
UC-Secure CRS Generation for SNARKs

Behzad Abdolmaleki1, Karim Baghery1, Helger Lipmaa1, Janno Siim1, and
Michaª Zaj¡c2

1 University of Tartu, Estonia
2 Clearmatics, UK

Abstract. Zero-knowledge SNARKs (zk-SNARKs) have recently found
various applications in veri�able computation and blockchain applica-
tions (Zerocash), but unfortunately they rely on a common reference
string (CRS) that has to be generated by a trusted party. A standard
suggestion, pursued by Ben Sasson et al. [IEEE S&P, 2015], is to gener-
ate CRS via a multi-party protocol. We enhance their CRS-generation
protocol to achieve UC-security. This allows to safely compose the CRS-
generation protocol with the zk-SNARK in a black-box manner with
the insurance that the security of the zk-SNARK is not in�uenced. Dif-
ferently from the previous work, the new CRS-generation protocol also
avoids the random oracle model which is typically not required by zk-
SNARKs themselves. As a case study, we apply the protocol to the state-
of-the-art zk-SNARK by Groth [EUROCRYPT, 2016].

Keywords: CRS model, SNARK, subversion-security, UC security

1 Introduction

A zero-knowledge argument is a cryptographic protocol between a prover and a
veri�er where the objective is to prove the validity of some statement while not
leaking any other information. In particular, such an argument should be sound
(it should be impossible to prove false statements) and zero-knowledge (the only
leaked information should be the validity of the statement). Practical applica-
tions often require a non-interactive zero-knowledge (NIZK) argument where the
prover outputs a single message which can be checked by many di�erent veri�ers.

Zero-knowledge succinct non-interactive arguments of knowledge (zk-
SNARKs) are particularly e�cient instantiations of NIZK, and have thus
found numerous application ranging from veri�able computation [29] to privacy-
preserving cryptocurrencies [5] and privacy-preserving smart contracts [25]. In
most of such zk-SNARKs (see, e.g., [19,26,15,29,13,20]), the veri�er's computa-
tion is dominated by a small number of exponentiations and pairings in a bilinear
group, while the argument consists of a small number of group elements. Impor-
tantly, a zk-SNARK exists for any NP-language.

One drawback in the mentioned pairing-based zk-SNARKs is their reliance
on the strong common reference string (CRS) model. It assumes that in the
setup phase of the protocol a trusted party publishes a CRS, sampled from some

specialized distribution, while not leaking any side information. Subverting the
setup phase can make it easy to break the security, e.g., leaking a CRS trapdoor
makes it trivial to prove false statements. This raises the obvious question of how
to apply zk-SNARKs in practice without completely relying on a single trusted
party. The issue is further ampli�ed since in all of the mentioned zk-SNARKs,
one has to generate a new CRS each time the relation changes.

Reducing trust on CRS generation is indeed a long-standing open question.
Several di�erent approaches for this are known, but each one has its own prob-
lems. Some recent papers [6,8,9] have proposed e�cient CRS-generation multi-
party computation protocols, where only 1 out of Np parties has to be honest,
for a large class of known zk-SNARKs (in fact, most of the e�cient pairing-
based zk-SNARKs belong to this class, possibly after the inclusion of a small
number of new elements to their CRSs) for which the CRS can be computed by
a �xed well-de�ned class CS of circuits. Following [6], we will call this class of
zk-SNARKs CS-SNARKs. However, the CRS-generation protocols of [6,8,9] have
the following two weaknesses:

1. They are not secure in the universal composability (UC) setting [10]. Hence,
they might not be secure while running in parallel with other protocols, as
is often the case in real life scenarios. Moreover, some systems require a
UC-secure NIZK [25,22], but up to now their CRS is still be generated in a
standalone setting. We note that [6,9] do prove some form of simulatability
but not for full UC-security. Protocol of [8] is for one speci�c zk-SNARK.

2. All use the random oracle model and [8,9] additionally use knowledge as-
sumption. Non-falsi�able assumptions [28] (e.g., knowledge assumptions)
and the random oracle model are controversial (in particular, the random
oracle model is uninstantiable [12,17] and thus can only be thought of as
a heuristic), and it is desirable to avoid them in situations where they are
not known to circumvent impossibility results. Importantly, construction of
zk-SNARKs under falsi�able assumptions is impossible [16] and hence they
do rely on non-falsi�able assumptions but usually not on the random oracle
model. Relying on the random oracle model in the setup phase means that
the complete composed system (CRS-generation protocol + zk-SNARK) re-
lies on both random oracle model and non-falsi�able assumptions. Hence,
we end up depending on two undesirable assumptions rather than one.

Updatable CRS [21] is another recent solution to the problem. Essentially,
this can be viewed as a single round MPC protocol where each party needs to
participate just once in the CRS computation. Current zk-SNARKs in updatable
CRS model [21,27] are still less e�cient, than the state-of-the-art non-updatable
counterparts like the zk-SNARK by Groth [20].

As a di�erent approach, in order to minimize the trust of NIZKs in the
setup phase, Bellare et al. [4] de�ned the notion of subversion-resistance, which
guarantees that a security property (like soundness) holds even if the CRS gen-
erators are all malicious. As proven in [4], achieving subversion-soundness and
(even non-subversion) zero knowledge at the same time is impossible for NIZK
arguments. On the other hand, one can construct subversion-zero knowledge

2

(Sub-ZK) and sound NIZK arguments. Abdolmaleki et al. [2] showed how to de-
sign e�cient Sub-ZK SNARKs: essentially, a zk-SNARK can be made Sub-ZK by
constructing an e�cient public CRS-veri�cation algorithm CV that guarantees
the well-formedness of its CRS. In particular, [2] did this for the most e�cient
known zk-SNARK by Groth [20] after inserting a small number of new elements
to its CRS. Fuchsbauer [14] proved that Groth's zk-SNARK (with a slightly
di�erent simulation) is Sub-ZK even without changing its CRS.

Our Contributions.We propose a new UC-secure multi-party CRS-generation
protocol for CS-SNARKs that crucially relies only on falsi�able assumptions and
does not require a random oracle. Conceptually, the new protocol follows sim-
ilar ideas as the protocol of [6], but it does not use any proofs of knowledge.
Instead, we use a discrete logarithm extractable (DL-extractable) UC commit-
ment functionality Fdlmcom that was recently de�ned by Abdolmaleki et al. [1].
A DL-extractable commitment scheme allows to commit to a �eld element x and
open to the group element gx. Since Fdlmcom takes x as an input, the committer
must know x and thus x can be extracted by the UC-simulator. As we will show,
this is su�cient to prove UC-security of the new CRS-generation protocol.

In addition, we show that the Sub-ZK SNARK of [2] is a Sub-ZK CS-SNARK
after just adding some more elements to its CRS. We also improve the e�ciency
of the rest of the CRS-generation protocol by allowing di�erent circuits for each
group, considering special multiplication-division gates, and removing a num-
ber of NIZK proofs that are used in [6]. Like in the previous CRS-generation
protocols [6,8,9], soundness and zero-knowledge will be guaranteed as long as 1
out of Np parties participating in the CRS generation is honest. If SNARK is
also Sub-ZK [2,14], then zero-knowledge is guaranteed even if all Np parties are
dishonest, given that the prover executes a public CRS veri�cation algorithm.

Since it is impossible to construct UC commitments in the standard
model [11], the new UC-secure CRS-generation protocol necessarily relies on
some trust assumption. The DL-extractable commitment scheme of [1] is secure
in the registered public key (RPK) model3 that is a weaker trust model than
the CRS model. However, we stay agnostic to the concrete implementation of
Fdlmcom, proving the security of the CRS-generation protocol in the Fdlmcom-
hybrid model. Thus, the trust assumption of the CRS-generation protocol is
directly inherited from the trust assumption of the used DL-extractable com-
mitment scheme. Constructing DL-extractable commitment schemes in a weaker
model like the random string model or the multi-string model is an interesting
open question. Note that CRS-s of known e�cient CS-SNARKs, with a few
exceptions, contain Ω(n) group elements, where n is the circuit size (e.g., in the
last CRS generation of Zcash [5], n ≈ 2 000 000 4). Hence, even a relatively inef-

3 In the RPK model, each party registers his public key with an authority of his
choosing. It is assumed that even authorities of untrusted parties are honest to the
extent that they verify the knowledge (e.g., by using a standalone ZK proof) of the
corresponding secret key.

4 See https://www.zfnd.org/blog/conclusion-of-powers-of-tau/

3

https://www.zfnd.org/blog/conclusion-of-powers-of-tau/

�cient DL-extractable commitment scheme (that only has to be called once per
CRS trapdoor) will not be the bottleneck in the CRS-generation protocol.

We proceed as follows. First, we describe an ideal functionality Fmcrs, an
explicit multi-party version of the CRS generation functionality. Intuitively (the
real functionality is slightly more complicated), �rst, Np key-generators Gi send
to Fmcrs their shares of the trapdoors, s.t. the shares of the honest parties are
guaranteed to be uniformly random. Second, Fmcrs combines the shares to create
the trapdoors and the CRS, and then sends the CRS to each Gi.

We propose a protocol Kmcrs that UC-realizes Fmcrs in the Fdlmcom-hybrid
model, i.e., assuming the availability of a UC-secure realization of Fdlmcom. In
Kmcrs, the parties Gi �rst Fdlmcom-commit to their individual share of each trap-
door. After opening the commitments, Gi compute crs by combining their shares
with a variation of the protocol from [6]. The structure of this part of the protocol
makes it possible to publicly check that it was correctly followed.

Next, we prove that a CS-SNARK that is complete, sound, and Sub-ZK in
the CRS model is also complete, sound, and Sub-ZK in the Fmcrs-hybrid model.
Sub-ZK holds even if all CRS creators were malicious, but for soundness we need
at least one honest party. We then show that the Sub-ZK secure version [2,14] of
the most e�cient known zk-SNARK by Groth [20] remains sound and Sub-ZK if
the CRS has been generated by using Kmcrs. The main technical issue here is that
since Groth's zk-SNARK is not CS-SNARK (see Section 3), we need to add some
new elements to its CRS and then reprove its soundness against an adversary
who is given access to the new CRS elements. We note that Bowe et al. [9]
proposed a di�erent modi�cation of Groth's zk-SNARK together with a CRS-
generation protocol, but under strong assumptions of random beacon model,
random oracle model, and knowledge assumptions. Role of the commitment in
their case is substituted with a random beacon which in particular means that
they do not need to �x parties in the beginning of the protocol.

