On sigma protocols with helper for MQ and
PKP, fishy signature schemes and more

Ward Beullens!

imec-COSIC KU Leuven,
Kasteelpark Arenberg 10 - bus 2452, 3001 Heverlee, Belgium
Ward.Beullens@esat.kuleuven.be

Abstract. This work presents 2 sigma protocols with helper to prove
knowledge of:

— A solution to a system of quadratic polynomials

— A solution to an instance of the Permuted Kernel Problem
We then remove the helper from the protocol with a “cut-and-choose”
protocol and we apply the Fiat-Shamir transform to obtain signature
schemes with security proof in the QROM. We show that the result-
ing signature schemes, which we call the “MUltivarite quaDratic Flat-
SHamir” scheme (MUDFISH) and the “ShUffled Solution to Homoge-
neous linear SYstem Flat-SHamir” scheme (SUSHSYFISH), are more
efficient than existing signatures based on the MQ problem and the
Permuted Kernel Problem. We also leverage the ZK-proof for PKP to
improve the efficiency of Stern-like Zero Knowledge proofs for lattice
statements.

Keywords: Zero-Knowledge, Post-Quantum digital signatures, Multi-
variate cryptography, Permuted Kernel Problem, Silly acronyms

1 Introduction

One way to construct a signature scheme is to first construct an identification
scheme and then make it into a non-interactive signature scheme with a trans-
formation such as the the Fiat-Shamir transform [8] or the Unruh transform [19].
Looking at the NIST Post-Quantum Standardization project, two of the Round
IT signature schemes, MQDSS and Picnic use this approach. MQDSS [5] uses
an identification scheme based on the hardness of solving a a large system of
polynomial equations over a finite field. Picnic [4] uses an identification scheme
constructed using the “MPC-in-the-head” technique [10] that relies on symmet-
ric primitives. A third example is PKP-DSS [7], which uses an old identification
scheme based on the hardness of the Permuted Kernel Problem (PKP) [18]. A
drawback of these schemes is that the underlying identification schemes usu-
ally have a large soundness error, so a large number of parallel repetitions is

required to get a secure signature scheme. This increases the signature sizes and
the signing and verification times.

Recently, Katz et al. [13] improved on the approach of Picnic by building a
zero knowledge proof from MPC in the preprocessing model, where the parties
can use some auxiliary data that was generated during a preprocessing phase.
The advantage of moving to the new MPC protocol is that it allows for secure
computation with dishonest majority with an arbitrary number of parties n,
which results in a zero knowledge proof with a soundness error of % Hence,
fewer parallel rounds are required to get a secure signature scheme. A “cut-
and-choose” protocol is used to deal with the preprocessing phase, which makes
signing and verification slower compared to the original Picnic scheme.

Contributions. In this paper we generalize the approach of [13] to something
we call “sigma protocols with helper”. This means that at the beginning of each
execution of the protocol there is a helper party that honestly generates some
auxiliary information that he sends to the verifier. The helper also sends the
seed that he used to generate his randomness to the prover. Then the protocol
resumes like a normal sigma protocol.

We then construct sigma protocols with helper to prove knowledge of a so-
lution of a system of quadratic equations or knowledge of a solution of a PKP
instance. Our proofs have soundness error 1, where ¢ is the size of the finite fields
that are used, which is much better than existing proofs which have soundness
error % + 2%1. We then show how to remove the helper with a “cut-and-choose”
protocol, analogous to the approach used by Katz et al. [13]. This transforma-
tion gives rise to zero knowledge protocols (without helper) which can then be
transformed into signature schemes using the Fiat-Shamir transform.

Our proof-of-concept implementation shows that the resulting signature schemes,
which we call the “MUltivarite quaDratic Flat-SHami” scheme (MUDFISH) and
the “ShUfHled Solution to Homogeneous linear SYstem Flat-SHamir” scheme
(SUSHSYFISH), have smaller signatures and are faster than the existing schemes
based on the MQ problem and the permuted kernel problem (i.e. MQDSS and
PKP-DSS respectively). For NIST PQC Security Level 1 the MUDFISH signa-
tures are 11.2 KB large, which is 46% smaller than the MQDSS signatures. At
the same time our proof-of-concept implementation is almost twice as fast as
the reference implementation of MQDSS. The task of implementing an AVX2-
optimized implementation of MUDFISH and to compare to the AVX2 optimized
implementation of MQDSS is left for future work. The SUSHSYFISH signatures
are 30% smaller than those of PKP-DSS while our proof-of-concept implementa-
tion is slightly faster than the implementation from [7]. Moreover, unlike MQDSS
and PKP-DSS, the MUDFISH and SUSHSYFISH signature schemes are based
on 3-round zero knowledge proofs, hence the results of Don et al. [6] can prove

that our signature schemes are secure in the QROM. A comparison of the signa-
ture sizes and signing speed of MUDFISH and multiple instantiations of SUSH-
SYFISH with those of existing Post-Quantum Fiat-Shamir signatures is given
in Fig. 1. Our implementation is available on GitHub [2].

