extracted. For boolean functions that always
output 0 or 1, we could imagine trying to arrange it so that 0 corresponds to a final result of g0,
while 1 corresponds to a final result of gc for some nonzero value c. If all of the intermediary
exponents we obtain throughout the computation stay away from easily recognizable values like
0, we might hope we have achieved some meaningful level of obfuscation.

Let’s start by trying to put more interesting boolean functions into a form that may be
compatible with computation in an exponent. One possible template for this is matrix branching
programs. A matrix branching program represents a boolean function f : {0, 1}n → {0, 1}
through pairs of matrices. We will refer to each pair of matrices (denoted A0,i and A1,i) as
a “slot,” and each slot is associated with an index between 1 and n. For example, a matrix
branching program with n = 4 and 5 slots may look something like this:

A0,1 A0,2 A0,3 A0,4 A0,5

A1,1 A1,2 A1,3 A1,4 A1,5

1 3 2 4 2

To avoid overburdening ourselves with notation, we have somewhat casually written the
associated indices in [n] = [4] below each slot. To evaluate the function that this matrix
branching program represents on an input, simply select A0,i for any slots i where the associated
input bits are equal to 0, and select A1,i for any slots i where the associated input bits are equal
to 1. Then take the product of all these matrices in order, and see if the result is the identity
matrix or not. For example, if our input is 0010 for the above matrix branching program, we
would take the product A0,1A1,2A0,3A0,4A0,5 and compare it to the identity matrix. All of our
matrix entries and our computations will be in Zp. We can visualize this selection of matrices
as:

Note that the input bits associated to the slots do no have to go in order: in this case, the
second slot is associated with the third input bit, which is the only bit set = 1 for our particular
input.

Naturally, the matrix dimensions must be compatible for this product to make sense. We
can restrict ourselves to considering square matrices of a fixed common size, for instance, to
keep things simple. In fact, it’s typical to make the matrices each 5× 5.

Let’s see what the characteristic function of a point might look like in this template. If we
want to represent the function f : {0, 1}4 → {0, 1} that equals 1 only on the input string 0000,

5



we could choose the matrices A0,1, A1,1, A0,2, A1,2, A0,3, A1,3, A1,4 all uniformly at random from
Z5×5
p , and then set A0,4 := (A0,1A0,2A0,3)

−1. In this case, slot i would correspond to input bit
i, so the evaluation for the input 0000 would compute the product A0,1A0,2A0,3A0,4 = I. With
high probability, each of our randomly chosen matrices will be invertible, so this computation
will succeed. Also, if p is reasonably large, then the other matrix products which correspond
to other inputs will not equal the identity matrix, except with negligible probability. In cases
where the ith slot corresponds to the ith input bit, we can omit the extra indices from our
visualization:

It turns out we can place even more stringent requirements on the matrices if we want to,
and still manage to represent an impressive variety of functions. Even if we insist that all of
our matrices be 5 × 5 permutation matrices, and all of the products that correspond to valid
input evaluations result in either the identity matrix I or some other fixed matrix B, we can still
represent all boolean circuits this way! This is asserted by Barrington’s theorem, which provides
a construction that uses a number of slots that is exponential in the depth of the boolean circuit
computing the desired function f . So if we restrict ourselves to circuits of logarithmic depth in
our security parameter, this can qualify as being polynomial time.

Now let’s revisit our obfuscation of a point function Pα(x) = 0 for all x ∕= α and Pα(α) = 1
for α ∈ Zp. We obfuscated the value of α by putting it in the exponent of a group G of prime
order p, and gave out g, gα instead of α itself. The function can still be evaluated on an input
x ∈ Zp by computing gx and comparing it to gα: equivalently, computing gx−α and testing
if it is the identity element g0. But if we only have the group operation on G and nothing
else to work with, we can’t do anything much fancier in the exponent efficiently: only linear
computations.

It is natural to want to combine the magical hiding properties of putting something “in
the exponent” of a group where the discrete logarithm is hard with fancier computation. The
concept of a multilinear map arises from this dream. A k-linear map is something that takes
in k different group elements, like ga1 , ga2 , . . ., gak and produces an element in a new group
(called the target group) whose exponent is the k-way product a1 · · · ak. If the target group
does not itself have any efficient n-linear maps for n > 1, then we can think of this as a way
of enforcing that k-way products can be computed in the exponent, but not any higher degree
combinations. So if we have a 2-linear map, we can essentially perform 1 matrix multiplication in
the exponent. If we have a 3-linear map, we can perform two successive matrix multiplications in
the exponent. If we have a k-linear map, we can perform k−1 successive matrix multiplications
in the exponent, and then no more.

6



To get some useful information out after we have applied the multilinear map, we will assume
that the target group has an efficient “zero test,” that allows us to test if the resulting exponent
in the target group is 0 or not. So if we have a matrix branching program with k slots, we can
hope to somewhat hide these matrices by putting them in an exponent of a k-linear group and
still evaluate the function efficiently and correctly by zero testing a certain coordinate of the
final product matrix, a coordinate where the identity matrix I has a 0 but the other possible
output matrix B does not.

Things are not quite that easy - there needs to be some additional randomization of the
matrices in the branching program, for example, as they may have some tell-tale zero entries
themselves, or other obvious correlations. And of course, proving things formally when dealing
with unruly k-linear polynomials in the exponent is a bit of a pain. But it is not that surprising
that this approach does ultimately work - if we have an efficient k-linear map into a target group
with an efficient zero-test and not much other structure (e.g. [GGH+13b, BGK+14, GLSW15]
and many other papers).

Good candidates for 2-linear maps (a.k.a. bilinear maps) have been known for some time,
arising from the more classical structures of elliptic curve cryptography. But even 3-linear maps
that could plausibly have the right cryptographic properties remained a distant dream, until the
work of [GGH13a] opened the flood gates. Like Noah gathering the animals, the cryptography
research community responded by rounding up the applications k by k, redesigning old prim-
itives by the new methods, constructing new primitives by the new methods, and predictably
enshrining the new methods as a purpose onto themselves. It was truly an exhilarating time to
be a cryptographer! And then the ark sprung a leak...

Chapter 3: The Antiheros

The original construction of multilinear maps in [GGH13a] has not been decisively broken, but
it has not been free from unpleasant surprises either. A string of partial attacks (e.g. [CGH+15,
CLLT16, CLLT17]) on [GGH13a] and its descendants (e.g.[CLT13]) have severely shifted the
boundary of what we know about the security of these constructions, with many hoped-for modes
of usage now landing on the insecure side. As of this writing, this ground remains stubbornly
shaky. There are no widely revered and long-standing constructions, nor is there a killer attack
that obliterates all hope for this line of work. Perhaps time will yield a more satisfying state.
There is much reason to remain optimistic: after all, the notion of a cryptographically useful
3-linear map does not seem so fundamentally different from a cryptographically useful bilinear
map, and in the bilinear setting we have seemingly reached much firmer ground.

Before Gentry’s breakthrough in fully homomorphic encryption in 2009 [Gen09], one may
have justifiably felt similar doubt about the concept of performing accurate computations on
top of encrypted data. That line of work has now matured splendidly (at least from a theoreti-
cian’s perspective), and has yielded progressively simpler constructions from progressively firmer
mathematical foundations (e.g. [GSW13]). Multilinear maps even feel tantalizingly close to fully
homomorphic encryption: performing a k-wise multiplication in an “exponent” is perhaps not
so different philosophically from multiplying k underlying plaintexts without decrypting. But
the difference comes when one wants to get an answer out - in fully homomorphic encryption,
it is intended that the final result of the computation remains obscured by the encryption,
seemingly impenetrable to someone who does not have the secret key. But in k-linear maps (or
obfuscation, for that matter), a zero test on the final output needs to be efficiently performed
without comprising the rest of the computation. So additional information must be given out
to perform this test, and unsurprisingly it is this additional information that provides the fuel
for the non-trivial attacks on current multilinear map constructions.

7



Still, this may turn out to be a technical, rather than fundamental problem. The people who
decisively solve this problem will likely be heralded as heros in the view of future cryptographic
historians.2 But we are here to chronicle a perhaps less heroic pursuit - the pursuit of an answer
to the question: how much of this multilinear map stuff is really necessary for obfuscation in
the first place?

It was several years ago now that we set out to explore this question. We started by asking:
what kinds of damaging, unnecessary information do matrix branching programs really leak?
We felt this was a natural starting point, since if one is going to avoid the temptation of using
a multilinear map and hoping it hides “everything” except the zero test result, then one should
first impose some discipline by trying to identify what really needs to be hidden.

Let’s go back to considering a matrix branching program in the form:

A0,1 A0,2 A0,3 A0,4 A0,5

A1,1 A1,2 A1,3 A1,4 A1,5

1 3 2 4 2

We may first observe that the function we are representing is ultimately only affected by
certain products of these matrices, such as A0,1A0,2A1,3A0,4A1,5, which corresponds to the
function evaluation on the input string 0100. This means we can add some more randomness
to the individual matrices themselves, as long as we do not disturb these meaningful products.
Let’s sample some random invertible 5× 5 matrices R1, . . . , R4 over Zp and sprinkle them into
our matrix branching program like so:

A0,1R1 R−1
1 A0,2R2 R−1

2 A0,3R3 R−1
3 A0,4R4 R−1

4 A0,5

A1,1R1 R−1
1 A1,2R2 R−1

2 A1,3R3 R−1
3 A1,4R4 R−1

4 A1,5

1 3 2 4 2

This new matrix branching program computes the same function as before, since taking any
5-way product that corresponds to a legitimate evaluation yields the same result, e.g.

A0,1R1R
−1
1 A0,2R2R

−1
2 A1,3R3R

−1
3 A0,4R4R

−1
4 A1,5 = A0,1A0,2A1,3A0,4A1,5.

However, these additional matrices R1, . . . , R4 can help destroy unnecessary structure. For
instance, it may be the case that A1,2 = A1,3, but nonetheless R−1

1 A1,2R2 ∕= R−1
2 A1,3R3, at

least with high probability over the choices of R1, R2, R3.
Kilian [Kil88] observed that in fact, if we take only one matrix from each “slot,” the joint

distribution is now only determined by the corresponding 5-way product. For example, the
joint distribution of the 5 matrices

A0,1R1, R−1
1 A0,2R2, R−1

2 A1,3R3, R−1
3 A0,4R4, R−1

4 A1,5

can be sampled by knowing only the product A0,1A0,2A1,3A0,4A1,5, and is independent of any
further details of the individual matrices A0,1, A0,2, A1,3, A0,4 and A1,5.