We constructed a UC-secure CRS-generation protocol Kmcrs in the Fdlmcom-
hybrid model for any CS-SNARK and in particular proved that a small modi�-
cation of Groth's zk-SNARK is secure when composed with Kmcrs. Moreover, the
resulting CRS-generation protocol is essentially as e�cient as the prior protocols
from [6,8,9]. However, (i) we proved the UC-security of the new CRS-generation
protocol, and (ii) the new protocol is falsi�able, i.e., it does not require either
the random oracle model or any knowledge assumption.

2 Preliminaries

Let PPT denote probabilistic polynomial-time. Let λ ∈ N be the information-
theoretic security parameter, in practice, e.g., λ = 128. All adversaries will be
stateful. For an algorithm A, let im(A) be the image of A, i.e., the set of of valid
outputs of A, let RND(A) denote the random tape of A, and let r←$ RND(A) de-
note sampling of a randomizer r of su�cient length for A's needs. By y ← A(x; r)
we denote that A, given an input x and a randomizer r, outputs y. We denote
by negl(λ) an arbitrary negligible function, and by poly(λ) an arbitrary poly-

4

nomial function. A ≈c B means that distributions A and B are computationally
indistinguishable. We write x←$D if x is sampled according to distribution D

or uniformly in case D is a set. By Supp(D) we denote the set of all elements
in D that have non-zero probability.

Assume that Gi are di�erent parties of a protocol. Following previous work [6],
we will make the following assumptions about the network and the adversary.
It is possible that the new protocols can be implemented in the asynchronous
model but this is out of scope of the current paper.

Synchronicity assumptions: We assume that the computation can be divided
into clearly divided rounds. As it is well-known, synchronous computation can
be simulated, assuming bounded delays and bounded time-drift. For the sake
of simplicity, we omit formal treatment of UC-secure synchronous execution,
see [23] for relevant background.

Authentication: we assume the existence of an authenticated broadcast between
the parties. In particular, (i) if an honest party broadcasts a message, we assume
that all parties (including, in the UC-setting, the simulator) receive it within
some delay, and (ii) an honest party Gj accepts a message as coming from Gi
only if it was sent by Gi.

Covertness: We assume that an adversary in the multi-party protocols is covert,
i.e., it will not produce outputs that will not pass public veri�cation algorithms.
In the protocols we write that honest parties will abort under such circumstances,
but in the proofs we assume that adversary will not cause abortions.

For pairing-based groups we will use additive notation together with the
bracket notation, i.e., in group Gι, [a]ι = a [1]ι, where [1]ι is a �xed genera-
tor of Gι. A deterministic bilinear group generator Pgen(1λ) returns p = (p,
G1,G2,GT , ê, [1]1 , [1]2), where p (a large prime) is the order of cyclic abelian
groups G1, G2, and GT , and ê : G1×G2 → GT is an e�cient non-degenerate bi-
linear pairing, s.t. ê([a]1 , [b]2) = [ab]T . Denote [a]1 • [b]2 = ê([a]1 , [b]2); this
extends to vectors in a natural way. Occasionally we write [a]ι • [b]3−ι for
ι ∈ {1, 2} and ignore the fact that for ι = 2 it should be written [b]3−ι • [a]ι.
Let [a]? := ([a]1, [a]2). As in [4], we will implicitly assume that p is generated
deterministically from λ; in particular, the choice of p cannot be subverted.

UC Security. We work in the standard universal composability framework of
Canetti [10] with static corruptions of parties. The UC framework de�nes a
PPT environment machine Z that oversees the execution of a protocol in one
of two worlds. The �ideal world� execution involves �dummy parties� (some of
whom may be corrupted by an ideal adversary/simulator Sim) interacting with
a functionality F . The �real world� execution involves PPT parties (some of
whom may be corrupted by a PPT real world adversary A) interacting only
with each other in some protocol π. We refer to [10] for a detailed description
of the executions, and a de�nition of the real world ensemble EXECπ,A,Z and
the ideal world ensemble IDEALF,SimA,Z . A protocol π UC-securely computes F
if there exists a PPT Sim such that for every non-uniform PPT Z and PPT A,
{IDEALF,SimA,Z(λ, x)}λ∈N,x∈{0,1}∗ ≈c {EXECπ,A,Z(λ, x)}λ∈N,x∈{0,1}∗ .

5

FD,f
crs is parametrized by a distribution D and a function f . It proceeds as follows,

running with parties Gi and an adversary Sim.
CRS generation: Sample tc←$D; Set crs ← f(tc); Send (crsOK?, sid, crs) to Sim; If
Sim returns (crsOK, sid) then store (sid, crs).
Retrieval: upon receiving (retrieve, sid) from Gi: If (sid, crs) is recorded for some crs
then send (CRS, sid, crs) to Gi. Otherwise, ignore the message.

Fig. 1: Functionality FD,f
crs

Fdlmcom, parametrized byM = Zp and group Gι, interacts with G1, . . . ,GNp as follows.
� Upon receiving (commit, sid, cid,Gi,Gj ,m) from Gi, where m ∈ Zp: if a tuple

(sid, cid, · · ·) with the same (sid, cid) was previously recorded, do nothing. Oth-
erwise, record (sid, cid,Gi,Gj ,m) and send (rcpt, sid, cid,Gi,Gj) to Gj and Sim.

� Upon receiving (open, sid, cid) from Gi, proceed as follows: if a tuple
(sid, cid,Gi,Gj ,m) was previously recorded then send (open, sid, cid,Gi,Gj , y ←
[m]ι) to Gj and Sim. Otherwise do nothing.

Fig. 2: Functionality Fdlmcom for ι ∈ {1, 2}

The importance of this de�nition is a composition theorem that states that
any protocol that is universally composable is secure when run concurrently with
many other arbitrary protocols; see [10] for discussions and de�nitions.

CRS functionality. The CRS model UC functionality FD,f
crs parameterized

by a distribution D and a function f intuitively works as follows. Functionality
samples a trapdoor tc from D, computes crs = f(tc), and stores crs after a con�r-
mation from the simulator. Subsequently on each retrieval query (retrieve, sid)
it responds by sending (CRS, sid, crs). For full details see Fig. 1.

DL-extractable UC Commitment. Abdolmaleki et al. [1] recently proposed
a discrete logarithm extractable (DL-extractable) UC-commitment scheme. Dif-
ferently from the usual UC-commitment, a committer will open the commitment
to [m]1, but the functionality also guarantees that the committer knows x. Hence,
in the UC security proof it is possible to extract the discrete logarithm of [m]1.
Formally, the ideal functionality Fdlmcom takes m as a commitment input (hence
the user must know m), but on open signal only reveals [m]1. See Fig. 2. We
refer to [1] for a known implementation of Fdlmcom in the RPK model.

Non-interactive zero-knowledge. Let R be a relation generator, such that
R(1λ) returns a polynomial-time decidable binary relation R = {(x,w)}. Here,
x is the statement and w is the witness. We assume that λ is explicitly deducible
from the description of R. The relation generator also outputs auxiliary informa-
tion ξR that will be given to the honest parties and the adversary. As in [20,2],
ξR is the value returned by Pgen(1λ). Because of this, we also give ξR as an
input to the honest parties; if needed, one can include an additional auxiliary
input to the adversary. Let LR = {x : ∃w, (x,w) ∈ R} be an NP-language.

A (subversion-resistant) non-interactive zero-knowledge argument system [2]
Ψ for R consists of six PPT algorithms:

6

CRS trapdoor generator: Ktc is a PPT algorithm that, given (R, ξR) ∈
im(R(1λ)), outputs a CRS trapdoor tc. Otherwise, it outputs ⊥.

CRS generator: Kcrs is a deterministic algorithm that, given (R, ξR, tc), where
(R, ξR) ∈ im(R(1λ)) and tc ∈ im(Ktc(R, ξR)) \ {⊥}, outputs crs. Otherwise,
it outputs ⊥. We distinguish three parts of crs: crsP (needed by the prover),
crsV (needed by the veri�er), and crsCV (needed by CV algorithm).

CRS veri�er: CV is a PPT algorithm that, given (R, ξR, crs), returns either 0
(the CRS is ill-formed) or 1 (the CRS is well-formed).

Prover: P is a PPT algorithm that, given (R, ξR, crsP, x,w), where (x,w) ∈ R,
outputs an argument π. Otherwise, it outputs ⊥.

Veri�er: V is a PPT algorithm that, given (R, ξR, crsV, x, π), returns either 0
(reject) or 1 (accept).

Simulator: Sim is a PPT algorithm that, given (R, ξR, crs, tc, x), outputs an
argument π.

We also de�ne the CRS generation algorithm K(R, ξR) that �rst sets tc ←
Ktc(R, ξR) and then outputs crs← Kcrs(R, ξR, tc).

Ψ is perfectly complete for R, if for all λ, (R, ξR) ∈ im(R(1λ)), tc ∈
im(Ktc(R, ξR)) \ {⊥}, and (x,w) ∈ R,

Pr [crs← Kcrs(R, ξR, tc) : V(R, ξR, crsV, x,P(R, ξR, crsP, x,w)) = 1] = 1 .

Ψ is computationally adaptively knowledge-sound for R [20], if for every non-
uniform PPT A, there exists a non-uniform PPT extractor ExtA, s.t. ∀ λ,

Pr

(R, ξR)← R(1λ), (crs, tc)← K(R, ξR), r ←r RND(A),

(x, π)← A(R, ξR, crs; r),w← ExtA(R, ξR, crs; r) :

(x,w) 6∈ R ∧ V(R, ξR, crsV, x, π) = 1

 ≈λ 0 .

