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Abstract. Clustering analysis is one of the most significant unsuper-
vised machine learning tasks, and it is utilized in various fields associated
with privacy issue including bioinformatics, finance and image process-
ing. In this paper, we propose a practical solution for privacy-preserving
clustering analysis based on homomorphic encryption (HE). Our work
is the first HE solution for the mean-shift clustering algorithm. To re-
duce the super-linear complexity of the original mean-shift algorithm,
we adopt a novel random sampling method called dust sampling which
perfectly fits in HE and achieve the linear complexity. We also substi-
tute non-polynomial kernels by a new polynomial kernel so that it can
be efficiently computed in HE. The quality of clustering analysis with
the new HE-friendly kernel is fairly fine in practice.
The performance of our modified mean-shift clustering algorithm based
on the approximate HE scheme HEAAN is quite remarkable in terms of
speed and accuracy. It takes about 30 minutes with 99% accuracy over
several public datasets with hundreds of data, but even for two hundred
thousands of data it takes only 82 minutes with SIMD operations in
HEAAN. Our results outperform the previously best known result over
400 times.
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1 Introduction

For a decade, machine learning has received tremendous attention globally re-
gardless of the field due to its strong ability to solve various real world problems.
Since many of the data such as financial data and biomedical data include per-
sonal or sensitive information, privacy is an inevitable issue on machine learning
in such fields. There have been several non-cryptographic approaches for privacy-
preserving machine learning including anonymization, perturbation, randomiza-
tion and condensation [34, 43]; however, these methods commonly accompany
the loss of information which degrades the utility of data.

On the other hand, Homomorphic Encryption (HE), which allows compu-
tations over encrypted data without any decryption process, is theoretically
one of the most ideal cryptographic tool to preserve the privacy without loss
of any data information. There have been a number of studies on privacy-
preserving machine learning based on HE, especially for supervised machine



learning tasks such as classification and regression; including logistic regres-
sion [5, 9, 15, 19, 27, 30, 31, 44] and (the prediction phase of) deep neural
networks [6, 25].

Clustering analysis is one of the most significant unsupervised machine learn-
ing tasks, which aims to split a set of given data into several subgroups, called
clusters, in such a way that data in the same cluster are “similar” in some sense to
each other. As well as classification and regression, clustering is also widely used
in various fields dealing with private information including bioinformatics, image
segmentation, finance, customer behavior analysis and forensics [22, 20, 36].

Contrary to classification and regression, there are only few works [4, 29] on
privacy-preserving clustering based on HE, and even only one of these works
provides a full HE solution, i.e., the whole procedure is done by HE operations
without any decryption process or trusted third party setting. The main reason
for the slow progress of the research on HE-based clustering is that there are a lot
of HE-unfriendly operations such as division and comparison. Recently, Cheon et
al. [14] proposed efficient HE algorithms for division and comparison of numbers
which are encrypted word-wisely, and this work takes a role of initiating active
researches on HE-based clustering.

1.1 This Work

In this paper, we propose a practical solution of privacy-preserving clustering
analysis based on HE. Our solution is the first HE algorithm for mean-shift
clustering which is one of the representative algorithms for clustering analysis.
For given n-dimensional points P1, P2, ..., Pp and a function called kernel K :
Rn×Rn → R≥0, the mean-shift clustering utilizes the gradient descent algorithm
which finds local maxima (called modes) of the kernel density estimator F (x) =
1
p ·
∑p
i=1K(x, Pi) where K(x, Pi) outputs a value close to 0 when x and Pi are

far from each other.

Core Ideas. The main bottlenecks of the original mean-shift algorithm to be
applied on HE are (1) super-linear computational complexity O(p2) for each
mean-shift process and (2) non-polynomial operations in kernel which are hard
to be efficiently computed in HE. To overcome these bottlenecks, we suggest
several novel techniques to modify the original mean-shift algorithm into an
HE-friendly form:

• Rather than mean-shifting every given point, we randomly sample some
points called dusts and the mean-shift process is done only for the dusts. As
a result, the computational cost to seek the modes is reduced from O(p2) to
O(d · p) where d is the number of dusts which is much smaller than p.

• After the mode-seeking phase, one should match given points to the closest
mode, which we call point-labeling. We suggest a carefully devised algorithm
for labeling points with the modes which only consists of polynomial opera-
tions so that it can be implemented by HE efficiently.

• We propose a new HE-friendly kernel K(x,y) = (1 − ||x − y||2)2Γ+1. The
most commonly used kernel functions in clustering are Gaussian kernel and
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Fig. 1. Illustration of the Mean-shift Algorithm

Epanechnikov kernel. However, the derivatives of those functions, which
we should compute for each mean-shift process, are either exponential or
discontinuous. Our new kernel is a simple polynomial which requires only
log(degree) complexity to compute its derivative, and the clustering analy-
sis based on this HE-friendly kernel works very well in practice.

Practical Performance: Fast and Accurate. To the best of our knowledge,
the work in [29] has been a unique full HE solution of privacy-preserving clus-
tering so far. While their implementation takes as much as 619 hours for 400 2-
dimensional data, our algorithm takes only about 1.4 hours for the same dataset
which is more than 400 times faster than the previous result. Using a multi-
threading option with 8 threads, the running time is even reduced to half an
hour. The fast and accurate performance of our algorithm implies that the re-
search on HE-based privacy-preserving clustering is approaching to a practical
level.

