
Memory-Efficient High-Speed Implementation of
Kyber on Cortex-M4

Leon Botros, Matthias J. Kannwischer, and Peter Schwabe?

Radboud University, Nijmegen, The Netherlands
l.botros@student.ru.nl, matthias@kannwischer.eu, peter@cryptojedi.org

Abstract. This paper presents an optimized software implementation
of the module-lattice-based key-encapsulation mechanism Kyber for the
ARM Cortex-M4 microcontroller. Kyber is one of the round-2 candidates
in the NIST post-quantum project. In the center of our work are novel
optimization techniques for the number-theoretic transform (NTT) inside
Kyber, which make very efficient use of the computational power offered
by the “vector” DSP instructions of the target architecture. We also
present results for the recently updated parameter sets of Kyber which
equally benefit from our optimizations.
As a result of our efforts we present software that is 18% faster than
an earlier implementation of Kyber optimized for the Cortex-M4 by the
Kyber submitters. Our NTT is more than twice as fast as the NTT in that
software. Our software runs at about the same speed as the latest speed-
optimized implementation of the other module-lattice based round-2 NIST
PQC candidate Saber. However, for our Kyber software, this performance
is achieved with a much smaller RAM footprint. Kyber needs less than
half of the RAM of what the considerably slower RAM-optimized version
of Saber uses. Our software does not make use of any secret-dependent
branches or memory access and thus offers state-of-the-art protection
against timing attacks.

Keywords: ARM Cortex-M4, number-theoretic transform, lattice-based
cryptography, Kyber

1 Introduction

In 2016, NIST issued a call for proposals of new post-quantum cryptographic
schemes including digital signatures and key encapsulation schemes (KEM) for
future standardization [26]. In late 2017, 69 different proposals were accepted
for a first round of evaluation. On January 30, 2019, NIST announced the
second-round candidates which include 17 KEMs and 9 signature schemes. The
report accompanying NIST’s decision [1] states that the main criteria of selection
were cryptanalytic attacks and message sizes. Implementation characteristics
such as speed, memory consumption, or code size on various platforms was
? This work has been supported by the European Commission through the ERC
Starting Grant 805031 (EPOQUE). Date: May 13, 2019



not the main reason for not selecting any of the schemes to the second round
evaluation. However, NIST stated that “performance will play a larger role in the
second round” which is estimated to last for at least one year. Since only minor
tweaks to submitted schemes are allowed it is likely that, unless there are major
cryptanalytic advances, implementation performance will be a main criterion for
schemes being considered beyond round two.

While many first-round submissions already include an implementation opti-
mized for large Intel processors, most do not come with optimized implementations
for other platforms. Yet, some of the schemes have been optimized for ARM
Cortex-M microcontrollers and also FPGAs. One particularly important target
platform is the ARM Cortex-M4 since a variety of schemes have been optimized
for it and NIST recommended it to submission teams. Implementations of NIST
candidates optimized for the Cortex-M4 are collected in pqm4 [21] which also
provides a testing and benchmarking framework for fair comparison.

7 out of 17 round-two candidates1 for key encapsulation are based on struc-
tured lattices and as such heavily rely on arithmetic in polynomial rings. Re-
cent work [20] optimized multiplication on Cortex-M4 in the polynomial ring
Z2k [X]/(f(X)) using the decomposition algorithms of Karatsuba [22] and Toom-
Cook [12,32]. Having fast arithmetic in Z2k [X]/(f(X)) allows to speed up the
two second-round candidates Saber and NTRU2.

Even though multiplication in Z2k [X]/(f(X)) can be fast for practical values
of n and k, it comes at a major cost: Toom and Karatsuba require additional
memory to store intermediate results. For the NTRU-HRSS-KEM parameters
n = 701 and k = 13, [20] achieve the fasted multiplication using Toom-4 and 4
layers of Karatsuba, which requires 11 208 bytes of additional stack space. Even
for the smaller polynomials with n = 256 in Saber, the fastest multiplication
routine described in [20] requires 3800 bytes of RAM. In case this memory is not
available, one has to fall back to considerably slower multiplication algorithms.

The situation is very different for Kyber (and also the round-2 NIST candidate
NewHope [2,3]), which are designed to support very efficient multiplication in the
underlying polynomial ring without additional memory. The idea is to use fast
number-theoretic transforms (NTTs), which are even part of the specification of
these two schemes. The use of fast NTT-based multiplication is not new in those
schemes and there exists a large body of work on optimizing this operation on a
variety of platforms. The most recent works on optimizing the NTT on large Intel
and AMD processors are by Seiler [30] and by Lyubashevsky and Seiler [24]. The
fastest implementation so far on our target architecture, the ARM Cortex-M4, is
presented by Alkım, Jakubeit, and Schwabe in [4]. Earlier works on the same
architecture include [11] and [27].

Contribution. The main contribution of this paper is to present improved
optimization techniques for the NTTs in Kyber. In comparison to the performance
presented in [4], our NTT is more than a factor of 1.8 faster (when applying
the same scaling to accommodate for the different dimension that was also used
1 see https://www.safecrypto.eu/pqclounge/round-2-candidates/
2 the second round merger of NTRU-HRSS-KEM [19] and NTRUEncrypt [33]

https://www.safecrypto.eu/pqclounge/round-2-candidates/


in [4]). Most of the techniques we present also apply to the NewHope parameters
targeted in [4], but some of the speedup we achieve is specific to the smaller value
of q = 7681 (NewHope uses q = 12289). We also optimize the other performance-
critical routines in Kyber and describe how to reduce RAM usage in Kyber without
significantly sacrificing performance. As a result we present the software, that
at the same time has the smallest RAM footprint across all NIST PQC KEM
candidates that have been optimized for the Cortex-M4, and has the lowest cycle
count for the sum of key generation, encapsulation and decapsulation.

Kyber v2. While this paper was in submission, the Kyber team published various
round-2 tweaks including the change of q from 7681 to 3329 which requires
changing the NTT. All the optimizations presented in this paper still apply to
Kyber v2. We have updated our software to support the new parameter sets and
present the performance results for both versions.

Availability of software. We place all the software described in this paper
into the public domain. It is available at https://github.com/mupq/nttm4. The
implementations using the round-2 parameter sets have also been merged into
pqm4 [21].

Organization of this paper. Section 2 gives the necessary background on
the key encapsulation scheme Kyber and the NTTs used within Kyber. Sec-
tion 3 presents the speed optimizations we applied to the NTT which yields a
significantly faster implementation of Kyber. Section 4 describes how the fast
implementation of Kyber can be gradually modified to use less stack space
with minor and moderate computational overhead. Finally, Section 5 presents
the performance results for our implementations and compares them to previ-
ous implementations of Kyber and other second round candidates in the NIST
post-quantum competition.

2 Preliminaries

In this section we establish notation, briefly recall Kyber and the NTT used within
Kyber, and then proceed to describe our target platform, the ARM Cortex-M4.