To see why this is true, suppose there are any two sets of five square invertible matrices that
have the same product: ABCDE = FGHIJ . We can define R1 such that AR1 = F , simply by
setting R1 = A−1F . We can define R2 such that R−1

1 BR2 = G simply setting R2 = B−1R1G.
Similarly we can set R3 = C−1R2H and then R4 = D−1R3I to ensure that R−1

2 CR3 = H and

2In an imaginary future where there are cryptographic historians.

8



R−1
3 DR4 = I. Finally, we now must have that

R−1
4 E = I−1R−1

3 DE

= I−1H−1R−1
2 CDE

= I−1H−1G−1R−1
1 BCDE

= I−1H−1G−1F−1ABCDE

= J,

since we began by assuming that ABCDE = FGHIJ . Thus, there is always precisely one
setting for the invertible matrices R1, . . . , R4 that will transform A,B,C,D,E into F,G,H, I, J
when used as randomization in this way, while still preserving the 5-way product. Hence, if we
choose these matrices R1, . . . , R4 uniformly at random under these constraints, we will produce
a distribution for AR1, . . . , R

−1
4 E that depends only on the product ABCDE.

This implies that if we only produce the matrices corresponding to the evaluation of our ma-
trix branching program on a single input, we can achieve an obfuscation property information-
theoretically: our output still only depends upon the output of the function on this point. But
this alone is not very useful in the obfuscation setting: clearly we want to be able to evaluate
the function on many more points.

So what information beyond the function values gets compromised when we give out all of
the matrices? Potentially quite a lot. We can, for example, see whether A0,2 = A1,2, since
multiplying each of these by the same invertible matrices R−1

1 and R2 on the left and right
respectively will not obscure such an equality.

This might be important, for example, if the input bit that is referenced in deciding which
of A0,2 and A1,2 to throw into the computation is not referenced anywhere else. Under such
circumstances, A0,2 = A1,2 implies that the value of this bit never influences the output of the
function, a fact that may be difficult to discern from only oracle access to the function.

To make this even more concrete, let’s tweak our example of a point function just a tiny bit.
Consider a function f : {0, 1}4 → {0, 1} that is equal to 1 on two input strings: 0000 and 0100.
Alternatively, we could express the support of f with the notation 0 ∗ 00, indicating that the
first, third, and fourth bits must be 0, but the second bit value is a “wildcard” that can be either
0 or 1. This function f can be computed with a matrix branching program of length 4 where
the ith matrix pair corresponds to the ith input bit by choosing A0,1, A1,1, A0,2, A0,3, A1,3, A1,4

all uniformly at random from Z5×5
p , and then setting A1,2 = A0,2 and A0,4 = (A0,1A0,2A

−1
0,3).

With high probability, only the two matrix products A0,1A0,2A0,3A0,4 and A0,1A1,2A0,3A0,4 will
be equal to the identity matrix, as desired.

Now with only 4 input bits, all of the behavior of the function can be succinctly learned
by evaluating the function on all 24 = 16 possible inputs, but you can easily imagine how this
generalizes to n input bits. If we keep the support description as 0 ∗ 00... and allow the number
of 0′s to grow, it doesn’t take long before it becomes impractical to evaluate the function on
all inputs. If we pick a function with a more arbitrary but similarly structured support, like
00110101011∗010100001..., you can start to see that it could be hard to find which bit position is
the wildcard if you only get oracle access to the function. In order to determine that bit position
i is the wildcard by querying the function values, you have to find a input in the support of the
function, toggle bit position i, and see that it stays in the support. This can be done by process
of elimination on the bit positions after you have found an input in the support, but it’s not
clear how to get this starting point in polynomial number of queries when the pattern required
for the other bits is unpredictable.

9



In contrast, if you are given a matrix branching program where A0,i = A1,i for only the
wildcard position i, determining the wildcard position becomes easy! As we have already noted,
the Kilian trick of multiplying by additional random matrices that will be applied in the same
way to A0,i and A1,i does not solve this problem.

It is tempting to try something like the following: let’s take each of our 5× 5 matrices Ab,j

and embed it as the bottom right quadrant of a larger 10× 10 matrix that we will call Ãb,j . In
the top left quadrant, we will put a random diagonal matrix Db,j in Z5×5

p . In the top right and
bottom left quadrants (the off-diagonal quadrants), we will put all 0′s. Note that the random
top left block we choose for Ã0,j will be different than the random top left block we choose for
Ã1,j , even if A0,j = A1,j :

Ãb,j =


Db,j 0

0 Ab,j



Now let’s further randomize the matrices as R−1
j−1Ãb,jRj , for j from 1 to n. Note that this

time we’ve added “bookends” R0 and Rn, so the final matrix product corresponding to an input
with bit values bi will be:

Y := R−1
0


n

i=1

Ãbi,i


Rn.

Note that this seems to obscure equalities of the underlying matrices A0,j , A1,j for any value
of j. Our bookends further prevent the trivial extraction of structure such as A0,1 = A1,1 or
A0,n = A1,n by leveraging the block structure of the Ãb,1 and Ãb,n. But, you may object, how
do we evaluate the function? Don’t the R0 and Rn matrices also obscure the output?

Let’s try to correct for that. Consider the structure of
n

i=1 Ãbi,i: this will have 0′s in the
off-diagonal quadrants, a diagonal matrix in the top left quadrant, and

n
i=1Abj ,j in the bottom

right quadrant. If this is an input that evaluates to 1, then
n

i=1Abj ,j will be the 5× 5 identity
matrix I. Let’s consider a vector v ∈ Z5

p, chosen uniformly at random. We’ll let ṽ denote the
column vector in Z10

p that is formed by putting 0’s in the first 5 entries and using v as the last 5
entries. Now let v′ denote the column vector R−1

n ṽ and x denote a row vector such that column
vector xR−1

0 ṽ ≡ 0mod p. If
n

i=1Abj ,j = I, we will have xY v′ ≡ 0mod p. If
n

i=1Abj ,j ∕= I,

and further maps ṽ to something not orthogonal to R−1
0 (which is easy enough to arrange),

then xY v′ will not be congruent to 0 when the input does not evaluate to 1. Hence we can give
out x and v′ as additional tools to enable an evaluator to compute the underlying function, and
this does not look like it destroys our progress in obscuring equalities among the underlying
matrices Ab,i for a wildcard position i.

But alas, looks can be deceiving. Let’s reexamine the two matrices that now correspond
to a wildcard position i: R−1

i−1Ã0,iRi and R−1
i−1Ã1,iRi. Suppose we invert this first matrix and

multiply the result on the left of the second, obtaining

Z := R−1
i Ã−1

0,i Ã1,iRi.

Since A0,i = A1,i, we have that Ã−1
0,i Ã1,i is a diagonal matrix, with the last 5 diagonal entries

equal to 1. This means it has a 5-dimensional eigenspace with eigenvalue 1 (something unlikely
to happen when i is not a wildcard position). We observe that the matrix Z is similar to Ã−1

0,i Ã1,i,
which means it will have the same eigenvalues, and the same dimensions for the corresponding
eigenspaces. Hence by looking at the eigenvalues of Z, we can identify i as a wildcard position!

We may be tempted to keep going further down this path, sprinkling more randomness here
and there, adding dummy dimensions that may balance out asymmetries in eigenvalues, etc.,
but it seems very difficult to define success and know when to stop. Instead we will take a step
back, and rethink our approach.

10



Chapter 4: Hidden Subgroups and The Inter-Column Shell Game

All of what we have learned so far points us to an intuitive and perhaps underwhelming con-
clusion: we need something like multilinear maps to computationally hide something about our
matrices in order to have a promising path towards obfuscation of matrix branching programs.
We have seen it is necessary to hide matrix equalities. We have further seen that it is necessary
to hide eigenspace structures. But how much hiding is enough? If we manage to avoid the
eigenspace attack we just detailed, are we safe? How could we know?

We can approach these questions from a complementary perspective: what is it sufficient to
hide? One answer to this can be found in [GLSW15], where it is shown that a property called
“intercolumn security” can be leveraged to prove indistinguishability obfuscation for matrix
branching programs. We could quickly state a technical definition of intercolumn security and
a technical definition of indistinguishability obfuscation, and rush forward with explaining how
intercolumn security can form the backbone of a proof of indistinguishability obfuscation, but
this would probably make intercolumn security and indistinguishability obfuscation feel like
random and magical objects, and would not tell the more rambling human story of how they
came to be formulated and related in the first place. So be patient - as often in our quest, we
will take the scenic route.

The motivation for intercolumn security arises in the search to find a happy medium between
security properties that are very ambitious and hence easily suffice for obfuscation but seemingly
difficult to instantiate, and security properties that seem like reasonable targets for imperfect but
non-trivial constructions of multilinear maps to achieve. For the multilinear map candidates we
have so far, proving concrete and satisfying security properties from time-tested mathematical
foundations remains a challenge. So much of our intuition for what *might* be achievable
security properties comes from extrapolating our knowledge of bilinear maps, for which we have
more established candidates.

This is problematic, because the candidate multilinear maps we have are not made from the
same mathematical building blocks as the pre-existing bilinear maps. However, we will try to
stick to relatively simple and abstract properties that are not too deeply intertwined with any
particular approach for implementing multilinear maps, and hence we may be optimistic that
such structures could be instantiated in a richer variety of ways in the future.

One particularly helpful abstract structure in cryptographic bilinear groups is the structure
of subgroups. This most naturally arises when the group order is a composite number N that
is the product of a few large primes. There are many methods for building subgroup-style
structures in prime order groups (e.g. [OT10, Lew12, CM14, CGW15]), but will describe things
here in the composite order setting for simplicity. The most basic example is N = pq, where
p and q are distinct large primes. Upon encountering such a group, a mathematician will say:
“Ah, a cyclic group of order N = pq. This is isomorphic to Zp × Zq.” The mathematician is
usually fully satisfied by this, and will be surprised by any follow-up questions.

It is certainly true that for those with a good understanding of the structure of Zp and Zq

individually, the structure of Zp×Zq is an intuitive consequence. Every element of Zp×Zq has
a “p-part” and a “q-part,” and these pieces behave independently in parallel, like a teen pair of
twins who insist on dressing in vastly different styles as they are stuck going to school together.
Formally, we can express each element of our group that is isomorphic to Zp×Zq as g

r
pg

t
q, where

gp is a generator for its order p subgroup, gq is a generator for its order q subgroup, r is an
element of Zp, and t is an element of Zq. The p and q parts are stuck together as part of the
same group element, but their independence is established by the Chinese Remainder Theorem,
which says that if an element of ZN is chosen uniformly at random, the induced distributions
on its modulo p reduction and its modulo q reduction are independent. This means that if we

11



choose a number uniformly at random between 0 and N −1, and then let r denote its reduction
modulo p and t denote its reduction modulo q, revealing r gives away no information about t:
the conditional distribution of t for any given value of r is still uniformly random over Zq.