Why Mean-shift Clustering? K-means clustering is another representative
algorithm for clustering, and many of the previous works on privacy-preserving
clustering exploited the K-means clustering algorithm. However, there are some
critical drawbacks in K-means clustering in the perspective of HE applications.
Firstly, K-means clustering requires an user to pre-determine the number of
clusters. However, there is no way to determine the number of clusters when the
only encrypted data are given. Therefore, the data owner should additionally
provide the number of clusters in unencrypted state, which disables to fully pre-
serve the privacy. Secondly, K-means clustering is generally incapable when the
shape of clusters is non-convex, but the shape of clusters is also non-predictable
information from encrypted data.
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1.2 Related Works

In the case of HE-based privacy-preserving clustering, to the best of our knowl-
edge, there has been proposed only a single solution [29] which does not re-
quire any decryption process or apply protocol setting. They transform the
K-means clustering algorithm into an HE algorithm based on the HE scheme
TFHE [16, 17] which encrypts data bit-wisely. One of their core idea is to modify
the original K-means clustering algorithm by substituting a homomorphic divi-
sion of a ciphertext, which is very expensive, with a simple constant division.
As a result, to run their modified algorithm with TFHE over 400 2-dimensional
data, it takes about 619 hours (≈ 26 days) on a virtual machine with an Intel
i7-3770 processor with 3.4 GHz without parallelization options. Before this work,
there has been an attempt [4] to perform K-means clustering based on HE with
trusted third party; however, the HE scheme they used [32] was proved to be
insecure [45].

Contrary to HE, there have been a number of works [7, 21, 28, 33, 38, 39,
40, 42] on privacy-preserving clustering based on another cryptographic tool
called Multi-party Computation (MPC), which is a protocol between several
parties to jointly compute a function without revealing any information of their
inputs to the others. For more details on MPC-based privacy-preserving cluster-
ing algorithms, we refer the readers to a survey paper written by Meskine and
Nait-Bahloul [35]. MPC is normally known to be much faster than HE; however,
MPC requires online computation of data owners and it yields significantly large
bandwidth. On the other hand, HE computation can be totally done in offline
after encrypted data are sent to a computing service provider. Since data owners
do not need to participate in the computation phase, HE-based solutions can be
regarded to be much more convenient and economic to data owners than MPC.

2 Backgrounds

2.1 Notations

We call each given data of the clustering problem a point. Let n be the dimension
of each point, and P = {P1, P2, ..., Pp} be the set of given points where p is the
number of elements in P . We denote the set of dusts, which will be defined in
Section 3, by D = {D1, D2, ..., Dd} where d is the number of dusts. There are
several auxiliary parameters for our new algorithms in Section 2 and Section 3:
ζ, t, Γ and T denote the number of iterations for Inv, MinIdx, Kernel and
Mode-seeking, respectively. R denotes the real number field, and R≥0 is a subset
of R which consists of non-negative real numbers. The set Bn(1/2) denotes the
n-dimensional ball of the radius 1/2 with center 0. For an n-dimensional vector
x ∈ Rn, the L2-norm of x is denoted by ||x||. For a finite set X, x $←− X means
that x is uniform randomly sampled from X, and |X| denotes the number of
elements in X. For (row) vectors x ∈ Rn and y ∈ Rm, the concatenation of the
two vectors is denoted by (x||y) ∈ Rn+m.
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2.2 Approximate Homomorphic Encryption HEAAN

For privacy-preserving clustering, we apply an HE scheme called HEAAN pro-
posed by Cheon et al. [13, 12], which supports approximate computation of real
numbers in encrypted state. Efficiency of HEAAN in the real world has been
proved by showing its applications in various fields including machine learn-
ing [15, 30, 31] and cyber physical system [11]. After the solution [30] based on
HEAAN won the first place in privacy-preserving genome data analysis compe-
tition called IDash in 2017, all the solutions for the next-year competition which
aimed to develop a privacy-preserving solution for Genome-wide Association
Study (GWAS) computation were constructed based on HEAAN.

In detail, let ct be a HEAAN ciphertext of a plaintext vector m ∈ CN/2.
Then, the decryption process with a secret key sk is done as

Decsk(ct) = m+ e ≈m

where e is a small error attached to the plaintext vector m. For formal definitions,
let L be a level parameter, and q` := 2` for 1 ≤ ` ≤ L. Let R := Z[X]/(XN +1)
for a power-of-two N and Rq be a modulo-q quotient ring of R, i.e., Rq := R/qR.
The distribution χkey := HW(h) over Rq outputs a polynomial of {−1, 0, 1}-
coefficient having h number of non-zero coefficients, and χenc and χerr denote the
discrete Gaussian distribution with some prefixed standard deviation. Finally,
[·]q denotes a component-wise modulo q operation on each element of Rq. Note
that those parameters N , L and h satisfying a certain security level can be
determined by Albrecht’s security estimator [3, 2].

A plaintext vector m ∈ Cn/2 is firstly encoded as a polynomial in R by
applying a (field) isomorphism τ from R[X]/(XN + 1) to CN/2 called canonical
embedding. A naive approach is to transform the plaintext vector as τ−1(m) ∈
R[X]/(XN +1); however, the naive rounding-off can derive quite a large relative
error on the plaintext. To control the error, we round it off after scaling up by p
bits for some integer p, i.e., b2p · τ−1(m)e, so that the relative error is reduced.
The full scheme description of HEAAN is as following:

• KeyGen.
- Sample s← χkey. Set the secret key as sk← (1, s).
- Sample a ← U(RqL) and e ← χerr. Set the public key as pk ← (b, a) ∈
R2
qL where b← [−a · s+ e]qL .

- Sample a′ ← U(Rq2L) and e′ ← χerr. Set the evaluation key as evk ←
(b′, a′) ∈ R2

q2L
where b′ ← [−a′s+ e′ + qL · s2]q2L .

• Encpk(m).
• For a plaintext m = (m0, ...,mN/2−1) in CN/2 and a precision bit p > 0,

compute a polynomial m← b2p · τ−1(m)e ∈ R
• Sample v ← χenc and e0, e1 ← χerr. Output ct = [v · pk+(m+ e0, e1)]qL .