Notation. We refer to polynomials by regular font lower-case letters (a), vectors
of polynomials by bold lower-case letters (a) and matrices of polynomials by bold
upper-case letters (A). For a polynomial a we use â to denote the representation of
a in NTT-domain and similarly â and Â are the results of element-wise application
of the NTT to the entries of a and A. (Random) bitstrings are referred to by the
lower-case Greek letters ρ, σ, and µ. We abstract away from seed expansion to
polynomials following a uniform or centered binomial distribution by just calling
SampleUniform or SampleCBD. Let q be prime and let Zq denote the field Z/qZ.
We define polynomial rings of the form Rq = Zq/(Xn + 1) over this field where
n is a power of two. We denote by ◦ the coefficient-wise multiplication of two
polynomials in NTT domain with the natural extension to vectors and matrices.
Similarly, let c ∈ Rq = a ◦ b be the inner product of a ∈ Rk

q and b ∈ Rk
q .

https://github.com/mupq/nttm4


Algorithm 1 CPA KeyGen (v1)
Output: public key pk = (ρ, t′)
Output: secret key sk = ŝ

1: ρ, σ $← {0, 1}256 × {0, 1}256

2: Â ∈ Rk×k
q ← SampleUniform(ρ)

3: s, e ∈ Rk
q ← SampleCBD(σ)

4: ŝ← NTT(s)
5: t← NTT−1(Â ◦ ŝ) + e
6: return pk = (ρ, Compress(t)), sk = ŝ

Algorithm 2 CPA Encryption (v1)
Input: public key pk = (ρ, t′)
Input: message m ∈ Rq

Input: randomness µ ∈ {0, 1}256

Output: ciphertext (u′, v′)
1: Â ∈ Rk×k

q ← SampleUniform(ρ)
2: r, e1 ∈ Rk

q ← SampleCBD(µ)
3: e2 ∈ Rq ← SampleCBD(µ)
4: r̂← NTT(r)
5: u← NTT−1(ÂT ◦ r̂) + e1
6: t← Decompress(t′)
7: v ← NTT−1(NTT(t)T ◦ r̂) + e2 +m
8: return (Compress(u), Compress(v))

Algorithm 3 CPA Decryption (v1)
Input: secret key sk = ŝ
Input: compressed ciphertext (u′, v′)
Output: message m ∈ Rq

u← Decompress(u′)
v ← Decompress(v′)
return m← v − NTT−1(ŝT ◦ NTT(u))

2.1 Kyber v1

Kyber [6, 9], which is part of the Cryptographic Suite for Algebraic Lattices
(CRYSTALS), is built on the hardness of the Module-LWE (MLWE) problem.
Different from Ring-LWE, MLWE uses a matrix of polynomials inRq as the public
information Â, whereas s and e become vectors of polynomials. For Kyber Â is
a square k × k matrix and s and e are k-dimensional vectors. MLWE therefore
presents a generalization of the Ring-LWE and the standard LWE problem.
While this might have benefits in terms of security [9], it is also an advantage for
implementations: One can change the security level by changing the dimension of
the matrix, i.e., by changing k. Kyber uses the prime q = 7681 = 213− 29 + 1 and
Rq = Z7681/(X256 + 1) for all security levels. Since Rq remains the same for all
security levels it is possible to optimize all security levels of Kyber by optimizing
arithmetic in Rq. Kyber specifies three security levels: Kyber-512, Kyber-768, and
Kyber-1024 which use k = 2, 3, 4, respectively. Besides k, the security levels only
differ in the centered binomial distribution of the secret and error polynomials
which is η = 5, 4, 3 respectively.

Kyber uses a two stage-construction to obtain a CCA-secure KEM: First, build
an IND-CPA secure encryption scheme, which is called Kyber.CPA and then use
a variant of the Fujisaki-Okamoto transform [15] to build the CCA-secure KEM.
Algorithms 1, 2, and 3 illustrate key-generation, encryption, and decryption of
the CPA-secure encryption scheme. For the details of the CCA transform, we
refer the reader to [6, Alg. 7–9] for the pseudocode description. Since the public
matrix A is sampled from a uniform distribution and since the number-theoretic
transform of uniform randomness is again uniformly distributed, the NTT of A



is omitted and Â is instead sampled directly in NTT domain. However, this is
not possible for the secrets and errors, since those need to be small in normal
domain.

Aside from symmetric cryptography used for randomness generation and hash-
ing (in particular in the CCA transform), the main cost in Kyber is arithmetic in
Rq and even more specifically multiplications. The main cost of these multiplica-
tions are the (forward and inverse) NTT. The number of NTT operations depends
on the parameter k and is 2k, 3k + 1, and k + 1 for Kyber.CPA key generation,
encryption, and decryption, respectively. Decapsulation of the CCA-secure KEM
includes both Kyber.CPA encryption and Kyber.CPA decryption and thus requires
4k + 2 NTTs.

The Number Theoretic Transform. The number-theoretic transform is a
Fourier transform in a finite field, i.e., a multi-point evaluation of a polynomial
at powers of a root of unity. In the specific setting of Kyber, the NTT of a
polynomial g =

∑n−1
i=0 giX

i ∈ Rq is defined as

NTT(g) = ĝ =
n−1∑
i=0

ĝiX
i, with

ĝi =
n−1∑
j=0

ψjgjω
ij ,

where ω = 3844 and ψ =
√
ω = 62. The inverse of this operation is given through

NTT−1(ĝ) = g =
n−1∑
i=0

giX
i, with

gi = n−1ψ−i
n−1∑
j=0

ĝjω
−ij .

With these definitions of NTT and NTT−1, the multiplication of two polynomials
f, g ∈ Rq can be computed as f · g = NTT−1(NTT(f) ◦ NTT(g)).

The FFT algorithm to compute Fourier transforms with only Θ(n logn)
operations was introduced by Cooley and Tukey in [13]; only several years later
it was pointed out by Goldstine [16] that a similar algorithm had already been
described by Gauss in the early 19th century. For a discussion also see [18].
The big picture is that the algorithm iterates through log2 n levels, each level
performs n/2 so-called butterfly operations, and each butterfly operation performs
a multiplication by a power of ω, one addition, and one subtraction in Zq. The
powers of the root of unity ω are often referred to as the “twiddle factors”.