Here, ξR can be seen as a common auxiliary input to A and ExtA that is gener-
ated by using a benign [7] relation generator; we recall that we just think of ξR
as being the description of a secure bilinear group.

Ψ is statistically unbounded ZK for R [18], if for all λ, all (R, ξR) ∈ im(R(1λ)),
and all computationally unbounded A, εunb0 ≈λ εunb1 , where

εunbb = Pr[(crs, tc)← K(R, ξR) : AOb(·,·)(R, ξR, crs) = 1] .

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it re-
turns P(R, ξR, crsP, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and
otherwise it returns Sim(R, ξR, crs, tc, x). Ψ is perfectly unbounded ZK for R if
one requires that εunb0 = εunb1 .

Ψ is statistically unbounded Sub-ZK for R, if for any non-uniform PPT sub-
verter X there exists a non-uniform PPT ExtX, such that for all λ, (R, ξR) ∈
im(R(1λ)), and computationally unbounded A, εunb0 ≈λ εunb1 , where

εunbb = Pr

[
r ←r RND(X), (crs, ξX)← X(R, ξR; r), tc← ExtX(R, ξR; r) :

CV(R, ξR, crs) = 1 ∧ AOb(·,·)(R, ξR, crs, tc, ξX) = 1

]
.

7

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it re-
turns P(R, ξR, crsP, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and
otherwise it returns Sim(R, ξR, crs, tc, x). Ψ is perfectly unbounded Sub-ZK for R
if one requires that εunb0 = εunb1 .

Intuitively the previous de�nition says that an argument is Sub-ZK when
for any untrusted (e�cient) CRS generator X, some well-formedness condition
CV(R, ξR, crs) = 1 implies that X knows a trapdoor which would allow him to
simulate the proof. Hence, to protect privacy from malicious CRS generators,
the prover just needs to verify that the CRS satis�es the CV algorithm.

Finally, a non-interactive argument system is succinct if the argument length
is polynomial in λ and the veri�er runs in time polynomial in λ+ |x|.

3 Multi-Party CRS Generation

Recently, [6,8,9] proposed several multi-party CRS-generation protocols for
SNARKs. In particular, [6] proposes a speci�c class of arithmetic circuits CS,
shows how to evaluate CS-circuits in an MPC manner, and claims that CS-circuits
can be used to compute CRS-s for a broad class of SNARKs, in this paper called
CS-SNARKs. The CRS of each CS-SNARK is an output of some CS-circuit taken
into exponent. The input of such circuit is the CRS trapdoor. In the following,
we review and modify the framework of [6] rede�ning slightly the class CS and
the CRS-generation protocol.

CS-Circuits. For an arithmetic circuit C over a �eld F, denote by wires(C) and
gates(C) the set of wires and gates of C (each gate can have more than one output
wire), and by inputs(C), outputs(C) ⊂ wires(C) the set of input and output wires
of C. There can also be wires with hard-coded constant values, but these are not
considered to be part of inputs(C). The size of C is |inputs(C)| + |gates(C)|. For
a wire w we denote the value on the wire by w̄; this notation also extends to
tuples, say, inputs(C) denotes the tuple of values of inputs(C).

For a gate g, output(g) = w is the output wire and the tuple of all input
wires is denoted by inputs(g). Let gw be the gate with w = output(gw). We con-
sider circuits with addition and multiplication-division gates. For an addition
gate (type(g) = add), inputs(g) = (w1, . . . , wf), coeffs(g) = (a0, a1, . . . , af), and

it outputs a value w̄ = a0 +
∑f
j=1 ajw̄j . For a multdiv gate (type(g) = multdiv),

inputs(g) = (w1, w2, w3), L-input(g) = w1 is the left multiplication input,
R-input(g) = w2 is the right multiplication input, D-input(g) = w3 is the division
input, and coeffs(g) = a. The output wire w contains the value w̄ = aw̄1w̄2/w̄3.
Previous works either only considered multiplication gates [6] or separate mul-
tiplication and division gates [9]. Using multdiv gates can, under some circum-
stances, reduce the circuit size compared to separate multiplication and division
gates. A smaller circuit gives lower computation and communication cost for our
CRS-generation protocol as we see later.

Class CS contains F-arithmetic circuits C : Ft → Fh, such that:
(1) For any w ∈ inputs(C), there exists g ∈ gates(C) such that type(g) = multdiv,

inputs(g) = (1, w̄, 1), and coeffs(g) = 1. That is, each trapdoor itself should

8

be a part of the output of the circuit. Adding those multdiv gates corresponds
to the MPC protocol combining the shares of trapdoor ts of each party to
get [tc]ι.

(2) For any g ∈ gates(C):
(a) output(g) ∈ outputs(C). Hence, each gate output is a CRS element.
(b) If type(g) = multdiv then L-input(g) 6∈ inputs(C), R-input(g),

D-input(g) ∈ inputs(C). That is, the left multiplication input can be
a constant or an output of a previous gate, the right multiplication and
division inputs have to be one of the inputs of the circuit. This allows to
easily verify the computation in the MPC. For convenience, we require
further that constant value of L-input(g) can only be 1; from computa-
tional point of view nothing changes since coeffs(g) can be any constant.

(c) If type(g) = add then inputs(g)∩inputs(C) = ∅. Addition is done locally in
MPC (does not require additional rounds) with the outputs of previous
gates, since outputs correspond to publicly known CRS elements.

The sampling depth depthS of a gate g ∈ gates(C) is de�ned as follows:
1. depthS(g) = 1 if g is a multdiv gate and L-input(g) is a constant.
2. depthS(g) = max{depthS(g′) : g′ an input of g} for other multdiv gates,
3. depthS(g) = bg + max{depthS(g′) : g′ an input of g} for any add gate, where

(i) bg = 0 i� all the input gates of g are add gates. (ii) bg = 1, otherwise.
Denote depthS(C) := maxg{depthS(g)}. We again de�ned depthS slightly di�er-
ently compared to [6]; our de�nition emphasizes the fact that addition gates can
be executed locally. Essentially, Np · depthS(gw) will be the number of rounds
that it takes to compute [w̄]ι with our MPC protocol. The multiplicative depth
of a circuit (denoted by depthM(C)) is the maximum number of multiplication
gates from any input to any output. An exemplary CS-circuit is given in Fig. 3.

+

��

1 1

��1

1 1

��2

��

��1 / ��
2

1
��2 / +��

2

1
��2 ��2 ��2

g1

g3

g2

gadd

��

Fig. 3: Example CS circuit with inputs tc1 and tc2

Multi-Party Circuit Evaluation Protocol. We describe the circuit evalua-
tion protocol, similar to the one in [6], that allows to evaluate any CS-circuits
�in the exponent�. We assume there are Np parties Gi, each having published a
share [tsi,s]? ∈ F∗, for s ∈ [1 .. t]. The goal of the evaluation protocol is to output(
[C1(tc)]1, [C2(tc)]2

)
where C1,C2 are CS-circuits and tc = (

∏
j tsj,1, . . . ,

∏
j tsj,t).

9

Cmd([b]ι, a, tsi,s, tsi,k)

return (a · (tsi,s/tsi,k))[b]ι;
Vmd([b

′]ι, [b]ι, a, [tsi,s]3−ι, [tsi,k]3−ι)

return (
(
[b′]ι = [0]ι

)
∨(

[b′]ι • [tsi,k]3−ι 6= a[b]ι • [tsi,s]3−ι
)
) ? 0 : 1;

Evalmd(a, b, s, k)

[b0]ι ← a[b]ι; // Multiplication with a is done by G1

for i ∈ [1 ..Np] do Gi broadcasts [bi]ι ← Cmd([bi−1]ι, 1, tsi,s, tsi,k);
return [bNp]ι;

Fig. 4: Algorithms Cmd, Vmd and the protocol Evalmd for ι ∈ {1, 2}.

This protocol constructs a well-formed CRS, given that tc is the CRS trapdoor
and [C1(tc)]1, [C2(tc)]2 are respectively all the G1 and G2 elements of the CRS.
In Section 4, we combine the circuit evaluation protocol with a UC-secure com-
mitment scheme to obtain a UC-secure CRS-generation protocol. Each step in
the circuit evaluation protocol is publicly veri�able and hence, no trust is needed
at all; except that to get the correct distribution we need to trust one party.

We make two signi�cant changes to the circuit evaluation protocol compared
to [6]: (i) we do not require that C1 = C2, allowing CRS elements in G1 and G2

to be di�erent, and (ii) instead of multiplication gates we evaluate multdiv gates.

Let us �rst describe the computation of [w̄]ι for a single gate gw. For an add
gate, given that all input gates have already been computed, that is, [w̄1, . . . , w̄f]ι
are already public, each Gi computes [w̄]ι = a0 +

∑f
j=1 aj [w̄j]ι locally. A multdiv

gate g, with inputs(g) = (b, tcs, tck) and coeffs(g) = a, can be implemented by the
Np-round protocol Evalmd from Fig. 4. Here, each party Gi takes as input [b]ι (the
output of the preceeding gate or just [1]ι if there is none), runs Cmd procedure
on tsi,s ∈ F, tsi,k ∈ F (her shares of the trapdoor that are also g's inputs), and
broadcasts its output. Note that [b]ι corresponds to the left multiplication, tsi,s
to the right multiplication, and tsi,k to the division input of g.

Importantly, since each party Gi published [{tsi,j}tj=1]?, every-
body can verify that Gi executed Cmd correctly by checking if
Vmd([bi]ι, [bi−1]ι, a, [tsi,s, tsi,k]3−ι) = 1, where [bi]ι is Gi's output and [bi−1]ι is
her input (the output of the party Gi−1). We assume [b0]ι = [1]ι to allow the
parties to check the computations of G1. Just running Evalmd to evaluate each
multdiv gate in C would require ≈ Np · depthM(C) rounds. Next we see that
computation can be parallelized to obtain Np · depthS(C) rounds.