All of this is so intuitive to seasoned mathematicians that one math graduate student, upon
attending an elliptic curve cryptography talk for the first time, asked in confused shock: “but
what about these groups could possibly be hard?”

Well, my mathematician readers, what’s most interesting here for cryptographic purposes is
the fact that the isomorphism from our group to Zp×Zq may not be efficiently computable. The
fact that this underlying, decomposable structure exists does not mean that we can efficiently
compute discrete logs, nor does it mean that when faced with an arbitrary representation of the
element grpg

t
q, we can efficiently separate out its p and q parts. Crucially, this last part relies on

the assumption that factoring N into p and q is hard. If we know the individual values of p and
q, and the group operation itself is efficiently computable, we can take grpg

t
q and raise it to the

p, thereby killing its p-part and obtaining gtpq , which we can raise to the inverse of p modulo q
to obtain the original q-part, gtq. But if we don’t know the factorization of N , its not clear how
to separate out the p and q parts, and this is the backbone of a commonly used computational
hardness assumption, known as the subgroup decision assumption.

The basic subgroup decision assumption for such a group of order N = pq states that given
elements gp, g

r
pg

t
q, T where r, t are chosen uniformly at random and T is either a random element

of the whole group or a random element of the subgroup of order p, it is computationally hard
to tell which. Note that we have not given out gq, or any other element promised to be solely
in the subgroup of order q. This is crucial in a bilinear group, where we have an efficiently
computable bilinear map e : G×G → GT that maps pairs of group elements into a new “target
group” GT , essentially performing a one-time multiplication in the exponent:

e(ga, gb) = e(g, g)ab

We can write this out more explicitly in terms of the p and q parts, using g = gpgq:

e(gapg
a
q , g

b
pg

b
q) = e(gpgq, gpgq)

ab.

Don’t let the symmetry of the notation here mislead you: we can think of a as a modulo N
number, but the property of a that matters for the value of gap is the reduction of a modulo p,
while the property of a that matters for the value of gaq is the reduction of a modulo q. And for
a randomly chosen a, these are uncorrelated.

It is a further consequence of bilinearity that we can write:

e(gpgq, gpgq) = e(gp, gp)e(gp, gq)e(gq, gp)e(gq, gq).

Now let’s contemplate one of these middle terms, e(gp, gq). Since p and q are distinct primes,
there exists a value c modulo N such that c ≡ 1mod p and c ≡ 0mod q. Thus, gcp = gp, and
furthermore,

e(gp, gq) = e(gcp, gq) = e(gp, gq)
c = e(gp, g

c
q) = e(gp, g

0
q ) = 1,

where 1 here represents the multiplicative identity element in GT . The term e(gq, gp) equals 1
for the same reason. Plugging this into our calculation above, we see:

e(gapg
a
q , g

b
pg

b
q) = e(gp, gp)

abe(gq, gq)
ab.

This means that the p and q order subgroups are “orthogonal” under the bilinear map, and
computations are still happening in parallel modulo p and modulo q in the target group, tied
together but not intermixing. It can be helpful to visualize this with different colors representing

12



the mutually orthogonal subgroups: a group element can be abstracted to a collection of colors
corresponding to its non-trivial subgroup elements, and the pairing preserves only the colors
that are present in both inputs. For example, we’ll let blue represent the presence of gap for

some a ∕= 0mod p and red represent the presence of gbq for some b ∕= 0mod q, while the absence
of blue/red implies the gp/gq component is g0p/g

0
q respectively. Then the pairing relationship

behaves like:

Hence pairing an element of G with an element like gq in the bilinear map will yield 1 in the
target group if and only if the q-part of the element of G is trivial. Hence, assuming we can
efficiently recognize the identity element in GT , giving out the element gq (or any other element
exclusively inside the order q subgroup) would break our formulation of the subgroup decision
assumption. But note that giving the element gp, or elements like grpg

t
q, does not enable this

attack.
We can generalize this thinking to an arbitrary number of mutually orthogonal subgroups.

Consider, for example, a bilinear group with an order N that is the product of 4 distinct
primes: N = p1p2p3p4. We could define a plausibly hard subgroup decision problem as follows.
We could take two subgroup combinations that we want to make it a challenge distinguish, e.g.
the subgroup of order p1p2p4 and the subgroup of order p1p2, and then give out generators and
random elements from subgroup combinations that do not allow a trivial distinguishing attack
on the challenge as a consequence of orthogonality under the bilinear map. In our example, we
can give out a random element from a subgroup of any order except an order that is divisible
by p4 but not divisible by either p1 or p2. Note here that an element of order p3p4, for example,
could be paired with the challenge element under the bilinear map and would yield the identity
in the case that the challenge element was of order p1p2, but not if it was of order p1p2p4.

If we visualize this now with four colors, blue for p1, red for p2, green for p3, and yellow
for p4, we see how an element of order p3p4 (green and yellow) would distinguish our subgroup
challenge:

13



We can also generalize this thinking to a multilinear group with various subgroups that are
mutually orthogonal under the multilinear map. Let’s imagine that our multilinear map takes
k group elements and essentially computes one k-way multiplication in the exponent, landing
in a new target group where further exponent multiplications are not feasible. A particular
subgroup will contribute something non-trivial to the final target group element if and only if
all of the k input elements have a non-trivial component in this subgroup. In other words, a
product of k terms in a finite field is non-zero if and only if all of the k terms are non-zero.

If the only feature of the final target group element that we are interested in is whether it
is fully trivial or not, then we can describe this functionality as an “OR of ANDs.” Breaking
this down, we see the final element in the target group is non-trivial if it has a non-trivial
component in the first subgroup of the target group, or a non-trivial component in the second
subgroup of the target group, or a non-trivial component in the third subgroup of the target
group, etc. Furthermore, it has a non-trivial component in a given subgroup if the first input
has a non-trivial component in this subgroup, and the second input has a non-trivial component
in this subgroup, and the third input has a non-trivial component in this subgroup, etc.

The “OR of ANDs” functionality becomes quite powerful if we can support an arbitrary
polynomial number of ORs and an arbitrary polynomial of ANDs. As an example, let’s consider
a threshold function ft from the set of positive integers < 2n to {0, 1}, parameterized by a
threshold 0 ≤ t < 2n: ft(x) = 1 if x > t and ft(x) = 0 otherwise. To express this functionality
as an “OR of ANDs,” we can consider the binary representations of x and t, which we can write
as:

x = x02
0 + x12

1 + x22
2 + · · ·+ xn−12

n−1

t = t02
0 + t12

1 + t22
2 + · · ·+ tn−12

n−1.

Now x > t if:

xn−1 = 1 AND tn−1 = 0

14



OR (xn−1 = tn−1 AND xn−2 = 1 AND tn−2 = 0)

OR (xn−1 = tn−1 AND xn−2 = tn−2 AND xn−3 = 1 AND tn−3 = 0)

OR . . . AND you get the idea.

What remains is to translate these kind of equality conditions into the presence of a particu-
lar subgroup in the final result of a multilinear map computation. In the context of obfuscation,
it is convenient to think of t as a hard-coded constant in the definition of the function ft, and
we want to give out an “obfuscated” version of ft that allows someone to compute ft(x) for
any desired x. This on its own may not seem very useful, as one can use strategically chosen
inputs for x to binary search for the hard-coded value of t, seemingly defeating the purpose of
obfuscation. However, when this function ft becomes merely a component of a more compli-
cated function (as occurs in the arguments given in [GLW14, GLSW15]), things begin to get
more interesting.

To “obfuscate” a function such as ft, which is expressed as a sequence of OR’s of ANDs of
equality conditions on individual bits of the input x, we will give out 2n group elements, two
for each bit of the input. We will use an n-linear group, with dedicated subgroups for each OR
condition. For example, if we have a function like:

(x2 = 1) OR (x2 = 0 AND x1 = 1) OR (x0 = 1),

we can use three subgroups. Let’s denote their orders by p1, p2, and p3 respectively. We’ll let
gp1 , gp2 , and gp3 denote their respective generators.

In this case, our input is only three bits long, so will give out six group elements: E0,0,
E1,0, E0,1, E1,1, E0,2, E1,2. To evaluate our function on a input with bits x0, x1, x2, an honest
evaluator will compute the 3-linear map with inputs Ex0,0, Ex1,1, and Ex2,2: if the result is the
identity element of the target group, the output will be 0. Otherwise, the output is 1.

The first subgroup, generated by gp1 , will contribute a non-trivial result to the final product
if and only if x2 = 1. To arrange this, we’ll sample random components from < gp1 > for all
of the elements E0,0, E1,0, E0,1, E1,1 and as well as for E1,2, but we will use g0p1 as the < gp1 >
component of E0,2. This way, if x2 ∕= 1, then the contribution of the p1 subgroup to the final
result will be trivial. Otherwise, it will be a random (non-zero whp) element of the p1 subgroup
of the target group.

Similarly, the second subgroup, generated by gp2 , will contribute a non-trivial result to
the final product if and only if x2 = 0 AND x1 = 1. To arrange this, we’ll sample random
components from < gp2 > for the elements E0,0 and E1,0, as well as for E0,2 and E1,1. But we
will use g0p2 as the < gp2 > component of E1,2 and E0,1. This way, if x2 ∕= 0 or x1 ∕= 1, the
contribution of the p2 subgroup to the final result will be trivial. Otherwise, it will be a random
(non-zero whp) element of the p2 subgroup of the target group.

Finally, we’ll sample random components from < gp3 > for all elements except E0,0. Putting
this all together, we’ll have that the result of the multilinear map is the identity element in the
target group if and only if the input bits x0, x1, x2 fail to satisfy all of the three conditions that
are strung together by ORs.

Visually, we can represent this as follows, with p1 components represented by blue, p2
components represented by red, and p3 components represented by green:

15



To evaluate the function on the input 010, the computation would look like:

This shows how the satisfaction of the second clause translates into the non-triviality of the
final result, but we note that if subgroup decision problems are hard in some multilinear group,
this will not necessarily leak information to the evaluator about which clause was satisfied.

For this small example, all of this feels like overkill, since it is easy for someone with access
to the obfuscated function to query it to learn the conditions that live inside of our ORs. But if
we imagine a polynomial number of input variables and a polynomial number of polynomially
many AND condtions (and say the word “polynomial” a polynomial number of times!), it seems
that the obfuscation guarantee should become very meaningful.