Note that in NTT and NTT−1, polynomials are transformed inplace and without
any additional temporary storage. This comes at a small price: the coefficients
of polynomials in NTT domain are in so-called bit-reversed order. This issue
can either be addressed by permuting coefficients or by implementing separate
algorithms for NTT and NTT−1, one that expects input in bitreversed order and



Algorithm 4 CPA KeyGen (v2)
Output: public key pk = (ρ, t̂)
Output: secret key sk = ŝ

1: ρ, σ $← {0, 1}256 × {0, 1}256

2: Â ∈ Rk×k
q ← SampleUniform(ρ)

3: s, e ∈ Rk
q ← SampleCBD(σ)

4: t̂← Â ◦ NTT(s) + NTT(e)
5: return pk = (ρ, t̂), sk = ŝ

Algorithm 5 CPA Encryption (v2)
Input: public key pk = (ρ, t̂)
Input: message m ∈ Rq

Input: randomness µ ∈ {0, 1}256

Output: ciphertext (u′, v′)
1: Â ∈ Rk×k

q ← SampleUniform(ρ)
2: r, e1 ∈ Rk

q ← SampleCBD(µ)
3: e2 ∈ Rq ← SampleCBD(µ)
4: r̂← NTT(r)
5: u← NTT−1(ÂT ◦ r̂) + e1
6: v ← NTT−1(t̂T ◦ r̂) + e2 +m
7: return (Compress(u), Compress(v))

produces output in normal order and the other one working the other way round.
Kyber follows the second approach, i.e., avoids overhead of extra bitreversal
operations. For a discussion of the different options, see also [28, Sec. 3.2].

2.2 Kyber v2

In the process of writing this paper, the second round of NIST began and the
Kyber team published an updated Kyber specification [7]. We will in the following
refer to this updated version as Kyber v2.

The main design decision for round 2 of the NIST competition was to remove
the compression of the public key. To compensate for the increased bandwidth
requirement, the Kyber team decided to reduce the value of q from 7681 to
3329, a choice that was enabled by the observation from [24] that also this
value of q supports very fast NTT-based multiplication of polynomials. Another
consequence of the decision to not compress public keys is that public keys can
now be transmitted in NTT domain, which saves an NTT operation in encryption
(and in the re-encryption during decapsulation of the CCA-secure KEM). Finally,
the smaller value of q also requires smaller noise to achieve the same security level.
This is why the parameter η of the centered binomial distribution changed to
η = 2 for all security levels; note that this change is hidden by our high-level view
of SampleCBD. The resulting key-generation and encryption algorithms are given
in Algorithm 4 and Algorithm 5; decapsulation is the same as for the round-1
version in this high-level perspective.

From a computational point of view, the most interesting aspect of the changes
is the change of the definition of the NTT. In the round-1 version of Kyber, q
was chosen such that Zq contains 512-th roots of unity. As a consequence, the
negacylic NTT of elements of Rq is a vector of 256 degree-zero polynomials (i.e.,
scalars). In the round-2 version of Kyber, q is chosen such that Zq contains 256-th
roots of unity, but not 512-th roots of unity. As a consequence, the NTT of a
polynomial f ∈ Rq is a vector of 128 polynomials of degree at most 1, i.e., with



2 coefficients each. Specifically, [7, Sec. 1.1] defines the NTT of a polynomial
f ∈ Rq as

NTT (f) = f̂ = (f̂0 + f̂1X, f̂2 + f̂3X, . . . , f̂254 + f̂255X),

where coefficients f̂i are defined as

f̂2i =
127∑
j=0

f2jζ
(2br7(i)+1)j , and

f̂2i+1 =
127∑
j=0

f2j+1ζ
(2br7(i)+1)j .

In this definition ζ = 17 is the first primitive 256th root of unity and br7 reverses
the bits in a 7-bit integer.

Note that with this definition of the NTT, the “pointwise” multiplication of
two polynomials denoted by ◦ now consists of performing 128 multiplications of
linear polynomials modulo X2 − ζ2br7(i)+1.

2.3 ARM Cortex-M4

Our target platform is the ARM Cortex-M4, which NIST recommended as the
reference platform for evaluation of post-quantum candidates on microcontrollers.
It implements the ARMv7E-M instruction set which features 16 general purpose
32-bit registers of which 14 are usable by the developer; the other two are
used for program counter and stack pointer. Unlike the ARMv7-M, the ARMv7E-M
provides powerful DSP instructions that perform arithmetic operations on two
16-bit halfwords in parallel, which proved to be very beneficial for the other
post-quantum KEMs Saber and NTRU-HRSS-KEM [20, 23]. While Kyber does
not benefit from the smlad instruction, we make use of parallel additions and
subtractions using uadd16, usub16, sasx, and ssax. Another feature that we
extensively use throughout our optimization is the barrel-shifter which allows to
shift or rotate one of the arguments in arithmetic instructions without increasing
the cycle count.

Specifically, we use the STM32F4DISCOVERY that is also used by a large
number of previous optimization papers and the benchmarking and testing
framework pqm4 [21]. It comes with 192 KiB of memory, 1 MiB of flash, and can
operate at frequencies of up to 168 MHz. Compared to other ARM platforms
like the Cortex-M0, our target platforms can be considered at the higher end of
microcontrollers. The RAM and flash are sufficient to implement and evaluate
almost all of the second round NIST candidates.

3 Optimizing for speed

In this section we describe the optimizations we apply to speed up the computation
of Kyber on the ARM Cortex-M4. Optimizations targeting the reduction of RAM



usage will be presented in 4. The starting point of our optimization efforts is the
optimized implementation for the Cortex-M4 by the Kyber authors [5], which is
the same as the C reference implementation except for a hand-optimized NTT
operation and which is included in the pqm4 framework [21].

3.1 Link-time optimization

While experimenting with the Kyber implementation from [5], we realized that
its performance is heavily penalized in pqm4 because a number of small functions
(in particular modular reductions) are implemented in different files than where
they are used. Since pqm4 compiles all source files separately to object files,
the compiler cannot inline those functions, which creates a large overhead from
function calls. A simple, but not very elegant solution would be to place all source
code in one large file and this indeed results in a speedup of about 5%.

A similar behaviour can be achieved by adding the link-time optimization
compiler flag -flto, which adds additional information in object files to allow
optimization when those are linked together. Since -flto consistently improves
performance for implementations of Kyber, we use it throughout our experiments.

We contacted the authors of pqm4 [21] to include -flto as a default option.
However, their benchmarks show that not all schemes benefit from -flto. Some
schemes get significantly slower, while others have a up to 60% increase in stack
consumption. Therefore, -flto was not turned on by default in pqm4.

3.2 Speeding up the NTT

In the following we describe our optimization strategy for the NTT, which includes
a careful combination of known techniques with new micro-architecture specific
improvements.

Representation of polynomials. Polynomials in Rq have 256 coefficients in
Zq, where q is the 13-bit prime 7681 (or 3329 for Kyber v2). Is is natural to
represent polynomials as an array of length 256 of 16-bit integers. Inspired by [30]
and unlike the implementation by the Kyber authors or the optimized NewHope
implementation described in [4], we use an array of signed 16-bit integers to
represent elements of Rq. We will later discuss the effect of this choice on modular
reductions; one immediate advantage of using signed representation is that during
subtractions in Zq we do not have to worry about underflows. Compared to using
unsigned integers we thus trivially save an addition of a multiple of q before
subtractions.