Finally, since the (inhomogeneous) SIS problem embeds efficiently into the
(inhomogeneous) PKP problem with the decomposition-extension technique of
ling et al. [14], we observe that our ZK proof for PKP can be used as a more
efficient ZK proof for the SIS (and ISIS) relations. With our proof system one
can prove that a Ring-LWE ciphertext is a valid encryption of a plaintext which
is known to the prover with a proof size of 405 KB. In contrast, if one was to
use Stern’s protocol we estimate that the proof size would be 16 times larger.

103] ° %x MQDSS
° W picnic
— N PKP-DSS
[%]
o R u e SUSHSYFISH
3> ° + MUDFISH
C
S
= 2 |
10 %
(0]
€ o
s S
g’ .o. X
5 +%
< 10! 4 i m
Sy .
N
10000 15000 20000 25000 30000

Signature size (Bytes)

Fig. 1. Comparison of MUDFISH and SUSHSYFISH to existing Fiat-Shamir signa-
tures. Cycle counts of picnic and MQDSS are taken from the NIST Round2 submission
packages (the optimized, but not AVX2 optimized implementations), cycle counts for
PKP-DSS are taken from [7].

Roadmap In Sect. 2 we formalize the notion of a sigma protocol with helper,
then we construct sigma protocols with helper for the MQ problem and the
Permuted Kernel Problem in sections 3 and 4. In Sect. 5 we show how to convert
a sigma protocol with helper in a normal zero knowledge proof (without helper).
Then, we convert our zero knowledge proofs into signature schemes in Sect. 7,
where we also briefly discuss our proof-of-concept implementations. Finally we

show how to use the PKP proof to construct a zero-knowledge proof for the ISIS
relation.

2 Sigma protocols with helper

This paper introduces two Sigma protocols with helper, which are like normal
sigma protocols, with the addition of a trusted third party (called the helper)
that runs a setup algorithm based on a random seed at the beginning of each
execution of the protocol. The helper then sends some auxiliary information to
the verifier and sends the seed value that was used to seed the setup algorithm
to the prover. A more formal definition is as follows:

Definition 1 (Sigma protocol with helper). A protocol is a sigma protocol
with helper for relation R with challenge space C if it is of the form of Fig. 2
and satisfies:

— Completeness If all parties (Helper, Prover and Verifier) follow the proto-
col on input (x,w) € R, then the verifier always accepts.

— 2-Special soundness. From any two valid transcripts (x,aux,com, ch, rsp)
and (x,aux,com, ch’,rsp’) with ch # ch’ and where aux = Setup(seed) for
some seed value seed one can efficiently compute a witness w such that
(z,w) € R.

— Special honest-verifier zero knowledge. There exists a PPT simula-
tor S that on input x, a random seed value seed and a random challenge ch
outputs a transcript (x,aux, com, ch, rsp) with aux = Setup(seed) that is com-
putationally indistinguishable from the probability distribution of transcripts
of honest executions of the protocol on input (x,w) for some w such that
(z,w) € R, conditioned on the auziliary information being equal to aux and
the challenge being equal to ch.

3 Proving knowledge of a solution to a system of
quadratic equations

Two zero knowledge proofs to prove knowledge of a solution of a system of mul-
tivariate quadratic equations over a finite field I, were proposed by Sakumoto et
al. [17]. The first proof is a 3 round protocol which has soundness error %, while
the second proof is a five round protocol with soundness error % + 2i7 where ¢ is
the size of the finite field over which the system of polynomials is defined. The

MQDSS [5] signature scheme is obtained by applying the Fiat-Shamir transform

Helper(x)

seed < {0,1}*
aux <— Setup(seed)
Send seed to the prover and aux to the verifier.

Prover(z, w, seed) Verifier(z, aux)
com, P_state < P (z,w, seed)
com
ch+C

ch

rsp < P»(P_state, ch)

rsp
e

return V (z,aux, com, ch, rsp)

Fig. 2. The structure of a sigma protocol with trusted setup.

to the 5 round protocol of Sakumoto et al. Because the soundness error of %—i— i
is rather big, a large number (e.g. 135 for the NIST security level I parameter
set) of parallel rounds is required to obtain a secure signature scheme.

In this section we present a sigma protocol with helper to prove knowledge of
a solution of a system of multivariate quadratic equations. The scheme improves
the knowledge error to only 1/g, but this comes at the cost of having an honest
party that helps the prover and the verifier in their execution of the protocol.
Similar to the schemes of Sakumoto et al. the new protocol relies on the fact that
it 7: Fy — Fy is a multivariate quadratic map of m polynomials in n variables,
then the polar form of F, which is defined as

G(x,y) =F(x+y) - F(x) = F(y) (1)
is linear in both x and y.

To prove knowledge of a secret s such that F(s) = v the protocol goes as
follows: During the first phase the helper picks a random vector rg and commits
to linear secret sharings t + t. = crg,e + e, = c¢F(ro) for each ¢ € F,. These
commitments are public auxiliary information which the helper sends to the
verifier. The helper also sends the seed that he used to generate his randomness
to the prover. Then, the prover publishes the masked secret r{ = s — rg and
commits to the value of e + G(r1,t). Finally the verifier challenges the prover to
reveal e, and t, for a random choice of a € F, and checks whether the following
equation, which is equivalent to Eqn. 1, holds.

e+ G(ri,t) =c(F(s) — F(r1)) —e. — G(r1,t.), VeeF, (2)

A more detailed version of the protocol is displayed in Fig. 3.