But exactly what should the guarantee be? We’ve seen that virtual black box obfuscation
is too much to hope for in general. But in the same paper where Barak et al. proved the
impossibility of virtual black box obfuscation for all functions, they also suggested a notion of
“indistinguishability obfuscation” that was not ruled out by their arguments.

Indistinguishability obfuscation is rooted in a long tradition of game-based security defini-
tions in cryptography. The foundational definition of IND-CPA security for public key encryp-
tion, for example, requires that an attacker playing a game against an encryption challenger
cannot tell the difference between an encryption of one message M0 and an encryption of an-
other message M1, even when the attacker can decide on the values of M0 and M1 herself. This
is what it means for two probability distributions to be “computationally indistinguishable”:
if an attacker whose computational resources are polynomially bounded is playing a guessing
game between the two, she cannot do significantly better than flipping a coin. In the context
of encryption, we have to place a few constraints in the rules of the game to make this work.

16



Namely, the attacker cannot know the randomness used during the probabilistic encryption
algorithm, and also that the two messages M0 and M1 must be the same length (otherwise, the
mere length of a ciphertext might give it away).

In obfuscation, we can imagine defining a similar guessing game, and we will see what
kind of rules we need to put in place to make sure our attacker is sufficiently boxed in. We’ll
first let the attacker choose two functions, f0 and f1. The challenger will randomly set a
bit b ∈ {0, 1}, and will return an obfuscation of fb. The attacker can then examine this
obfuscation of fb for a polynomial amount of time, using polynomially-sized computational
resources, and must then declare her best guess for whether b is 0 or 1. If she guesses correctly
with probability no more than negligibly greater than 1

2 , we say that our obfuscation algorithm
achieves indistinguishability obfuscation.

The first rule we must put in place is the scope and format of our function class: what
universe will the attacker have to choose f0 and f1 from, and what format will be prescribed
for describing her choice? For now, let’s stick with the ORs of ANDs structure we were playing
with above. Now a single set of AND conditions could be described in multiple ways if we
allow redundancy, e.g (x0 = 1)AND(x2 = 0) vs. (x0 = 1)AND(x2 = 0)AND(x0 = 1), so we’ll
stipulate that each input bit can be referenced at most once in each sequence of ANDs. Other
than that, we will allow any combination of ANDs of equality conditions among the n input
bits, and will allow an arbitrary polynomial number m of such combinations to be tied together
by ORs. In the same spirit as requiring the messages M0,M1 to be the same length in the
IND-CPA security game above, we will require that attacker’s two functions f0 and f1 share
the same values of n and m (so they have the same number of input bits, and the same number
of ORs).

There is one remaining difficulty. What if the attacker chooses f0 and f1 in such a way that
she knows of an input x where f0(x) ∕= f1(x)? In this case, the requirement that an obfuscated
function still function as a function3 means that she will be able to run the obfuscated function
on her helpful input x and see whether the output is consistent with f0 or f1 - thereby winning
the guessing game every time!

It’s not very clear how best to rule this out if we allow such inputs x to exist. So we will do
something that may feel like cheating - we will insist that f0 and f1 must have the same output
over all possible inputs. Only when this criterion is satisfied will we promise that the attacker
will fail to reliably distinguish between obfuscations of f0 and f1.

But how will we know when this true? If an attacker describes f0 and f1 in terms of m
ORs of many ANDs over n input bits, how will we know if f0(x) = f1(x)∀x? The disappointing
answer is: we won’t unless we check exhaustively. This is why uses of indistinguishability
obfuscation on route to proving other cryptographic properties typically resort to complexity
leveraging : in order to extract meaning from the obfuscation guarantee, we will need to ensure
that f0(x) = f1(x)∀x by checking this equality for all 2n inputs x, and limit ourselves to values
of n where we can afford to absorb this O(2n) into our argument.

But what if we aim for a less ambitious guarantee? We can instead insist on pairs of functions
f0 and f1 for which f0(x) = f1(x) ∀x can be easily verified. If we stick to our disjunctive normal
forms, it is not too hard to come up with examples of f0, f1 candidates where this is possible.
Suppose that f0 and f1 are nearly identical, but differ by the addition of a single AND condition
in a single clause:

f0 := (x1 = 0 AND x3 = 1) OR (x1 = 0 AND x2 = 0) (1)

f1 := (x1 = 0 AND x3 = 1) OR (x1 = 0 AND x2 = 0 AND x3 = 0)

3pun intended!

17



Now, the second clause of f1 has its support contained in the support of the second clause
of f0, but it is missing the inputs where x1 = 0 AND x2 = 0 AND x3 = 1. However, we can
see that this missing support is contained in the support of the first clause. Hence the set of all
inputs where f1(x) = 1 is identical to the set of all inputs where f0(x) = 1.

If we abstract this example, we can formulate a relatively easy to check and sufficient
condition to ensure that f0(x) = f1(x) ∀x. It is “safe” for us to add a condition xi = b to clause
j of f0 to form f1 if there is another clause k satisfying the following two conditions

• For every i′ ∕= i, any condition on xi′ in clause k appears in clause j as well.

• If there is a condition on xi in clause k, it must be xi = 1− b.

In our example above, these conditions were satisfied with i = 3, b = 0, j = 2, and k = 1.
More generally, these two conditions ensure that the additional support of the less restrictive jth

clause in f0 is contained in the support of the shared kth clause, ensuring that f0(x) = f1(x) ∀x.
This is stated in a slightly different notational framework in [GLW14], but indistinguisha-

bility obfuscation for pairs of DNFs f0 and f1 that are related in this way is what is deemed
“intercolumn security.” The “column” part of that name comes from a notation that expressed
each conjunction as a “column” of a 3-dimensional matrix, and it was called “intercolumn” be-
cause the relationship between columns/conjunctions j and k is crucial here. The 3-dimensional
matrix format is not particularly helpful for our purposes, so we will not detour to describe it.

Now, to use our subgroup decision framework in a multilinear group to try to achieve
intercolumn security, we can let the number of clauses be the number of subgroups, and the
degree of multilinearity can be set to the maximum number of equality conditions within a
single clause.

To make things concrete and to put off the issue of implementing higher degrees of multilin-
earity in such a way that subgroup decision problems remain hard (a fundamental open research
problem at the time of this writing), let’s see what we can accomplish with just bilinear maps.
The most straightforward application of intercolumn security in this would only involve two
clauses (j and k) with at most two conditions each. But we can arrange things so that we can
consider two clauses with an arbitrary polynomial number of equality conditions in each. This
is because the negation of a DNF of this form becomes a new DNF with polynomially many
clauses each containing two conditions. For example:

¬ ((x1 = 0 AND x3 = 1) OR (x1 = 0 AND x2 = 0 AND x3 = 0))

is equivalent to:
(x1 = 1 AND x1 = 1)

OR (x1 = 1 AND x2 = 1)

OR (x1 = 1 AND x3 = 1)

OR (x3 = 0 AND x1 = 1)

OR (x3 = 0 AND x2 = 1)

OR (x3 = 0 AND x3 = 1)

We chose to write that last one out to help illustrate the pattern, though since it is un-
satisfiable, we could remove it. Intuitively, each clause represents one choice for how to fail to
satisfy each of the original two clauses. If the two conditions involve the same variable, they
either collapse to one condition (like the first line above, which reduces to simply x1 = 1), or
can be removed as unsatisfiable (like the last line above).

18



So how might we obfuscate a DNF like this with m short clauses? Let’s try using a bilinear
group G with m subgroups. We’ll let p1, . . . , pm denote the orders of these subgroups. We’ll let
n denote our number of input bits, and for each input bit xi we will construct two elements of
G, one for use when xi = 0 and one for use when xi = 1. The distribution of these elements
will be as follows:

• if xi = 1 − b does not appear as a condition in clause j, then the component in the
subgroup of order pj will be uniformly random for the group element representing xi = b.

• if xi = 1−b does appear as a condition in clause j, then the component from the subgroup
of order pj will be trivial for the group element representing xi = b.

When given these 2n group elements, a person can evaluate the DNF for a desired setting of
the input bits by choosing the appropriate subset of n group elements representing that input,
and then apply the bilinear map to each pair. The resulting


n
2


elements of the target group

can then be multiplied together, and the final result will be the identity element if and only if
all of the clauses failed to be satisfied.

Correctness for this setup follows from the observation that the final element of the target
group will be trivial if and only if each subgroup contribution is trivial, and the subgroup of
order pj will contribute something non-trivial if and only if and the jth clause is satisfied. So
far so good.

But security-wise, the careful reader should be concerned. But wait, you protest. A person
doesn’t have to wait to multiply all of the target group elements together before testing for the
identity element. Assuming we have an efficient identity test procedure in the target group, it
should work just as well on the individual pair outputs. This means we can learn something
more than just if the overall DNF is satisfied - we can learn which pairs of elements contribute
to its satisfaction. Furthermore, there is nothing that forces us to stick consistently to one
value for each input bit. We could sometimes use the group element corresponding to x1 = 0
for instance, and other times use the group element corresponding to x1 = 1.

These kind of issues would surely rule out an all-encompassing security notion like VBB
security, but it is not immediately obvious if they violate the much less ambitious goal of
intercolumn security. In fact, let’s see if we can sketch a proof of intercolumn security from
instances of the subgroup decision problem.

We return to our running example of intercolumn security, labeled (1) above. In transitioning
from f0 to f1, we added the condition AND x3 = 0 to the second clause. If we follow the effect
of this through our negation and transformation into a DNF with clauses containing at most
two variables, we see that this resulted in the addition of two clauses, x1 = 1 AND x3 = 1 as
well as x3 = 0 AND x3 = 1.

Let’s first consider the addition of x1 = 1 AND x3 = 1. This will require us to add a new
nontrivial subgroup component to the elements representing x1 = 1 and x3 = 1. Since this is the
third clause in our list, we’ll call this the subgroup of order p3. We observe that there is already
a clause that is satisfied when x1 = 1 and x3 = 1: namely the first clause, x1 = 1 AND x1 = 1.
This is assured to us by the intercolumn security condition that for every i′ ∕= i, and condition
on xi′ in clause k appears in clause j as well. This means the subgroup corresponding to this
clause will already have nontrivial components on the group elements representing x1 = 1 and
x3 = 1! In our example, this is the subgroup of order p1. So if we are given a generator of this
subgroup, denoted gp1 , and a challenge element T that definitely has a random component of
order p1 and may or may not have a random component of order p3, we can use this challenge
element T in creating the group elements representing x1 = 1 and x3 = 1, and effectively add
the new clause in the case that T is of order p1p3.