Optimised Multi-Party Circuit Evaluation Protocol. Before presenting
the complete (parallelised) circuit evaluation protocol, we provide an illustrative
example of how CS-circuits can be evaluated e�ciently using multiple parties.
The idea behind this approach is to allow parties to evaluate the circuit not
gate-by-gate but all the gates of the same sampling depth. We say that gates
are in the same layer if they have the same depthS. Following the de�nition of
depthS, layers are separated by add gates. That is, two gates, say g1 and g2 are
in di�erent layers if there is an add gate gadd such that g1 (or g2) depends on
gadd's output, while the other gate does not. In each layer, each gate is computed
using only trapdoor elements and outputs from gates of some preceding layer.

10

Parties evaluate the layer in a round-robin manner broadcasting intermediate
values which allows other parties to verify the computation.

This is how the optimised protocol and the naive MPC protocol di�er. Since
naive protocol evaluates circuit gate-by-gate, one gate's output can be another's
input even if both share the same layer. For instance, consider gates g1 and g3
from Fig. 3. There, g1's output is g3's input and they are both in the same layer.
Since the output of g1 is computed before g3 is evaluated, it can be used in the
computation. On the other hand, in the optimised version of circuit evaluation
all gates in the same layer are evaluated at the same time, thus g3 is computed
at the same time when g1 is computed. To illustrate this idea we provide an
example.

Example 1. Suppose we have parties G1, G2, G3 that wish to compute crs =
{[tc1]?, [tc2]?, [tc21/tc2]1, [tc21/tc2 + tc2]1}. Let us only focus on the computation
of G1 elements. This is represented by a CS-circuit in Fig. 3 where we have (i) a
multdiv gate g1 with input values (1, tc1, 1), (ii) a multdiv gate g2 with input
values (1, tc2, 1), (iii) a multdiv gate g3 that takes the output of g1 as L-input,
the circuit's inputs tc1 as R-input, and tc2 as D-input, that is, the input values
of g3 are (tc1, tc1, tc2), and (iv) an add gate gadd that adds outputs of g2 and g3.
The parties respectively publish shares [ts1,1, ts1,2]?, [ts2,1, ts2,2]?, [ts3,1, ts3,2]?.
� In the �rst round, G1 broadcasts [b1g1]1 ← [ts1,1]1 for gate g1, [b1g2]1 ← [ts1,2]1
for gate g2, and [b1g3]1 ← [ts21,1/ts1,2]1 for gate g3.

� In the second round, G2 broadcasts [b2g1]1 ← ts2,1 · [b1g1]1 for gate g1, [b2g2]1 ←
ts2,2 · [b1g2]1 for gate g2, and [b2g3,1]1 ← ts2,1 · [b1g3]1, [b2g3,2]1 ← (ts2,1/ts2,2) ·
[b2g3,1]1 for g3 (note that g3 required two computations rather than one).

� In the third round, G3 broadcasts [b3g1]1 ← ts3,1 · [b2g1]1 for gate g1, [b3g2]1 ←
ts3,2 · [b2g2]1 for gate g2, and [b3g3,1]1 ← ts3,1 · [b2g3,2]1, [b3g3,2]1 ← (ts3,1/ts3,2) ·
[b3g3,1]1 for g3. For gadd each party computes [bgadd]1 ← [b3g2]1 + [b3g3,2]1.
Finally, if we de�ne tc1 := ts1,1 · ts2,1 · ts3,1 and tc2 := ts1,2 · ts2,2 · ts3,2, then

the outputs of G3 contain [b3g1]1 = [tc1]1, [b3g2]1 = [tc2]1, and [b3g3,2]1 = [tc21/tc2]1;
moreover, [bgadd]1 = [tc2 + tc21/tc2]1. Besides addition, each element is built up
one share multiplication at a time and hence the computation can be veri�ed with
pairings, e.g, the last output [b2g3,2]1 of G2 is correctly computed exactly when
[b2g3,2]1 • [ts2,2]2 = [b2g3,1]1 • [ts2,1]2. Computation of this example is illustrated in
Fig. 5 ut

Motivated by the example above, we give the full and formal description of
the circuit evaluation protocol. Let Cι ∈ CS, for ι ∈ {1, 2}, and Cι,d ⊆ gates(C)
be a circuit layer that contains all multdiv gates g at sampling depth d. For any
g ∈ Cι,d let ExtractPath(g,Cι,d) output the longest path (g1, . . . , gq = g) such
that each gj ∈ Cι,d, and, for j < q, output(gj) = L-input(gj+1). Intuitively, this
is the path of gates in Cι,d that following only the left inputs lead up to the gate
g, say, ExtractPath(g3,C1,1) = (g1, g3) for the circuit C in Fig. 3. For simplicity,
we describe a multdiv gate g by a tuple ([b]ι, a, s, k) where [b]ι = [L-input(g)]ι is
the left input value, assumed already to be known by the parties, a = coeffs(g),
R-input(g) = tcs, and D-input(g) = tck.

11

MD g1

MD g3

MD g2

��1,1

��1 / ��
2
1

��2 / +��
2
1

��2 ��2

��1,2 ��2,1 ��2,2 ��3,1 ��3,2

b1
g1

b2
g1

b3
g1

b1
,1g3

b2
,1g3

b2
,2g3

b3
,1g3

b3
,2g3

b1
g2

b2
g2

b3
g2

��2

+

G1 G2 G3

Fig. 5: Illustration for the Example 1. Dotted lines denote computation of G1,
dashed lines computation by G2, and full lines computation by G3. Double lines
denote computation made by the parties internally (gadd gate). Each container
denotes a multdiv gate and shows consecutive stages of computation. Note that

all bigj ,k are broadcast and b3g1 = tc1, b
3
g2 = tc2, b

3
g3 = (tc1)

2

tc2
.

12

The parties evaluate multdiv gates of the circuit in order Cι,1,Cι,2, . . . ,Cι,Dι ,
where Dι is the sampling depth of Cι. After each layer Cι,d each party locally
evaluates all the addition gates at depth d+ 1. The evaluation of Cι,d proceeds
in a round-robin fashion. First, G1 evaluates Cι,d with her input shares ts1,k
alone. Next, G2 multiplies her shares ts2,k to each output of G1. However, to
make computation veri�able, if G2 is supposed to compute [b1g · ts2,α1

· . . . ts2,αq]ι,
where [b1g]ι is some output of G1, then it is done one multiplication at a time.
Namely, she outputs [b2g,1]ι = [b1g · ts2,α1]ι, [b2g,2]ι = [b2g,1 · ts2,α2]ι, . . . , [b2g,q]ι =
[b2g,q−1 · ts2,αq]ι. Each multiplication would correspond to exactly one gate in
ExtractPath(g,Cι,d). The elements [b2g,1, . . . , b

2
g,q−1]ι are used only for veri�cation;

[b2g,q]ι is additionally used by G3 to continue the computation. Each subsequent
party Gi multiplies her shares to the output of Gi−1 in a similar fashion. This
protocol requires only Np · depthS(Cι) rounds.

Let certι = (certι1, . . . , certιDι) be the total transcript (certi�cate) in Gι cor-
responding to the output of the multi-party evaluation of Cι where certιr is the
transcript in round r. Denote cert := (cert1, cert2). All gates of depth r of Cι are
evaluated by a uniquely �xed party Gi. In what follows, let i = rndplayer(r) be
the index of this party.

The complete description of evaluation and veri�cation of a layer Cι,d is given
in Fig. 6 with function Clayer and Vlayer that have the following interface. First,
for i = rndplayer(r) and for both ι ∈ {1, 2}, in round r to compute [Cι,d(tc)]ι, Gi
computes certιr ← Clayer(Cι,d, ι, i, r, {tsi,k}tk=1, {certιj}

r−1
j=1), given a circuit layer

Cι,d, the shares tsi,k for all t trapdoors of tck, and the transcript {certιj}
r−1
j=1

of all previous computation. Second, any party can verify, by using the algo-
rithm Vlayer(Cι,d, ι, i, r, {[tsi,k]3−ι}tk=1, {certιj}rj=1), that the computation of the
circuit layer Cι,d in round r has been performed correctly by Gi. In particular,
Gi checks that Vlayer outputs 1 for all rounds since Gi's previous round before
executing Clayer for her new round. Importantly, executing Vlayer does not assume
the knowledge of any trapdoors.

On the Importance of multdiv Gates. Let us brie�y discuss the importance of
multdiv gates. Introduction of multdiv gates allows for more compact CS circuits
which in the CRS generation protocol means that there are less computation
and less communication. Suppose the CRS contains an element [a · (αβ/γ)]1, for
some trapdoor elements α, β, γ and constant a; multdiv gates allow to compute
the element using a single gate. On the other hand with a separate multiplication
and division gate, computing elements like this would require two gates, one that
outputs aα · β and another one that outputs (aαβ)/γ.

Let us see what this means for the e�ciency of the CRS generation protocol.
Using the protocol Evalmd in Fig. 4, a multdiv gate could be evaluated with
Np scalar multiplication and would produce a transcript of Np group elements.
Veri�cation would roughly require 2Np pairings. Separate multiplication and
division gates can also implemented using Evalmd respectively by either �xing
the division input to be 1 or the right multiplication input to be 1. In that case
computing [a · (αβ/γ)]1 would double the number of scalar multiplication and
pairings needed for computation and would also double the communication size.

