
Homomorphic noise growth in practice:
comparing BGV and FV

Anamaria Costache1, Kim Laine2, and Rachel Player3

1 Intel AI Research, San Diego, USA ?? anamaria.costache@intel.com
2 Microsoft Research, USA kim.laine@microsoft.com

3 Royal Holloway, University of London, UK rachel.player@rhul.ac.uk

Abstract. The purpose of this paper is to provide a comprehensive anal-
ysis and side-by-side comparison of the noise growth behaviour in the
BGV and FV somewhat homomorphic encryption schemes, both heuris-
tically and in their implementations in the libraries HElib and SEAL,
respectively. We run extensive experiments in HElib and SEAL to com-
pare the heuristic noise growth to the noise growth in practice. From the
experiments, we observe that for both schemes, the heuristic bounds are
not tight. We attempt to improve the tightness of the bounds in a num-
ber of ways, including the definition of new notions of noise, such as the
invariant noise for BGV and the scaled inherent noise for FV. This does
not significantly tighten the bounds, thus we conclude that the current
heuristic bounds are the best possible in terms of a theoretical analysis.
As an additional contribution, we update the comparison between the
two schemes presented by Costache and Smart [22], and find that BGV
has a slight advantage over FV. Thus, the conclusions of [22] still hold,
although the differences between BGV and FV are less dramatic.

1 Introduction

Fully homomorphic encryption enables the evaluation of arbitrary polynomials
on encrypted data, without requiring access to the secret key. In contrast, some-
what homomorphic encryption enables the evaluation of limited functions on
encrypted data; this is usually characterised by a bound of the depth of the
circuits that can be evaluated. The first fully homomorphic encryption scheme
was presented by Gentry [29], whose construction augmented a somewhat ho-
momorphic encryption scheme with a technique known as bootstrapping.

In all homomorphic encryption schemes ciphertexts contain noise that grows
during homomorphic evaluation operations. Once the noise exceeds a certain
threshold, decryption will fail. In practice, managing the noise to ensure it is
always below the threshold can be done in two ways. The first approach uses
the bootstrapping procedure, which takes as input a ciphertext with large noise,
and outputs a new ciphertext which has less noise and can be further computed
on. Hence by bootstrapping at appropriate points, the entire evaluation can be

?? Part of this work was done at University of Bristol, UK



performed. The second approach is to pre-determine the function to be evalu-
ated and set the parameters so as to allow for the noise growth that this specific
function will incur. Using this method, we are sure that the output ciphertext at
the end of the evaluation will have noise below the threshold, thus no bootstrap-
ping will be necessary and correct decryption is ensured. In either case, good
understanding of the noise growth behaviour is essential to achieve correctness
and optimal performance. In fact, a good understanding of the noise growth in
any scheme is crucial to parameter setting, large parameters remaining one of
the main hurdles in homomorphic encryption development.

1.1 Contributions

In this work, we consider the noise growth behaviour of the somewhat homo-
morphic encryption schemes BGV [12] and FV4 [28]. We present the heuristic
upper bounds for the noise growth in these schemes that have appeared in the
literature, and then perform experiments to determine how tightly these bound
the noise growth in practice. We consider other possible definitions of noise and
we argue that these bounds, while loose compared to the average noise observed
in ciphertexts in implementations, are the best possible in terms of a theoretical
analysis. We also perform an updated comparison of BGV and FV, following the
methodology of Costache and Smart [22].

In the first part of this paper, we compare heuristic noise estimates for the
noise growth of both the BGV and FV schemes with the actual noise observed
in ciphertexts in their implementation in the HElib [33] and SEAL [46] libraries,
respectively. The first HElib noise results concern the growth of the critical
quantity [22] and can be found in Table 1. In order to facilitate comparison,
we define and implement in HElib a noise budget for the critical quantity for
BGV, analogous to the invariant noise budget [16] for FV that is implemented
in SEAL. The results in terms of this noise budget are presented in Table 2.
Our SEAL noise results are presented in Tables 3 and Table 4, for the binary
encoding and batch settings, respectively.

In these experiments, for both BGV and FV, we notice a rather large gap
between the heuristic estimates for the noise growth and the practical noise
growth. We consider three possible ways to reduce this gap, which we refer to
as the heuristic-to-practical gap. The first is to try to improve the methodology
used to obtain the heuristic bounds themselves, for example by tightening the
bound on a Gaussian error distribution. In particular, following [22], we had
bounded the Gaussian errors by 6σ, while HElib uses 10σ in their heuristic
analysis. We argue in Section 7.2 that we cannot significantly improve on the 6σ
bound without losing correctness.

Secondly, we introduce a new notion of noise for BGV: the invariant noise,
so-called as it is the analogue of the invariant noise for FV. We update all the
noise analyses (encryption, addition, multiplication, relinearization and modulus

4 FV is based on a scheme of Brakerski [11] and hence is sometimes referred to as
BFV.

2



switching) for the invariant noise. We then define and implement an invariant
noise budget for BGV in HElib, and investigate whether this better models noise
behaviour in HElib. We present the results in Table 5, and find that using the
invariant noise rather than the critical quantity does not significantly reduce the
heuristic-to-practical gap.

Thirdly, we consider the FV scheme. In an FV encryption with ciphertext
modulus q and plaintext modulus t, the message is multiplied by a factor ∆,
which is such that q = ∆t+ rt(q). We notice from previous theoretical analyses
that the remainder term rt(q) can introduce cross terms in the operation bounds,
which are not found in practice and do not impact the noise, except for the final
decryption. Indeed, we can think of the contribution from this term as noise
introduced by the decryption process. To remedy the situation, we introduce
a new notion of noise for FV. We call this the scaled inherent noise, as it is a
scaling by t/q of the inherent noise as originally defined in [28]. Again, we update
all the noise analyses, and implement this new noise in SEAL. We investigate
whether this better models noise behaviour in SEAL, and present the results in
Tables 6 and 7, for the binary encoding and batch settings, respectively. While
we do observe a slight improvement in the heuristic-to-practical gap, it is only
slight, and the gap remains significant.

We conclude that any improvement of this gap, and by extension any accurate
noise growth analysis has to not only be scheme-specific, but also implementation-
specific. That is, these heuristic bounds are the best possible in terms of a theo-
retical analysis, and we must take a different approach in order to obtain bounds
that more closely model the noise growth behaviour that we see in practice.

In the second part of the paper, we perform a comparison of BGV and FV
using the methodology of Costache and Smart [22]. We update the work [22]
in several aspects, the most notable of which is an up-to-date security analysis
conforming to HE standards [1]. Secondly, we use a different notion of noise for
FV, namely the invariant noise. Thirdly, our analysis allows for a more flexible
modulus switching for FV. This is an important functionality in practice, for
example to be able to compress communication after homomorphic computations
are done. Finally, we no longer consider the NTRU-based schemes YASHE [9] and
NTRU [27, 38]. It has since been shown that such schemes may be vulnerable
to attacks in ‘overstretched’ parameter settings of interest [3, 18, 35] and as
a consequence most implementations of NTRU-based homomorphic encryption
schemes are not currently maintained. In contrast, the BGV and FV schemes are
implemented in several actively maintained homomorphic encryption libraries,
including PALISADE [44] as well as SEAL and HElib.

Our results, summarised in Table 9, show that while the conclusions of [22]
still hold, they are far less dramatic. We recall that a comparison of the two
schemes as implemented in their libraries is limited, therefore it seems that the
difference could simply be due to the different choices made in the two libraries.
In particular, the secret key distribution (ternary uniform for SEAL, binary
with small Hamming weight in HElib) could very well account for this small
discrepancy.

3



We conclude that the two schemes in their implementation present only minor
performance differences in terms of supporting a specific homomorphic evalua-
tion. That is, we expect that a computation supported in SEAL by a particu-
lar parameter set would be supported in HElib with the same parameter set.
Therefore, purely from the perspective of computational capabilities, the ques-
tion ‘Should I prefer the BGV scheme to the FV scheme?’ should not be an
important one for the implementor deciding what library to use.

The main contribution of this paper is to show that the updated theoretical
analysis we present is the best possible. We have investigated many possible
definitions of noise, including new ones, for both schemes BGV and FV. The fact
that these do not significantly improve the heuristic-to-practical gap is evidence
for our main conclusion: that any hope of improving the heuristic-to-practical
gap lies in an analysis that is both scheme and implementation-specific.

1.2 Standardisation

Partly due to their widespread implementation, the BGV and FV schemes are
among the primary schemes being considered in the ongoing effort to standardise
homomorphic encryption5. Indeed, the security standard [1] from the standard-
isation consortium explicitly mentions the comparison of BGV and FV as an
open problem, and motivates the present work.