19



Now the one time we cannot apply this logic is when we are trying to add a clause like
x3 = 0 AND x3 = 1, where both equality conditions refer to the same variable. But in this case,
we are guaranteed by the second requirement of intercolumn security, that any condition on xi
in clause k must be xi = 1 − b, that the conditions will be conflicting, and hence the clause is
unsatisfiable, and can be omitted from our DNF representation.

Though we have only gone through an example here, it is fairly straightforward to extend this
argument and make it rigorous, hence proving that intercolumn security follows from subgroup
decision assumptions in a bilinear group, for formulas expressed as a single OR of strings of
AND conditions, each containing polynomially many equality constraints on individual input
bits.

Taking our reasoning a bit further, we might begin to suspect we don’t even need a bilinear
group. Afterall, an honest evaluator of the obfuscated boolean formula will only ever pair
elements from the given set of 2n elements, and there are only 2n(2n − 1)/2 = O(n2) pairs of
group elements to throw into the bilinear map. Since this is a polynomial anyway, we could
actually preprocess all of these pairings, and give the evaluator the set of resulting target group
elements instead. It seems clear that this change should not introduce insecurities, as we are
only giving the evaluator a polynomial number of things that she could easily compute herself
from what we were previously giving her.

This is the kind of sanity check that can ironically make us a little nuts. What is really going
on here? The subgroup decision problems in the target group become pretty basic - essentially
we are just requiring that a random element from a subgroup in GT (aka the target group)
be indistinguishable from a random element of the whole group GT , and there is no pairing to
complicate things. In this case, there is no longer any need to stop specifically at two strings of
AND conditions glued by a single OR. Why not three strings of AND conditions glued together
by two ORs ? If we preprocess all the triples of input bits, we can hope to provide O(n3)
elements of a regular group that will be sufficient for evaluation.

Clearly this approach does have a limit - we won’t get beyond polylog(n) ORs this way, as
the preprocessing and output size will become superpolynomial beyond that point. But still, we
might imagine that a constant or polylogarithmic number of ORs will still cover some non-trivial
functionalities. So - yay? We’ve achieved something substantial?

You might pick up on the *subtle* hint of foreboding in those question marks. This is
exactly the kind of moment every graduate student dreads. That moment where the pieces of
your proof all seem to finally fall into place, and everything seems to work, and then you say to
yourself: “ok, so let’s sanity check that this is all as a meaningful as I think it is.” When that
happens in real life, I recommend you stop and sleep on it. Enjoy your moment of believing it
all works and is as impressive as you imagine it could be! Revel in that moment. Linger in it.
Loiter as long as you can, until that rare moment of intellectual satisfaction forcibly expels you
from its glow.

In some small percentage of such times, the dreaded expulsion will never come. The axe
will never fall, and you will remain in the garden of Eden, your beautiful theorem secure in its
fundamental glory.

This is not one of those times.

Chapter 5: The Maddening Sanity Check

It is a general feature of life that there is rarely only one way of doing anything. In cryptogra-
phy, this seems surprisingly less true than it feels like it should be. Cryptographers have, after
all, dedicated many decades of effort to coming up with candidates for “one-way” functions,
where computing them in the intended direction is relatively easy, but inverting them is unrea-

20



sonably hard. And yet, we only have three basic categories that have risen to broadly accepted
prominence:

1. multiplication of large primes (easy) vs. factoring into large primes (hard)

2. computing a group operation (easy) vs. the discrete logarithm problem (hard for some
groups)

3. matrix multiplication (easy) vs. finding “short” solutions to linear equations (hard)

The first candidate for a one-way function is likely familiar to you as the backbone of the
RSA public key encryption and signature schemes. The second candidate (which is a actually
a category of candidates, depending on your selection of group) is what we’ve focused on in the
last few chapters. (Note that problems like subgroup decision problems in a group can only be
hard if the discrete logarithm problem is hard, so this being a one-way function is a necessary
though not known to be sufficient condition for everything we’ve been building in groups so
far.) But the third one-way function category deserves a bit of exposition at this point.

Linear algebra over Zp is similar to linear algebra over the rational numbers, or the real
numbers, or the complex numbers, in many ways. Matrix multiplication is efficient, and matrix
inversion is efficient as well. But the analogies to other fields start to feel a bit less natural
when we impose a notion of “smallness” on Zp. Intuitively, we have a gut sense of what we
mean by a small real number, at least comparatively. A real number like 2.3334 is smaller
than 10.3029333..., and we can extend our intuitive notion of smallness to vectors over the
real numbers by choosing any one of many natural-feeling or not-so-natural-feeling norms to
measure the “length” of a real vector, such as the Euclidean norm.

If we think about this too long though, it can start to feel arbitrary. What’s so special about
the point 0 on the real number line? It’s just a point like any other point in some ways. Why
should numbers near it be labeled “small” (in absolute value), and numbers far away from it be
labeled “large?” We can declare the equivalence class of 0 modulo p to be similarly special, and
represent the elements of Zp as − (p−1)

2 , . . . ,−1, 0, 1, . . . , p−1
2 so that some neighborhood from

−X to +X that is centered around 0 can be declared to contain the “small” elements of Zp. In
some sense, we can visualize the 0 in Zp to play the same role as the 0 on the real number line,
except that we have now wrapped the line around a circle, bounding all distances by p−1

2 .
It is this notion of “small” that doesn’t play nicely with matrix inversion (or more basically,

with division), and hence provides an opportunity for a one-way function. If we take a vector
x ∈ Zm

p with “small” entries, and a matrix A chosen uniformly at random in Zn×m
p , then

fA(x) := Ax defines a candidate family of one-way functions from a domain of vectors in Zm
p

with small entries to the range of all vectors in Zn
p . Why is inverting this potentially hard for

some reasonable ranges of parameters? Well, first we’ll choose m to be larger than n (typically
m > n log p), so that A is not invertible, and furthermore, treating Ax as a bunch of linear
equations in the unknown entries of x is an underdetermined system. Now, it isn’t hard to find
some solutions to this underdetermined system of linear equations. But finding a very “small”
solution is believed to be hard.

A related computational problem is the “Learning with Errors Problem,” where the task is to
solve an overdetermined system of equations that has been perturbed by small noise values. To
set up the problem, we choose a secret vector s ∈ Zn

p , a uniformly random matrix A ∈ Zn×m
p , and

a “small” noise vector e ∈ Zm
p , whose entries are each selected independently from a distribution

highly concentrated near 0 on Zp. The problem statement is then to distinguish between two
distributions over Zn×m

p ×Zm
p : the distribution of A, Ats+ e and the distribution of A, r where

r is a uniformly random vector from Zm
p . Naturally the problem varies a bit as you consider

various distributions for s and for e. For simplicity, we’ll think of s as being uniformly random

21



over Zn
p (though it has been shown that s can be taken to be “small” itself, but we won’t need

this).
Let’s first observe that without the noise vector e, the problem would be easy. Ats is a

system of m linear equations in n < m unknowns, so it will exhibit ample efficiently recognizable
structure (since A itself is not kept secret). But with e added in the mix, it’s not at all clear
what to do. Any known linear dependency between the rows of At will likely involve some large
coefficients, and multiplying those by even the small elements of e will still produce potentially
large, random elements that will obscure the structure we are trying to detect. That’s the pesky
thing about small noise - it’s small when you add it, but if you multiply it by something big,
it runs amok. Mixing noise with multiplication or division is like giving a toddler some sugary
candy - suddenly the small thing exudes an uncontrollable scale of energy.

We could try to guess e by brute force, but even a small number of possibilities for each
entry yields exponentially many possible e vectors as a function of m. If we were to take entries
of e strictly from the set of two possible values {0, 1} modulo p, we could observe that each
entry of e is a zero of the polynomial x2 − x, and hence use a linear equation like

a1,1s1 + a2,1s2 + · · ·+ an,1sn + e1 = c1,

where the a’s and c’s are known constants and the s’s and e’s are unknowns, to derive a quadratic
equation like:

(a1,1s1 + a2,1s2 + · · ·+ an,1sn − c1)
2 − (a1,1s1 + a2,1s2 + · · ·+ an,1sn − c1) = 0.

We can then re-conceptualize quadratic terms like sisj to be our new variables, so we now have
a linear equation in O(n2) unknowns. If m is on the order of n2, we might be able to solve such a
system. Since m is on the order of n log p, we won’t have to increase the number of possibilities
for each ei by much until we force a number of new linear unknowns that far exceeds the number
of equations we have, rendering this linearization approach ineffective.

In some sense, adding the random noise e to the structured vector Ats hides the structure
without destroying it, much like putting the structure in the exponent of a group where the
discrete log problem is hard. Let’s consider how we might build a subgroup-like structure in
this setting to get a new implementation of our “ORs of ANDs” obfuscation approach.

The seemingly most natural place to look for “subgroup” analogs inside a world driven by
matrix operations is subspaces. We will replace our concept of a group element with nontrivial
components in a several subgroups with the concept of a vector with nontrivial components in
several subspaces, e.g.:

Ats+Btv + Ctw + e

is a vector with components from three subspaces (namely the ranges of At, Bt, and Ct), and
the noise vector e makes it presumably hard to tell which subspaces are present, even if you
know the matrices A, B, and C.

To map our “ORs of ANDs” boolean functions onto group behaviors, we previously used
group elements for each input bit value and allowed multiplication in the exponent to implement
the AND parts, while addition in the exponent and subgroup orthogonality implemented the
ORs. Each subgroup was meant to encode one clause. Now we will try having subspaces encode
clauses, and we will have an m×m matrix correspond to each input bit value.

There is one unfortunate collision of notation that we need to navigate here. In the world of
Learning with Errors (abbreviated LWE), n typically denotes the smaller dimension of n ×m
matrices. In boolean functions as we have been using above, n typically denotes the number
of bits in the input to a function. Since we will only need a fairly small example to illustrate
our point here, we will keep with the LWE convention and have n continue to refer to a matrix

22



dimension, and we won’t give an abstract name to the number of input bits at all. We’ll make
it three. And we’ll have just two clauses:

(x1 = 1 AND x2 = 1)

OR (x2 = 0 AND x3 = 0).

We’ll pick two subspaces, spanned by A,B ∈ Zn×m
p , to correspond to these two clauses,

and we’ll have 6 matrices, denoted M0,1, M1,1, ..., M0,3, M1,3, corresponding to the possibilities
x1 = 0, x1 = 1, ..., x3 = 0, and x3 = 1 respectively. To enable evaluation of the intended
boolean function, we will give an evaluator these six matrices as well as two “bookend” vectors,
vstart and vend, and evaluation will proceed by taking vstart, multiplying by the appropriate
Mbi,i matrices corresponding to the desired input, and then finally multiplying for vend. For
example, to evaluate on the input x1 = 0, x2 = 1, and x3 = 0, one would compute:

vendM0,3M1,2M0,1vstart.