Merging NTT layers. Similar to, e.g., [17] and [4], we merge several layers
of the NTT transformation, i.e., we load four coefficients into registers at once,
perform four butterfly operations on them, and store them back. This drastically
reduces the number of loads and stores. However, it turns out that merging three
layers of the NTT as proposed in [4] is not optimal, since there are not enough
registers to fit the constants required in the Montgomery and Barrett reductions
(see below). In [4] this is solved by reloading the constants for each butterfly, but



Algorithm 6 Original unsigned
Montgomery reduction [5]; using
Montgomery factor β = 218.

Input: a (32 bit)
Output: reduced a (16 bit)

1: mul t, a, q−1

2: and t, #0x3ffff
3: mla a, t, q, a . a← a+ t · q
4: lsr a, #18

Algorithm 7 Signed Montgomery re-
duction (this work, adapted from [30]);
using Montgomery factor β = 216.

Input: a (32 bit)
Output: reduced a (16 bit)

1: smulbb t, a, q−1 . t← (a mod β) · q−1

2: smulbb t, t, q . t← (t mod β) · q
3: usub16 a, a, t . atop ←

⌊
a

216

⌋
−
⌊

t
216

⌋

the cost for these loads is larger than the savings from fewer loads and stores of
coefficients. We instead merge only two layers which allows us to still keep all
constants in registers and still save 50% of load and store operations.

Precomputation of twiddle factors. Like most speed-optimized NTT imple-
mentations before, we precompute all powers of ω and store those in flash. For
more efficient modular reduction after multiplication by the twiddle factors, we
follow an approach first introduced in [3] and store twiddle factors in Montgomery
representation [25]. More specifically, our optimizations are largely inspired by
the refined approach described in [30] and we use the same Montgomery factor
β = 216. We then reorder the twiddle factors in our table such that they can be
picked up sequentially in the NTT computation; increasing the pointer to the
twiddle factors after each load is free in ARMv7E-M. Since we need three twiddle
factors per two (merged) layers, we pack two of them into one register, which
saves one load operation and one register. The twiddle factors are only used in
multiplications with 16-bit coefficients which allows to use smulbb and smulbt
to multiply by the upper or the lower twiddle factor inside that register.

Montgomery reductions. After the multiplication in each butterfly, we need
to reduce the 32-bit product to 16-bit. This is done using a signed Montgomery
reduction tailored to q. It turns out that the signed Montgomery reduction as
proposed in [30] can be implemented in three clock cycles (Algorithm 7) on
the ARM Cortex-M4 and as such is one clock cycle faster than the unsigned
Montgomery reduction in [5] (Algorithm 6).

Unrolling. As usual we fully unroll the outer loop of the NTT iterating over
the NTT levels. Additionally, to save an additional register, we unroll one of the
inner loops as well. Depending on the current level, we unroll the loop with the
least iterations to minimize the code-size increase. While this is also saving a
small number of cycles, the performance gains by having an additional register
are much more significant.

Packing. Since q is well below 16-bits, polynomials are usually stored as int16_t
arrays. Since our target platform is a 32-bit architecture it seems wasteful to
only load one 16-bit coefficient into 32-bit registers. Loading and storing two



coefficients at once saves half of the load and store operations. However, the
available vector instruction in ARMv7E-M are quite limited. For example, there
is no dedicated instruction performing two 16-bit multiplications yielding two
32-bit results. Still some operations can be performed in parallel. Therefore,
we implement “double” butterflies, i.e., butterflies which operate on packed
arguments and return a packed result. By doing this, we can for example perform
two additions and subtractions in one clock cycles using uadd16 and usub16.
Unfortunately, some operations (e.g., the Barrett reduction) are more than twice
as expensive to implement on packed arguments. Nonetheless, we achieve a
speed-up in every butterfly by using packing.

Instruction Alignment. Since some instructions available in ARMv7E-M are
16-bit Thumb instructions, it is possible that a single Thumb instruction unaligns
many following 32-bit ARM instructions which results in a vast performance
penalty. Therefore, we make sure our code is as aligned as possible. This can be
done by aligning the start of the function using .align 2 (.align n aligns to
2n bytes) and padding each sole Thumb instruction to 32-bit using the .w suffix.

Recent improvements proposed in [24]. Very recent work proposed yet
another more efficient NTT in AVX2 [24] which can also be adapted to Kyber.
The major speed-up that [24] achieved over [30] in the NTT stems form further
optimizing the Montgomery reduction. Lyubashevsky and Seiler save an additional
multiplication by avoiding the multiplication by q−1 and instead multiplying each
of the precomputed twiddle factors by q−1. This is possible since each product of a
polynomial coefficient ai by a twiddle factor is implemented through two separate
multiplication instructions, one computing the low half and one computing the
high half of the product. Since the low half of the product is multiplied by q−1

mod β inside the Montgomery reduction, one can precompute the product of q−1

and the corresponding twiddle factor and use this constant for the low product.
This saves another multiplication instruction in the Montgomery reduction,
but requires to store twice as many precomputed twiddles. Unfortunately, this
does not carry over to our Cortex-M4 implementation since the low and high
product are not computed separately, but in a single instruction. Doing these
multiplications separately with different constants would be possible, but require
an additional clock cycle and thus not save anything.

3.3 Optimizing matrix-vector multiplication

Besides the NTT, another fairly expensive operation in Kyber is the matrix-
vector multiplication in line 5 of Algorithm 1 and line 5 of Algorithm 2. We
also optimize this operation in C. Since this optimization depends on the stack-
reduction strategy, we describe it in Section 4.

3.4 Optimized Keccak

As we will see in Subsection 5.3, even before our optimization of the NTT and
matrix-vector multiplication, most of the cycles of the Kyber computation are



spent in hashing and pseudorandom-number generation, which both boil down to
the Keccak permutation [8]. For all derivatives of Keccak inside Kyber (i.e., SHA3-
256, SHA3-512, SHAKE-128, and SHAKE-256) we use the highly optimized code
from the eXtended Keccak Code Package [14], which is also included in the pqm4
framework.

3.5 Kyber v2

Various changes in the updated Kyber specification have an impact on performance,
but all the optimizations presented above still apply with minor modifications:
The smaller q allows to be more lazy with Barrett reductions in the NTT and
NTT−1 which improves performance. Additionally, both the NTT and NTT−1 only
require 7 instead of 8 layers of butterfly operations which saves roughly 1/8 of
the cycles. However, the multiplication of polynomials in the NTT domain is
no longer a pointwise multiplication and consequently becomes more expensive.
These two changes approximately cancel each other out.

4 Decreasing Stack Usage

In addition to being fast, NTT-based multiplication provides the additional
benefit of being entirely in-place; no additional stack space is needed. This
presents a major advantage compared to for example Z2k [X]/(f(X)), where the
fastest multiplication methods use a combination of Toom-Cook [12, 32] and
Karatsuba’s [22] algorithm which comes with a rather large memory footprint.
The existing implementation of the NTT in Kyber were already in-place and the
changes we applied to them did not change this. Therefore, we also optimized the
C-code implementing the remainder of the scheme to use less stack space, making
this implementation of Kyber particularly suitable for memory constrained devices.
We analyzed which stack space requirements can be eliminated at no or very
little computational cost, i.e., without recomputations.