After completing the RLWE security and scheme descriptions, the standardi-
sation initiative has started moving fast in the direction on making homomorphic
encryption easier to use, in particular through creating a standard library API,
and introducing ideas for automation such as a domain specific programming
language and a compiler/optimiser toolchain [13]. The analysis presented in our
work should be expected to feed into these discussions, as an accurate noise
growth estimator is likely to be a central component of any homomorphic com-
putation optimiser or parameter selector tool.

1.3 Related work

Several variants of the FV scheme that improve performance have been proposed
in the literature, including BEHZ-FV [6] and HPS-FV [32]. Al Badawi et al. [5]
conclude from experiments that BEHZ-FV has worse noise growth in practice
than HPS-FV, and call for further study on BEHZ-FV noise growth, which
further motivates the present work.

Heuristic upper bounds for the invariant noise growth in FV that are similar
to those presented here have also been presented by Chen et al. [17] and in
documentation [16] for previous versions of SEAL.

Apart from that of Costache and Smart [22], other previous comparisons of
homomorphic encryption schemes include a work of Lepoint and Naehrig [36]
comparing FV and YASHE, and a work of Kim and Lauter [34] comparing BGV
and YASHE.

5 HomomorphicEncryption.org

4

http://HomomorphicEncryption.org


In the present work we do not consider newer schemes such as CKKS [20] or
TFHE [21], which come with entirely different trade-offs. Of these, CKKS seems
more feasible to include in a meaningful comparison with BGV and FV, but
TFHE is quite fundamentally different. Chimera [10] describes a framework for
the FV, CKKS and TFHE schemes, with the goal of providing a common API,
rather directly comparing the schemes.

2 Preliminaries

2.1 Parameters

A Ring-LWE-based (levelled) FHE scheme is parameterised by L, n, Q, t, χ, S,
w, ` and λ. There are L primes p0, . . . , pL−1 which are used to form the chain of

moduli q0, . . . , qL−1. Elements in the chain of moduli are formed as qk =
∏k
j=0 pj .

The dimension n, plaintext modulus t and the chain of moduli correspond to the
underlying plaintext and ciphertext rings. In particular, the ciphertext modulus
Q = qL−1 =

∏L−1
j=0 pj is the product all the primes. Each intermediate prime qj

corresponds to a level and all ciphertexts are with respect to a specific level. We
denote by q some fixed level when describing the schemes, so that the ciphertext
space at any given moment is Rq = Zq[x]/(xn + 1). Note that for key generation
and for fresh ciphertexts, we always have q = Q. The plaintext space is always
Rt = Zt[x]/(xn + 1).

The Ring-LWE error distribution is denoted χ and is typically a discrete
gaussian with standard deviation σ = 3.2. The underlying Ring-LWE problem,
parameterised by n, Q and σ, is a variant with small secret. The parameter S de-
notes the secret key distribution. In the FV scheme as originally described [28] the
distribution S is the uniform distribution on the space R2 = {0, 1}[x]/(xn + 1).
In the SEAL implementation [46] the distribution S is the uniform distribution
on the space R3 = {−1, 0, 1}[x]/(xn + 1). In the BGV scheme as originally de-
scribed [12], the distribution S is the same as the error distribution χ. In the
HElib implementation [33], S is parameterised by a Hamming weight h and
chooses a vector uniformly among the set of polynomials in the space R3 having
exactly h nonzero coefficients.

Let w be a base, then ` + 1 = blogw qc + 1 is the number of terms in the
decomposition into base w of an integer in base q. The security parameter is λ.

2.2 Canonical embedding norm

Following previous work [22, 30, 31], we will present heuristic bounds for the
noise growth behaviour of FV and BGV with respect to the canonical embed-
ding norm ‖·‖can. Throughout this work, the notation ‖a‖ refers to the infinity
norm of a, while ‖a‖can refers to the canonical embedding norm. The canoni-
cal embedding norm of an element a is defined to be the infinity norm of the
canonical embedding of a, so ‖a‖can = ‖σ(a)‖.

We will use the following properties of the canonical embedding norm (see [39]
for further discussion). For any polynomial a we have ‖a‖ ≤ cm ‖a‖can ≤ ‖a‖1

5



where cm is a constant known as the ring expansion factor (see [25]). We have
cm = 1 when m is a power of two [25]. In this case, it suffices for correctness to
ensure that ‖v‖can is less than the maximal value of ‖v‖ such that decryption
succeeds. For any polynomials a, b we have ‖ab‖can ≤ ‖a‖can ‖b‖can.

Let a, b, c be such that their canonical embeddings have standard deviations
σa, σb and σc respectively. Following Costache and Smart [22], we use the follow-
ing estimates: ‖a‖can ≤ 6σa and ‖ab‖can ≤ 16σa σb and ‖abc‖can ≤ 40σa σb σc.

The standard deviations in situations of interest for this paper are as follows.
A polynomial f with coefficients distributed uniformly in [−k2 ,

k
2 ] is such that

the canonical embedding of f has standard deviation σf = k
√
n√

12
. A polynomial

e drawn from an error distribution χ, which has standard deviation σ, is such
the canonical embedding of e has standard deviation σe = σ

√
n. A polynomial

s drawn from the FV secret key distribution as implemented in SEAL [46] is
such that the canonical embedding of s has standard deviation σs =

√
2n/3.

A polynomial s drawn from the BGV secret key distribution as implemented
in HElib [33] is such that the canonical embedding of s has standard deviation
σs =

√
h, where h is the Hamming weight of s.

2.3 The BGV scheme

In this section we introduce the BGV scheme [12]. The BGV scheme is comprised
of the SecretKeyGen, PublicKeyGen, EvaluationKeyGen, Encrypt, Decrypt,
Add, Multiply, Relinearize, and ModSwitch algorithms.

In the ModSwitch algorithm, we describe switching from a modulus q to a
modulus p where, for correctness, we require that p = q = 1 mod t [12, 30]. For
the algorithm as described here, we also need p | q, which will be the case when
moving down the chain of moduli.

• SecretKeyGen(λ): Sample s
$← S and output sk = s.

• PublicKeyGen(sk): Set s = sk and sample a
$← Rq and e ← χ. Output

pk = ([−(as+ te)]q, a).

• EvaluationKeyGen(sk, w): Set s = sk. For i ∈ {0, . . . , `}, sample ai
$← Rq

and ei ← χ. Output evk =
(
[−(ais+ tei) + wis2]q, ai

)
.

• Encrypt(pk,m): For the message m ∈ Rt. Let pk = (p0, p1), sample u
$← S

and e1, e2 ← χ. Output ct = ([m+ p0u+ te1]q, [p1u+ te2]q).
• Decrypt(sk, ct): Let s = sk and ct = (c0, c1). Output m′ = [[c0 + c1s]q]t.
• Add(ct0, ct1): Output ct = ([ct0[0] + ct1[0]]q, [ct0[1] + ct1[1]]q).
• Multiply(ct0, ct1): Set c0 = [ct0[0]ct1[0]]q, c1 = [ct0[0]ct1[1] + ct0[1]ct1[0]]q,

and c2 = [ct0[1]ct1[1]]q. Output ct = (c0, c1, c2).
• Relinearize(ct, evk) : Let ct[0] = c0, ct[1] = c1 and ct[2] = c2. Let
evk[i][0] = [−(ais + tei) + wis2]q and evk[i][1] = ai. Express c2 in base

w as c2 =
∑`
i=0 c

(i)
2 wi. Set c′0 = c0 +

∑`
i=0 evk[i][0]c

(i)
2 , and c′1 = c1 +∑`

i=0 evk[i][1]c
(i)
2 . Output ct′ = (c′0, c

′
1).

• ModSwitch(ct, p) : Let ct = (c0, c1). Fix δi such that δi = −ci (mod q
p ) and

δi = 0 (mod t). Set c′0 = p
q (c0+δ0) and c′1 = p

q (c1+δ1). Output ct = (c′0, c
′
1).

6



2.4 The FV scheme

In this section we introduce the FV scheme [28]. To simplify presentation we
follow the ‘textbook’ FV scheme as presented by Fan and Vercauteren [28], in
which ciphertexts are of size 2: that is, they are a tuple of 2 elements in Rq. This
is denoted ct = (ct[0], ct[1]). In particular, we will always assume that any
output6 of Multiply is immediately given as an input to Relinearize, and so
we only define the other algorithms for ciphertexts of size 2. This is in contrast
to, for example, the SEAL [46] implementation which allows ciphertexts to grow
in size and uses generalisations of algorithms accordingly.

We do however deviate from the original description of FV by also defining
a modulus switching operation, as was done in Costache and Smart [22]. In
particular, we describe switching from a modulus q to a modulus p.