Since order matters for matrix multiplication, we’ll use as a convention for now that the
input bits are applied in order right to left as we wrote here. To make all of the dimensions
work out, we will have vstart be an m× 1 vector, and vend be a 1×m vector. To turn our final
output (which is a scalar in Zp) into a boolean result, we will have a threshold: if it is “small”,
we’ll output 0. Otherwise, we’ll output 1.

What remains is to decide how to choose distributions for all of the matrices and vectors
that reflect our boolean function. For vstart we will keep it simple and make its distribution
Ats+Btw+e, where s, w are uniformly random vectors in Zn

p , and e is a noise vector in Zm
p . So

we will start with both subspaces being present. Intuitively, we will want to arrange things so
that our Mb,i matrices will zero out any surviving contributions from these original subspaces
corresponding to clauses that are violated when xi = b. For clauses that can be satisfied when
xi = b, Mb,i should preserve their influence. We will also need Mb,i’s to interact with the noise
in a controlled way so that the effect of the noise does not ultimately swamp the result of our
computation. To accomplish this, we’ll hope to choose them all to have small entries.

Let’s think about what we might want to accomplish with the distribution of the matrix
M0,1 The value x1 = 0, fails to satisfy the first clause, but does not fail the second. So we can
choose M0,1 such that M0,1A

t is an m × n matrix of all 0’s in Zp. This will effectively kill the
initial contribution of At, much like multiplying by 0 in the exponent of a particular subgroup.
In contrast, we will not choose M0,1 to kill the contribution of Btw, so M0,1B

t should not be
all 0’s. Finally, we want to choose the entries of M0,1 to be “small”, so that M0,1e remains a
noise term of controlled magnitude.

The value x1 = 1 is consistent with both clauses, so we will not want M1,1 to have either the
range of At or the range of Bt in its kernel. But we might worry about the ranks of our matrices
giving away unnecessary information about the specifications of our clauses, so it seems helpful
to declare that all of the Mb,i matrices will have a common rank (which should be m − 2n or
lower), in order to have “room” in their kernels for the relevant subspaces.

Let’s think through what happens if we choose M0,1 to be a random matrix of rank m− 2n,
up to the constraint that it has the range of At contained in its kernel and small entries,
and we choose M1,1 to be a random matrix of rank m − 2n with small entries (so with high
probability, M1,1A

t and M1,1B
t will be non-zero, rank n matrices). Next we will need to decide

on distributions for M0,2 and M1,2. At this stage, we have to account for the fact that these
matrices won’t be acting on At and Bt directly, but will be acting on M0,1A

t and M0,1B
t, or on

M1,1A
t and M1,1B

t, depending on the value of the first bit if we are in the middle of evaluating
some input.

23



Since x2 = 0 is consistent with the second clause but not the first, we might choose M0,2

so that the ranges of M0,1A
t and M1,1A

t are both contained in its kernel. In this particular
example, M0,1A

t is just 0s, but that need not be the case in general. If we want to extend this
approach in the natural way to arbitrary boolean clauses over many variables, we will quickly
drown in the exponentially growing number of constraints that we will accumulate as we need
to account for all the possible value combinations of all of the previous input bits.

So it seems clear that some new ideas would be needed to get an approach like this to
work for arbitrary DNFs with polynomially many polynomially sized clauses, but perhaps if
we limit either the number of clauses or the size of clauses as we did to get something working
with bilinear groups, we could afford to blow up the dimensions of our space exponentially in
the bounded parameter. But can the learning with errors problem really serve as a general
substitute to the subgroup decision problems we were using before?

We might worry about the construction of the matrices Mb,i with small entries. In the
typical presentation of LWE, there are no short vectors to be found. We are given A and either
Ats + e or a random vector r, and if we knew even one short vector z such that zAt was all
0s, we could use it to distinguish Ats+ e from a random r because z(Ats+ e) would be small,
while zr would not (with high probability).

But there is a variant of LWE called k-LWE [LPSS14] that looks a little more subgroup-y.
Instead of one matrix A, we will have two matrices A and B, and the challenge will be to
distinguish Ats+e from Ats+Btv+e. What’s interesting here is what we can also be given: in
addition to being given A and B, we can also be given a few short vectors (k is the name for the
number of them, hence the name k-LWE) that are orthogonal to both At and Bt. Let’s work
with k = 1 for simplicity. In this case, we are given one short vector z such that zAt = zBt = 0,
where 0 here means a vector of all 0 entries over Zp. Now, this vector z doesn’t break the
challenge like it did before, since z(Ats+ e) and z(Ats+Btv + e) are both small.

If we get greedy and ask for enough vectors z to form a full basis of the space of vectors
orthogonal to both At and Bt, however, things fall apart. The trouble starts with the observation
that we can always efficiently find some vector v which satisfies vAt = 0 but not vBt = 0. If we
have a full basis of short vectors z such that zAt = zBt = 0, then we can adjust v by adding
and subtracting multiples of such vectors to make v short, while still preserving vAt = 0 and
vBt ∕= 0. Intuitively, having a full short basis of such z’s gives us good precision control to
make v short in all dimensions. If we only have a more limited collection of short z’s, we will
be able to make v short with respect to some entries/dimensions, but others will stubbornly
remain large (at least using known methods bounded by polynomial time).

Putting this all together, the k-LWE problem really does look like a subgroup decision
problem if you squint just right. The additional short vectors that don’t form a basis are
like additional group elements from various combinations of subgroups that yield the identity
element in the target group when paired with either distribution of the challenge element.

But there is something a bit weird about the framework we’ve set up to build with k-LWE.
We plan to use the challenge term to make vstart, and the short z vectors to help us make
the Mi,b matrices, but we will never give out the underlying matrices A and B as part of our
obfuscation. Why is this weird? Well, if we remove A and B from what is presented in the
k-LWE problem, we are left with:

Given short vectors z1, . . . , zk such that ziA
t = ziB

t ∀i,

distinguish Ats+ e from Ats+Btv + e.

The influence of A and B here is so weak, that really these two distributions become the
same. In either case, all we have is k short vectors z1, . . . , zk, and a “challenge” vector whose

24



dot product with each zi is small. We can define A and B after the fact to explain the structure
either in one way or the other, but this doesn’t change the distribution.

And this is where the depressing realization hits: intercolumn security for DNFs with a
polylog bound on either the number of input bits or the length of clauses is not a goal that
stands as a shining example of how discrete log cryptography and lattice cryptography can
similarly be leveraged, but rather a goal that can be achieved without either. So yes, our
approach likely works! And it is wholly unnecessary. Actually we can get intercolumn security
for these bounded boolean functions information-theoretically.

This turns out to be an example of a fairly general phenomenon: indistinguishability obfusca-
tion for a family of function representations can be achieved information-theoretically whenever
there is an efficiently computable canonical form. If you can take any two different represen-
tations of the same function within some specified family of representations, and map each
to a canonical form that is unique per function, then indistinguishability obfuscation trivially
follows. The output of the obfuscation will simply be the canonical form, and the information
of which of the equivalent (non-canonical) representations you may have started with will be
entirely lost.

So how might we find an efficiently computable canonical form for the functions and rep-
resentations we have been working with? Let’s reconsider the basic form of our functions as
DNFs with a single OR of polynomially many conditions strung together by ANDs, e.g.

(x1 = 0 AND x3 = 1 AND x5 = 0) OR (x1 = 1 AND x2 = 0 AND x3 = 1 AND x4 = 1).

Let’s think about the support of one of these clauses, i.e. the inputs that satisfy the clause.
In the 5-dimensional hypercube corresponding to the 25 possible input value combinations for
x1, . . . , x5, the set of points which satisfy a single clause of equality conditions strung together
by ANDs is itself a smaller dimensional hypercube inside the larger one. For example, the
inputs where x1 = 0, x3 = 1, and x5 = 0 form a 2-dimensional square defined by the degrees
of freedom, x2 and x4, whose values are unconstrained. Similarly, the support of the second
clause above is a 1-dimensional hypercube, as x5 is the only unconstrained input. The union of
these two lower dimensional hypercubes forms the support of the DNF with these clauses. In
this case, the two sub-cubes don’t intersect, and the number of points in the union is simply
the sum of the number of points in each of these. To make this easier to see, we will visualize
this inside the 4-dimensional hypercube, removing the constant variable x3 = 1:

25



Some people like to think about objects like these geometrically. Such people can visualize
sub-faces of sub-cubes fusing together to form higher dimensional sub-cubes, and they might,
after a magical moment of meditation with their eyes closed suddenly declare: “Oh yes, I see
it now! These unions of two sub-cubes have a canonical form! Given any such collection of
points, I can give you a canonical description of it as an OR of two AND clauses, and hence
indistinguishability obfuscation becomes trivial!” Such people are called “geometers.”

But when some other people close their eyes to try to visualize such geometric wonders,
they see... nothing. Such people are called “algebraists.”

One of our fellow travelers on this journey, Valerio Pastro, is a geometer, and at this point he
became convinced that a canonical form could be designated by finding a sub-cube of maximal
dimension. He took this picture of his notes at the time:

Amusingly, he covered up some “distasteful” messiness in his thinking with some Big Wave
Golden Ale coasters. This is typical of geometers. They are drawn to clean lines and smooth
surfaces, and they seek to push under the rug the sweaty and gritty byproducts of mental
struggle.

Algebraists, however, sometimes revel in devilish sequences of messy reductions, laundry
lists of tackily specific case analyses, and otherwise rub their greasy paws all over a geometer’s
precious canvas. And this is precisely what we will now do to Valerio’s elegant intuition. We
will tear it apart in order to understand it - a bit of an autopsy for a proof.

Let’s return to our guiding example:

(x1 = 0 AND x3 = 1 AND x5 = 0) OR (x1 = 1 AND x2 = 0 AND x3 = 1 AND x4 = 1).

We can first observe that both clauses require x3 = 1, so really all of the action here is taking
place within a 4-dimensional hypercube, and we can essentially ignore this condition (and just
tack it on to all clauses once we arrive at a canonical form expressing the conditions on the
other variables. In a similar fashion, we can ignore any variables that never appear in any of

26



our equality constraints. In our example, this just means we don’t need to be concerned if there
is an unmentioned x6, etc.