Changes to Kyber.CCAKEM. Kyber uses a FO-transformation to transform
a CPA-secure PKE into a CCA-secure KEM. The reference implementation of
decapsulation does so by first decrypting the ciphertext and then re-encrypting
the obtained plaintext. This produces a ciphertext which is then compared
to the original. Only if they are equal, the shared secret key is returned. We
eliminate this additional ciphertext on the stack by inlining the comparison
into CPA encryption in a constant-time manner. This function is only used
for re-encrypting and does not return a ciphertext, but rather a boolean value
that indicates the ciphertexts were equal. The actual re-encrypted ciphertext
is computed and compared byte per byte. This not only saves a considerable
amount of stack space, but also slightly improves the speed.

Changes to Kyber.CPAPKE. The remaining changes were made in the C code
of Kyber’s CPA key generation (Algorithm 1), encryption (Algorithm 2) and
decryption (Algorithm 3), where we reduced the number of polynomials that



are kept in memory at the same time. In the reference implementation of key
generation and encryption, firstly, the public matrix Â of k × k polynomials
is sampled directly in NTT domain and stored in memory. Then, vectors of
noise polynomials are sampled from a centered binomial distribution. Finally, all
computations are performed. We optimize this by merging the sampling and the
computations, i.e., we sample the required arguments on the fly where possible.

Generating and multiplying Â. Since a polynomial in Kyber has 256 coeffi-
cients each represented by 16 bits, storing one polynomial consumes 512 bytes
of memory. Because the size of the matrix Â grows quadratically with k, its
k2 polynomials account for the majority of Kyber’s stack usage. However, the
matrix Â is only required once for matrix-vector pointwise multiplication and
accumulation (see e.g., line 4 of Algorithm 1). The memory footprint can be
reduced using an approach that reduces the storage requirements of Â to only
the state of the extendable output function for one polynomial of Â at a time,
allowing to generate a small number of coefficients for multiplication.

In this approach, the polynomials of output vectors t and u are serialized
one at a time. The vector operands ŝ and r̂ are used k times in the matrix-
vector multiplication. Therefore, we decided to keep those in memory throughout
the computation. Only maintaining one polynomial of those in memory would
require re-sampling and transforming them to NTT domain k times which would
introduce a significant performance penalty.

For key generation we require k + 1 polynomials, for encryption we require
k + 1 polynomials, and for decryption we only use 3 polynomials regardless of
k, but since decapsulation calls both CPA encryption and decryption, the stack
usage is determined by encryption.

Adding noise. The noise polynomials e, e1, and e2 are only used once and
are sampled from a centered binomial distribution using an extendable output
function (XOF). We sample the coefficients of those polynomials on-the-fly
without having to store the entire polynomials.

Kyber v2. Our stack optimizations are mostly unaffected by the algorithmic
tweaks made by the Kyber team in round-2. However, in key generation (Al-
gorithm 4), the noise vector e needs to be in NTT domain. Since the NTT
transformation requires the entire polynomial e in memory; the on-the-fly sam-
pling is no longer possible. Therefore, key generation requires an additional
polynomial, i.e., k + 2 in total.

5 Results

For our experiments we use the STM32F4DISCOVERY together with an extended
version of the pqm4 [21] benchmarking framework. Particularly all cycles counts
and stack measurements are those reported by pqm4, i.e., running the schemes
at a low frequency of 24 MHz to not be impacted by memory wait states due
to a slow memory controller. This allows to compare those numbers to boards
different from the STM32F4DISCOVERY. We extend pqm4 to also report cycles



Table 1. Cycle counts for NTT, NTT−1, and the full polynomial multiplication
(NTT−1(NTT(a) ◦ NTT(b))). We outperform the current speed record by more than a
factor of two for NTT and NTT−1. The parameter changes in Kyber v2 further speed-up
the polynomial multiplication.

implementation NTT [cycles] NTT−1 [cycles] polymul[cycles]

Kyber v1 [5] 21 855 23 622
This work 9 452 (−56.8%) 10 373 (−56.1%) 32 576

Kyber v2 This work 7 725 9 347 27 873

spent in hashing. Similar as pqm4 we use arm-none-eabi-gcc at version 8.2.0 3 and
set the optimization option to -O3.

We noticed that pqm4 suffered a serious performance penalty due to how
it is using the 128 KiB memory of STM32F4DISCOVERY. pqm4 down-clocks
the STM32F4DISCOVERY, such that all accesses to RAM should take the same
number of cycles. However, according to [31] the 128 KiB of RAM are divided
into SRAM1 which consists of 112 KiB and SRAM2 consisting of 16 KiB. In
our experiments we noticed that memory accesses to SRAM2 are slower than
to SRAM1, i.e., SRAM2 memory accesses cause wait states even at the low
benchmarking frequency. At the time of writing pqm4 places the stack into
SRAM2 which eventually grows into SRAM1. As a consequence of this, reducing
memory consumption leads to the entire scheme fitting in SRAM2 introducing
vast performance penalty. To account for this effect, we consistently place the
stack in SRAM1 for all benchmarks. Consequently, the numbers in the following
differ from this reported in pqm4. For fair comparison we re-benchmarked all
implementations that were integrated pqm4 and indicate which benchmark results
from related work were not performed using this way of benchmarking. We
reported the problem to the authors of pqm4 and it is going to be resolved in a
future version of pqm4.

In this section we present our results for Kyber. We start by benchmarking
the NTT and polynomial multiplication in isolation and then report results for
key generation, encapsulation, and decapsulation for all parameter sets of Kyber.
All numbers reported in this section refer to the CCA-secure Kyber.

5.1 NTT and Polynomial Multiplication

Table 1 presents our new speed records for the computation of the NTT. Our
optimized Kyber v1 NTT and NTT−1 are more than a factor two faster than
the speed records [5]. Combining NTT and NTT−1 to perform a full polynomial
multiplication in Rq, i.e., computing NTT−1(NTT(a) ◦NTT(b)) requires 32 576 clock
cycles.

3 We also benchmarked our code using the February 2019 release of arm-none-eabi-gcc
(8.3.0) which produced the same results.



Table 2. Cycle counts for all three security levels of Kyber compared to [5]. Link
time optimization does benefit Kyber consistently, but our optimizations go far
beyond. Kyber v2 is even faster, mainly due to algorithmic changes.

scheme impl. KeyGen Encaps Decaps
cycles cycles cycles

Kyber-512 (v1)
[5] 666k 904k 934k
ltoa 637k (−4.3%) 866k (−4.1%) 881k (−5.6%)
This work 575k (−13.7%) 763k (−15.6%) 730k (−21.8%)

Kyber-512 (v2) This work 499k 634k 597k

Kyber-768 (v1)
[5] 1 098k 1 384k 1 417k
ltoa 1 048k (−4.6%) 1 325k (−4.3%) 1 339k (−5.5%)
This work 946k (−13.9%) 1 167k (−15.7%) 1 117k (−21.1%)

Kyber-768 (v2) This work 947k 1 113k 1 059k

Kyber-1024 (v1)
[5] 1 730k 2 083k 2 134k
ltoa 1 630k (−5.8%) 1 970k (−5.4%) 1 994k (−6.6%)
This work 1 483k (−14.2%) 1 753k (−15.8%) 1 698k (−20.4%)

Kyber-1024 (v2) This work 1 525k 1 732k 1 653k
a Only adding the compiler flag -flto.