Theorem 1. Suppose the used commitment scheme is binding and hiding, then
the protocol of Fig. 8 is a sigma protocol with trusted setup as in definition 1
with challenge space Fy.

Proof. We prove completeness, 2-special soundness and special honest-verifier
zero knowledge separately:

Completeness: The fact that in a honest execution of the protocol x =
e+ G(ry,t) follows from Eqn. 2, so completeness follows immediately.

2-Special Soundness: Suppose aux = Setup(seed) and (v, aux,com, a, (r1, €4, ta)),
(v,aux, com, «, (], eqn,tq)) are two transcripts with « # o’ that are accepted
by the verifier.

Let x == a(v—F(r1))—en,—G(r1,t,) and x’ = o/ (v—F(r}))—en —G(r], to),
then the verifier only accepts if we have com = Commit(ry, x) = Commit(r}, x’),
so the binding property of Commit implies that r; = r} and x = x’. Similarly the
verifier only accepts if com, = Commit(e,, t,) and com, = Commit(ey, ta/),
which implies that e + e, = aF(rg), t +t, = arg, € + e, = &/ F(rg) and
t + tor = a'rg, where rg,e and t are the values generated from seed. Putting
everything together we get

a(v—F(r1))+e—aF(rg)—G(ri,arg—t) = o' (v—F(r1))+e—a/ F(ro)—G(r1, a'rg—t)
which simplifies to

(o = ') (F(r1) + Flro — v) + G(ro,11)) =

(o = ') (F(ro +11) = v)) =0,

ta
o

sorg+r; = 5~ + 11 is a solution to F(x) = v.

Special honest-verifier zero knowledge: Define a simulator S, that on
input v, a random seed value seed and a random challenge oo € F, does the
following things:

recompute aux, e, and t, from seed.

pick a uniformly random vector u € Fy.

compute fqe, t, (1), Where fo e, t,(X) = a(v—F(x)) —eq — G(x,t,).
produce a commitment com’ to (u, fa.e, t,(1))-

output (v,aux,com’, a, (u, ey, ty)).

R ol

Then the Simulator is identical to an honest prover, except for step 2, where
the honest prover sets u equal to s—rq rather than a uniformly random value. It is
clear that (v, o, u, e,,t,) and (v, a, s—rp, €4, t,) are both uniformly distributed
in {v}xF,x (IFZ)3 and hence follow the same distribution. Since com and com,,
are functions of (v, a,s — ro, €4, t,) it follows that (v,com,,com’, a,u, ey, ty)
and (v,comy,com,a,s — ry, €., ty) also follow the same distribution. Finally,
since the commitments com.., are never opened, it follows from the hiding prop-
erty of the commitment scheme that (v, aux, com’, a, u, e, t,) and (v, aux, com, o, s—
o, €q, to) are indistinguishable.

Helper(F)

seed <& {0, 1}
Generate e € Fy" and t,ro € Fy from seed.
for each cin [F; do
ec + cF(ro) —e
te < cro—t
com,. < Commit((ec, t.))
end for
aux < [com,| for ¢ € F,]
Send seed to the prover and aux to the verifier.

Prover(F,s, seed) Verifier(F, v, aux)

Regenerate e, t,ro from seed.
rs < SsS—rp
com +Commit((ri,e+G(r1,t)))

com

=
ad Fq
e
Recompute e,, t, from seed.
(r1,ea,ta)
x + a(v=F(r1))—ea—G(r1,ta)
b1 < com = Commit(ry, x)
by < com, = Commit((eq,ta))
7 return by A b

Fig. 3. A sigma protocol with helper for proving knowledge of a solution to the MQ
problem.

4 Proving knowledge of a solution to a PKP instance

The permuted kernel problem is an NP-hard problem that asks to, given a matrix
A € F*™ and a vector v € F), find a permutation 7 € S, such that v, the
vector obtained by permuting the entries of v according to the permutation 7,
is in the right kernel of A. Several works have investigated the hardness of the
PKP problem, but the problem remains hard for small parameters [15,1,9, 11].
Shamir constructed a 5-round zero knowledge proof to prove knowledge of a
solution to a PKP instance with soundness error % + % [18]. This identification
scheme was turned into a signature scheme with the Fiat-Shamir transform [7].

In this section we give a Sigma protocol with helper with challenge space F,,
to prove knowledge of a solution for a PKP instance. To prove knowledge of a
solution 7 to the instance (A, v) the protocol goes as follows: The helper picks
a random vector r € F, and a random permutation o € Sy, it then commits
to r + cv, for all values of ¢ € IF,. The helper sends these commitments as
public auxiliary information to the verifier, and he sends the seed that he used
to generate his randomness to the prover. Then the prover sends p = 7o~! to
the verifier and commits to the value of Ar,,-1. Finally, the verifier challenges
the prover to reveal x = r + av, for a random choice of . Once the prover
reveals x the verifier checks if Ax, = A (r;,-1 +av;) = Ar,,-1. For a more
detailed description of the protocol we refer to Fig. 4.