• Decsk(ct).
• For a ciphertext ct = (c0, c1) ∈ R2

q`
, compute m′ = [c0 + c1 · s]q` .

• Output a plaintext vector m′ = 2−p · τ(m) ∈ CN/2.
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• Add(ct, ct′). For ct, ct′ ∈ R2
q`
, output ctadd ← [ct+ ct′]q` .

• Sub(ct, ct′). For ct, ct′ ∈ R2
q`
, output ctsub ← [ct− ct′]q` .

• Multevk(ct, ct′). For ct = (c0, c1), ct
′ = (c′0, c

′
1) ∈ R2

q`
, let (d0, d1, d2) =

(c0c
′
0, c0c

′
1 + c1c

′
0, c1c

′
1). Compute ct′mult ← [(d0, d1) + bq−1L · d2 · evke]q` , and

output ctmult ← [b(1/p) · ct′multe]q`−1
.

We omitted the parameters (N,L, h, p) as an input of the above algorithms
for convienience. Let ct1 and ct2 be ciphertexts of plaintext vectors m1 and m2.
Then, the homomorphic evaluation algorithms Add and Mult satisfy

Decsk(Add(ct1, ct2)) ≈m1 +m2,

Decsk(Multevk(ct1, ct2)) ≈m1 �m2

where � denotes the Hadamard (component-wise) multiplication, i.e., addi-
tion and multiplication can be internally done in a Single Instruction Multi
Data (SIMD) manner even in encrypted state. For more details of the scheme
including the correctness and security analysis, we refer the readers to [13].

To deal with a plaintext vector of the form m ∈ CK having length K ≤ N/2
for some power-of-two divisorK of N/2, HEAAN encryptsm into a ciphertext of
an N/2-dimensional vector (m|| · · · ||m) ∈ CN/2. This implies that a ciphertext
of m ∈ CK can be understood as a ciphertext of (m|| · · · ||m) ∈ CK′ for powers-
of-two K and K ′ satisfying K ≤ K ′ ≤ N/2 .

Bootstrapping of HEAAN. Since the output ciphertext of a homomorphic
multiplication has a reduced modulus by the scaling factor p compared to the
input ciphertexts, the homomorphic operation should be stop when the cipher-
text modulus becomes so small that no more modulus reduction can be done.
In other words, without some additional procedure the HE scheme only sup-
ports polynomial operations with a bounded degree pre-determined by HEAAN
parameters.

A bootstrapping algorithm, of which the concept was firstly proposed by Gen-
try [24], enables us to overcome the limitation on the depth of computation. The
bootstrapping algorithm gets a ciphertext with the lowest modulus ct ∈ R2

q1
as an input, and outputs a refreshed ciphertext ct′ ∈ R2

qL′
where L′ is a pre-

determined parameter smaller than L. The important fact is that the bootstrap-
ping preserves the most significant bits of a plaintext, i.e., Decsk(ct) ≈ Decsk(ct′).
In 2018, a first bootstrapping algorithm for HEAAN was proposed by Cheon et
al. [12], and later it was improved by several works concurrently [8, 10].

Even though the performance of bootstrapping has been improved by active
studies, the bootstrapping algorithm is still regarded as the most expensive part
of HE. In the case of HEAAN, the performance of bootstrapping depends on the
number of plaintext slots K; roughly the computational complexity is O(logK)
considering SIMD operations of HEAAN.

2.3 Non-polynomial Operations in HEAAN

Since HEAAN basically supports homomorphic addition and multiplication, per-
forming non-polynomial operations in HEAAN is clearly non-trivial. In this sec-
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tion we introduce how to perform the division and a comparison-related oper-
ation called min-index in word-wise HE including HEAAN, which are required
for our mean-shift clustering algorithm. Note that the following methods are
essentially efficient polynomial approximations for the target operations.

Division. The Goldschmidt’s divison algorithm [26] is an approximate algorithm
to compute the inversion of a positive real number in (0, 2), and has been used
in various cryptographic applications [14, 18] to deal with inversion and division
operations through a polynomial evaluation. The algorithm approximates the
inversion of x ∈ (0, 2) by

1

x
=

∞∏
i=0

(
1 + (1− x)2

i
)
≈
ζ−1∏
i=0

(
1 + (1− x)2

i
)

where ζ is a parameter we choose considering the approximation error. If the
range of an input is (0,m) for large m > 0 which is known, then the Gold-
schmidt’s division algorithm can be easily generalized by simply scaling down
the input into the range (0, 2) and scaling up the output after the whole process.

Algorithm 1 Inv(x;m, ζ)
Input: 0 < x < m, ζ ∈ N
Output: an approximate value of 1/x
1: a0 ← 2− (2/m) · x
2: b0 ← 1− (2/m) · x
3: for i← 0 to ζ − 1 do
4: bi+1 ← b2i
5: ai+1 ← ai · (1 + bi+1)
6: end for
7: return (2/m) · aζ

Min Index. In [14], Cheon et al. proposed the iterative algorithm MaxIdx to
compute the max-index of an array of positive numbers which can be homomor-
phically computed by HEAAN efficiently. More precisely, for an input vector
x = (x1, x2, .., xm) where xi ∈ (0, 1) are distinct numbers, then the output of
the max-index algorithm is a vector

(
x2

t

i /(
∑m
j=1 x

2t

j )
)
1≤i≤m

for sufficiently large

t > 0, whose i-th component is close to 1 if xi is the maximal element, and is
approximately 0 otherwise. If there are several maximal numbers, say x1, ..., x`
for 1 ≤ ` ≤ m without loss of generality, then the output vector is approximately
(1/`, 1/`, ..., 1/`, 0..., 0).