We now define the SecretKeyGen, PublicKeyGen, EvaluationKeyGen,
Encrypt, Decrypt, Add, Multiply, Relinearize, and ModSwitch algorithms. In

order to define Encrypt, we must first define ∆ =
⌊
q
t

⌋
, where q is the current

ciphertext modulus, and t is the plaintext modulus. We also define rt(q) as the
remainder of q on division by t, so that q = ∆t+ rt(q).

• SecretKeyGen(λ): Sample s
$← S and output sk = s.

• PublicKeyGen(sk): Set s = sk and sample a
$← Rq and e ← χ. Output

pk = ([−(as+ e)]q, a).

• EvaluationKeyGen(sk, w): Set s = sk. For i ∈ {0, . . . , `}, sample ai
$← Rq

and ei ← χ. Output evk =
(
[−(ais+ ei) + wis2]q, ai

)
.

• Encrypt(pk,m): For the message m ∈ Rt. Let pk = (p0, p1), sample u
$← S

and e1, e2 ← χ. Output ct = ([∆m+ p0u+ e1]q, [p1u+ e2]q).

• Decrypt(sk, ct): Let s = sk and ct = (c0, c1). Outputm′ =
[⌊

t
q [c0 + c1s]q

⌉]
t
.

• Add(ct0, ct1): Output ct = ([ct0[0] + ct1[0]]q, [ct0[1] + ct1[1]]q) .

• Multiply(ct0, ct1): Compute c0 =
[⌊

t
qct0[0]ct1[0]

⌉]
q
,

c1 =
[⌊

t
q (ct0[0]ct1[1] + ct0[1]ct1[0])

⌉]
q
, and c2 =

[⌊
t
qct0[1]ct1[1]

⌉]
q
.

Output ct = (c0, c1, c2).

• Relinearize(ct, evk) : Let ct[0] = c0, ct[1] = c1 and ct[2] = c2. Let
evk[i][0] = [−(ais + ei) + wis2]q and evk[i][1] = ai. Express c2 in base w

as c2 =
∑`
i=0 c

(i)
2 wi. Set c′0 = [c0 +

∑`
i=0 evk[i][0]c

(i)
2 ]q, and c′1 = [c1 +∑`

i=0 evk[i][1]c
(i)
2 ]q. Output ct′ = (c′0, c

′
1).

• ModSwitch(ct, p) : Let ct[0] = c0 and ct[1] = c1. Set c′0 =
[⌊

p
q c0

⌉]
p

and

c′1 =
[⌊

p
q c1

⌉]
p
. Output ct′ = (c′0, c

′
1).

6 Abusing notation, we still denote such an output by ct.

7



3 BGV noise growth in practice

3.1 Noise growth behaviour

In this section we reproduce the heuristic bounds on the noise growth behaviour
of BGV presented in [22]. These use the critical quantity [22] definition of noise.

Definition 1 (BGV critical quantity [22]). Let ct = (c0, c1) be a BGV ci-
phertext encrypting the message m ∈ Rt. Its critical quantity v is the polynomial

v = [ct(s)]q = (c0 + c1s) (mod q) .

During decryption, we first compute the critical quantity and then take the
result modulo t. If there is no wraparound modulo q then for some integer poly-
nomial k, the critical quantity satisfies [ct(s)]q = m+ tk. The reduction modulo
t hence returns m. Therefore for correctness, we require that ‖v‖ ≤ q/2.

Lemma 1 (Maximal noise [22]). A BGV ciphertext ct encrypting a message
m can be correctly decrypted if the critical quantity v satisfies ‖v‖ < q/2.

Lemma 2 (Encrypt [22]). Let ct be a fresh BGV encryption of a message m ∈
Rt. With high probability, the critical quantity v in ct satisfies

‖v‖can ≤ t
(√

3n+ 2σ
√
n(16
√
h+ 3)

)
.

Lemma 3 (Add [22]). Let ct1 and ct2 be two BGV ciphertexts encrypting
m1,m2 ∈ Rt, and having critical quantities v1, v2, respectively. Then the critical
quantity vadd in their sum ctadd satisfies ‖vadd‖can ≤ ‖v1‖can + ‖v2‖can.

Lemma 4 (Mult [22]). Let ct1 and ct2 be two BGV ciphertexts encrypting
m1,m2 ∈ Rt, and having critical quantities v1, v2, respectively. Then the critical
quantity vmult in their product ctmult satisfies ‖vmult‖can ≤ ‖v1‖can · ‖v2‖can.

Lemma 5 (Relinearize [22]). Let ct be a BGV ciphertext encrypting m and
having noise v. Let ctrelin be the ciphertext obtained by the relinearization of ct.
Then with high probability, the critical quantity vrelin in ctrelin satisfies

‖vrelin‖can ≤ ‖v‖can +
8√
3
t(`+ 1)σnw .

Lemma 6 (ModSwitch [22]). Let ct be a BGV ciphertext encrypting m with
critical quantity v with respect to a modulus q. Let ctmod be the ciphertext en-
crypting m obtained by modulus switching to the modulus p. Then with high
probability, the critical quantity vmod in ctmod satisfies

‖vmod‖can ≤
p

q
‖v‖can + t

√
n

(
√

3 +
8
√
h√
3

)
.

8



3.2 Practical experiments

In this section we compare the observed critical quantity in HElib ciphertexts
formed as a result of certain homomorphic evaluation operations with expected
estimates on the noise growth from the heuristic upper bounds. We run the fol-
lowing experiment for a certain number of trials: we step through a specific homo-
morphic evaluation, and for each operation, we record the observed noise growth.
We then output the mean and standard deviation of the observed noise. Sepa-
rately, we compute an estimate of the noise growth using the heuristic bounds.

HElib offers a debugging function7 that implements an augmented decryp-
tion, which also returns the critical quantity v. We modify this to create a func-
tion that returns ‖v‖.

The evaluation is as follows in the i-th trial. We first generate fresh cipher-
texts ct1 and ct2 encrypting i+1 and i. Next, generate ct3 as the homomorphic
addition of ct1 and ct2. Next, generate ct4 as the homomorphic multiplication
of ct3 and ct2. Finally, generate ct5 by modulus switching ct4 down to the next
prime in the chain. Relinearization for BGV as defined in Section 2.3 above is
not implemented in HElib. Instead, a different variant is implemented (see [31]).
For this reason, we do not investigate the noise growth behaviour during a HElib
relinearization.

Table 1 gives the results of this experiment for 10000 trials, using the fol-
lowing HElib default parameters: σ = 3.2, w = 64, c = 2, k = 80. We set
the plaintext modulus as t = 3 by choosing the HElib parameters p = 3
and r = 1. We set s = 1 as we did not require batching functionality. We
used dimension n ∈ {2048, 4096, 8192, 16384} by choosing the HElib parame-
ter m ∈ {4096, 8192, 16384, 32768}, and we verified that our other choices al-
lowed for these m using the function FindM. The HElib parameter nBits is
passed to the function buildModChain which sets an appropriate chain of mod-
uli for which the product of all the primes, Q, satisfies Q ≈ 2nBits. We set
nBits ∈ {54, 109, 218, 438}, which are the same values as for the default Q in
SEAL [46]. The parameters for n = 2048 were not large enough to perform
modulus switching.

Table 1 shows that the heuristic bounds hold on average: the actual observed
mean noise is less than the estimated noise. However, it will be difficult to directly
compare these results with those for experiments in SEAL, which are given in
terms of a noise budget, rather than the noise itself [16]. In order to facilitate an
easier comparison, we define a noise budget for BGV that is analogous to the
invariant noise budget in FV.

Definition 2 (BGV noise budget). Let ct be a BGV ciphertext with respect
to modulus q having critical quantity v. The noise budget for this ciphertext is
defined as

log2 (q)− log2 (‖v‖)− 1 .

To see that this is an analogous definition, note that for FV the invariant
noise budget is defined in [16] as − log2(2 · ‖v‖) = log2 (q) − log2 (q · ‖v‖) − 1.