13

Clayer(Cι,d, ι, i, r, {tsi,k}tk=1, {certιj}r−1
j=1) // The following is executed by Gi

1 : Assert i = rndplayer(r); certιr ← ε;
2 : for g = ([b]ι, a, s, k) ∈ Cι,d do// In topological order

3 : certg,i ← ε; (g1, . . . , gq)← ExtractPath(g,Cι,d);
4 : if i = 1 then
5 : if q = 1 then [b′]ι ← Cmd([b]ι, a, ts1,s, ts1,k);
6 : else Parse certgq−1,1 = [bL]ι;
7 : [b′]ι ← Cmd([bL]ι, a, ts1,s, ts1,k);
8 : certg,1 ← [b′]ι;
9 : else Parse certg,i−1 = [b1, . . . , bq]ι; [b

′]ι ← [bq]ι;
10 : for j = 1, . . . , q do
11 : Parse gj = ([b∗]ι, a

∗, s∗, k∗);
12 : [b′]ι ← Cmd([b

′]ι, 1, tsi,s∗ , tsi,k∗); Append [b′]ι to certg,i;
13 : Append certg,i to certιr;
14 : return certιr;

Vlayer(Cι,d, ι, i, r, {[tsi,k]3−ι}tk=1, {certιj}rj=1)

1 : Assert i = rndplayer(r);
2 : for each evaluation of [b′]ι ← Cmd([b]ι, a, tsi,s, tsi,k) in round r by Gi do
3 : Extract [b′]ι, [b]ι from {certιj}rj=1;
4 : if Vmd([b

′]ι, [b]ι, a, [tsi,s]3−ι, [tsi,k]3−ι) = 0 then return 0;
5 : return 1;

Fig. 6: Clayer and Vlayer for ι ∈ {1, 2}

4 UC-Secure CRS Generation

We propose a functionality Fmcrs for multi-party CRS generation of any CS-
SNARK. Finally, we construct a protocol Kmcrs that UC-realizes Fmcrs in the
Fdlmcom-hybrid model.

New Ideal Functionality. In Fig. 7, we de�ne the new ideal functional-

ity Fmcrs = Fp,Np,C,D,comb
mcrs for pairing-based (since it outputs elements from

Gι) multi-party CRS-generation protocol. The CRS is described by a t-input
arithmetic circuits C := (C1,C2) over a �eld F = Zp such that crs =
([C1(tc)]1, [C2(tc)]2) for tc←$D, where D is a samplable distribution over Ztp.

The trapdoor tc is constructed by combining shares tsi ∈ Supp(D) of each
party Gi by a function comb. For each honest party Gi, the ideal functionality
picks tsi←$D, whereas for malicious parties we only know tsi ∈ Supp(D). The
function comb should be de�ned so that if there exists at least one honest party
then tc← comb(ts1, . . . , tsNp) is also distributed accordingly to D. In such case
we say that D is comb-friendly. It is true for example when comb is point-wise
multiplication and D is a uniform distribution over (Z∗p)t as, e.g., in [6,8,9]. This
guarantees the correct distribution of crs if at least one party is honest.

We believe Fmcrs captures essentially any reasonable pairing-based multi-
party CRS-generation protocol, where the trapdoor is shared between Np parties.
Note that specifying distinct honest and corrupted inputs to the functionality is

14

Parameters: p de�nes a bilinear pairing, C = (C1,C2) contains t-input arithmetic
circuits over the �eld Zp, D is a distribution of trapdoor elements, and comb : (Ztp)Np →
Ztp. We have parties Gi for i ∈ [1 ..Np].

Share collection phase:
1. Upon receiving (sc, sid,Gi) from an honest Gi, store tsi ←$D and send (sc, sid,Gi)

to Sim.
2. Upon receiving (sc, sid,Gi, tsi) from a dishonest Gi, if tsi ∈ Supp(D), then store

tsi, else abort.
Only one message from each Gi is accepted.

CRS generation phase: Once tsi is stored for each Gi:
1. Compute tc← comb(ts1, . . . , tsNp).
2. Set crs← ([C1(tc)]1, [C2(tc)]2) and send (CRS, sid, crs) to Sim.
3. If Sim returns (CRS, ok) then send (CRS, sid, crs) to every party Gi for i ∈ [1 ..Np].

Fig. 7: Ideal functionality Fmcrs

common in the UC literature, [3,24]. In Theorem 2, we will establish the relation
between Fcrs and Fmcrs.

New Protocol.We de�ne the new multi-party CRS-generation protocol Kmcrs =

K
p,Np,C,D,comb
mcrs (see Fig. 8) in the Fdlmcom-hybrid model. This allows us to instan-

tiate the protocol with any DL-extractable commitment and, moreover, the only
trust assumption that the protocol needs is the one inherited from the commit-
ment scheme, e.g., using construction from [1] gives security in the RPK model.
Given that Dι is the sampling depth of Cι, then R = Np · max(D1, D2) is the
number of rounds needed to evaluate both circuits in parallel. For the sake of
simplicity, we assume certιr is the empty string for r > Np ·Dι.

Kmcrs proceeds in rounds: (i) In round 1, each Gi gets a signal (sc, sid,Gi);
parties commit to their shares of trapdoor tc. (ii) In round 2, each party Gi gets
a signal (mcrsopen, sid); parties open their shares. (iii) In round r ∈ [3 .. R +
2], (mcrscertok, sid,Gi, r) is triggered, where i = rndplayer(r); parties jointly
compute crs from the trapdoor shares; before party Gi performs her computation,
she checks if previous computation were done correctly. (iv) In round R+3, each
party Gi gets the signal (mcrsfinal, sid,Gi) and extracts the crs from cert. The
CRS will be output by Gi only if all the veri�cations succeeded. The signals
sc, mcrsopen, mcrscertok, and mcrsfinal can be sent either by a controller
server or by the internal clock of Gi. The construction uses a secure broadcast
channel; thus, if a message is broadcast, then all parties are guaranteed to receive
the same message. Note that after Gj obtains (rcpt, lblijk), for i ∈ [1 ..Np], j 6=
i, k ∈ [1 .. t], she broadcasts (mcrsreceipt, lblijk) since rcpt is not broadcast.

Security. To prove UC-security of Kmcrs, we restrict Fmcrs as follows: (i) C =
(C1,C2) such that Cι ∈ CS for ι ∈ {1, 2}. Note that this means that for any
trapdoor element tck ∈ tc, [tck]? ∈ crs. (ii) D is the uniform distribution on
(Z∗p)t, (iii) comb(ts1, . . . , tsNp) := ts1 ◦ . . . ◦ tsNp , where ◦ denotes point-wise
multiplication, and tsik is Gi's share of tck.

15

Share collection phase: Round 1: upon receiving (sc, sid,Gi), Gi does the following.
for k ∈ [1 .. t] do
1. tsik ←$Z∗p;
2. for j 6= i do

� Send (commit, sid, cidijk,Gi,Gj , tsik) to Fdlmcom;
� Upon receiving (rcpt, lblijk = (sid, cidijk,Gi,Gj)), Gj broadcasts

(mcrsreceipt, lblijk);
� Store stij ← (lblijk, tsik)

t
k=1;

If by the end of the round 1, Gi does not receive (mcrsreceipt, sid, cidjj′k,Gj ,Gj′) for
k ∈ [1 .. t], j 6= i, j′ 6= i, and j′ 6= j then Gi aborts.

Round 2: upon receiving (mcrsopen, sid), Gi does:
for k ∈ [1 .. t] do
1. for j 6= i do

� Send (open, sid, cidijk) to Fdlmcom;
� After receiving (open, lblijk, [ts

′
ijk]1), where lblijk = (sid, cidijk,Gi,Gj), from

Fdlmcom, Gj stores (lblijk, [ts
′
ijk]1); // If Gi is honest then tsik = ts′ijk

2. Broadcast (sbroadc,Gi, k, [tsik]1).
3. Upon receiving (sbroadc,Gi, k, [tsik]1) broadcast by Gi, Gj does the following.

� If (lblijk, [ts
′
ijk]1) is not stored for some [ts′ijk]1 then abort.

� Abort unless [tsik]1 = [ts′ijk]1 6= [0]1.
� If by the end of round 2, Gj has not received (sbroadc, . . .), ∀j 6= i, ∀k, then

Gj aborts.

CRS generation phase: Round r = 3 to R+ 2:
upon receiving (mcrscertok, sid,Gi, r), Gi does the following, for i = rndplayer(r).
1. Extract C1,d, C2,d corresponding to round r from C1, C2;
2. for ι ∈ {1, 2} do certιr ← Clayer(Cι,d, ι, i, r, {tsi,k}tk=1, {certιj}r−1

j=1);

3. certr ← (cert1r, cert
2
r); broadcast (mcrscert, sid, cid,Gi, r, certr);

4. Any j 6= i does after receiving (mcrscert, sid, cid,Gi, r, certr) from Gi:
(a) if j 6= rndplayer(r), Vlayer(C1,d, ι, i, r, {[tsi,k]3−ι}tk=1, {cert1k}rk=1)) = 0, or

Vlayer(C2,d, ι, i, r, {[tsi,k]3−ι}tk=1, {cert2j}rj=1)) = 0 then abort;
(b) Replace stored (sid, cid, r − 1, {certιj}r−1

j=1) with (sid, cid, r, {certιj}rj=1);
If by the end of round r, for any i, Gi has not stored (mcrscert, sid, cid,Gi, r, certr) then
Gi aborts.

Round R+ 3: upon receiving (mcrsfinal, sid,Gi), Gi does the following.
1. If Gi has already received this message then ignore;
2. Extract crs from {cert1k, cert2k}Rk=1. Write (CRS, crs) on the output tape.

Fig. 8: The protocol Kmcrs in the Fdlmcom-hybrid model

Theorem 1. Kmcrs UC-realizes Fmcrs in the Fdlmcom-hybrid model with perfect
security against a static adversary. Formally, there exits a PPT simulator SimA

such that for every static (covert) PPT adversary A and for any non-uniform
PPT environment Z, Z cannot distinguish Kmcrs composed with Fdlmcom and A
from Sim composed with Fmcrs. That is, HYBRIDFdlmcom

Kmcrs,A,Z = IDEALFmcrs,SimA,Z .

Proof. Fix any adversary A. To prove the above statement we construct a simu-
lator Sim. Since we only allow static corruption, A has to corrupt parties before

16

the protocol begins. First, assume that A corrupts all parties. Then, it is su�-
cient if Sim (with black-box access to A) honestly simulates Fdlmcom and forwards
messages between Z and A, and between di�erent corrupted parties Gi. There is
no communication with the ideal functionality Fmcrs, hence there is no di�erence
with the real world, and HYBRIDFdlmcom

Kmcrs,A,Z = IDEALFmcrs,SimA,Z .
In the following we assume that there is a non-empty set of honest parties

H = {Ghi} 6= ∅ whose behaviour Sim needs to simulate. As usual, we consider
a sequence of hybrid games where we change the rules of games step by step.
We denote the changes by using gray background.