In Kyber v2 only 7 out of 8 layers of the NTT are computed, which reduces
the run-time to roughly 7/8 of the cycles. Computing NTT−1(NTT(a) ◦ NTT(b)) is
considerably (14%) faster even though ◦ becomes more expensive.

The fastest multiplication in Z213/(X256 + 1), which has the same dimension
as Rq, using Toom–Cook [12,32] and Karatsuba [22] reported by Kannwischer–
Rijneveld–Schwabe [20] requires 38 215 clock cycles. We outperform this by 27%.
More importantly, Toom–Cook and Karatsuba multiplication require a significant
amount of additional memory for intermediate values. For Z213/(X256 + 1), [20]
reports 3 800 bytes of intermediate values which excludes the non-reduced result
polynomial of 1 022 bytes4. Our polynomial multiplication is entirely in place.

In comparison to the performance presented in [4], our NTT is more than
a factor of 1.8 faster (when applying the same scaling to accommodate for the
different dimension that was also used in [4]). Most of the techniques we present
also apply to the NewHope parameters targeted in [4], but some of the speedup
we achieve is specific to the smaller value of q (NewHope uses q = 12289).

5.2 Kyber.CCA

Table 2 presents the cycle counts for all our implementations in comparison to
the existing speed records [5]. By just turning on -flto, we achieve speedups
of 4 − 7% mainly caused due to in-lining modular reductions. The speed-ups
achieved by applying our speed optimizations are 14 − 23% and, thus, go far
beyond what the compiler achieves. Our implementation of the round one variants
of Kyber achieve the lowest cycle counts reported.
4 2n− 1 coefficients of 2 bytes each



Table 3. Stack usage for all three security levels of Kyber comparing our optimized
implementations to [5]. For our stack-optimized implementation we notice a significant
decrease of stack usage across all variants. The stack use of key generation of version 2
is roughly one polynomial (512 bytes) larger than in version 1. This is due to choice of
Kyber’s authors to represent the public key in the NTT domain.

scheme impl. KeyGen Encaps Decaps
bytes bytes bytes

Kyber-512 (v1) [5] 6 448 9 112 9 920
This work 2 632 (−59%) 2 672 (−71%) 2 736 (−72%)

Kyber-512 (v2) This work 3 136 2 720 2 744

Kyber-768 (v1) [5] 10 544 13 720 14 880
This work 3 072 (−71%) 3 120 (−77%) 3 176 (−79%)

Kyber-768 (v2) This work 3 648 3 232 3 248

Kyber-1024 (v1) [5] 15 664 19 352 20 864
This work 3 520 (−78%) 3 568 (−82%) 3 624 (−83%)

Kyber-1024 (v2) This work 4 160 3 752 3 776

As a result of the optimizations described in Section 4, we were able to reduce
the stack usage of all Kyber variants significantly (see Table 3). Prior to our
optimizations k2 + 3k, k2 + 4k + 3, and 2k + 2 polynomials were used by key
generation, encryption, and decryption respectively. Our optimizations were able
to reduce this to k+ 1 for all. Therefore, we notice a more considerable reduction
for the higher security levels of Kyber.

Kyber v2. With our optimizations applied to the round two versions of Kyber,
the cycle counts are comparable to round 1 if not faster. Similarly, stack size
reductions are very comparable with the reductions made in round 1. The
exception is the key generation procedure which uses k + 2 polynomials instead
of k + 1 as described in Section 4.

5.3 Profiling

Table 4 contains the profiling information of our implementations for all parameter
sets of Kyber v1 and Kyber v2. We observe the following:

Dominance of Hashing. Note that in the original implementation already
54% to 69% of execution time are spent in highly hand-optimized assembly
implementation of the Keccak. This limits the speed-ups to be obtained since
there is nothing or very little to be gained for this large fraction of the execution
time. Our implementations spend the same time in hashing as the previous
implementation, but this accounts for 64% to 81% of the total cycle counts. This
confirms what previous work concluded [20,29]: Post-quantum key encapsulation
schemes are vastly dominated by hashing and having a hardware-accelerated
Keccak permutation would speed-up the majority of schemes significantly. Kyber
v2 spends significantly less time in Keccak which is due to the change of the



Table 4. Profiling of Kyber before and after applying all our optimizations. The run-
time is vastly dominated by hashing. The cycles spent in NTT reduced notably. Only a
small portion of the run-time is still spent in non-optimized code.

impl. total Keccak NTT NTT −1

Kyber-512 (v1)

[5]
K: 666k 453k (68%) 44k (7%) 47k (7%)
E: 904k 596k (66%) 87k (10%) 71k (8%)
D: 934k 506k (54%) 131k (14%) 95k (10%)

This work
K: 575k 453k (79%) 19k (3%) 21k (4%)
E: 763k 596k (78%) 38k (5%) 31k (4%)
D: 730k 506k (69%) 57k (8%) 42k (6%)

Kyber-512 (v2) This work
K: 499k 354k (71%) 31k (6%) 0 (0%)
E: 634k 472k (74%) 15k (2%) 28k (4%)
D: 597k 381k (64%) 31k (5%) 37k (6%)

Kyber-768 (v1)

[5]
K: 1 098k 754k (69%) 66k (6%) 71k (6%)
E: 1 384k 922k (67%) 131k (9%) 95k (7%)
D: 1 417k 794k (56%) 197k (14%) 118k (8%)

This work
K: 946k 754k (80%) 28k (3%) 31k (3%)
E: 1 167k 922k (79%) 57k (5%) 42k (4%)
D: 1 117k 794k (71%) 85k (8%) 52k (5%)

Kyber-768 (v2) This work
K: 947k 680k (72%) 46k (5%) 0 (0%)
E: 1 113k 836k (75%) 23k (2%) 37k (3%)
D: 1 059k 708k (67%) 46k (4%) 47k (4%)

Kyber-1024 (v1)

[5]
K: 1 730k 1 197k (69%) 87k (5%) 95k (5%)
E: 2 083k 1 403k (67%) 175k (8%) 118k (6%)
D: 2 134k 1 249k (59%) 262k (12%) 142k (7%)

This work
K: 1 483k 1 197k (81%) 38k (3%) 42k (3%)
E: 1 753k 1 403k (80%) 76k (4%) 52k (3%)
D: 1 698k 1 249k (74%) 113k (7%) 62k (4%)

Kyber-1024 (v2) This work
K: 1 525k 1 112k (73%) 62k (4%) 0 (0%)
E: 1 732k 1 305k (75%) 31k (2%) 47k (3%)
D: 1 653k 1 139k (69%) 62k (4%) 56k (3%)

parameters q and η. Both allow for a more efficient sampling routine that uses
less SHAKE output and, thus, less Keccak permutations.