7 decryptAndPrint

9



n
Enc Add Mult ModSwitch

E x σ E x σ E x σ E x σ

2048 16.8 5.12 1.68 17.8 5.63 2.16 34.6 14.7 11.3 - - -
4096 17.3 5.19 1.65 18.3 5.69 2.11 35.6 15.3 11.7 12.9 8.21 4.65
8192 17.8 5.25 1.55 18.8 5.75 2.03 36.6 15.8 12.1 13.4 8.28 4.57
16384 18.3 5.31 1.53 19.3 5.81 2.00 37.6 16.4 12.5 13.9 8.34 4.53

Table 1. Logarithm to base 2 of the observed mean x and of the standard devi-
ation σ (to 3 significant figures) of the noise in HElib ciphertexts over 10000 tri-
als of a specific homomorphic evaluation for parameter sets with dimension n ∈
{2048, 4096, 8192, 16384}, together with the logarithm to base 2 of the estimation E of
the noise growth in this evaluation obtained using heuristic bounds.

n
Enc Add Mult ModSwitch

E x σ E x σ E x σ E x σ

2048 37.0 48.7 0.127 36.0 48.2 0.127 19.0 39.1 0.130 - - -
4096 93.0 106 0.120 92.0 105 0.118 75.0 95.5 0.116 42.0 46.5 0.119
8192 205 217 0.108 204 216 0.109 186 206 0.106 153 158 0.108
16384 427 440 0.102 426 440 0.102 408 429 0.097 376 381 0.098

Table 2. Observed mean x and of the standard deviation σ (to 3 significant figures)
of the noise budget in HElib ciphertexts over 10000 trials of a specific homomorphic
evaluation for parameter sets with dimension n ∈ {2048, 4096, 8192, 16384}, together
with the estimation E of the noise budget growth in this evaluation obtained using
heuristic bounds.

This captures that for correctness in FV, we require that q · ‖v‖ < q
2 . Similarly,

Definition 2 captures that for correctness in BGV, we require ‖v‖ ≤ q/2.

We implemented a function in HElib to measure the noise budget, and a
function to estimate the noise budget using the heuristic bounds. We then ran
the same experiment as detailed above to compare the growth of the observed
noise budget in HElib ciphertexts with that predicted from the heuristic bounds.
Table 2 gives the results of this experiment for 10000 trials.

We see from Tables 1 and 2 that the observed noise budgets follow narrow
distributions, and the heuristic bounds hold: the observed mean noise is less
than the estimated noise, so the observed mean noise budget is more than the
estimated noise budget. Nevertheless, the heuristic bounds are not tight. For
example, for fresh ciphertexts, the heuristic bound predicts 11 to 13 fewer bits of
remaining noise budget than the mean observed. We see that the gap compounds
as we move through the computation: after multiplication, the gap is 20 to 21
bits. The gap narrows after modulus switching, to around 5 bits.

We can conclude that the observed noise budgets follow narrow distributions,
which gives us confidence that the heuristic bounds will hold very often, and
so could be relied upon to set parameters for correctness. However, since the
heuristic bounds are not tight, they may lead us to choose larger parameters than

10



is necessary. It is not clear that choosing BGV parameters using the heuristic
bounds will be optimal for performance.

4 FV noise growth in practice

4.1 Heuristic upper bounds

In this section, we present heuristic upper bounds for the noise growth in FV
with respect to the canonical norm ‖·‖can. We use the invariant noise definition
for noise following Chen et al. [16], as opposed to the critical quantity used by
Costache and Smart [22] or the inherent noise as used in the original presentation
of Fan and Vercauteren [28].

Definition 3 (FV invariant noise [16]). Let ct = (c0, c1) be an FV ciphertext
encrypting the message m ∈ Rt. Its invariant noise v is the polynomial with the
smallest infinity norm such that, for some integer coefficient polynomial a,

t

q
ct(s) =

t

q
(c0 + c1s) = m+ v + at .

The intuition for this definition of noise is that v is exactly the term which will
be removed by the rounding in a successful decryption. Therefore for correctness,
we require that ‖v‖ < 1

2 .

Lemma 7 (Maximal noise [16]). An FV ciphertext ct encrypting a message
m can be correctly decrypted if the invariant noise v satisfies ‖v‖ < 1/2.

We now present heuristic bounds on the noise growth in each homomorphic
operation. In general, these bounds are as presented in [16, 45], so we omit the
proofs for brevity. We additionally present in Lemma 12 a bound for modu-
lus switching. We use ‖m‖can ≤ t

√
3n, as in [22]. We assume that the secret

distribution S is implemented as in SEAL [46].

Lemma 8 (Encrypt [16, 45]). Let ct be a fresh FV encryption of a mes-
sage m ∈ Rt. With high probability, the invariant noise v in ct satisfies

‖v‖can ≤ rt(q)

q
· t
√

3n+
t

q
· 2σ

(
16
√

2√
3
n+ 3

√
n

)
.

Lemma 9 (Add [16, 45]). Let ct1 and ct2 be two FV ciphertexts encrypting
m1,m2 ∈ Rt, and having invariant noises v1, v2, respectively. Then the invariant
noise vadd in their sum ctadd satisfies ‖vadd‖can ≤ ‖v1‖can + ‖v2‖can.

Lemma 10 (Multiply [16, 45]). Let ct1 be an FV ciphertext of size 2 en-
crypting m1 with invariant noise v1, and let ct2 be an FV ciphertext of size 2
encrypting m2 with invariant noise v2. With high probability, the invariant noise
vmult in the product ctmult satisfies

‖vmult‖can ≤ 3 ‖v1‖can ‖v2‖can +
2t
√
n

q
√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

)

11



+

(
2t
√

3n+
2t
√
n√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

))
‖v1‖can

+

(
2t
√

3n+
2t
√
n√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

))
‖v2‖can .

Lemma 11 (Relinearize [16, 45]). Let ct be an FV ciphertext encrypting
m and having invariant noise v. Let ctrelin be the ciphertext obtained by the
relinearization of ct. Then with high probability, the invariant noise vrelin in
ctrelin satisfies

‖vrelin‖can ≤ ‖v‖can +
t

q
(`+ 1)

8√
3
σ nw .

Lemma 12 (ModSwitch). Let ct be an FV ciphertext encrypting m with in-
variant noise v with respect to a modulus q. Let ctmod be the ciphertext en-
crypting m obtained by modulus switching to the modulus p. Then with high
probability, the invariant noise vmod in ctmod satisfies

‖vmod‖can ≤ ‖v‖can +
t

p

(
√

3n+
8
√

2

3
n

)
.

Proof. Let ct = (c0, c1). Then ModSwitch(ct, p) = (c′0, c
′
1) where c′0 =

[⌊
p
q c0

⌉]
p

and c′1 =
[⌊

p
q c1

⌉]
p
. By definition of invariant noise (with respect to q) in ct,

t

p
(c′0 + c′1s) =

t

p

([⌊
p

q
c0

⌉]
p

+ s ·
[⌊
p

q
c1

⌉]
p

)

=
t

p

(
p

q
c0 + ε0 + k0p+ s ·

(
p

q
c1 + ε1 + k1p

))
=
t

q
(c0 + c1s) +

t

p
(ε0 + ε1s) + (k0 + k1s)t

= m+ v +
t

p
(ε0 + ε1s) + (k0 + k1s+ a)t ,

where ε0, ε1 are terms introduced from the rounding. Hence by definition of
invariant noise (with respect to p), vmod = v + t

p (ε0 + ε1s). We can bound this
as follows:

‖vmod‖can =

∥∥∥∥v +
t

p
(ε0 + ε1s)

∥∥∥∥can
≤ ‖v‖can +

t

p
‖ε0‖can +

t

p
‖ε1s‖can

≤ ‖v‖can +
t

p

(
6 ·
√
n√
12

+ 16 ·
√
n√
12
·
√

2n

3

)
,

which simplifies to the stated bound. ut

12



n
Enc Add Mult Relin ModSwitch

E x σ E x σ E x σ E x σ E x σ

2048 27.0 35.4 0.484 26.0 35.0 0.046 0.000 17.0 0.222 0.000 16.9 0.232 - - -
4096 81.0 90.0 0.075 80.0 89.1 0.260 51.0 69.7 0.500 51.0 69.7 0.500 31.0 39.0 0.175
8192 189 198 0.118 188 198 0.088 157 178 0.309 157 178 0.321 139 148 0.441
16384 408 418 0.120 407 417 0.014 375 396 0.300 375 396 0.301 358 367 0.028

Table 3. Binary encoding setting. Observed mean x and standard deviation σ (to 3
significant figures) of the invariant noise budget in SEAL ciphertexts over 10000 trials
of a specific homomorphic evaluation for SEAL default parameters with dimension
n ∈ {2048, 4096, 8192, 16384}, together with the estimation E of the noise budget
growth in this evaluation obtained using heuristic bounds.

4.2 Practical experiments

In this section we compare the observed noise in SEAL ciphertexts formed as
a result of certain homomorphic evaluation operations with expected estimates
on the noise growth from the heuristic upper bounds. We run the following ex-
periment for a certain number of trials: we step through a specific homomorphic
evaluation and for each operation we record the observed noise growth. We then
output the mean and standard deviation of the observed noise. Separately, we
compute an estimate of the noise growth using the heuristic bounds.