Game0 = HYBRIDFdlmcom

Kmcrs,A,Z : the initial game corresponds to the real world

in the Fdlmcom-hybrid model, where the real protocol is run among the parties
that have access to ideal functionality Fdlmcom. The environment Z adaptively
chooses the input for the honest parties and receives the honest parties' output.
The adversary A attacks the real protocol in the real world; she can interact with
the honest parties playing the role of the corrupted parties. For each corrupted
party, A can read her initial inner state and act on her behalf. Z can control
A and see the interactions between the honest parties and between the honest
parties and A via the view of A.

Game1: Game1 is exactly like game Game0 except that Sim simulates Fdlmcom

and hence learns all committed shares.
Security analysis. since the behaviour of the protocol does not change,

Game0 is perfectly indistinguishable from Game1.
Game2: We change Game1 as follows. We �x an arbitrary uncorrupted party

Gh ∈ H. During the share collection round, Sim collects all messages (commit, sid,
cidihk,Gi,Gh, tsihk) for all i 6= h, k ∈ [1 .. t]. If after the end of share collection,
for some i 6= h and k, there is no tsihk or tsihk = 0, then protocol continues as
in Game1; otherwise we do the following.

In the CRS generation phase, Sim sets tc = (tc1, . . . , tct)←$ (Z∗p)t and

ts∗hk ← tck/(
∏
i∈[1 ..Np]\{h} tsihk) for k ∈ [1 .. t]. Sim substitutes tshk in the

answer of Fdlmcom and in the memory of Gh by ts∗hk. It means that in
the opening phase of Fdlmcom, the commitment of Gh will be opened to
(open, sid, cidhik,Gh,Gi, [ts∗hk]1) and in the remaining protocol interaction Gh
will use ts∗hk.

Security analysis. Since tc distributed uniformly in (Z∗p)t, then the same is
true for (ts∗h1, . . . , ts∗ht). Hence, Game1 is perfectly indistinguishable from Game2.

We make the following observation about the protocol output. After the
opening phase of Fdlmcom is �nished, Kmcrs is deterministic and all messages
are securely broadcast to all parties. Thus, either (i) all honest parties abort
since a malicious party did not broadcast the correct output or because some
honest party aborted during the opening phase and will not participate in gate
evaluations, or (ii) all honest parties write to their output tape (CRS, crs), where
crs = ([C1(tc)]1, [C2(tc)]2).

Game3: Game3 is like Game2, but instead of giving Fdlmcom and Gh access to
ts∗hk, Sim computes them using crs← ([C1(tc)]1, [C2(tc)]2) and trapdoor shares of
other parties. First, since crs is computed by CS-circuits, it contains [tc]1. Thus,

17

Fdlmcom can open the commitment to [ts∗hk]1 ← [tck]1/(
∏
i∈[1 ..Np]\{h} tsihk) . Sec-

ond, we change the computation of certg,h (See Fig. 6) each multdiv gate g for
Gh as follows.

Let us denote xh−1 = (ts1h1, . . . , ts1ht, . . . , tsh−1h1, . . . , tsh−1ht), that is, xh−1
contains shares of all the parties G1, . . . ,Gh−1. We observe that each element

[bj]ι ∈ certg,h can be written in the form [bj]ι = [b]ι ·
M1(xh−1)·ts∗h,α1

·...·ts∗h,αq
M2(xh−1)·ts∗hβ1 ·...·ts

∗
hβr

where M1 and M2 are some monomials and [b]ι is either in crs or is a constant.
However, according to the structure of CS circuit, then the crs will also contain an

element [σ]ι = [b]ι ·
tcα1 ·...·tcαq
tcβ1 ·...·tcβr

. Given that we know shares of all the other parties,

we can easily compute [σh]ι = [b]ι ·
ts∗hα1

·...·ts∗hαq
ts∗hβ1

·...·ts∗hβr
= [σ]ι ·

∏
i∈[1 .. Np]\{h} tsihβ1 ·...·tsihβr∏
i∈[1 .. Np]\{h} tsihα1

·...·tsihαq

and from there we can compute [bj]ι = [σh]ι ·
M1(xh−1)
M2(xh−1)

. Hence we are able to

simulate certg,h.
Security analysis. Although in Game3, the computation is di�erent for the

opening and multdiv gate evaluations, the result of each computation is the same
as in Game2. Thus, Game2 and Game3 are perfectly indistinguishable for Z.

Game4 = IDEALFmcrs,SimA,Z : We construct an ideal-world adversary Sim that

runs a black-box simulation of the real-world adversary A by simulating the
protocol execution and relaying messages between A and Z. Sim acts as an
interface between A and Z by imitating a copy of a real execution of π for
A, incorporating Z's ideal-model interactions and vice versa forwarding A's
messages to Z. Additionally, since we are in Fdlmcom-hybrid model, then Sim
can simulate the ideal functionality Fdlmcom for adversaries.

Sim interacts with Z, the functionality Fmcrs, and an internal copy of A. An
honest party Gh is picked as before.

Simulating Fdlmcom for corrupted committer Gi: perfectly emulate
Fdlmcom but store the data. More precisely:

Upon receiving (commit, sid, cid,Gi,Gj ,m) from a corrupted Gi, do the
following. If a tuple (sid, cid, . . .) with the same (sid, cid) was previously
recorded, do nothing. Otherwise, Sim records (sid, cid,Gi,Gj ,m) and sends
(rcpt, sid, cid,Gi,Gj) to Gj .

Upon receiving (open, sid, cid) from a corrupted Gi, proceed as follows: if
a tuple (sid, cid,Gi,Gj ,m) was previously recorded then send (open, sid, cid,
,Gi,Gj , [m]1) to Gj . Otherwise do nothing.

Simulating the share collection phase for uncorrupted Gi: upon re-
ceiving (sc, sid,Gi) from Fmcrs for some Gi ∈ H, Sim does the following.

For k ∈ [1 .. t]: (1) Sim picks ts∗ik←$Z∗p . (2) For j 6= i, Sim sends (commit,

sid, cidijk,Gi,Gj , ts∗ik) to Fdlmcom.
From this point onward, Sim simulates behaviour of all uncorrupted parties

but Gh exactly as in the real protocol but with ts∗ik replacing tsik.

18

Simulating the share collection phase for corrupted Gi and uncor-

rupted Gj: Upon receiving (commit, sid, cidihk,Gi,Gh, tsihk) for k ∈ [1 .. t]
from Gi, set tsi ← (tsih1, . . . , tsiht) and send (sc, sid,Gi, tsi) to Fmcrs.

Simulating the CRS generation phase for uncorrupted committer

Gi: upon obtaining (CRS, sid, crs) from Fmcrs just after the share collection
phase ends, Sim does the following.

At this moment Sim knows the shares tsihk of all corrupted parties and
the simulated shares ts∗ik of all uncorrupted parties. Since crs is computed by
CS-circuits, it contains [tc]1. In the case i = h, Sim sets

[ts∗hk]1 ← [tck]1/(
∏
j∈[1 ..Np]\{h} ts′jk) , (1)

where [tck]1 ∈ [tc]1, ts′jk = ts∗jk for Gj ∈ H and otherwise ts′jk = tsjhk. Since
tck is uniformly random in Z∗p (tck is the product of shares where at least one
share is uniformly random), therefore ts∗hk is uniformly random in Z∗p.

In the rest of the CRS generation phase, Sim simulates Gi, for honest Gi,
as in the protocol but using [ts∗ik]1 instead of [tsik]1.

In particular, for any j 6= h: if Fdlmcom sends (open, sid, cid,Gh,Gj , [tshk]1)

to Gj then Sim sends instead (open, sid, cid, Ĝh,Gj , [ts∗hk]1) to Gj . Sim also
broadcasts the new value (sbroadc,Gh, k, [ts∗hk]1) for k ∈ [1 .. t].

Finally, as a veri�er, an uncorrupted Gj executes the same veri�cations as
Gj in Kmcrs. In particular, sbroadc message guarantees that malicious parties
have to open to the same value that they broadcast (unless A is satis�ed with
parties aborting).

Upon receiving (mcrscertok, sid,Gi, r), Sim does the following, assuming
Gi has not aborted before. The computation result of uncorrupted Gi in Kmcrs

is deterministic, and can be veri�ed by using commitment openings.
Sim simulates each uncorrupted party Gi, i 6= h, as in Kmcrs. What is left

to show is that Sim can simulate the output transcript certg,h for each multdiv
gate g that Gh needs to compute. Sim does this as was explained above.

After the protocol ends, parties are provided with an output crs′. Recall
that since Sim sets the shares of Gh as in Eq. (1), trapdoor tc′ corresponding
to crs′ is equal to trapdoor tc. Since CRS crs is computed by a CS-circuit, that
is crs is determined by tc and all outputs of multdiv gates of C1,C2 are parts
of it, it holds that crs′ = crs.
Simulating the CRS generation phase for corrupted Gi and uncor-

rupted receiver Gj:

Upon receiving (open, sid, cidijk,Gi,Gj , [tsijk]1) from Gi, Sim executes the
checks of the veri�er exactly as in Kmcrs. If the checks fail, Sim aborts. Other-
wise, Sim sends (mcrsopen, sid, cid) to Fmcrs.

Upon receiving (mcrscert, sid, cid,Gi, r, certr) from Gi, Sim performs the
checks of Gj as in Kmcrs. If Gj aborts then output whatever Gi outputs and
then abort.

19

Finalization:When simulated protocol �nished and no honest party aborted,
then Sim sends (CRS, ok) to Fmcrs.

There are two di�erences between Game3 and Game4. Firstly, in Game4 simulator
does not pick crs itself, but instead it is given by Fmcrs. However, as at least one
party is honest, then crs has exactly the same distribution.