As a simple application of max-index, one can also compute the min-index
of an array of positive numbers in (0, 1) by running the MaxIdx algorithm for
input (1−x1, 1−x2, ..., 1−xm). The following algorithm describes the min-index
algorithm denoted by MinIdx.
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Algorithm 2 MinIdx((xi)mi=1; t, ζ)

Input: (x1, ..., xm) ∈ (0, 1)m where ` ≥ 1 elements are minimal, t ∈ N
Output: (y1, ..., ym) where yi ≈ 1/` if xi is a minimal element and yi ≈ 0

otherwise;
1: sum← 0
2: for i← 1 to m do
3: yi ← 1− xi
4: for j ← 1 to t do
5: yi ← yi · yi
6: end for
7: sum← sum+ yi
8: end for
9: inv ← Inv(sum;m, ζ)

10: for i← 1 to m do
11: yi ← yi · inv // yi ' (1− xi)2

t

/
∑m
j=1(1− xj)2

t

12: end for
13: return (y1, ..., ym)

2.4 Mean-shift Clustering

The mean-shift clustering algorithm is a non-parametric clustering technique
which does not restrict the shape of the clusters and not require prior knowledge
of the number of clusters. The goal of the algorithm is to cluster the given points
by finding the local maxima (called modes) of a density function called Kernal
Density Estimator (KDE), and this process is essentially done by the gradient
descent algorithm. For given n-dimensional points P1, P2, ..., Pp and a function
K : Rn × Rn → R≥0 so-called kernel, the KDE map F : Rn → Rn is defined as

F (x) =
1

p
·
p∑
i=1

K(x, Pi).

The kernel K is defined by a profile k : R→ R≥0 as K(x,y) = ck · k(||x− y||2)
for some constant c > 0. Through a simple computation, one can check that
∇F (x) is parallel to

∑p
i=1

k′(||x−Pi||2)·Pi∑p
i=1 k

′(||x−Pi||2) − x where k′ is the derivative of k.
As a result, the mean-shift process is to update the point x as

x← x+

(
p∑
i=1

k′(||x− Pi||2)∑p
j=1 k

′(||x− Pj ||2)
· Pi − x

)
=

p∑
i=1

k′(||x− Pi||2)∑p
j=1 k

′(||x− Pj ||2)
· Pi,

which is the weighted mean of given points. The most usual choices of the kernel
function are the Gaussian kernel KG(x,y) = ckG · exp

(
−||x− y||2/σ2

)
and the

Epanechnikov kernel KE(x,y) = ckE · max(0, 1 − ||x − y||2/σ2) for x,y ∈ Rn
with a proper parameter σ > 0 and constants ckG and ckE . Algorithm 3 is a full
description of the original mean-shift clustering algorithm with Gaussian kernel.
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Algorithm 3 MS-clustering-original(P = {P1, ..., Pp}, T ;σ)
Input: P1, P2, · · · , Pp ∈ Rn, the number of iterations T ∈ N
Output: Label vector M of given points P1, ...., Pp
1: for i← 1 to p do
2: Mi ← Pi
3: end for
4: for i← 1 to T do
5: for j ← 1 to p do
6: sum← 0
7: A← 0d

8: for k ← 1 to p do
9: a← exp(−||Pk −Mj ||2/σ2)

10: A← A+ a · Pk
11: sum← sum+ a
12: end for
13: Mj ← (1/sum) ·A
14: end for
15: end for
16: return M = (M1, ...,Mp)

Freedman-Kisilev Mean-shift. A decade ago, Freedman and Kisilev [23] pro-
posed a novel fast mean-shifting algorithm based on the random sampling. As the
first step, for the given set P = {P1, P2, ..., Pp} which consists of n-dimensional
points, they randomly choose a subset P ′ ⊂ P of the cardinality p′. Here the
cardinality p′ is indeed smaller than p but should not be too small so that the
subset P ′ approximately conserves the distribution of the points. For example, if
the random sampling factor p/p′ is too high, then Freedman-Kisilev mean-shift
algorithm shows a quite different result compared to that of the original mean-
shift algorithm. After the random sampling phase, the second step is simply to
run the original mean-shift algorithm on the randomly chosen subset P ′ and
obtain the modes of KDE constructed by P ′ not P . Since only p′ points are used
for mean-shifting process, the computational complexity of this phase is O(p′2),
not O(p2). The last step so-called “map-backwards” is to find the closest point
in P ′j ∈ P ′ for each point in Pi ∈ P and then output the mode mean-shifted
from P ′j . The last step takes O(p′ · p) computational complexity which is still
smaller than O(p2). Note that the last step map-backwards in Freedman-Kisilev
mean-shift algorithm is not required in the original mean-shift algorithm, since
every point converges to some mode which takes a role of the label.

2.5 Clustering Quality Evaluation Criteria

To evaluate the quality of our clustering analysis results, we bring two measures:
accuracy and silhouette coefficient. The accuracy is measured by comparing the
clustering analysis result and the given true label information. Let Li and C(Pi)

9



be the true label and the label obtained by clustering analysis of the point Pi,
respectively, then the accuracy is calculated as

Accuracy =
|{1 ≤ i ≤ p : Li = C(Pi)}|

p
.

Note that the measure is valid only if the number of clusters of the given true
label information equals to that of the clustering analysis result.

The silhouette coefficient [37] is another measure which evaluates the quality
of clustering analysis, which does not require true label information to be given.
Let Q1,...,Qk be the clusters of the given dataset P obtained by clustering anal-
ysis. For each point Pi which belongs to the cluster Qki , we first define two
functions A and B as

A(Pi) =
1

|Qki | − 1
·
∑

P`∈Qki
` 6=i

dist(Pi, P`), B(Pi) = min
j 6=i

1

|Qkj |
·
∑

P`∈Qkj

dist(Pi, P`).