Recall that since ‖v‖ ≤ ‖v‖can, we can use the bounds presented in Section 4.1
as upper bounds for the infinity norm ‖v‖ of the invariant noise v. Rather than
working with the invariant noise v directly, since it can be an extremely small
quantity, SEAL instead uses the current invariant noise budget [16], which is
defined as − log2(2 · ‖v‖).

The evaluation is as follows in the i-th trial. First, generate fresh ciphertexts
ct1 and ct2 encrypting i + 1 and i. Next, generate ct3 as the homomorphic
addition of ct1 and ct2. Next, generate ct4 as the homomorphic multiplication
of ct3 and ct2. Next, generate ct5 by relinearizing ct4. Finally, generate ct6
by modulus switching ct5 down to the next prime in the chain. We ran this
evaluation over 10000 trials, using the SEAL default parameters n, Q, σ for
the 128-bit security level for dimensions n ∈ {2048, 4096, 8192, 16384}. We use
decomposition bit count logw = 16 and plaintext modulus t = 256. The SEAL
default parameters for n = 2048 correspond to a chain of only one modulus,
and hence we cannot perform modulus switching in this case. To generate the
plaintexts encoding i + 1 and i, we used the default binary encoder. Table 3
reports on the results of this experiment.

In a second experiment, we repeated the above evaluation using a batch
encoder. In each trial we generate two plaintexts, encoding the values j and
j+ 1 for j ∈ {0, 1, . . . , n} respectively in each of the n slots. To enable batching,
we changed the plaintext modulus to be t = 65537, a prime congruent to 1
modulo 2n. All other parameters were kept the same. Table 4 reports on the
results of this experiment for 10000 trials.

13



n
Enc Add Mult Relin ModSwitch

E x σ E x σ E x σ E x σ E x σ

2048 19.0 27.1 0.281 18.0 27.0 0.143 0.000 0.17 0.374 0.000 0.17 0.374 - - -
4096 71.0 79.0 0.000 70.0 78.0 0.000 32.0 50.0 0.045 32.0 50.0 0.045 23.0 31.0 0.000
8192 179 188 0.067 178 187 0.000 139 157 0.391 139 157 0.391 131 140 0.335
16384 398 407 0.000 397 406 0.000 356 376 0.026 356 376 0.026 350 359 0.000

Table 4. Batching setting. Observed mean x and standard deviation σ (to 3 sig-
nificant figures) of the invariant noise budget in SEAL ciphertexts over 10000 trials
of a specific homomorphic evaluation for SEAL default parameters with dimension
n ∈ {2048, 4096, 8192, 16384}, together with the estimation E of the noise budget
growth in this evaluation obtained using heuristic bounds.

Tables 3 and 4 show that the heuristic bounds indeed hold: the observed
mean noise is less than the estimated noise, so the observed mean noise budget is
more than the estimate obtained using the heuristic bounds. The small standard
deviations in Tables 3 and 4 show that the observed noises follow very narrow
distributions. This suggests that it is hard to generate a SEAL ciphertext with
noise much larger than that of any other ciphertext formed through the same
chain of homomorphic operations, in the same parameter setting. In particular,
this gives us confidence that the heuristic bounds will hold very often, and so
can be used reliably to set parameters to ensure correctness.

However, the bounds do not appear to be tight. Indeed, for encryption, the
heuristic bound predicts 8 to 10 (respectively 8 or 9) fewer bits of remaining
noise budget than the mean observed in Table 3 (respectively Table 4). This gap
is compounded as the number of operations increases, reaching 16 to 21 (respec-
tively 18 to 20) bits after multiplication in Table 3 (respectively Table 4, for
n = 4096 and above). It appears that the gap reduces after modulus switching,
with 8 or 9 fewer bits of remaining noise budget than the mean observed in both
Table 3 and Table 4). Comparing to Table 2 we see that these gaps are all similar
to the HElib case.

Consider for example the results for n = 2048, after the multiplication op-
eration. In Table 3 the bounds predict that there is no noise budget remaining,
and such a ciphertext should be considered completely corrupted with no hope
of correct decryption or use in further operations. This could cause the user to
choose larger parameters than may be necessary, given that the average observed
ciphertext has 17 bits of noise budget remaining. This would result in worse per-
formance. However in Table 4 we see that with very similar parameters (only t
has been changed), in the batching setting, the bound accurately predicts that
there is almost no noise budget left.

14



5 Towards an improved understanding of noise growth

5.1 Invariant noise: a new notion of noise for BGV

In Section 3 we looked at the noise growth behaviour of BGV in terms of the
critical quantity (Definition 1). We saw that the values for the critical quantity
observed in ciphertexts in HElib were only loosely bounded by the estimates
given by heuristic upper bounds on the critical quantity. One possible explana-
tion for this suboptimal modelling of the noise growth behaviour is that we are
using an inaccurate notion of noise. In this section, we introduce a new notion of
noise for BGV, which we call the invariant noise. We will then present heuristic
bounds on its growth, and investigate its appropriateness for estimating BGV
noise growth in practice.

Definition 4. Let ct be a BGV ciphertext encrypting the message m ∈ Rt. Its
invariant noise v is the polynomial such that

[ct(s)]q = c0 + c1s = m+ v (mod q) .

The motivation for the definition of the BGV invariant noise can be seen as
analogous to one motivating idea for the definition of invariant noise for FV [16].
This idea is that the noise should be the part of the ciphertext that can cause
decryption failure; indeed Definition 4 can be seen as a partial decryption. In a
successful BGV decryption, the invariant noise v will be removed when [ct(s)]q
is taken modulo t, leaving the message m modulo t. This should be contrasted
with the critical quantity (Definition 1), which is the whole of [ct(s)]q, including
the underlying message.

Lemma 13 (Maximal noise). A BGV ciphertext ct encrypting a message m ∈
Rt can be correctly decrypted if the invariant noise v satisfies ‖v‖ < q/2− t.

Proof. During decryption, we compute [[ct(s)]q]t. If there is no wraparound
modulo q when computing [ct(s)]q then for some integer polynomial k, we
have that c0 + c1s = m + tk and the reduction modulo t returns m. Hence
for correctness, we must have ‖m + v‖ = ‖c0 + c1s‖ ≤ q/2. Since ‖m‖ ≤ t and
‖m+ v‖ ≤ ‖m‖+ ‖v‖ it is sufficient to require ‖v‖ ≤ q/2− t. ut

We can also define the invariant noise budget for the BGV invariant noise,
analogous to Definition 2 for the critical quantity.

Definition 5. Let ct be a BGV ciphertext encrypting a message m ∈ Rt with
respect to modulus q having invariant noise v. The invariant noise budget for
this ciphertext is defined as

log2 (q/2− t)− log2 (‖v‖) .

We now present heuristic bounds on the invariant noise growth.

15



Lemma 14 (Encrypt). Let ct be a fresh BGV encryption of a message m ∈
Rt. The invariant noise v in ct is given by v = t(−eu + e1 + e2s) and can be
bounded as ‖v‖can ≤ 2tσ

√
n(16
√
h+ 3).

Proof. In a fresh ciphertext, we have ct = (c0, c1) such that

[c0 + c1s]q = m− asu− teu+ te1 + aus+ tse2

= m+ t(−eu+ e1 + se2) .

Hence the invariant noise is v = t(−eu+e1+se2). The heuristic bound on ‖v‖can
follows from Lemma 2. ut

Lemma 15 (Add). Let ct1 and ct2 be two BGV ciphertexts encrypting the
messages m1,m2 ∈ Rt, and having invariant noises v1, v2, respectively. Then
the invariant noise vadd in their sum ctadd is given by vadd = v1 + v2 and can
be bounded as ‖vadd‖can ≤ ‖v1‖can + ‖v2‖can.

Proof. The argument is the same as for the proof of Lemma 3. ut

Lemma 16 (Mult). Let ct1 and ct2 be two BGV ciphertexts encrypting m1,m2 ∈
Rt, and having invariant noises v1, v2, respectively. Then the invariant noise
vmult in their product ctmult is given by vmult = m1v2 +m2v1 + v1v2 and can be
bounded as ‖vmult‖can ≤ t

√
3n (‖v1‖can + ‖v2‖can) + ‖v1‖can · ‖v2‖can.

Proof. Let ct1 = (c0, c1) and ct2 = (c′0, c
′
1). By the definitions of ctmult and of

the invariant noise in ct1 and ct2, we have

ctmult(s) = c0c
′
0 + (c0c

′
1 + c1c

′
0)s+ c1c

′
1s

2 (mod q)

= ct1(s)ct2(s) (mod q)

= (m1 + v1)(m2 + v2)

= m1m2 +m1v2 +m2v1 + v1v2 .