So let’s rewrite the reminder of our functionality without the common x3 = 1 condition:

(x1 = 0 AND x5 = 0) OR (x1 = 1 AND x2 = 0 AND x4 = 1). (2)

Now, there are two situations that are possible for each variable. Some variables, like x2,
x4, and x5 above, appear only once, invoked in an equality condition in only one of the two
clauses. While one variable, x1 above, is invoked on both sides, with contrasting conditions.

The size of the support of each clause is inversely related to its number of constraints. In
our case, this means that the clause with two conditions, x1 = 0 AND x5 = 0, has a larger
support than the clause with three conditions, x1 = 1 AND x2 = 0 AND x4 = 1.

We might ask, what’s the fewest number of conditions a clause can have if its support is
to be contained in the set of points that satisfy our expression over x1, x2, x4, and x5? Is it
possible, for instance to have a clause with only one condition whose support is a subset of our
support?

What might such a clause be? Well, it can’t be x1 = 0 or x1 = 1. We can prove this by
contradiction: if it were x1 = 0, all of its support would have to be contained in the support of
our first clause above, x1 = 0 AND x5 = 0. But we can’t ensure such a containment without
the condition x5 = 0! Similarly, it can’t be x1 = 1, since then its support would have to be
contained in the support of the second clause above, so we can’t skimp on any of the further
conditions there either.

So if we are going to have a clause with only one equality condition whose support is
contained in the support of (2), it must involve one of the variables x2, x4, or x5. Let’s suppose
it involves x2. Well, if we try x2 = 1, we are in conflict with the second clause of (2), and are
then stuck needing all of the conditions of the first clause. So we might instead try x2 = 0. To
see that this also fails, we note that all of the points where x2 = 0 and x1 = 1 must then be
covered by the support of the second clause, because they are in the support of x2 = 0, but
cannot be covered by the first clause. But they are not fully covered, as we are missing the
points where x2 = 0, x1 = 1, and x4 = 0.

Similar reasoning can be followed to conclude that a clause with a single condition involving
x4 or x5 also will not have its support contained in the support of (2). And soon enough,
if you spend enough hours scribbling boolean DNFs on napkins by candlelight, while your
roommates, family members, and beloved labrador retrievers implore you to stop and go to
bed, you will convince yourself that efficiently computable canonical forms for 2-clause DNFs
exist, and hence all of that beautiful work we did to obtain intercolumn security for obfuscating
them from subgroup assumptions or from LWE was utterly pointless.

We strongly suspect that going from 2 clauses to 3, or to 4, or to 42, or to a poly-logarithmic
number does not qualitatively change things. But frankly we are too depressed to work through
such an argument.

Chapter 6: The Subset Sum Problem Problem

Instead, like Sisyphus, we find ourselves once again at the beginning. Tossed around by the
winds of fate, fooled by fog into walking in circles, we find that when the dust settles, we seem no
closer to our goal of constructing provably secure obfuscation for complex functions. Knowing
more of what we don’t know may feel like little comfort.

Wasn’t life so much simpler when we were only trying to obfuscate a point function? Re-

27



member our gentle, function friend,

Pα(x) = {1 if x = α, 0 otherwise?

It feels like so long ago now, but we discussed a few different ways of accomplishing that simple
goal. We considered using a hash function H, and publishing the value H(α) along with a
description of H. We considered using a group G = 〈g〉 where the discrete log problem is
hard, and publishing gα along with a description of G and its (efficiently computable) group
operation. And finally we considered using a matrix branching program, a method which
immediately generalized to a very rich class of functions.

But if we reign in our wider ambitions and look more narrowly for a new way to obfuscate
Pα, we see that the matrix operations in our branching program for Pα (arranging the matrix
product to match I only when the input bits all match the bits of α) are overkill. We can
actually do this with just linear operations, no multiplication required.

To see this in its most simple form, imagine α = 000...0 ∈ Zn
p . In this case, we can sample

random values sb,i ∈ Zp for each b ∈ {0, 1} and i ∈ [n], except that s0,n := −s0,1 − s0,2 − · · ·−
s0,n−1. Now the 2n values s0,1, s1,1, . . . , s0,n, s1,n will be almost entirely random, except for the
one structured sum,

s0,1 + s0,2 + · · ·+ s0,n ≡ 0mod p.

To evaluate the function on a input x1 . . . xn ∈ {0, 1}n, we compute the sum
n

i=1 sxi,i and
output 1 is this is ≡ 0mod p, and output 0 otherwise.

If this one piece of structure was embedded in an unknown location instead of at 00...0, it’s
plausible that it would be infeasible to find, at least for values of n where 2n is an impractically
large quantity of computational work. This is in fact very close to a computational assumption
known as the “subset sum” assumption. The only difference here is that the s0,i, s1,i are or-
ganized in pairs. A more typical statement of the subset sum assumption says that is hard to
distinguish between N uniformly random values in Zp, and N values that are uniformly random
up to the constraint that a hidden subset of them sum to 0.

More formally, let’s define two distributions on N elements of Zp:

D1 := sample z1, . . . , zN uniformly at random from Zp

D2 := sample v ∈ {0, 1}N uniformly at random, and let S ⊆ [N ] denote the set of indices i

such that vi = 1. Sample z1, . . . , zN uniformly at random from Zp

subject to the constraint that


i∈S
zi ≡ 0mod p.

The subset sum assumption asserts that these two distributions are computationally indis-
tinguishable. In order to massage this into a direct statement about our obfuscation of a point
function using the pairs of values s0,i, s1,i, it may help to consider a slight variation of these
distributions:

D3 := sample s0,1, s1,1, . . . , s0,n, s1,n uniformly at random from Zp

D4 := sample v in {0, 1}n uniformly at random. Sample s0,1, s1,1, . . . , s0,n, s1,n

subject to the constraint that

n

i=1

svi,i ≡ 0mod p.

If we assert that the distributions D3 and D4 are computationally indistinguishable, then
it is an immediate consequence that our obfuscation of a point function for a uniformly ran-
dom point is computationally indistinguishable from a constant function. This is a satisfying

28



obfuscation guarantee, and it is tantalizingly close to the typical assertion that D1 and D2 are
computationally indistinguishable.

There is just one small missing piece if we want to obtain our obfuscation guarantee from
the more typical version of the subset sum assumption - an argument that computational
indistinguishability for D1,D2 implies computational indistinguishability for D3,D4. But is this
true? It’s certainly not obvious. If we simply set N = 2n, we see that distributions D1 and D3

are identical, but distributions D2 and D4 are not: a random subset of [N ] as sampled in D2 is
not likely to respect the pair structure of the subset of chosen in D4.

To get ourselves in the right mindset to understand this disconnect, we imagine we have
a talented but highly particular friend who is very good at distinguishing D3 from D4. But if
we give present her with any other task, she may become annoyed and behave arbitrarily. The
task we want to get to perform for us is distinguishing D1 from D2, but we cannot ask her to
do this directly. We must instead massage our desired task into the format of D3 versus D4, so
that our highly particular friend does not get annoyed.

We suppose we are given a sample of z1, . . . , zN , and we are supposed to guess whether our
sample comes from distribution D1 or distribution D2. We can try to translate our problem into
a form our talented friend will understand. We’ll set n = N , and sample our own uniformly
random values r1, . . . , rn−1 ∈ Zp, and set rn := −r1 − r2 − · · ·− rn−1. For each index i from 1
to n, we choose a random value bi ∈ {0, 1}. We set:

sbi,i := ri, s1−bi,i := ri + zi ∀i ≤ N

This set up has an appealing feature: if there is some subset sum structure inside in the z′is,
it will now become a subset sum structure that respects the convention of choosing one element
from each slot. (You can choose the ri + zi values for the slots corresponding to the hidden
subset sum in the zi’s, and the ri values for the other slots. The ri’s will ultimately cancel out
either way.)

But this does not give us distribution D4, because there is more correlation here than should
be expected in D4. For example, suppose that z1 + z2 + z4 ≡ 0mod p. Then we will have:

r1 + r2 + r4 ≡ (r1 + z1) + (r2 + z2) + (r4 + z4)mod p,

whereas in the distribution D4, these elements would be jointly uniformly distributed, and
correlation would only appear when considering elements from all indices from 1 to n.

The challenge here is coming from the fact that we don’t know which slots correspond to
the hidden subset sum among the zi’s (when the zi’s come from distribution D2). So we have to
make sure the extra randomization of the ri’s cancels out regardless of which slots correspond
to the hidden subset sum. This seems very difficult (impossible?) to do without inducing
unwanted correlations. And even if we overcome this challenge, all we get for it is yet another
way to obfuscate a point function. Not very exciting.

Chapter 7: The Generic Conclusion

If we step back a moment, we realize there may be other ways to embed structure that can be
agnostic to exactly which elements we choose from at least some of the slots, and this can get
us beyond point functions. Let’s consider instead the task of pattern matching with wildcards.
More precisely, let’s consider functions f : {0, 1}n → {0, 1} whose supports are described by
templates like: 001 ∗ 0 ∗ 11 ∗ 1. The 0’s and 1’s here represent pronouncements of what the bit
value in that particular position must be, while the ∗’s represent bit positions where the value
is unconstrained, a “wildcard” if you will. In our example, the template 001 ∗ 0 ∗ 11 ∗ 1 refers

29



to binary strings of length n = 10, and there are 23 = 8 strings of that length that “match” the
template, e.g. 0010001101, 0011001101, 0010011101, etc. These 8 inputs will cause f to output
1, while any other strings of length 10 will cause f to output 0.

We’ll use w to denote the number of wildcard slots in our function template, so the size of
the support is 2w. We can start with a natural variant of our subset-sum inspired approach
for a point function: we will sample random values sb,i ∈ Zp for b ∈ {0, 1} and i ∈ [n], with
the constraint that the sums corresponding to inputs that match our pattern template all sum
to 0, while other input combinations do not. This forces us to make values s0,i = s1,i for all
wildcard slots i. We will illustrate this by collapsing our notation to si for wildcard slots i. For
our concrete example with template 001 ∗ 0 ∗ 11 ∗ 1, this would look like:

s0,1 s0,2 s0,3 s4 s0,5 s6 s0,7 s0,8 s9 s0,10
s1,1 s1,2 s1,3 s4 s1,5 s6 s1,7 s1,8 s9 s1,10

Here each si and sb,i represents a fresh and independent random variable, except for s1,10,
which is defined by the necessary relationship:

s0,1 + s0,2 + s1,3 + s4 + s0,5 + s6 + s1,7 + s1,8 + s9 + s1,10 ≡ 0mod p.

Evaluation of the function on a given input x1 . . . x10 is performed by computing:

10

i=1

sxi,i
?≡ 0mod p.