Then, the silhouette coefficient is defined as

SilhCoeff =
1

p
·
p∑
i=1

B(Pi)−A(Pi)
max(B(Pi), A(Pi))

,

which indicates how well the points are clustered. It is clear that−1 ≤ SilhCoeff ≤
1, and the silhouette coefficient closer to 1 implies the better result of clustering.

3 HE-friendly Modified Mean-shift Clustering

In this section, we introduce several modifications on the mean-shift algorithm
so that the modified algorithm can be efficiently performed by HE. One big
drawback of the original mean-shift algorithm to be implemented by HE is the
evaluation of kernel functions. They usually contain non-polynomial operations,
but these operations cannot cannot easily computed with HE algorithms. To
overcome the problem, we suggest a new HE-friendly kernel function in Sec-
tion 3.1 which is computationally efficient and shows a good performance.

Another big drawback of the original mean-shift algorithm to be implemented
by HE is its high computational cost. The usual mean-shift process classifies data
by seeking modes and mapping points to its corresponding mode at the same
time. This strategy eventually forces us to perform mean-shift process on all data,
so it is computationally inefficient to be implemented by HE which necessarily
accompanies more than hundreds or thousands times of overhead. To address this
issue, we adopt a random sampling method called dust sampling, and separate
the total mean-shift clustering process into two phases: mode-seeking phase and
point-labeling phase. One can check the details on these two phases in Section 3.2
and Section 3.3 respectively, and the full description of our modified mean-shift
clustering algorithm is described in Section 3.4.
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3.1 HE-friendly Kernel

As described in Section 2.4, the most popular kernel functions for mean-shift al-
gorithm are Gaussian kernel and Epanechnikov kernel. However, the derivatives
of both kernel functions, which should be computed in the mean-shift cluster-
ing algorithm, are either exponential or discontinuous that cannot be directly
computed with HE.

To overcome those drawbacks, we propose a new HE-friendly kernel function
which is a polynomial. We aim at constructing a kernel function that the output
vanishes rapidly as an input goes far from the origin. Also, we consider about
reducing the number of multiplications during the computation of the kernel as
well. For each x ∈ [0, 1], our new profile k is calculated as followings:

k(x) = (1− x)2
Γ+1

. (1)

The degree was set 2Γ +1 to reduce the computational complexity of the deriva-
tive function k′ which should be computed for mean-shift. Using this profile, a
new HE-friendly kernel is defined as following: For x,y ∈ Bn(1/2), the kernel
function K based on the profile k is

K(x,y) = c ·
(
1− ||x− y||2

)2Γ+1 (2)

for some constant c > 0. The following algorithm, denoted by Kernel, shows a
very simple computation of k′(||x−y||2) up to constant −1/(2Γ +1) which will
be eliminated. If one chooses bigger Γ , the kernel function will decrease more
rapidly, so the mean-shift process will focus more on closer points. Conversely, if
one chooses smaller Γ , the kernel function will decrease slowly, so the mean-shift
process will reference wider area.

Algorithm 4 Kernel(x,y;Γ )
Input: x,y ∈ Bn(1/2), Γ ∈ N
Output: HE-friendly kernel value between A and B
1: a← 1− ||x− y||2
2: for i← 1 to Γ do
3: a← a2

4: end for
5: return a

Our new kernel function is composed of (Γ + 1) multiplications and one
constant addition, while Γ is very small compared to the degree of the kernel
polynomial (Γ = log(degree)). Thus, our new kernel function is very HE-friendly.
At the same time, since it is non-negative and strictly decreasing, it is proper
kernel function for mean-shift algorithm. Moreover, its rapid decreasing property
provides high performance for mean-shift. The performance of our new kernel
function is experimentally proved to be sufficiently nice under various datasets
(See Section 4).
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3.2 Mode-seeking Phase

The biggest drawback of the original mean-shift clustering algorithm is its high
time complexity. It requires super-linear operations in the number of data points.
Since HE consumes considerably long time to compute each operation, it is
strongly demanded to modify mean-shift algorithm to practically use it with
HE.

To overcome those drawbacks, we use random sampling to reduce the total
number of operations for each mean-shift process. Instead of performing mean-
shift on every point, we perform the mean-shift process only on selected points
which we shall call dusts. Obviously each mean-shift process references all the
data so that dusts move to some modes of the KDE map. After sufficiently many
iterations, each dust converges to a mode, so we can seek all modes if we selected
enough dusts.

Advantage of the Dust Sampling Method. Our modification has a great
advantage on the number of operations. In the original mean-shift clustering
algorithm, every point shifts its position by referencing all of the other points.
Hence, it needs O(p2) operations for each loop where p is the number of given
points. However, in our approach, only selected dusts shift their positions, so
we can complete each mean-shift loop with O(p · d) operations, where d is the
number of selected dusts. This drastically reduces the total number of operations
because we select only few dusts among numerous points.

Algorithm 5 Mode-seeking(P = {P1, ..., Pp}, d, T ;Γ, ζ)
Input: Points P1, P2, · · · , Pp ∈ Bn(1/2), the number of dusts d ∈ N, the number

of mean-shift iterations T ∈ N
Output: Mean-shifted dusts Di ∈ Bn(1/2) close to modes for 1 ≤ i ≤ d
1: for i← 1 to d do
2: Di

$←− P // selecting dusts among Pi’s
3: end for
4: for i← 1 to T do
5: for j ← 1 to d do
6: sum← 0
7: A← 0d

8: for k ← 1 to p do
9: a← Kernel(Pk, Dj ;Γ )

10: A← A+ a · Pk
11: sum← sum+ a
12: end for
13: Dj ← Inv(sum; p, ζ) ·A // Dj ←

∑p
i=1

k′(||Dj−Pi||2)∑p
`=1 k

′(||Dj−P`||2) · Pi
14: end for
15: end for
16: return D
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Even though our approach requires less operations, its performance is accept-
able. Since we exploit the KDE map over all given points, the dusts converge
to modes exactly in the same way to the original mean-shift algorithm. Conse-
quently, we can seek all modes by selecting sufficiently many dusts.