Hence the invariant noise is given by vmult = m1v2 + m2v1 + v1v2. This can be
bounded as follows, again using ‖m‖can ≤ t

√
3n as in [22]:

‖vmult‖can = ‖m1v2 +m2v1 + v1v2‖can

≤ ‖m1v2‖can + ‖m2v1‖can + ‖v1v2‖can

≤ ‖m1‖can · ‖v2‖can + ‖m2‖can · ‖v1‖can + ‖v1‖can · ‖v2‖can

≤ t
√

3n (‖v1‖can + ‖v2‖can) + ‖v1‖can · ‖v2‖can .

ut

Lemma 17 (Relinearize). Let ct = (c0, c1, c2) be a BGV ciphertext encrypt-
ing m with invariant noise v. Let ctrelin be the ciphertext encrypting m, obtained
by the relinearization of ct. Then, the invariant noise vrelin in ctrelin is given

by vrelin = v − t
∑`
i=0 eic

(i)
2 and can be bounded as

‖vrelin‖can ≤ ‖v‖can +
8√
3
t(`+ 1)σnw .

16



n
Enc Add Mult ModSwitch

E x σ E x σ E x σ E x σ

2048 37.0 48.7 0.129 36.0 48.2 0.129 19.0 39.1 0.133 - - -
4096 93.0 106 0.118 92.0 105 0.117 75.0 95.5 0.117 42.0 46.5 0.118
8192 205 217 0.112 204 216 0.109 186 206 0.107 153 158 0.107
16384 427 440 0.104 426 440 0.101 408 429 0.100 376 381 0.099

Table 5. Observed mean x and of the standard deviation σ (to 3 significant figures)
of the invariant noise budget in HElib ciphertexts over 10000 trials of a specific homo-
morphic evaluation for parameter sets with dimension n ∈ {2048, 4096, 8192, 16384},
together with the estimation E of the invariant noise budget growth in this evaluation
obtained using heuristic bounds.

Proof. The argument is the same as for the proof of Lemma 5. ut

Lemma 18 (ModSwitch). Let ct be a BGV ciphertext encrypting m with
invariant noise v with respect to a modulus q. Let ctmod be the ciphertext en-
crypting m obtained by modulus switching to the modulus p. Then, the invariant
noise vmod in ctmod is given by vmod = − q−pq m + p

q v + p
q (δ0 + δ1s) and can be

bounded as ‖vmod‖can ≤ p
q ‖v‖

can
+ t
√
n
(√

3(q−p)
q +

√
3 + 8

√
h√
3

)
.

We defer the proof of Lemma 18 to Appendix A.
We implemented a function in HElib to measure the invariant noise budget,

and a function to estimate the invariant noise budget using the heuristic bounds.
We then ran the same experiment as in Section 3.2 to compare the growth of the
observed invariant noise budget in HElib ciphertexts with that predicted from
the heuristic bounds. Table 5 gives the results of this experiment for 10000 trials.

Comparing Table 5 and Table 2, we see that the invariant and critical quantity
noise budgets observed in HElib ciphertexts are very similar, for all operations,
for all n. Moreover, the estimates derived from the heuristic bounds are exactly
the same for all operations, for all n. We can conclude that using the invariant
noise rather than the critical quantity does not make a significant difference.

Indeed, it is reasonable to expect that the critical quantity (that is, v such
that [ct(s)]q = v) and invariant noise (that is, v such that [ct(s)]q = m + v)
would have similar behaviour, because the only difference is the contribution
of the message term m. If this was a significant term in the critical quantity,
then we could potentially distinguish an encryption of zero, which would violate
IND-CPA security.

5.2 A new notion of noise for FV

The behaviour we observed for FV in Section 4 was similar to that which we
observed for BGV in Section 3: the invariant noises in SEAL ciphertexts were
only loosely bounded by the estimates by from heuristic upper bounds. We can
therefore equally argue that is possible that the invariant noise is the wrong
notion of noise for FV.

17



In a fresh FV encryption, the message m is scaled up by ∆ = bq/tc to put it
in the high-order bits. In decryption, we cancel ∆ by multiplying by t/q, but this
introduces a rounding term of the form rt(q) ·m, since typically q is not exactly
divisible by t. The invariant noise, defined such that t/q · (ct(s)) = m + v + at,
folds this rounding term into the noise. One advantage of this is that many
cross terms disappear in the analysis, compared to the original definition of
inherent noise [28]. Indeed, this simplification was one motivation in [16] for the
introduction of the invariant noise definition. However, notice that this rt(q) ·m
term is only introduced by the decryption process: in other words, we can regard
this as the decryption process itself introducing noise. This term is not a part
of the noise that the ciphertext carries before the decryption, and should not be
counted in the intermediate ciphertexts. Including this term in every ciphertext,
including all the intermediate ones, will lead to overestimates that compound.
Motivated by this observation, that the invariant noise leads to simpler, but
looser, bounds, we introduce a new notion of noise, to try to more closely model
the noise growth behaviour. We call this the scaled inherent noise as it is equal
to a scaling by t/q of the inherent noise.

Definition 6 (Scaled inherent noise). Let ct = (c0, c1) be an FV ciphertext
encrypting the message m ∈ Rt. Its scaled inherent noise v is the polynomial with
the smallest infinity norm such that, for some integer coefficient polynomial a,

t

q
ct(s) =

t

q
(c0 + c1s) =

t

q
∆m+ v + at,

where q = ∆t+ rt(q).

Lemma 19 (Maximal noise). An FV ciphertext ct encrypting a message m
can be correctly decrypted if the scaled inherent noise v satisfies∥∥∥∥−rt(q)q

m+ v

∥∥∥∥ < 1

2
.

Proof. Decryption is correct if and only if m =
[⌊

t
q∆m+ v + at

⌉]
t
. Consider

m′ =

[⌊
∆t

q
m+ v + at

⌉]
t

=

[⌊
q − rt(q)

q
m+ v + at

⌉]
t

=

[
m+

⌊
−rt(q)
q

m+ v

⌉
+ at

]
t

= m mod t ,

if
⌊
−rt(q)
q m+ v

⌉
= 0. Hence we require that

∥∥∥−rt(q)q m+ v
∥∥∥ < 1

2 . ut

18



Note that
∥∥∥−rt(q)q m+ v

∥∥∥ ≤ rt(q)
q ‖m‖+‖v‖ ≤ t2

q +‖v‖. Therefore for correct-

ness it is sufficient to require that ‖v‖ ≤ 1
2 −

t2

q . This motivates the following
definition of noise budget.

Definition 7. Let ct be an FV ciphertext encrypting a message m ∈ Rt with
respect to modulus q having scaled inherent noise v. The scaled inherent noise
budget for this ciphertext is defined as log2

(
q
2 − t

2
)
− log2 (q · ‖v‖) .

We now present the noise growth in each homomorphic operation. We again
follow [22] and bound a message polynomial as ‖m‖can ≤ t

√
3n.

Lemma 20 (Encrypt). Let ct be a fresh FV encryption of a message m ∈ Rt.
The scaled inherent noise v in ct is given by v = t

q (−eu+ e1 + e2s) , and can

be bounded as ‖v‖can ≤ t
q · 2σ

(
16
√
2√

3
n+ 3

√
n
)
.

Proof. By definition a fresh ciphertext ct = (c0, c1) encrypting m ∈ Rt under
public key pk = (p0, p1) = ([−(as+ e)]q, a) satisfies, for some integer polynomials
k0, k1, k2,

t

q
ct(s) =

t

q
(∆m+ p0u+ e1 + k0q + p1us+ e2s+ k1qs)

=
t

q
(∆m) +

t

q
((−as− e+ k2q)u+ e1 + aus+ e2s) + t(k0 + k1s)

=
t

q
(∆m) +

t

q
(−asu− eu+ e1 + aus+ e2s) + t(k0 + k1s+ k2u) ,

hence the scaled inherent noise in this ciphertext is v = t
q (−eu+ e1 + e2s). The

bound follows from the same argument as in the proof of Lemma 8 (see [45]).
ut

Lemma 21 (Add). Let ct1 and ct2 be two FV ciphertexts encrypting m1,m2 ∈
Rt, and having scaled inherent noises v1, v2, respectively. Let [m1 + m2]t =
m1 + m2 + a0t for some integer polynomial a0. Then the scaled inherent noise
vadd in their sum ctadd is given by

vadd = v1 + v2 +
t · rt(q)

q
a0 ,

and can be bounded as ‖vadd‖can ≤ ‖v1‖can + ‖v2‖can + 3
√
3n·t·rt(q)
q .

We defer the proof of Lemma 21 to Appendix B.