Theorem 2. Suppose the used commitment scheme is binding and hiding, then
the protocol of Fig. 4 is a sigma protocol with trusted setup as in definition 1
with challenge space IFy,.

Proof. We prove completeness, 2-special soundness and special honest-verifier
zero knowledge separately:

Completeness: In an honest execution of the protocol the value y = Ax,
is equal to A (r ,-1 + av,), so if 7 was a solution to the PKP instance (A, v),
then y = Ar,,-1 and hence the completeness follows from the completeness of
the commitment scheme.

2-Special Soundness: Suppose aux = Setup(seed) and (A, v, aux, com, o, (p, x)),
(A, v,aux,com,a’, (p',x’)) are two transcripts with o # o’ that are accepted by
the verifier.

Let y := Ax, and y’ := Ax’,/, then the verifier only accepts if we have com =
Commit(p,y) = Commit(p’,y’), so the binding property of Commit implies that
p=p and y =y’. Similarly the verifier only accepts if com, = Commit(x) and
com,s = Commit(x’), which implies that x = r + av, and x’ = r + o/v,,, where

r, o are the values generated from seed during setup. Putting everything together
we get

Ar,+avy,)=A(r,+a'v,)

which simplifies to
(@ —a')Av,, =0,

so po is a solution to the Permuted Kernel Problem. The value of p is known
to the extractor, and the value of sigma can be deduced from «a, o', x,x’ and v,
because x —x’ = (o — ') v,. (If the entries of v are not unique, multiple values
of o are possible, but they will all give valid solutions to the PKP problem.)

Special honest-verifier zero knowledge: Define a simulator S, that on
input A, v, a random seed value seed and a random challenge o € F,, does the
following things:

recompute aux and x = r + av, from seed.
pick a uniformly random permutation 7 € S,,.
produce a commitment com’ to (7, Ax,).
output (A, v,aux,com’, a, (1, Ax;)).

= W N

Then the Simulator is identical to an honest prover, except for step 2, where
the honest prover sets p equal to 7o~ ! rather than a uniformly random value. It is
clear that (A, v, o, 7,Ax,) and (A, v, q, p, AX,) are both uniformly distributed
in {(A,v)}xF, x5, xF and hence follow the same distribution. Since com and
com,, are functions of (A, v, a, p, Ax,,) it follows that (A, v,com,, com’, a, 7, Ax;)
and (A, v,com,,com, a, p, Ax,) also follow the same distribution. Finally, since
the commitments com.,, are never opened, it follows from the hiding property of

the commitment scheme that (v, aux, com’, e, (7, Ax;)) and (v, aux, com, «, (p, Ax,))

are indistinguishable.

5 Removing the helper

In this section we show how to transform a Sigma protocol with helper into
a standard zero knowledge proof of knowledge (without helper). We use the
same “Cut-and-choose” approach that was used by Katz et al. to get rid of the
preprocessing phase [13].

Helper(v)

seed < {0,1}*
Generate r € F, and o € S,, from seed.
for each cin F, do
com. < Commit(r 4 ¢ves)
end for
aux < [com,| for ¢ € F)]
Send seed to the prover and aux to the verifier.

Prover (A, m,seed) Verifier(A, v, aux)

Regenerate r, o from seed.
p mo
com +Commit((p, Ar,))

—
ad Fq
«
(_
Recompute x = r+av, from seed.
(p,x)
y + Ax,

b1 + com = Commit(p,y)
ba < com, = Commit(x)
return b; A be

Fig. 4. A sigma protocol with helper for proving knowledge of a solution to the PKP
problem.

10

5.1 Basic transform

The idea is to let the prover pick k seeds seedq, - -- ,seed, and generate k sets of
auxiliary information aux; = Setup (seed;) which the prover sends to the verifier,
along with the first messages of the protocol com; = P;(z,w, seed;) for all ¢ from
1 to k. The verifier then picks a random index I and a single challenge ch € C
and sends this to the prover. The prover then sends seed; for i # I as well as a
response rsp to the challenge at index I. Using the seeds, the verifier then checks
if all the auxiliary information aux;x; was generated properly and checks if rsp
is a correct response to the challenge at index I. The details of the protocol
are displayed in Fig. 5. We prove that this is a honest-verifier zero knowledge

protocol with soundness error max(4, ﬁ)

Theorem 3. Let (Setup, P1, P>, V) be a sigma protocol with helper and chal-
lenge space C, if the used commitment scheme is hiding, then the protocol of
Fig. 5 is an honest-verifier zero knowledge proof of knowledge with challenge
space {1,--- ,k} x C and max(k,|C|) + 1-special soundness (and hence it has
soundness error max(z, ﬁ))

Proof. We prove completeness, special soundness and special honest-verifier zero
knowledge separately.

Completeness: Follows immediately from the completeness of the underly-
ing Sigma protocol with trusted setup.

(max(k, |C|) +1)-special Soundness: If there are max(k, |C|) 41 valid tran-
scripts then there are at least two valid transcripts with different values of I,
which implies that all k& setups were done honestly. The pigeon hole principle
says there are at least two accepted transcripts with the same value of I, but
different ch, so the extractor can use special soundness of the underlying Sigma
protocol with trusted setup to extract a witness w.