How to Sample Dusts? There are many possible ways to set the initial po-
sition of dusts. We consider two candidates of initializing the dusts. One is to
uniformly select dusts from the space (so that can form a grid) and the other is
to select dusts among the given points. The first strategy is tempting because it
guarantees high possibility to seek all the modes. However, it requires too many
dusts as the dimension of the data set becomes higher. This directly increases
the number of operations and also has negative effects on HE implementation.
On the other hand, the second strategy provides stable performance with less
number of dusts even if the dimension and shape of the data vary. Moreover,
it choose more dusts from the denser regions, so we can expect that it succeed
in detecting all centers of clusters. Thus, we use the second strategy, selecting
dusts among given points as described in Algorithm 5.

Comparison to Freedman-Kisilev’s Method. At first glance, our approach
looks similar to that of Freedman and Kisilev [23]. Remark that they pick p′

random samples among the data, and run the original mean-shift clustering
algorithm only on the randomly sampled points.

Compared to Freedman-Kisilev mean-shift, our modification allows less num-
ber of selected dusts d than the number of randomly sampled points p′. While
Freedman and Kisilev use KDE of the selected samples instead of the original
KDE, we use the original KDE itself. As a consequence, they have to select
sufficiently many samples that can preserve the original KDE structure in some
sense, while we do not have such restriction on the number of dusts.

The computational complexity of each mean-shift process in Freedman and
Kisilev’s algorithm is O(p′2) , while ours is O(d · p). If p′ is large enough so that
d · p < p′2, our mean-shift process requires even less computations. And even if
p′ has been set small enough so that p′2 < p · d, the computational complexity
of the map-backwards process in Freedman-Kisilev mean-shift O(p · p′) is still
larger than that of point-labeling process in our mean-shift O(p · d) since p′ > d.
More importantly, the less number of selected dusts in our approach has a huge
advantage on HE implementation. Bootstrapping is the most expensive part
in HE, so minimizing the cost of bootstrapping, by reducing the number of
bootstrappings or setting the number of plaintext slots as small as possible, is
very important to optimize HE implementations. Since the mean-shift clustering
algorithm requires very large amount of computations, we have to repeatedly
execute bootstrapping on d dusts in the case of our algorithm and p′ samples in
the case of Freedman-Kisilev. Since d < p′, our mean-shift algorithm is clearly
less vulnerable to the latency of bootstrapping than the Freedman-Kisilev mean-
shift algorithm.
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3.3 Point-labeling Phase

Let us move on to the second phase, point-labeling. After finding all the modes,
we should label each point by mapping it to its closest mode. A naive way to
label a point Pi is as followings:

Cnaive(Pi) = argmin1≤j≤ddist(Dj , Pi)

where each Di denotes the mean-shifted dust after the mode-seeking phase.
However, the argmin function is very hard to compute in HE, and furthermore
this naive approach would label the points in the same cluster with different
indices. For example, let two dusts D1 and D2 got closed to a same mode M
after the mean-shift process, and P1 and P2 are unselected points of which the
closed dusts are D1 and D2 respectively. We expect P1 and P2 to be classified as
a same cluster because both points are close to the same modeM . Unfortunately,
with the naive way of point-labeling above, Cnaive(P1) = 1 does not match with
Cnaive(P2) = 2 due to the slight difference between D1 and D2.

Fortunately, exploiting MinIdx algorithm in Section 2.3 resolves both prob-
lems of the naive approach. Let us define a modified point-labeling function C ′
as

C ′(Pi) = MinIdx
(
(||Pi −Dk||2)1≤k≤d; t, ζ

)
.

Since MinIdx algorithm consists of polynomial operations, it can be evaluated by
HE for sure. Moreover, for proper parameters t and ζ, MinIdx((x1, ..., xm); t, ζ)
outputs a vector close to

(
1
2 ,

1
2 , 0, ..., 0

)
when x1 and x2 are (approximately)

minimal among xi’s, rather than (1, 0, ..., 0) or (0, 1, ..., 0). Therefore, in the
same setting to above, we get C ′(P1) ' C ′(P2) '

(
1
2 ,

1
2 , 0, ..., 0

)
.

However, C ′ cannot be the ultimate solution when considering the case that
a lot of Di’s got closed to a same mode. Let D1, ..., D` got closed to the same
modeM after the mean-shifting process. Then for a point Pi which is close to the
mode M , it holds that C ′(Pi) '

(
1
` ,

1
` , ...,

1
` , 0, ..., 0

)
. When ` is sufficiently large,

then we may not be able to distinguish between 1
` and an approximation error

of MinIdx attached to 0. We refine this problem by adopting a vector NBHD ∈ Rd
of which i-th component indicates the number of Dj ’s very close to Di:

NBHD =

(
d∑
k=1

Kernel(Dj , Dk;Γ )

)
1≤j≤d

for proper parameter Γ ≥ 1, and define our final point-labeling function C as

C(Pi) = C ′(Pi)� NBHD.