Lemma 22 (Mult). Let ct1 be an FV ciphertext of size 2 encrypting m1 with
scaled inherent noise v1, and let ct2 be an FV ciphertext of size 2 encrypting m2

with scaled inherent noise v2 so that for some integer polynomials a1, a2,

t

q
ct1(s) =

t

q
∆m1 + v1 + a1t

19



t

q
ct2(s) =

t

q
∆m2 + v2 + a2t .

Then the scaled inherent noise vmult in their product ctmult is given by

vmult =
rt(q)

q
ta0 −

rt(q)∆t

q2
[m1m2]t +

t2rt(q)∆

q2
a0 +

t∆

q
(m2v1 +m1v2)

− rt(q)

q
(m2a1t+m1a2t) + v1v2 + v2a1t+ v1a2t+

t

q

(
2∑
i=0

εis
i

)
,

where a0 is an integer polynomial such that [m1m2]t = m1m2 + a0t. The noise
can be bounded as

vmult ≤ A · ‖v1‖can · ‖v2‖can +B (‖v1‖can + ‖v2‖can) + C ,

where A = 3, B = t
√
3n
q

(
2∆t+ rt(q)

)
+ 2t

√
n√

12

(
3 + 8

√
2√
3

√
n+ 40

3 n

)
, and

C =
rt(q)t

√
n

q

(√
3 +

4t
√
n

3
+ 12t

√
n+

32t
√

2√
3
n+

160

3
tn
√
n

)
+
rt(q)∆t

2
√
n

q2

(
2
√

3 +
4t
√
n

3
+ 6t
√
n

)
+

2t
√
n

q
√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

)
.

We defer the proof of Lemma 22 to Appendix C.

Lemma 23 (Relinearize). Let ct = (c0, c1, c2) be an FV ciphertext encrypt-
ing m with scaled inherent noise v. Let ctrelin be the ciphertext encrypting m,
obtained by the relinearization of ct. Then, the scaled inherent noise vrelin in
ctrelin is given by

vrelin = v − t

q

∑̀
i=0

eic
(i)
2 ,

and can be bounded as ‖vrelin‖can ≤ ‖v‖can + t
q (`+ 1) 8√

3
σ nw.

Proof. The proof follows the argument as for Lemma 11. ut

Lemma 24 (ModSwitch). Let ct be an FV ciphertext encrypting m with
scaled inherent noise v with respect to a modulus q. Let ctmod be the cipher-
text encrypting m obtained by modulus switching to the modulus p. Then, the
scaled inherent noise vmod in ctmod is given by

vmod = v +

(
rt(p)

p
− rt(q)

q

)
m+

t

p
(ε0 + ε1s)

and can be bounded as

‖vmod‖can ≤ ‖v‖can + t
√

3n

(
rt(p)

p
− rt(q)

q

)
+
t

p

(
√

3n+
8
√

2

3
n

)
.

20



Proof. Let ct = (c0, c1). Then ModSwitch(ct, p) = (c′0, c
′
1) where c′0 =

[⌊
p
q c0

⌉]
p

and c′1 =
[⌊

p
q c1

⌉]
p
. By definition of ctmod, and by definition of the scaled inher-

ent noise in ct, for some integer polynomials k0, k1 and for some polynomials
‖εi‖ ≤ 1

2 ,

t

p
(c′0 + c′1s) =

t

p

(
p

q
c0 + ε0 + k0p+

p

q
c1s+ ε1s+ k1ps

)
=
t

q
(c0 + c1s) +

t

p
(ε0 + ε1s) + t(k0 + k1s)

=
t

q
∆qm+ v +

t

p
(ε0 + ε1s) + t(a+ k0 + k1s)

=
t

p
∆pm+

(
rt(p)

p
− rt(q)

q

)
m+ v +

t

p
(ε0 + ε1s) + t(a+ k0 + k1s) ,

since

t

q
∆qm =

t

p
∆pm+

∆qt

q
m− ∆pt

p
m

=
t

p
∆pm+

(
q − rt(q)

q
− p− rt(p)

p

)
m

=
t

p
∆pm+

(
1− rt(q)

q
− 1 +

rt(p)

p

)
m.

Hence the scaled inherent noise is vmod = v+
(
rt(p)
p − rt(q)

q

)
m+ t

p (ε0 + ε1s) and

the bound follows using Lemma 12. ut

We implemented a function in SEAL to measure the scaled inherent noise
budget, and a function to estimate the noise budget using the heuristic bounds.
We then ran the same experiment as in Section 4.2 to compare the growth of the
observed noise budget in SEAL ciphertexts with that predicted from the heuristic
bounds. Tables 6 and 7 presents the results of this experiment for 10000 trials
in the binary encoder and batch encoder setting respectively.

Comparing Tables 6 and 7 with Tables 3 and 4 we see that the observed
invariant noise budget and scaled inherent noise budget in SEAL ciphertexts
is extremely similar, especially in the binary encoder setting. Moreover, there
remains a significant gap between the observed noises and heuristic estimates.
In fresh ciphertexts, the gap in Tables 6 and 7 is between 7 and 9 bits, while
it is between 8 and 10 bits in Tables 3 and 4. After multiplication, the gap in
Tables 6 and 7 is typically between 17 and 21 bits, the same as in Tables 3 and 4.
Similarly there remains a gap of around 8 or 9 bits after modulus switching. We
conclude that while the scaled inherent noise represents a slight improvement
for modelling the noise in fresh ciphertexts, it suffers from the same issues as
the invariant noise in terms of suitability for use in selecting parameters for
correctness.

21



n
Enc Add Mult Relin ModSwitch

E x σ E x σ E x σ E x σ E x σ

2048 27.6 35.3 0.472 26.6 35.0 0.048 0.000 17.0 0.207 0.000 17.0 0.207 - - -
4096 81.6 90.0 0.054 80.6 89.1 0.350 51.1 69.9 0.392 51.1 69.9 0.394 31.3 39.0 0.017
8192 190 198 0.100 189 198 0.094 158 177.9 0.241 158 177.3 0.240 139 147.9 0.351
16384 409 418 0.139 408 417 0.010 375 396.2 0.388 375 396.2 0.388 358 367 0.000

Table 6. Observed mean x and of the standard deviation σ (to 3 significant figures) of
the scaled inherent noise budget in SEAL ciphertexts over 10000 trials of a specific ho-
momorphic evaluation for parameter sets with dimension n ∈ {2048, 4096, 8192, 16384}
in the binary encoder setting, together with the estimation E of the noise budget growth
in this evaluation obtained using heuristic bounds.

n
Enc Add Mult Relin ModSwitch

E x σ E x σ E x σ E x σ E x σ

2048 19.6 27.4 0.482 18.4 27.0 0.177 0.000 0.700 0.459 0.000 0.700 0.459 - - -
4096 73.6 82.0 0.062 69.6 78.0 0.000 32.0 50.0 0.111 32.0 50.0 0.111 22.9 31.0 0.125
8192 182 190 0.108 178 187 0.000 139 157.1 0.309 139 157.1 0.309 126 134 0.000
16384 401 410 0.139 397 406 0.000 356 376 0.114 356 376 0.114 344 352 0.000

Table 7. Observed mean x and of the standard deviation σ (to 3 significant figures) of
the scaled inherent noise budget in SEAL ciphertexts over 10000 trials of a specific ho-
momorphic evaluation for parameter sets with dimension n ∈ {2048, 4096, 8192, 16384}
in the batch setting, together with the estimation E of the scaled inherent noise budget
growth in this evaluation obtained using heuristic bounds.

6 Updated comparison between BGV and FV

In this section we compare the BGV and FV schemes following the methodology
of a prior work by Costache and Smart [22]. We make several improvements to
the previous work [22]. Most importantly, we select parameters that achieve a
security level λ = 128 according to the Homomorphic Encryption Standard [1].
In contrast, the previous work [22] relied on a security analysis by Lindner and
Peikert [37], which has been shown to be incorrect [4, 2]. In fact, as shown in [23],
FHE parameters which were estimated by [37] to have 80 bits of security had as
little as 51 bits of security according to [2, 4].

Where possible, we make choices in line with the implementations of BGV
and FV in HElib and SEAL respectively. To this end, we use the invariant noise
for FV, which is a scaling of the critical quantity used in [22]. For BGV, we use
the critical quantity as in [22]. As is the case throughout this paper, we also
use the distributions for the secret key as implemented in HElib and SEAL. In
particular, this means BGV is modelled as having a sparse secret while FV is
not. We discuss these issues in more detail in Section 7.1.

Our analysis allows for a more flexible modulus switching for FV compared
to that in the previous work [22]. We discuss this in Section 6.3.