Secondly, there are honest dummy parties that on the successful execution of
the protocol write (CRS, crs) on their output tapes. We argued that same happens
in Game2 (and therefore also in the equivalent Game3) for honest parties. We
conclude that HYBRIDFdlmcom

Kmcrs,A,Z = IDEALFmcrs,SimA,Z . ut

Achieving adaptive security seems to need a non-trivial change in Kmcrs or
at least a very di�erent proof strategy. In particular, the following attack works
for the current simulation strategy. Suppose Gi is honest until he has broad-
cast (sbroadc,Gi, k, [tsik]1) in Fig. 8. If the adversary now corrupts Gi, then
Sim has to provide adversary with all the internal knowledge of Gi, including
tsik. Hence, Sim cannot set [tsik]1 ← [tck]1/(

∏
j∈[1 ..Np]\{i} ts′jk), where [tck]1 is

the output of the ideal functionality Fmcrs, since this would require computing
discrete logarithm of [tck]1.

5 Secure MPC for NIZKs

Next, we show that Kmcrs can be used to generate the CRS of any CS-SNARK
without harming the completeness, soundness, or (subversion) zero-knowledge
properties. It could also be used to generate CRS of other primitives which can
be represented by CS-circuits, but it is especially well suited for the intricate
structure of SNARK CRS. Finally, we apply the protocol to the Sub-ZK secure
version [2,14] of the most e�cient zk-SNARK by Groth [20].

NIZK in the MCRS model. Let Ψ be a NIZK argument system secure in
the Fcrs-hybrid model. We show that by instantiating Fcrs with Fmcrs, the NIZK
remains complete, sound, and zero-knowledge, provided that the adversary A
controls up to Np− 1 out of Np parties. Here we require that D is comb-friendly.
See Fig. 9 for the high-level description of MPC protocol for the CRS generation.

Theorem 2. Let D and comb : (Supp(D))Np → Supp(D) be such that D

is comb-friendly. KFmcrs
crs securely realizes FD,f

crs in the Fmcrs-hybrid model given
(covert) A corrupts up to Np − 1 out of Np parties (i.e. CRS generators).

Proof. As usual, we consider a sequence of hybrid games.

Game0 = HYBRIDFmcrs : This game corresponds to the real world in the Fmcrs-
hybrid model. (The rest of the description of this game is the same as in the
proof of Theorem 1.)

Game1: We construct an ideal-world adversary Sim that runs a black-box
simulation of the real-world adversary A by simulating the protocol execution
and relaying messages between A and the environment Z. Sim acts as an inter-
face between A and Z by imitating the real execution of KFmcrs

crs for A, incorpo-
rating Z's ideal-model interactions and vice versa forwarding A's messages to Z.

20

KFmcrs
crs proceeds as follows, running with a set {P1, . . . , PN′p} of parties, designated set

{G1, . . . ,GNp} of CRS generators, and an adversary Sim.
CRS generation: Send a signal to each Gi to execute the functionality Fmcrs. If Fmcrs

returns crs then Gi stores (sid, crs).
Retrieval: Pi sends (retrieve, sid) to each Gj : If (sid, crs) is recorded for some crs
then Gj sends (CRS, sid, crs). If all Np responses from Gj are the same, then Pi outputs
(CRS, sid, crs). Otherwise Pi aborts.

Fig. 9: Protocol KFmcrs
crs

Additionally, since we assumed Fmcrs-hybrid model, Sim can simulate the ideal
functionality Fmcrs for adversaries. The protocol handles adaptive corruption.

In the following, we describe Sim. We assume that there is a non-empty set
of honest parties H = {Ghi} 6= ∅ whose behaviour Sim needs to simulate.

Simulating Fmcrs: For all parties Sim precisely imitates honest Fmcrs, unless
we say otherwise. This functionality is available at all times, exactly as in the
real protocol.

Simulating CRS generation: On (crsOK?, sid, crs′) from FD,f
crs send

(sc, sid,Gi) to all Gi ∈ H. Wait for (sc, sid,Gj , tsj) from all corrupted Gj .
If no such messages arrive, abort. Otherwise let Fmcrs send (CRS, crs′) to all
Gi. Send (crsOK, sid) to Fcrs.

Simulating CRS retrieval: On message (retrieve, sid) from Pi, send
(retrieve, sid) to each Gj . Abort if all Gj do not send the same message
(CRS, sid, crs′). Send (CRS, sid, crs′) to Pj .

Let Gh be an honest party, whose trapdoor share is tsh. Assume Z is able to
distinguish Game0 and Game1 with an advantage ε. Since the simulator simulates
the real-world protocol perfectly, the only advantage Z may gain comes from
di�erent distributions of CRSs in the games.

Denote by crs a CRS produced in Game0. The corresponding trapdoor tc
equals to comb(ts1, . . . , tsNp), where tsh is unknown to Z and has distribution

D. In Game1, the output CRS, crs′, comes from functionality FD,f
crs and the corre-

sponding trapdoor tc′ is distributed accordingly to D. Since CRS is a determin-
istic function of trapdoor and the trapdoors tc, tc′ share the same distribution,
so do crs and crs′. Thus, the advantage ε of any Z in distinguishing which CRS
was produced in which game is always 0. Moreover, since we consider only covert
adversaries, then we can ignore the situations where parties would abort. Hence,
Game0 and Game1 are indistinguishable. ut

Next corollary immediately follows from the universal composition theo-
rem [10].

Corollary 1. Let Ψ be a NIZK argument that is complete, sound, computation-
ally ZK, and computationally Sub-ZK in the FD,f

crs -hybrid model. By instantiating
FD,f

crs with KFmcrs
crs , the following holds:

21

CRS / trapdoor: tc← (α, β, γ, δ, χ) and crs = (crsP, crsV, crsCV), where

crsP ←

[
α, β, δ, ((uj(χ)β + vj(χ)α+ wj(χ)) /δ)

m
j=m0+1

]
1
,[

(χi`(χ)/δ)n−2
i=0 , (uj(χ), vj(χ))

m
j=0

]
1
,
[
β, δ, (vj(χ))

m
j=0

]
2

,
crsV ←

([
((uj(χ)β + vj(χ)α+ wj(χ)) /γ)

m0
j=0

]
1
, [γ, δ]2

)
,

crsCV ← ([γ, (χi)n−1
i=1 , (`i(χ))

n
i=1]1, [α, χ, χ

n−1]2).

Fig. 10: CRS of Z∗ Sub-ZK SNARK from [2]

1. Ψ is complete, sound, and computationally zero-knowledge in the Fmcrs-
hybrid model, given that (covert) A corrupts up to Np − 1 out of Np parties.

2. Ψ is Sub-ZK in the Fmcrs-hybrid model, even if (covert) A corrupts all Np
parties.

3. If D is a uniform distribution over (Z∗p)t, comb the point-wise multiplication

and the CRS can be computed by CS-circuits, then properties 1 and 2 hold in
the Fdlmcom-hybrid model since Kmcrs realizes Fmcrs in that setting.

Applying Kmcrs to Groth's zk-SNARK. Fig. 10 contains the description of
the CRS for the Sub-ZK version of Groth's zk-SNARK Z∗ as was proposed in [2].
We have omitted the element [αβ]T that can be computed from [α]1 and [β]2.
The CRS from [2] di�ers from the original CRS for Groth's zk-SNARK [20] by
the entries in crsCV which make the CRS veri�able using a CV algorithm. Here,
`i(X) are Lagrange basis polynomials and `(X) = Xn− 1, uj(X), vj(X), wj(X)
are publicly-known circuit-dependent polynomials.

We recall that Quadratic Arithmetic Program (QAP, [15]) is an NP-
complete language with an e�cient reduction from Circuit-SAT. A QAP in-
stance can be expressed as Qp = (Zp,m0, `(X), {uj(X), vj(X), wj(X)}mj=0).

The goal of the prover of a SNARK for QAP [15,20,2] is to prove that
for public (A1, . . . , Am0

) and A0 = 1, he knows (Am0+1, . . . , Am) and a degree
≤ n − 2 polynomial h(X), such that h(X) = (a(X)b(X) − c(X))/`(X), where
a(X) =

∑m
j=0Ajuj(X), b(X) =

∑m
j=0Ajvj(X), c(X) =

∑m
j=0Ajwj(X), and

`(X) =
∏n
i=1(X − ωi−1), where ω is an n-th primitive root of unity modulo p,

is a polynomial related to Lagrange interpolation.

Figure 11 describes the prover and veri�er algorithm of Z∗. Intuitively the CV
algorithm of Z∗ checks that certain pairing equations hold for the CRS elements
which guarantees that CRS is well-formed, that is, CRS could be computed
from some valid tc ← (α, β, γ, δ, χ). For the full description CV algorithm we
refer to [2].

We recall that to use the algorithm KFmcrs
crs the CRS has to be of the

form crs = ([C1(tc)]1, [C2(tc)]2), where Cι ∈ CS. In Fig. 10, the highlighted
entries cannot be computed from trapdoors by a CS-circuit unless we add
crsTV = ([(wj(χ), βuj(χ), αvj(χ))mj=0, χ

n]1, [(`i(χ))ni=1, (χ
k)n−1k=1]2) to the CRS. To

obtain better e�ciency we additionally add [(`i(χ))
n
i=1]2 to the CRS, although

22

P(R, ξR, crsP, x = (A1, . . . , Am0),w = (Am0+1, . . . , Am))
1. Let a†(χ)←

∑m
j=0Ajuj(χ), b

†(χ)←
∑m
j=0Ajvj(χ),

2. Let c†(χ)←
∑m
j=0Ajwj(χ),

3. Set h(χ) =
∑n−2
i=0 hiχ

i ← (a†(χ)b†(χ)− c†(χ))/`(χ),
4. Set [h(χ)`(χ)/δ]1 ←

∑n−2
i=0 hi

[
χi`(χ)/δ

]
1
,

5. Set ra ←r Zp; Set a←
∑m
j=0Aj [uj(χ)]1 + [α]1 + ra [δ]1,

6. Set rb ←r Zp; Set b←
∑m
j=0Aj [vj(χ)]2 + [β]2 + rb [δ]2,

7. Set c← rba+ ra
(∑m

j=0Aj [vj(χ)]1 + [β]1

)
+∑m

j=m0+1Aj [(uj(χ)β + vj(χ)α+ wj(χ))/δ]1 + [h(χ)`(χ)/δ]1,
8. Return π ← (a, b, c).