NTT. Prior to our optimizations 10% to 24% were spent in the NTT and NTT−1.
We speed-up those parts of the code by more than a factor of two and, con-
sequently, they only account for 5% to 14% of the cycles in our optimized
implementations.

5.4 Comparison to other PQC schemes on Cortex-M4

Compared to other implementations of NIST PQC KEM candidates on the ARM
Cortex-M4 (Table 5), our Kyber implementation has both the smallest memory
footprint and lowest cycle count for the sum of key generation, encapsulation
and decapsulation. Both our stack-optimized implementations of Kyber-768
outperform all other implementations by large margins in terms of stack usage.



We also note a performance gap between the fastest implementation of Saber,
reported in [20], and the stack-optimized implementation [23], whereas our
implementations do not suffer any slow-down due to our stack optimizations.

Acknowledgments

The authors would like to thank Pedro Massolino, Joost Rijneveld, and Ko
Stoffelen for their help with obtaining reasonable cycle counts on the ARM
Cortex-M4.

References

1. Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Miller, C., Moody,
D., Peralta, R., Perlner, R., Robinson, A., Smith-Tone, D., Liu, Y.K.: Status
report on the first round of the NIST post-quantum cryptography standardization
process. National Institute of Standards and Technology Internal Report 8240
(2019), https://doi.org/10.6028/NIST.IR.8240 1

2. Alkim, E., Avanzi, R., Bos, J., Ducas, L., de la Piedra, A., Pöppelmann, T., Schwabe,
P., Stebila, D.: NewHope: Algorithm specification and supporting documentation.
Submission to the NIST Post-Quantum Cryptography Standardization Project
(2017), https://cryptojedi.org/papers/#newhopenist 2

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange – a
new hope. In: Holz, T., Savage, S. (eds.) Proceedings of the 25th USENIX Security
Symposium. USENIX Association (2016), https://eprint.iacr.org/2015/1092
2, 9

4. Alkim, E., Jakubeit, P., Schwabe, P.: A new hope on ARM Cortex-M. In: Carlet,
C., Hasan, A., Saraswat, V. (eds.) Security, Privacy, and Advanced Cryptography
Engineering. LNCS, vol. 10076, pp. 332–349. Springer (2016), http://cryptojedi.
org/papers/#newhopearm 2, 3, 8, 14, 20

5. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehlé, D.: ARM Cortex-M4 optimized implementa-
tion of Kyber, https://github.com/pq-crystals/kyber/tree/cm4/cm4 (accessed
2019-03-07) 8, 9, 13, 14, 15, 16

6. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS–Kyber: Algorithm specifi-
cation and supporting documentation. Submission to the NIST Post-Quantum
Cryptography Standardization Project (2017), https://pq-crystals.org/kyber
4

7. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS–Kyber: Algorithm specification
and supporting documentation (version 2.0). Submission to the NIST Post-Quantum
Cryptography Standardization Project (2019), https://pq-crystals.org/kyber
6, 7

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference. Sub-
mission to the NIST SHA-3 competition (round 3) (2011), https://keccak.team/
files/Keccak-reference-3.0.pdf 11

https://doi.org/10.6028/NIST.IR.8240
https://cryptojedi.org/papers/#newhopenist
https://eprint.iacr.org/2015/1092
http://cryptojedi.org/papers/#newhopearm
http://cryptojedi.org/papers/#newhopearm
https://github.com/pq-crystals/kyber/tree/cm4/cm4
https://pq-crystals.org/kyber
https://pq-crystals.org/kyber
https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf


9. Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS – kyber: A cca-secure module-
lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy
(EuroS&P). pp. 353–367. IEEE (2018), https://eprint.iacr.org/2017/634 4

10. Bos, J.W., Friedberger, S., Martinoli, M., Oswald, E., Stam, M.: Fly, you fool!
Faster Frodo for the ARM Cortex-M4. Cryptology ePrint Archive, Report 2018/1116
(2018), https://eprint.iacr.org/2018/1116 20

11. de Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient software
implementation of ring-LWE encryption. In: Design, Automation & Test in Europe
Conference & Exhibition, DATE 2015. pp. 339–344. EDA Consortium (2015),
http://eprint.iacr.org/2014/725 2

12. Cook, S.: On the Minimum Computation Time of Functions. Ph.D. thesis, Harvard
University (1966) 2, 11, 14

13. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
fourier series. Mathematics of computation 19(90), 297–301 (1965), https://www.
jstor.org/stable/2003354 5

14. Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.: eXtended Keccak
Code Package, https://github.com/XKCP/XKCP (accessed 2019-03-07) 11

15. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Wiener, M. (ed.) Advances in Cryptology – CRYPTO ‘99.
LNCS, vol. 1666, pp. 537–554. Springer (1999), http://dx.doi.org/10.1007/
3-540-48405-1_34 4

16. Goldstine, H.H.: A History of Numerical Analysis from the 16th through the 19th
Century. Springer (1977) 5

17. Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software speed records for
lattice-based signatures. In: Gaborit, P. (ed.) Post-Quantum Cryptography. Lecture
Notes in Computer Science, vol. 7932, pp. 67–82. Springer-Verlag Berlin Heidelberg
(2013), document ID: d67aa537a6de60813845a45505c313, http://cryptojedi.org/
papers/#lattisigns 8

18. Heideman, M.T., Johnson, D.H., Burrus, C.S.: Gauss and the history of the fast
fourier transform. IEEE ASSP Magazine 1(4) (1984), http://www.cis.rit.edu/
class/simg716/Gauss_History_FFT.pdf 5

19. Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: NTRU-KEM-HRSS: Algo-
rithm specification and supporting documentation. Submission to the NIST Post-
Quantum Cryptography Standardization Project (2017), https://ntru-hrss.org
2

20. Kannwischer, M.J., Rijneveld, J., Schwabe, P.: Faster multiplication in Z2m [x] on
Cortex-M4 to speed up NIST PQC candidates (2018), https://eprint.iacr.org/
2018/1018 2, 7, 14, 15, 17, 20

21. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: Post-quantum
crypto library for the ARM Cortex-M4, https://github.com/mupq/pqm4 (accessed
2019-03-07) 2, 3, 7, 8, 12, 20

22. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata.
Soviet Physics Doklady 7, 595–596 (1963), translated from Doklady Akademii
Nauk SSSR, Vol. 145, No. 2, pp. 293–294, July 1962. Scanned version on http:
//cr.yp.to/bib/1963/karatsuba.html 2, 11, 14