Special Honest-verifier Zero Knowledge: On input (I, ch), the simula-
tor generates all the setups honestly, and commits to random dummy values to
create the commitments com;.;. The simulator then uses the simulator of the
underlying sigma protocol with trusted setup to simulate the transcript at in-
dex I. Indistinguishability follows from the hiding property of the commitment
scheme and the honest-verifier zero knowledge property of the underlying sigma
protocol with trusted setup.

6 Optimizations

In this section we describe optimizations for the MQ and PKP zero-knowledge
proofs with trusted setup, as well as for the transformation that removes the
trusted setup.

11

Prover Verifier

for i€ {1,--- ,k} do
seed; ﬁ {0, 1})‘
aux; <—Setup(seed;)
com; < Pi(z,w,seed;)
end for

aux; ,com; Vi
1& {1, k)
chde
(I,ch)
rsp < P2(z,w,seed, com, ch)

seed; Vi#I,rsp
_—

if 3i # I : aux; #Setup(seed;)
then
return 0
end if
return V (z,aux, com, ch, rsp)

Fig.5. A zero knowledge proof (without trusted setup) from a Sigma protocol with
trusted setup.

Hashing and Merkle trees. In both the MQ proof and the PKP proof the
auxiliary information consists of ¢ commitments com; for ¢ € F,, but only one of
these commitments, com,, is opened in each honest execution of the protocol.
To reduce the communication cost (and hence the signature size after the Fiat-
Shamir transform) we can build a Merkle tree on these commitments and only
send the root of the tree. Then the prover includes in his response the [log,(q)]
nodes of the Merkle tree required to reconstruct the root of the Merkle tree.

When we are doing the transformation to get rid of the trusted party, we do
not have to send all the k roots separately. Instead, it suffices to send a hash
of all the roots to the verifier. Then during verification the verifier recomputes
all the roots (either from seed; if i # I, or through the verification algorithm if
i = I) and hashes the roots to verify that they were correct.

The prover sends k commitments com;, but only the commitment com; is
used. Therefore, similar to the first optimization, the prover can build a Merkle
tree on his commitments and send the root to the verifier. Then, he includes
com; and some nodes of the Merkle tree in his response, so the verifier can
recompute the root and authenticate comj.

Sending less seeds. The prover chooses k seed values, and sends all but
one of these seeds to the verifier. We can use a tree strategy to reduce the

12

communication cost. The prover constructs a binary tree of seed values. First,
he picks the value of the root at random. Then, the value of each internal node
is used to seed a PRNG which generates the values of its two children. In the
end, the leaf nodes act as the seed; values. Now, instead of sending k — 1 seed
values, the prover can send [log, (k)] node values in the tree and the prover can
recompute the k — 1 seeds himself (but not seedy).

Smaller challenge space. For some applications the finite field F, is so large
that it would not be practical to compute Merkle trees of size ¢. In that case we
can simply reduce the challenge space to some subset of F, of size ¢’ < ¢. The
soundness error of the scheme then becomes 1/¢’ instead of 1/q.

Beating parallel repetition. The basic scheme has soundness error %, so to

reach a soundness error of 27 we would need to perform r = [W-‘ parallel

executions of the protocol. The optimization of Katz et al. [13] gives a more
efficient approach: The idea is that instead of letting the verifier choose 1 out of
k setups to execute, we now let him choose 7 out of M setups to execute. Now
suppose a cheating prover does e < 7 out of the M setups incorrectly. Since
he cannot produce seed; values for the cheated setups, he can only convince

the verifier if all the setups in which he cheated end up being executed. This

-1
happens with probability (Af::) . (Af) . Then, the prover still needs to generate

responses for 7 — e honest setups, which he can do with probability at most

(%) . Therefore the soundness error of the adapted scheme is bounded by

M—e)

T—e
Oglggxr (]7\{[) q/‘r—e '

For a more formal proof we refer to [13].

Ezxample 1. Suppose ¢ = 128, then without the optimization we would need
19 parallel executions of the basic protocol to reach a soundness error of 27128,
which amounts to 19%128 = 2432 setups and 19 executions of the protocol. With
the optimization it turns out that 916 setups and 20 executions are sufficient.
So in this case the optimization reduces the number of setups by a factor 2.6 at
the cost of a single extra execution.

7 Signature schemes

In this section we apply the Fiat-Shamir transformation to the zero knowledge
proofs for MQ and PKP (after applying the transformation of Sect. 5) to ob-
tain 2 signature schemes. We call these schemes the “MUltivariate quaDratic

13

FIat-SHamir” scheme (MUDFISH) and the “ShUffled Solution to Homogeneous
linear SYstem FIat-SHamir” scheme (SUSHSYFISH). First we observe that the
recent results on Post-Quantum Fiat-Shamir by Don et al. [6] apply and thus
that our signature scheme are provably secure in the QROM (with non-tight
reductions). We then give some generic optimizations for the signature scheme
and parameter choices for MUDFISH and SUSHSYFISH. We provide a proof-
of-concept implementation to show that MUDFISH and SUSHSYFISH are more
efficient than existing signature schemes based on the MQ and PKP assumptions
(i.e. MQDSS and PKP-DSS respectively) in terms of signature size and speed
(on the NIST reference platform).