In what sense might this be an obfuscation? Well, it may hide something about the con-
strained bit values that form the underlying structured sum, if there are enough constrained
values to make spotting the sum difficult. However, it clearly does not hide the location of the
wildcards in the pattern. And this is not something that can be fixed by moving all of these
values into the exponent of a group of prime order p where discrete log and related problems
are computationally hard:

gs0,1 gs0,2 gs0,3 gs4 gs0,5 gs6 gs0,7 gs0,8 gs9 gs0,10

gs1,1 gs1,2 gs1,3 gs4 gs1,5 gs6 gs1,7 gs1,8 gs9 gs1,10

We still assume that the identity element of G =< g > (i.e. g0) can be efficiently recognized
(which is needed for the final conclusion of evaluation), so equality testing of the repeated
instances of gs4 , for example, will give away the location of the wildcard slots in this instantiation
too.

So if we want to hide the wildcard locations, what might we do? It’s clear we need to put
different values into those slots, even though those values are not supposed to affect the ultimate
outcome of the function evaluation. One thing that can help us is that there’s no reason we
have to combine the pieces we select from each slot in a way that is agnostic to where we pulled
them from. For example, we can compute a more general linear function,

10

i=1

cxi,isxi,i
?≡ 0mod p,

where the coefficients cxi,i are allowed to vary with xi and i. This gives us enough degrees of
freedom to use, say, a linear secret-sharing scheme.

30



In particular, let’s see what happens if we use Shamir secret sharing, and set the sb,i values
to be evaluations of a secret polynomial on specified points in all bit positions and values that
match the pattern, and fully random values elsewhere, e.g. for our pattern 001 ∗ 0 ∗ 11 ∗ 1:

P (1) P (3) r3 P (7) P (9) P (11) r5 r6 P (17) r7
r1 r2 P (6) P (8) r4 P (12) P (14) P (16) P (18) P (20)

Here, P is a polynomial of degree 9 whose coefficients are chosen randomly over Zp, up to
the constraint that the constant term is 0. In each position b, i where the bit b matches the
pattern specification for the ith position (which includes both bit values for wild slots), we place
the value P (2i − b − 1). In positions that do not match the pattern, we place fully random
values rk.

To evaluate the function on a particular input x1 . . . x10 ∈ {0, 1}10, we will use the value
from each pair corresponding to the bit value xi, and try to interpolate the polynomial P from
our 10 values as if each is equal to P (2i− xi − 1). If we get 0 as the constant term, we output
1. Otherwise we output 0.

It is clear that this will output 1 for the desired support, and for any input that doesn’t
match the pattern, the answer will not be 0 with high probability. And at least in isolation, a
pair of values like P (7), P (8) in the first wildcard slot above will look like random values, and
will not give away the wildcard positions.

But of course, this polynomial setup is also an error-coding code, and more than half of
the values here are correct evaluations of the polynomial. So very quickly we have to worry
about the prospect of unique and list-decoding of Reed-Solomon codes, which would reveal our
wildcard locations if we fall within the reach of such techniques.

We are skating on the edge of a natural tension here: we want the helpful flexibility of secret
sharing, in that different combinations of valid shares can be equivalently used to compute the
desired outcome, but we do not want much (if any!) of the robustness that tends to come along
for the ride, allowing us to distinguish valid shares from invalid ones. There is a whole subfield
of secret sharing research that seeks to build “robust secret sharing schemes,” maximizing this
very property that for us is a blow to our hope of obfuscating the wild card positions. We want
something like “non-robust” secret sharing. We had a more colorful name for it in our research
meetings: “shitty secret sharing”: secret sharing that falls apart catastrophically as soon as a
small number of incorrect shares are introduced.

This is something that can be achieved by throwing our values into the exponent of a group:

gP (1) gP (3) gr3 gP (7) gP (9) gP (11) gr5 gr6 gP (17) gr7

gr1 gr2 gP (6) gP (8) gr4 gP (12) gP (14) gP (16) gP (18) gP (20)

To reason about the potential properties of this construction, the easiest way is to use the
heuristic of a “generic group.” This means that we think about G =< g > as if it is a black
box: the box allows you to multiply elements of the group, e.g. gagb = ga+b, and hence to
raise group elements to known powers, e.g. (ga)s = gas. It also allows you to identify g0 as
the identity element (and hence to recognize equality of any two acquired instances of the same
group element), but that’s it! So not only do we think of the discrete logarithm as being hard,
but we imagine that any other problem that is not trivially solved by a sequence of basic group
operations is also hard. For instance, in a generic group, given g, ga, gb, it is hard to compute
ga

2+b, or to distinguish gab from a random element, or to distinguish ga+b3 from a random
element, etc.

All of cryptography is built upon (conjectured) separations between what is easy and what

31



is hard. The generic group heuristic is this concept on steroids (and then also on ecstasy): we
assume everything that is not inferable to be easy through a polynomial number of standard
group operations is therefore hard. Obviously, this isn’t completely true for any concrete group
G. But it is kind of truth-y for some groups G, at least enough that cryptosystems justified
solely under the generic group heuristic have not historically suffered damaging attacks.

In such a framework, we immediately have a separation between the function evaluation
that we want to be easy/efficient, since it is linear, and the decoding algorithms we want to be
hard/hopelessly inefficient, which are non-linear. Ultimately what this gives us is that when
the number of wildcard slots is not too high, we can argue that our obfuscated function is
computationally indistinguishable from the distribution:

gr1 gr3 gr5 gr7 gr9 gr11 gr13 gr15 gr17 gr19

gr2 gr4 gr6 gr8 gr10 gr12 gr14 gr16 gr18 gr20

where all of r1, . . . , r20 are random, so this effectively represents a function with no sup-
port (with high probability). Since this distribution is independent of the pattern, we have
hence ruled out any leakage of the placement of wildcard slots, as well as the bit values in the
constrained positions.

We proved this extensively ourselves in [BKM+18], though it was later pointed out to us
that much of this follows as an application of the analysis of Peikert in [Pei06]. That is another
kind of subplot that is often part of the research experience: the “I proved this all by myself
because I didn’t know some of it was already proved elsewhere, but so-help-me-god I’m going
to find a reason to show you my proof anyway because I worked so hard on it, you know? and
maybe it gets slightly better parameters in some way or something...” subplot. I mean, we do
think our proof has independent value. I mean, really we do. I’m not just saying that. And
our construction for the purposes of wildcard obfuscation is certainly novel. And in any case,
Chris Peikert is a great cryptographer, so it’s pretty good company to be in. Just saying. There
are also follow-up works now that improve and expand upon our construction and analyses:
[BLMZ]. And we are not defensive about any of this at all.

Chapter 8: The Postscript

Every great story is supposed to have a satisfying arc: it should have ups, it should have downs,
it should tug at your heart strings, stomp on your dreams, and then magically restore them
to an even greater glory at the last possible moment. When we embarked upon this work, we
hoped we could reach an understanding more satisfying and more comprehensive than the place
I leave you now.

But journeys are not about their endings. In research, unlike classic stories, endings are rare
and typically either unsatisfying or sad. Beginnings are exciting and celebrated, but middles get
a bad rap. We are at a middle point in the development of cryptographic obfuscation, a middle
point in the development of lattice-based cryptography, a middle point in our understanding of
provable security more generally, and a middle point in our understanding of how cryptography
fits into the larger universe. And thank goodness! For we should be proud and happy for the
progress we have made and the things we learned, and grateful for the joys of discoveries and
failures yet ahead.

32



References

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology
Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings,
pages 1–18, 2001.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai.
Protecting obfuscation against algebraic attacks. In Advances in Cryptology - EU-
ROCRYPT 2014 - 33rd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014.
Proceedings, pages 221–238, 2014.

[BKM+18] Allison Bishop, Lucas Kowalczyk, Tal Malkin, Valerio Pastro, Mariana Raykova,
and Kevin Shi. A simple obfuscation scheme for pattern-matching with wildcards.
In Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III,
pages 731–752, 2018.

[BLMZ] James Bartusek, Tancrède Lepoint, Fermi Ma, and Mark Zhandry. New techniques
for obfuscating conjunctions. In EUROCRYPT, volume 2018.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K.
Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing
without low-level zeroes: New MMAP attacks and their limitations. In Advances in
Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2015, Proceedings, Part I, pages 247–266, 2015.

[CGW15] Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-
order groups via predicate encodings. In Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part
II, pages 595–624, 2015.

[CLLT16] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi.
Cryptanalysis of GGH15 multilinear maps. In Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part II, pages 607–628, 2016.

[CLLT17] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi.
Zeroizing attacks on indistinguishability obfuscation over CLT13. In Public-Key
Cryptography - PKC 2017 - 20th IACR International Conference on Practice and
Theory in Public-Key Cryptography, Amsterdam, The Netherlands, March 28-31,
2017, Proceedings, Part I, pages 41–58, 2017.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multi-
linear maps over the integers. In Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, pages 476–493, 2013.

33



[CM14] Melissa Chase and Sarah Meiklejohn. Déjà Q: using dual systems to revisit q-type
assumptions. In Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages 622–639, 2014.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. vol-
ume 22, pages 644–654, 1976.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, May 31 - June 2, 2009, pages 169–178, 2009.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from
ideal lattices. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings, pages 1–17, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49, 2013.

[GLSW15] Craig Gentry, Allison Bishop Lewko, Amit Sahai, and Brent Waters. Indistin-
guishability obfuscation from the multilinear subgroup elimination assumption. In
IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015,
Berkeley, CA, USA, 17-20 October, 2015, pages 151–170, 2015.

[GLW14] Craig Gentry, Allison Bishop Lewko, and Brent Waters. Witness encryption from
instance independent assumptions. In Advances in Cryptology - CRYPTO 2014
- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part I, pages 426–443, 2014.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, pages 75–92,
2013.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings of the
20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago,
Illinois, USA, pages 20–31, 1988.

[Lew12] Allison Bishop Lewko. Tools for simulating features of composite order bilinear
groups in the prime order setting. In Advances in Cryptology - EUROCRYPT
2012 - 31st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, pages
318–335, 2012.

[LPSS14] San Ling, Duong Hieu Phan, Damien Stehlé, and Ron Steinfeld. Hardness of k-lwe
and applications in traitor tracing. In Advances in Cryptology - CRYPTO 2014
- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part I, pages 315–334, 2014.

34



[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption
with general relations from the decisional linear assumption. In Advances in Cryp-
tology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 15-19, 2010. Proceedings, pages 191–208, 2010.

[Pei06] Chris Peikert. On error correction in the exponent. In Theory of Cryptography,
Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March
4-7, 2006, Proceedings, pages 167–183, 2006.

35