23. Karmakar, A., Mera, J.M.B., Roy, S.S., Verbauwhede, I.: Saber on ARM CCA-
secure module lattice-based key encapsulation on ARM. IACR Transactions on
Cryptographic Hardware and Embedded Systems 2018(3), 243–266 (2018), https:
//eprint.iacr.org/2018/682 7, 17, 20

https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2018/1116
http://eprint.iacr.org/2014/725
https://www.jstor.org/stable/2003354
https://www.jstor.org/stable/2003354
https://github.com/XKCP/XKCP
http://dx.doi.org/10.1007/3-540-48405-1_34
http://dx.doi.org/10.1007/3-540-48405-1_34
http://cryptojedi.org/papers/#lattisigns
http://cryptojedi.org/papers/#lattisigns
http://www.cis.rit.edu/class/simg716/Gauss_History_FFT.pdf
http://www.cis.rit.edu/class/simg716/Gauss_History_FFT.pdf
https://ntru-hrss.org
https://eprint.iacr.org/2018/1018
https://eprint.iacr.org/2018/1018
https://github.com/mupq/pqm4
http://cr.yp.to/bib/1963/karatsuba.html
http://cr.yp.to/bib/1963/karatsuba.html
https://eprint.iacr.org/2018/682
https://eprint.iacr.org/2018/682


24. Lyubashevsky, V., Seiler, G.: NTTRU: Truly fast NTRU using NTT. Cryptology
ePrint Archive, Report 2019/040 (2019), https://eprint.iacr.org/2019/040 2,
6, 10

25. Montgomery, P.L.: Modular multiplication without trial division. Mathematics
of Computation 44(170), 519–521 (1985), http://www.ams.org/journals/mcom/
1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf 9

26. National Institute for Standards and Technology: Submission requirements and eval-
uation criteria for the post-quantum cryptography standardization process (2017),
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/
documents/call-for-proposals-final-dec-2016.pdf 1

27. Oder, T., Pöppelmann, T., Güneysu, T.: Beyond ECDSA and RSA: Lattice-based
digital signatures on constrained devices. In: 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC). pp. 1–6. ACM (2014), https://www.sha.rub.de/
media/attachments/files/2014/06/bliss_arm.pdf 2

28. Pöppelmann, T., Oder, T., Güneysu, T.: High-performance ideal lattice-based cryp-
tography on 8-bit ATxmega microcontrollers. In: Lauter, K., Rodríguez-Henríquez,
F. (eds.) Progress in Cryptology – LATINCRYPT 2015. LNCS, vol. 9230, pp. 346–
365. Springer (2015), extended version at https://eprint.iacr.org/2015/382
6

29. Saarinen, M.J.O., Bhattacharya, S., Garcia-Morchon, O., Rietman, R., Tolhuizen,
L., Zhang, Z.: Shorter messages and faster post-quantum encryption with Round5
on Cortex M. Cryptology ePrint Archive, Report 2018/723 (2018), https://eprint.
iacr.org/2018/723 15, 20

30. Seiler, G.: Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryp-
tography. Cryptology ePrint Archive, Report 2018/039 (2018), https://eprint.
iacr.org/2018/039 2, 8, 9, 10

31. Reference manual for STM32F405/415, STM32F407/417, STM32F427/437, and
STM32F429/439 advanced ARM-based 32-bit MCUs (2019), https://www.st.com/
resource/en/reference_manual/dm00031020.pdf 13

32. Toom, A.L.: The complexity of a scheme of functional elements realizing the
multiplication of integers. Soviet Mathematics Doklady 3, 714–716 (1963), www.de.
ufpe.br/~toom/my-articles/engmat/MULT-E.PDF 2, 11, 14

33. Zhang, Z., Chen, C., Hoffstein, J., Whyte, W.: NTRUEncrypt: Algorithm speci-
fication and supporting documentation. Submission to the NIST Post-Quantum
Cryptography Standardization Project (2017), available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-1-submissions 2

https://eprint.iacr.org/2019/040
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://www.sha.rub.de/media/attachments/files/2014/06/bliss_arm.pdf
https://www.sha.rub.de/media/attachments/files/2014/06/bliss_arm.pdf
https://eprint.iacr.org/2015/382
https://eprint.iacr.org/2018/723
https://eprint.iacr.org/2018/723
https://eprint.iacr.org/2018/039
https://eprint.iacr.org/2018/039
https://www.st.com/resource/en/reference_manual/dm00031020.pdf
https://www.st.com/resource/en/reference_manual/dm00031020.pdf
www.de.ufpe.br/~toom/my-articles/engmat/MULT-E.PDF
www.de.ufpe.br/~toom/my-articles/engmat/MULT-E.PDF
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions


Table 5. Performance results of Kyber-768 in comparison to other round two candidates
of NISTPQC optimized for the Cortex-M4. Prior to this work the fasted scheme in
terms of encapsulation was NTRU-HRSS-KEM, whereas key generation is (still) fastest
for Saber. The best memory footprints were achieved by R5ND_3PKEb and the memory
optimized variant of Saber. Note that Saber, R5ND_3PKEb, and NTRU-KEM-743 are
claiming NIST security level 3, whereas NTRU-HRSS-KEM claims NIST security level 1.

scheme impl. runtime stack usage
cycles bytes

Kyber-768 (v1) This work
K: 946k K: 3 072
E: 1 167k E: 3 120
D: 1 117k D: 3 176

Kyber-768 (v2) This work
K: 947k K: 3 648
E: 1 113k E: 3 232
D: 1 059k D: 3 248

Frodo-AES128 [10]
K: 41 681k K: 31 116
E: 45 758k E: 51 444
D: 46 720k D: 61 820

Frodo-cSHAKE128 [10]
K: 81 300k K: 26 272
E: 86 255k E: 41 472
D: 87 212k D: 51 848

Saber

[20] a
K: 902k K: 13 248
E: 1 173k E: 15 528
D: 1 217k D: 16 624

[23] b
K: 1 165k K: 6 931
E: 1 530k E: 7 019
D: 1 635k D: 8 115

R5ND_3PKEb [29] c
K: 1 032k K: 6 796
E: 1 510k E: 8 908
D: 1 913k D: 4 296

NewHope1024CCA [4, 21]a,d
K: 1 221k K: 11 152
E: 1 902k E: 17 448
D: 1 926k D: 19 648

NTRU-HRSS-KEM [20] a
K: 145 986k K: 23 396
E: 406k E: 19 492
D: 827k D: 22 140

NTRU-KEM-743 [20] a
K: 5 203k K: 25 320
E: 1 603k E: 23 808
D: 1 884k D: 28 472

a Re-benchmarked in SRAM1 (see beginning of Section 5)
b Optimized for stack consumption
c Since R5ND_3PKEb does not report any stack usage, we report
the numbers from https://github.com/mupq/pqm4/pull/16

d NTT assembly implementation from [4] with reference imple-
mentation in pqm4 [21]

https://github.com/mupq/pqm4/pull/16

	Memory-Efficient High-Speed Implementation of Kyber on Cortex-M4