7.1 Fiat-Shamir transform

The following follows immediately from [6].

Theorem 4. Assume that a hash function modelled as a Quantum Random Or-
acle is used as commitment scheme and to derive the challenges, then the MUD-
FISH and SUSHSYFISH signature schemes are strongly existentially unforgeable
in the QROM.

Proof. The argument is the same as for the fish scheme (the FS variant of Picnic),
see Sect. 6.1 of [6].

7.2 Optimizing the signature scheme

Better commitments. Since all the committed values have sufficiently large
min-entropy we can use a direct evaluation of a hash function as a commitment
scheme. This reduces the communication cost because we don’t need randomness
for decommitment. Implementing commitments in this way we no longer have
zero-knowledge, but for the application of signatures this suffices. Katz et al [13].
observe that if commitments are implemented in this way and the commitment
hash function is modelled as a classical random oracle, then a witness can be
extracted from a forgery without using the forking lemma. Thus, we can have a
tighter security proof in this case.

14

Slow hash function. Because the QROM security proofs are very non-tight
it would not be practical to choose parameters in such a way that security is
guaranteed by the proofs. Instead, as is customary, we assume that the proba-
bility of a successful attack is at most H x E, where H is the number of hash
function evaluations that an attacker makes, and F is the soundness error of
the zero knowledge proof. So usually one would choose the parameters such that
E < 27>, In our implementation we choose a hash function that is a factor 2%
slower than a standard hash function (e.g. SHA-3), therefore it suffices to take
our parameters such that £ < 27*** We pick k in such a way that the time
spent evaluating the slow hash function is small compared to the total signing
and verification time. Since we can take smaller parameters this optimization
slightly reduces both the signature size and the signing and verification time.

7.3 MUDFISH

Parameter choices For ease of implementation, we have chosen to use the
same finite field F4 for all the parameter sets. We use MQ systems with the
same number of variables as equations, because those are the hardest to solve.
For each NIST security level, we pick n = m as the smallest multiple of 4 (for
an easier implementation) such that the task of solving a random MQ system
has the required hardness. To determine the hardness of the MQ instance we
consider 2 solving methods. The Crossbred algorithm of Joux and Vitse [12],
which is more suitable to solve M(Q instances over small finite fields, and the
HybridF5 algorithm, which is more suitable for larger finite fields. The crossbred
algorithm (with d = 1) starts with a preprocessing phase in which one computes
at least k equations which are linear in the first k& variables (but of higher degree
in the remaining variables), where k is a parameter of the algorithm. Then, in
the exhaustive search phase, one iterates over all the ¢"~* possible values for the
remaining n — k variables and solves a k-by-k linear system to get the values of
the first k variables. The exhaustive search phase dominates the execution time,
and hence we can estimate the time complexity of this approach by

qnikmax kl:'snax)
where kpax is the largest value of k, for which it is possible to do the preprocessing
phase. To estimate the complexity of HybridF5 we use the same methodology
as Beullens et al. [3]. Our parameter choices for the MQ problem are displayed
in Table 1.

We still need to pick parameters for the ZK proof (i.e. 7, the number of
executions, M, the number of setups and 2%, the slowdown factor for the hash
function used in the Fiat-Shamir transform). We pick & such that the evaluation
time of the hash function is small compared to the total signing time (e.g. 2%).
The choice of 7 and M allows for a trade-off: If one is willing to increase 7, which
mainly impacts signature size, then one can decrease M, which mainly impacts
signing and verification time.

15

NIST PQC Crossbred (d = 1) Hybrid F5
Security Level ¢ n=m |kmax D complexity| complexity

I 4 84 16 10 2146 2157
111 4 116 20 13 2207 2218
A% 4 152 23 14 2272 9282

Table 1. parameters for the MQ problem used by MUDFISH, and the complexity of
solving them with the Crossbred algorithm and the Hybrid F5 algorithm.

NIST PQC Ipk| |sk| |sig] |KeyGen Sign Verify
Security Level | ¢ n 1 M k ‘(B) (B) (KB)‘ (Mc) (Mc) (Me)
I 4 84 64 163 8|37 16 11.2 2.1 13.5 11.1

11T 4116 92 332 9|53 24 25.7 54 393 375

\Y% 4152128 384 10|70 32 45.5| 123 116 97.5

Table 2. parameters for MUDFISH, key and signature sizes and performance mea-
surements (average over 1000 signatures).

Implementation results The signing and verification algorithms require to
do a lot of setups and executions of the ZK proof on independent data. We take
advantage of this by fitting data from 64 independent rounds into one word.
Hence, we can do 64 setups or 64 executions of the protocol in parallel on a 64-bit
machine. Our proof-of-concept implementation uses SHAKFE256 as hash function
and to expand randomness. The performance results of the implementation are
displayed in Table 2. We see that MUDFISH is more efficient than MQDSS:
Comparing the parameter sets that achieve NIST security level I, the signatures
of MUDFISH are 46% smaller than those of MQDSS. At the same time, the
signing and verification speed of our proof-of-concept implementation is 49% and
44% faster than those of the optimized implementation submitted to the second
round of the NIST PQC standardization project. We leave the task of making an
AVX2 optimized implementation of MUDFISH and comparing its performance
to the AVX2 optimized implementation of MQDSS for future work.