V(R, ξR, crsV, x = (A1, . . . , Am0), π = (a, b, c)): assuming A0 = 1, check that a • b =

[αβ]T + c • [δ]2 +
(∑m0

j=0Aj [(uj(χ)β + vj(χ)α+ wj(χ)) /γ]1

)
• [γ]2.

Fig. 11: Prover and Veri�er of Z∗ Sub-ZK SNARK from [2]

they can be computed from the existing elements [
(
χk
)n−1
k=1

]2. However, since we
are adding elements to the CRS, we also need to reprove the soundness. Since
Groth's zk-SNARK for QAP was proven secure in the Generic Bilinear Group
Model (GBGM, [20]), and this GBGM proof depends on the precise CRS, we
have to prove the knowledge-soundness of the argument again. Abdolmaleki et
al. proved in [2] that Z∗ is sound in the Sub-GBGM model; in the latter the ad-
versary is additionally allowed to create group elements without knowing their
discrete logarithms. For the description of Sub-GBGM we refer the reader to [2].

Theorem 3. Z∗, with crs = (crsP, crsV, crsCV, crsTV), has perfect completeness
and perfect Sub-ZK. It has statistical knowledge soundness in sub-GBGM.

Proof. Perfect completeness and zero-knowledge can be proved exactly as in [20].
Thus, we only need to reprove knowledge-soundness. For this, we use standard
(Sub-)GBGM proof techniques.

Since Z∗ is known to be knowledge-sound, it is su�cient to show that the
elements in crsTV do not give the soundness adversary A any additional advan-
tage. First, note that uj(X), vj(X), and wj(X) for j ∈ [0 ..m] are in the span
of {Xi}n−1i=0 . Hence, [uj(χ)]1, [vj(χ)]1, [wj(χ)]1, and [`i(X)]1 can be e�ciently

computed from (
[
χi
]
1
)n−1i=0 and we can ignore them in the following analysis.

Due to the structure of the CRS, the use of Sub-GBGM, and the Schwartz-
Zippel lemma, the discrete logarithm of any element [T]ι for ι ∈ {1, 2} that the
adversary outputs can be represented as the following polynomial

T (X,Y) =T1(Xχ) + XαT2(Xχ) + XβT3(Xχ) + TγXγ+

TδXδ +
∑m0
j=0 Tγ:jDj

Xγ
+

∑m
j=m0+1 Tδ:jDj

Xδ
+

T4(Xχ)`(Xχ)
Xδ

+
∑q
i=1 Ty:iYi ,

where each indeterminant Xs corresponds to the randomly picked secret s ∈ tc.
Here T1(Xχ) is polynomial in the span of {Xi

χ}ni=0. T2(Xχ) and T3(Xχ) are

polynomials in the span of {Xi
χ}n−1i=0 . Elements Dj are equal to uj(Xχ)Xβ +

23

vj(Xχ)Xα + wj(Xχ). Elements Yi are considered for the case that adversary
may query the GBGM oracle to give him random group elements.

Let ([A]1 , [B]2 , [C]1) be the proof output by the adversary. Substituting the
symbolic value T in the previously described polynomial, gives for the proof the
following polynomial representation A = A(X,Y), B = B(X,Y), and C =
C(X,Y). The veri�cation equation is equivalent to checking that V (X,Y) =
AB −XαXβ −

∑m0

j=0AjDj −XδC is a zero polynomial.
Let us �rst analyse the coe�cients of V (X,Y):

� Coe�cient of X2
α is A2(Xχ)B2(Xχ) = 0. Without loss of generality, let us

assume that B2(Xχ) = 0.
� Coe�cient of XαXβ is A2(Xχ)B3(Xχ) + B2(Xχ)A3(Xχ) =
A2(Xχ)B3(Xχ) = 1. Therefore both polynomials A2(Xχ) and B3(Xχ)
are constants and for simplicity we may denote them by A2 and B3.

� Coe�cient of X2
β is B3A3(Xχ) = 0, hence A3(Xχ) = 0.

� Coe�cients of XαXδ and XβXδ are respectively A2Bδ + C2(Xχ) = 0 and
B3Aδ + C3(Xχ) = 0, hence polynomials C2(Xχ) and C3(Xχ) are constants.

� Coe�cient next to Y 2
i is Ay:iBy:i. Thus Ay:i or By:i equals zero. Without

loss of generality, assume By:i = 0.
� Coe�cient of YiXβ is Ay:iB3(Xχ). Thus, Ay:i = 0.
� Coe�cient of YiXδ is Cy:i. Thus, Cy:i = 0.
With this we have shown that for A, B, C, the polynomials T2(Xχ),

T3(Xχ) are constant. Hence, adversary could e�ciently compute the proof
([A]1 , [B]2 , [C]1) without the elements in crsTV. Rest of the proof is exactly
as in [2]. ut

We give a brief description of the CRS-generation protocol for Z∗ without
explicitly describing the circuits C1 and C2. Without directly saying it, it is
assumed that parties verify all the computations as shown in Fig. 8.

Share collection phase. Parties proceed as is in Fig. 8 to produce random and
independent shares [tsi]? = [αi, βi, γi, δi, χi]? for each Gi.

CRS generation phase. (i) On layers C1,1,C2,1 parties jointly compute
[α, β, γ, δ]?, [(χk)n−1k=1]? and [χn]1. (ii) Each Gi locally computes [(`k(χ))

n
k=1]?,

[(wj(χ), uj(χ))mj=0]1, and [(vj(χ))mj=0]? using [(χk)n−1k=1]?; and also computes
[`(χ)]1 = [χn]1 − [1]1. (iii) On layer C1,2, from input [`(χ)]1, par-
ties jointly compute [(χk`(χ)/δ)n−2k=0]1 using n − 1 multdiv gates. More-
over, they compute [(βul(χ), αvl(χ))

m
l=0]1. (iv) Each party computes locally

[(βul(χ) + αvl(χ) + wl(χ))
m
l=0]1. (v) On layer C1,3 parties compute jointly

[(βul(χ) + αvl(χ) + wl(χ)/γ)
m0

l=0]1 and [(βul(χ) + αvl(χ) + wl(χ)/δ)
m
l=m0+1]1.

The cost of the CRS generation for Z∗ can be summarised as follows: the
circuits C1 and C2 have both sampling depth 3; the multi-party protocol for
computing the crs takes 3Np + 6 rounds and requires 3m + 3n + 9 multdiv gates.
Note that with separate multiplication and division gates one would need 2m +
3n+8 multiplication gates and m+n division gates which would be less e�cient.

Acknowledgement. The authors were supported by the European Union's
Horizon 2020 research and innovation programme under grant agreement No

24

780477 (project PRIViLEDGE), and by the Estonian Research Council grant
PRG49. The work was done while Zaj¡c was working at the University of Tartu.

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Siim, J., Zajac, M.: DL-Extractable
UC-Commitment Schemes. Technical Report 2019/201, IACR (2019) Available
from https://eprint.iacr.org/2019/201.

2. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zajac, M.: A subversion-resistant
SNARK. In: ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 3�33

3. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: 45th FOCS, pp. 186�195

4. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: Security
in the face of parameter subversion. In: ASIACRYPT 2016, Part II. LNCS, vol.
10032, pp. 777�804

5. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy, pp. 459�474

6. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of
public parameters for succinct zero knowledge proofs. In: 2015 IEEE Symposium
on Security and Privacy, pp. 287�304

7. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. In: 46th ACM STOC, pp. 505�514

8. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the
public parameters of the pinocchio zk-SNARK. Cryptology ePrint Archive, Report
2017/602 (2017) http://eprint.iacr.org/2017/602.

9. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. Cryptology ePrint Archive, Report
2017/1050 (2017) http://eprint.iacr.org/2017/1050.

10. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136�145

11. Canetti, R., Fischlin, M.: Universally composable commitments. In:
CRYPTO 2001. LNCS, vol. 2139, pp. 19�40

12. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, pp. 209�218

13. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: ASIACRYPT 2014, Part I. LNCS,
vol. 8873, pp. 532�550

14. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: PKC 2018, Part I. LNCS,
vol. 10769, pp. 315�347

15. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: EUROCRYPT 2013. LNCS, vol. 7881, pp.
626�645

16. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all
falsi�able assumptions. In: 43rd ACM STOC, pp. 99�108

17. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
44th FOCS, pp. 102�115

18. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: ASIACRYPT 2006. LNCS, vol. 4284, pp. 444�459

25

https://eprint.iacr.org/2019/201
http://eprint.iacr.org/2017/602
http://eprint.iacr.org/2017/1050

19. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In:
ASIACRYPT 2010. LNCS, vol. 6477, pp. 321�340

20. Groth, J.: On the size of pairing-based non-interactive arguments. In: EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 305�326

21. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. LNCS, pp.
698�728

22. Juels, A., Kosba, A.E., Shi, E.: The ring of Gyges: Investigating the future of
criminal smart contracts. In: ACM CCS 16, pp. 283�295

23. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous
computation. In: TCC 2013. LNCS, vol. 7785, pp. 477�498

24. Kidron, D., Lindell, Y.: Impossibility results for universal composability in public-
key models and with �xed inputs. Journal of Cryptology 24(3) (2011) pp. 517�544

25. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy, pp. 839�858

26. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: TCC 2012. LNCS, vol. 7194, pp. 169�189

27. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge snarks
from linear-size universal and updateable structured reference strings. Cryptology
ePrint Archive, Report 2019/099 (2019) https://eprint.iacr.org/2019/099.

28. Naor, M.: On Cryptographic Assumptions and Challenges. In: CRYPTO 2003.
LNCS, vol. 2729, pp. 96�109

29. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical veri�-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238�252

26

https://eprint.iacr.org/2019/099

	UC-Secure CRS Generation for SNARKs