Since Kernel(Dj , Dk;Γ ) outputs approximately 1 if Dj ' Dk and 0 otherwise,
the j-th component NBHDi an approximate value of the number of dusts close to
Dj . Therefore, each component of C(Pi) is approximately 0 or 1 for 1 ≤ i ≤ p.
More precisely, for 1 ≤ j ≤ d, C(Pi)j ' 1 if and only if Dj is one of the closest
dusts to Pi.
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Algorithm 6 Point-labeling(P = {P1, ..., Pp}, D = {D1, ..., Dd};Γ, ζ, t)
Input: P1, .., Pp ∈ Bn(1/2), D1, ..., Dd ∈ Bn(1/2), Γ ∈ N
Output: Cluster index Ci ∈ [0, 1]d of each Pi for 1 ≤ i ≤ p
1: for i← 1 to d do
2: NHBDi ← 0
3: for j ← 1 to d do
4: NBHDi ← NBHDi + Kernel(Di, Dj ;Γ )
5: end for
6: end for
7: NBHD← (NBHDi)1≤i≤d // NBHDi =

∑d
j=1 Kernel(Di, Dj ;Γ )

8: for i← 1 to p do
9: C ′i ← MinIdx

(
(||Pi −Dk||2)1≤k≤d; t, ζ

)
10: Ci ← C ′i � NBHD
11: end for
12: return C = (Ci)1≤i≤p

To sum up, with mean-shifted dusts D = {D1, ..., Dd}, we label each point
Pi by

C(Pi) = MinIdx
(
(||Pi −Dk||2)1≤k≤d; t, ζ

)
�

(
d∑
k=1

Kernel(Dj , Dk; ζ)

)
1≤j≤d

.

Parameters t and ζ control the accuracy of MinIdx, and the parameter ζ control
the accuracy of counting the number of converged dusts in each mode. Note
that the return type of C is a d-dimensional vector where the i-th component
Ci denotes C(Pi).

Other Approaches of Point-labeling. Another possible choice of the point-
labeling function is coordinate-of-dust function that simply returns the dust
closest to the input point, i.e., Ccoord(Pi) = Dargmin1≤j≤ddist(Dj ,Pi). Unfortu-
nately, however, the minimum distance between Ccoord(Pi)’s cannot be bounded
by any constant. This limitation makes it unclear to determine whether two
points Pi and Pj satisfying Ccoord(Pi) ' Ccoord(Pi) in some sense belong to the
same cluster or not. Since we are using several approximate algorithms including
Mode-seeking, this obscure situation occurs quite often. Therefore, Ccoord is not
the best choice for point labeling.

Freedman and Kisilev [23] uses another strategy called the map-backwards
strategy. In this strategy, we label points by referencing the initial position of
dusts instead of their final position. For example, we can compute the label of
each point Pi ∈ P by a vector-matrix multiplication as followings:

Cback(Pi) = MinIdx
(
(||Pi −D0

j ||2)1≤j≤d; t, ζ
)
· (Kernel(Dj , Dk))1≤j,k≤d

where D0
j is the initial position of each Dj ∈ D. Note that we treat the first term

as a 1× d matrix and the second term as d× d matrix, and multiplied them by
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matrix multiplication. As a result, the j-th entry of Cback(Pi) would designate
the set of dust-neighborhood of the dust closest to Pi at the initial state.

This strategy is also reasonable, since the points close to the initial position
of each dust are generally expected to move close to the same mode through
the mean-shift process. We may regard this strategy as partitioning the points
as several regions through the initial position of dusts. Unfortunately, the map-
backwards strategy is relatively inefficient compared to our point-labeling strat-
egy in the perspective of HE implementation. As we explained in Section 3.2,
a less number of dusts is better for HE implementation. However, in the map-
backwards strategy with only small number of dusts, the regions generated by
the dusts may be too meager to be meaningful. Furthermore, a vector-matrix
multiplication is much more expensive than a Hadamard multiplication of two
vector in HE.

3.4 Our Modified Mean-shift Clustering Algorithm

In summary, our modified mean-shift clustering procedure is done by two phases:
mode-seeking phase and point-labeling phase. In the first phase, we seek all the
modes which are candidates for center of clusters, and in the second phase,
we map each point to its closest mode with well-devised point-labeling function.
Algorithm 7 describes our HE-friendly modified mean-shift clustering algorithm:

Algorithm 7 Mean-shift-clustering(P = {P1, ..., Pp}, d, T ;Γ1, Γ2, ζ1, ζ2, t)

Input: P1, P2, · · · , Pp ∈ Bn(1/2), Γ1Γ2, d, T ∈ N
Output: A label vector of P1, P2, ..., Pp
1: D ← Mode-seeking(P, d, T ;Γ1, ζ1)
2: C ← Point-labeling(P,D;Γ2, ζ2, t)
3: return C = (C1, ..., Cp)

Complexity Analysis. In mode-seeking phase, the mean-shift process is iter-
ated for T times. For each iteration, we calculate the kernel value between all
pairs of points and dusts. Note that the computational complexity of Kernel
between two n-dimensional points is O(n), so each mean-shift iteration takes
O(n · d · p) and hence the computational cost of Mode-seeking is O(n · d · p · T ).

The point-labeling phase consists of calculating vectors NBHD and C ′i , and
Hadamard multiplications NBHD�C ′i for 1 ≤ i ≤ p. To obtain NBHD, we calculate
the kernel values between all pairs of dusts, so it takes O(n · d2) computations.
Also, to calculate C ′i, we measure the distances from the given point to dusts, so
it requires O(n · d) computations. Note that the cost O(n) of a Hadamard mul-
tiplication is negligible. As a result, the computational cost of Point-labeling
is O(n · d · p) because d is always strictly smaller than p. To sum up, the cost of
mode-seeking phase is O(n ·d ·p ·T ) and that of point-labeling phase is O(n ·d ·p).
Consequently, the computational cost of our algorithm is O(n · d · p · T ).
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We can reduce the computational cost of Mean-shift-clustering by at
most N/2, since HEAAN supports N/2 parallel computations in a SIMD manner
where N is a HEAAN parameter. Fortunately, we can apply SIMD efficiently to
our algorithm. The most heaviest parts of our algorithm are mean-shift process
and MinIdx that both requires O(n ·p ·d) computations. For mean-shift process,
we compute kernel values between all pairs of points and dusts. When we have
one ciphertext of

(P1 || P2 || · · · || Pp || P1 || P2 || · · · || Pp || · · · || P1 || P2 || · · · || Pp)

and another ciphertext of

(D1 || D1 || · · · || D1 || D2 || D2 || · · · || D2 || · · · || Dk || Dk || · · · || Dk)

with k = N
2np , then we can compute k · p = N

2n kernel computations simultane-
ously, and the computational cost of each kernel reduces to O(log n). As a result,
we can run Mode-seeking with O

(
n2·d·p·T
logn·N

)
computations in HEAAN. Similarly

we can reduce the number of computations for Point-labeling as well. Thereby
the total computational cost of our algorithm would be O

(
n2·d·p·T
logn·N

)
.