7.4 SUSHSYFISH

Parameter choices An advantage of building cryptography on PKP is that
the best attack algorithms are quite simple and easy to analyze. We use the
PKP parameter sets proposed by Faugere et al. [7] to achieve the NIST security
levels 1,3 and 5. The choice of the remaining parameters ¢’, 7 and M allows for
a trade-off between signature size and signing and verification speed. For each
of the NIST PQC security levels 1,3 and 5 we propose a parameter set which
aims to be fast (¢’ = 4), a parameter sets which aims to have small signatures
¢’ = 128 and an intermediate parameter set ¢’ = 16.

16

NIST PQC |pk| |sk| |sig| |KeyGen Sign Verify
Security level g n m ¢ 1T M Ek|B) B) (KB Mc) (Mc) (Mc)

Fast 997 61 28 4 61 204 8|72 16 148 0.1 6.0 4.2
I Middle 997 61 28 16 33 242 9|72 16 11.6 0.1 15.4 12.7
Compact | 997 61 28 128 16 1011 16 |72 16 10.0 0.1 468 457

Fast 1409 87 42 4 93 310 9 (108 24 35.0 02 132 93
III Middle (1409 87 42 16 49 406 10 (108 24 27.0 0.2 37.8 315
Compact |1409 87 42 128 28 1024 17 |108 24 24.0 0.2 740 717

Fast 1889 111 55 4128 384 10 (142 32 61.3| 04 179 123

V Middle |1889 111 55 16 64 607 12 |142 32 473| 0.4 63.5 535

Compact |1889 111 55 128 36 2048 18 |142 32 41.5| 0.4 1536 1503

Table 3. parameters for SUSHSYFISH, key and signature sizes and performance mea-
surements (average over 1000 signatures).

Implementation results Our implementation uses SHAKE256 as hash func-
tion and to expand randomness. The signing and verification times are domi-
nated by the use of SHAKE256, and hence there is a lot of potential for speedups
by choosing different symmetric primitives or by parallelizing independent calls
of the SHAKE function. The key and signature sizes and the performance mea-
surements for the 9 proposed parameter sets are displayed in Table 3. We see
that SUSHSYFISH is more efficient than PKP-DSS. For NIST PQC security
level I, the signatures of the “Middle” parameter set are 30% smaller, while
both implementations have roughly the same speed (SUSHYFISH is 14% and
13% faster for signing and verification respectively).

8 Zero Knowledge proofs for lattice statements

The decomposition-extension technique of ling et al. [14] embeds the Inhomo-
geneous Short Integer Solution (ISIS) and ring-ISIS problems into the inhomo-
geneous PKP problem (i.e. given A v and t, find a permutation 7w such that
Av, = t, for some target t that is not necessarily zero). This can be used to
turn a Zero Knowledge proof for inhomogeneous PKP into a zero knowledge
proof for ISIS and ring-ISIS. In this section we use our zero knowledge proof for
PKP (which is trivially adapted to work for inhomogeneous PKP) to improve
the efficiency of Stern-like protocols for ISIS and ring-ISIS.

8.1 Embedding (inhomogeneous) SIS into (inhomogeneous) PKP.

To illustrate the embedding first suppose that (A, t) € F**" xF;" is an instance
of the ISIS problem where a solution is a vector s € Fy such that As =t and
the coefficients of s are 0 or 1. In that case we define the extended matrix

17

A = (A Oan) and a vector v € F, whose first n entries are 1 and whose last
n entries are equal to 0. Then finding a solution to the ISIS instance (A,t) is
equivalent to finding a solution to the inhomogeneous PKP instance (A’ v,t):
Given a solution s to the ISIS instance it is trivial to find a permutation 7 such
that the first half of v equals s, which is then a solution to the inhomogeneous
PKP instance. Conversely, if 7 is a solution to the inhomogeneous PKP instance,
then the first half of v, is a solution to the SIS instance. Therefore, proving
knowledge of 7 is equivalent to proving knowledge of s.

More generally, if the coefficients of s are required to lie in a range of size B,
one can use the decomposition-extension technique [14] to transform an instance
of the ISIS problem into an equivalent instance of the inhomogeneous PKP with
a matrix A’ with 2n [loga B| columns [14].

8.2 Generalizing the zero knowledge proof for PKP

It is trivial to generalize our Sigma protocol with helper for PKP to inhomo-
geneous PKP. Suppose that given A, v and t we want to prove knowledge of a
permutation 7 such that Av, = t. Then, the only modification to the Sigma
protocol with helper of Fig. 4 we need to make is that the verifier now computes
y as Ax, — ot instead of just Ax,. Completeness follows from the fact that

Ax, —at =A(r,+av,) —at = Ar,.

Special soundness and special honest-verifier zero knowledge are not affected by
the modification.

It is also trivial to generalize the protocol to prove knowledge of a solution
7 of a (inhomogeneous) PKP instance with the additional constraint that 7 lies
in a subgroup H C S,,. The only modification required is that the prover now
samples o from H instead of from S, and that the verifier checks that p lies in
H.

If we use the PKP proof in order to prove knowledge of a solution to the
SIS problem as described in the previous subsection, then we can restrict to
the subgroup of Ss,,r104,57 generated by the transpositions (i i + n[log2B])
for 0 < i < n[logaB]. This approach reduces the proof size because elements
of the subgroup can be represented with only n[log,B] bits, rather than the
log2((2nfloga B])!) bits required to represent an arbitrary permutation.

8.3 Concrete example.

We use the same example as used by del Pino et al. [16], where we prove knowl-
edge of a message that encrypts to a particular Ring-LWE ciphertext. Suppose

18

we work over the ring R, = %

message m € R, with coefficients in {0, 1} under the public key (a, t) one sam-
ples small ring elements r, e, ez and computes the ciphertext (u,v) as follows:

with ¢ some 13-bit prime. To encrypt the

r

pap00 e;| (u
ptO0pl) e | \v

m

Therefore, to prove knowledge of a message that encrypts to (u, v) it suffices
to prove knowledge of a vector in Rg that satisfies the matrix relation, and where
the coefficients of the first 3 entries lie in [—3, 3] and the coefficients of the last
entry lie in [0, 1].

We find that an embedding of this ISIS problem into inhomogeneous PKP
produces a matrix A’ with n =2 (3+ 3 + 3+ 1) * 1024 = 20480 columns. We
choose parameters 7 = 12, M = 3871,k = 17 to achieve a soundness error less
than 27128, The proof size is dominated by the vectors and permutations in the
proof, of which there is one per execution. Therefore the proof size is roughly
equal to

T(nlogy(g) + n/2) bits ,

which amounts to 405 KB. In comparison, we estimate that an application of
Stern’s protocol would produce proofs of 6.9MB (x 17 larger). On the other hand,
del Pino et al. show a method to do this with a proofs size of only 1.25 KB, but
their method is not Post-Quantum secure and requires a lot of exponentiations
in a cryptographic cyclic group [16].

Acknowledgements This work was supported in part by the Research Council
KU Leuven: C16/15/058. In addition, this work was supported by the European
Commission through the Horizon 2020 research and innovation programme un-
der grant agreement H2020-DS-LEIT-2017-780108 FENTEC, by the Flemish
Government through FWO SBO project SNIPPET S007619N and by the IF/C1
on Cryptanalysis of post-quantum cryptography. Ward Beullens is funded by an
FWO fellowship.

References

1. Baritaud, T., Campana, M., Chauvaud, P., Gilbert, H.: On the security of the
permuted kernel identification scheme. In: Annual International Cryptology Con-
ference. pp. 305-311. Springer (1992)

2. Beullens, W.: FISH. https://github.com/WardBeullens/FISH (2019)

3. Beullens, W., Preneel, B.: Field lifting for smaller UOV public keys. In: Interna-
tional Conference on Cryptology in India. pp. 227-246. Springer (2017)

19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. pp. 1825-1842. ACM (2017)

Chen, M.S., Hiilsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: From 5-
pass MQ-based identification to MQ-based signatures. In: Cheon, J.H., Takagi,
T. (eds.) Advances in Cryptology — Asiacrypt 2016. Lecture Notes in Com-
puter Science, vol. 10032, pp. 135-165. Springer-Verlag Berlin Heidelberg (2016),
https://eprint.iacr.org/2016/708

Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the Quantum Random-Oracle Model. Cryptology ePrint Archive, Report
2019/190 (2019), https://eprint.iacr.org/2019/190

Faugere, J.C., Koussa, E., Macario-Rat, G., Patarin, J., Perret, L.: PKP-
based signature scheme. Cryptology ePrint Archive, Report 2018/714 (2018),
https://eprint.iacr.org/2018/714

Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Conference on the Theory and Application of Crypto-
graphic Techniques. pp. 186-194. Springer (1986)

Georgiades, J.: Some remarks on the security of the identification scheme based on
permuted kernels. Journal of Cryptology 5(2), 133-137 (1992)

Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Proceedings of the thirty-ninth annual ACM sympo-
sium on Theory of computing. pp. 21-30. ACM (2007)

Jaulmes, E., Joux, A.: Cryptanalysis of PKP: a new approach. In: International
Workshop on Public Key Cryptography. pp. 165-172. Springer (2001)

Joux, A., Vitse, V.: A crossbred algorithm for solving boolean polynomial systems.
In: International Conference on Number-Theoretic Methods in Cryptology. pp. 3—
21. Springer (2017)

Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge
with applications to post-quantum signatures. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. pp. 525-537.
ACM (2018)

Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: International Workshop on
Public Key Cryptography. pp. 107-124. Springer (2013)

Patarin, J., Chauvaud, P.: Improved algorithms for the permuted kernel problem.
In: Annual International Cryptology Conference. pp. 391-402. Springer (1993)
del Pino, R., Lyubashevsky, V., Seiler, G.: Short discrete log proofs for FHE and
Ring-LWE ciphertexts. In: Public Key Cryptography. pp. 344-373. Springer (2019)
Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes based on
multivariate quadratic polynomials. In: Annual Cryptology Conference. pp. 706—
723. Springer (2011)

Shamir, A.: An efficient identification scheme based on permuted kernels. In: Con-
ference on the Theory and Application of Cryptology. pp. 606-609. Springer (1989)
Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 755-784. Springer (2015)

20