4 Experimental Results

4.1 Dataset Description

To monitor the performance, we implement our algorithm over four datasets
(Hepta, Tetra, TwoDiamonds, Lsun) with true labels which are publicly accessi-
ble from fundamental clustering problems suite (FCPS) [41] and one large-scale
dataset (LargeScale) randomly generated by ourselves. LargeScale dataset con-
sists of four clusters following Gaussian distributions with small variance and
distinct centers. Table 1 describes the properties of each dataset:

Table 1. Short descriptions of the datasets

Dataset Dimension # Data # Clusters Property

Hepta 3 212 7 Different densities
Tetra 3 400 4 Big and touching clusters

TwoDiamonds 2 800 2 Touching clusters
Lsun 2 400 3 Different shapes

LargeScale 4 16, 384 4 Numerous points
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Fig. 2. A visualization of LargeScale dataset

4.2 Parameter Selection

Our implementation is based on the approximate HE library HEAAN [1, 13]. We
set HEAAN parameters (N, qL, h, χerr) to satisfy 128-bit security, where N is the
ring dimension, qL is the initial modulus of a ciphertext, h is a hamming weight
of a secret polynomial, and χerr is the error distribution. As mentioned in Sec-
tion 2.2, we used Albrecht’s security estimator [2, 3] to estimate the bit security
of those HEAAN parameters. Note that since the modulus of the evaluation key
evk is q2L, the input on the security estimator is a tuple (N,Q = q2L, h, χerr). As a
result, we set HEAAN parameters N = 217 and log qL = 1480, and followed the
default setting of HEAAN library in github [1] for error and secret distributions
χerr, χenc andχkey.

We flexibly chose the clustering parameters T , Γ1, Γ2, ζ1, ζ2 and t for each
dataset to optimize the implementation results. In the case of Hepta dataset, for
example, the best choice of parameters was (T, Γ1, Γ2, ζ1, ζ2, t) = (5, 6, 6, 4, 4, 6),
while (T, Γ1, Γ2, ζ1, ζ2, t) = (8, 5, 5, 5, 6, 5) was the best for TwoDiamonds dataset,
and (T, Γ1, Γ2, ζ1, ζ2, t) = (5, 6, 5, 5, 8, 6) was the best for Lsun dataset.

4.3 Experimental Results

In this subsection, we present experimental results on our mean-shift clustering
algorithm based on HEAAN. All experiments were performed on C++11 stan-
dard and implemented on Linux with Intel Xeon CPU E5-2620 v4 at 2.10GHz
processor.

In Table 2, we present the performance and quality of our algorithm on
various datasets. We use 8 threads for all experiments here. We describe the
accuracy value by presenting both the number of well-classified points and the
total number of points. We present two silhouette coefficients; the one without
bracket is the silhouette coefficient of our clustering results, and the other one
with bracket is that of the true labels.
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Table 2. Experimental results for various datasets with 8 threads

Dataset Comp. Time Memory
Quality Evaluation

Accuracy SilhCoeff

Hepta 25 min 10.7 GB 212/212
0.702
(0.702)

Tetra 36 min 10.7 GB 400/400
0.504
(0.504)

TwoDiamonds 38 min 9.6 GB 792/800
0.478
(0.485)

Lsun 24 min 9.4 GB -
0.577
(0.443)

LargeScale 82 min 20.7 GB 262127/262144
0.781
(0.781)

We complete the clustering on various datasets within a few dozens of min-
utes. In the case of FCPS datasets, their sizes are much smaller than the num-
ber of HEAAN plaintext slots we can manage. On the other hand, the size of
LargeScale dataset is big enough so that we can use full slots; therefore, we can
fully exploit SIMD of HEAAN for the LargeScale dataset. Consequently, the
performance of our algorithm for LargeScale dataset is quite nice in spite of its
huge size.

For all the five datasets, our algorithm achieves high accuracy. In the case
of Hepta, Tetra and LargeScale datasets, we succeed to label all data points by
its exact true label. For the TwoDiamonds dataset, we succeed to classify 792
points out of 800 points properly. Even for the rest 8 points, the label vector of
each point is close to its true label.

In the case of the Lsun dataset, our algorithm results in four clusters while
there are only three clusters in the true labels. However, it is also reasonable to
classify the Lsun dataset with 4 clusters. In fact, our result shows even a better
quality in aspect of the silhouette coefficient. The silhouette coefficient for our
clustering result is 0.577, and that for the true labels is 0.443.

We also checked the performance of our algorithm with several number of
threads for the Lsun dataset as described in Table 3. With a single thread, it
takes 83 minutes and consumes 9.4 GB memories This is extremely faster than
the previous work in [29]; which takes 25.79 days to complete a clustering process
for the same dataset. Obviously we can speed up by using much more number
of threads. For example, the running time can be reduced to 16 minutes when
using 20 threads with just small overhead of memory.
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Table 3. Experimental results for various # threads with the Lsun dataset

1 Thread 8 Threads 20 Threads

Time Memory Time Memory Time Memory

83 min 9.4 GB 24 min 9.4 GB 16 min 10.0 GB
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