22



6.1 Methodology and parameter selection

Our comparison uses the same homomorphic evaluation function as in [22]. We
begin by guessing the dimension n. We go through a pre-determined circuit as
follows: we take a fresh ciphertext, perform ζ additions, followed by a multipli-
cation, and a relinearization. We then modulus switch down to the next prime in
the chain, perform ζ additions, followed by a multiplication and relinearization,
and so on. After modulus switching to the smallest prime, we check if we get a
decryption error. If that is the case, we increase the guess, and repeat the pro-
cedure until decryption succeeds. Each of the circuits we consider in this work
is parameterised by a number of additions ζ and a multiplicative depth L. Any
circuit that is to be homomorphically evaluated consists of additions and/ or
multiplications, thus this approach is as comprehensive as can be. We refer to
the reader to [24] for real-life applications of such circuits. For the given circuit,
and for a fixed level L, plaintext modulus t, and security level λ, our goal is find
the smallest parameter set, in terms of ciphertext size in kilobytes, such that
decryption succeeds.

The decision to compare BGV and FV based on ciphertext size is consistent
with choices made in [22]. Of course, we could have considered other criteria
such as key size. However, it is ciphertexts which are sent over networks and
computed on, thus a very large ciphertext could present the biggest overhead
in an implementation. Therefore, we believe ciphertext size is the most relevant
criterion.

We largely follow the parameter choices in [22]: we perform ζ = 8 additions
before each multiplication and we set the standard deviation σ = 3.2. We set
the ring constant cm = 1, as n (and hence m) is always a power of two. We
consider a range of levels L of circuits, choosing L ∈ {2, 4, 6, . . . , 30}. For BGV,
we assume that the secret key has h = 64 nonzero coefficients. We always use
plaintext modulus t = 3, which was shown to be optimal among integral bases
for encoding by Costache et al. [24]. We set the parameters n and (top modulus)
Q to achieve a security level λ = 128 according to the Homomorphic Encryption
Standard [1], when σ = 3.2 and the secret follows a uniform distribution on R3.
The possible pairs of n and Q are reproduced in Table 8.

n 2048 4096 8192 16384 32768

logQ 54 109 218 438 881

Table 8. Pairs of the parameters n and Q (given as its bitsize logQ) used in our
comparison, extracted from the Homomorphic Encryption Standard [1, Table 1].

6.2 Results, analysis and limitations

Table 9 presents the results of the comparison. We see that for most values of
L, both BGV and FV required the same minimal values of n and Q to support

23



the computation and hence the ciphertext sizes were the same. That is, as the
level increases, the point at which we need to switch to the next parameter set is
roughly the same for both schemes. However, for L ∈ {8, 16, 18} we see that FV
required a larger parameter set than BGV. Similarly, for L ∈ {28, 30}, the largest
parameter set with n = 32768 was not enough to support the computation in
FV, while it was for BGV. This would suggest that BGV is sometimes preferable
to FV.

The use of a sparse secret in the BGV case may explain its apparent better
performance: we expect that a sparser secret will correspond to smaller noise
growth. However, such a secret distribution admits additional attacks [2] and no
parameter sets using sparse secrets are currently standardised [1].

Scheme
Level L

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

BGV 4.75 6.77 8.77 8.77 10.8 10.8 10.8 10.8 10.8 12.8 12.8 12.8 12.8 12.8 12.8
FV 4.75 6.77 8.77 10.8 10.8 10.8 10.8 12.8 12.8 12.8 12.8 12.8 12.8 - -

Table 9. Logarithm to base 2 of the minimal ciphertext size in kilobytes required in
the BGV and FV schemes to support the described homomorphic evaluation for L
levels. The symbol ‘-’ denotes that no suitable parameters could be found.

We stress that this is a comparison of how the noise growth behaviour impacts
correctness in the BGV and FV schemes: we ignore correctness issues coming
from decoding failure. Our comparison is naturally limited in several other as-
pects. For example, we only consider a certain specific computation, for which we
do not attempt to make any scheme-specific optimisations that may be possible.
Also, we note that while our choice of plaintext modulus t = 3 is optimal for
integral bases, recent work has demonstrated the benefits of using non-integral
bases [7, 14, 19] or using t a polynomial rather than an integer [8, 17].

6.3 Modulus switching

We conclude this section by commenting on the analysis of modulus switching
in [22]. Recall that pi are list of primes forming the chain of moduli and t is the
plaintext modulus. For the BGV scheme all the pi must be chosen so that pi = 1
(mod t), to ensure correctness in the modulus switching operation. Choosing
such pi is not necessary for FV, yet was listed as a requirement in [22]. The
experimental results in [22] were only concerned with the bit size of the primes
in the chain of moduli, and so we cannot explicitly improve their comparison in
this aspect. However, we note that this constraint on the pi could make the FV
performance with modulus switching look poor compared to BGV. Furthermore,
in practice, this could lead to BGV requiring larger parameters than FV.

24



7 Discussion

7.1 Fairness

The challenge of ensuring a fair comparison between homomorphic encryption
schemes has been noted in previous work [15]. In Section 6, we are concerned
primarily with comparing FV as implemented in SEAL and BGV as implemented
in HElib. The libraries have different goals and so, for example, provide the user
with different default parameters, and the ability to change different subsets of
the parameters via the public API. In our comparison we have tried to balance
investigating a similar parameter setting with keeping the spirit and goals of the
libraries.

Throughout the paper we assumed that the secret distributions in FV and
BGV were as they are implemented in SEAL and HElib respectively. An argu-
ment for this assumption is that in Sections 3, 4 and 5 we were interested in
comparing the noise estimated from the heuristics to the noises seen in cipher-
texts in actual implementations, and so it makes sense to consider the secret
distributions as implemented. An argument against this assumption is that the
secret distributions are different, which could have implications for both secu-
rity and performance. Indeed, in Section 6 we saw that BGV performed slightly
better than FV, which could be partially explained by the use of a sparse secret.

Another difficulty has been with choosing the plaintext space. The most
natural choice for HElib plaintext space is p = 2, r = 1 but the choice p = 2
is incompatible with the choice of a power-of-2 cyclotomic. We chose p = 3,
which is the smallest possible choice that is compatible, as well as being optimal
among integral bases for encoding [24]. This is our attempt as a best compromise
between keeping the experiments on HElib and SEAL consistent while being true
to the intended usage of the libraries. We recognise these may not be the best
choices, but we argue that such compromises are unavoidable.

7.2 Improving the heuristics

In Section 3 (respectively Section 4) we saw that there was a significant gap
between the noise observed in HElib (respectively SEAL) ciphertexts and the
noise predicted using heuristic estimates. In Sections 5.1 and 5.2 we tried to
improve the situation by introducing new notions of noise for both BGV and
FV. However, further experiments showed that in both cases we did not obtain
much of an improvement. The next natural direction, then, is to try to improve
the methodology used to obtain the heuristic bounds themselves.

The heuristic bounds include terms bounding Gaussian random variables
in the canonical embedding. For example, a Gaussian random variable e, with
mean zero and standard deviation σ is bounded as ‖e‖can ≤ B · σe, for some
B, where σe = σ

√
n. Following [22], we use B = 6, while HElib uses B = 10 as

a default [33]. On the one hand, we never see ‖e‖can this large in experiments,
which is not surprising because the probability of ‖e‖can > B · σe is extremely
low. On the other hand, to prove a heuristic bound of this type in theory, we need

25



to ensure B is large enough (such as B = 5 or B = 6) to obtain a ‘reasonable’
failure probability. For example, we have erfc(5) ≈ 2−40, while erfc(6) ≈ 2−50.
This means that we necessarily end up with looser bounds than we will observe
in practice, in order to retain correctness in theory.

One could consider a δ-subgaussian approach [41, 43] to obtain noise bounds,
as was done in [40] for a BGV-like scheme. In particular, [40, Lemma 8.7] gives
the noise growth for homomorphic multiplication for this scheme. However, this is
not an approach typically studied and implemented in homomorphic encryption
in practice. Furthermore, it is unclear how to directly translate the asymptotic
ω(
√

log n) term of [40, Lemma 8.7] into a concrete bound for multiplication.

Another related work [42] showed that by using a Central Limit Theorem
(CLT) argument, tighter correctness bounds for the scheme in [40] can potentially
be obtained. Whether one arrives at the noise growth analysis via δ-subgaussians
or CLT, there is such high dimensionality in homomorphic encryption that we
can expect noise terms to have Gaussian tail bounds. Therefore we will encounter
the same issue of requiring loose bounds in order to ensure correctness.

7.3 Conclusion and future directions

In this work, we have been unable to significantly lessen the heuristic-to-practical
gap between the noise observed in practice and the estimated noise growth from
heuristic upper bounds. Furthermore, we cannot improve the heuristic bounds
theoretically, because we need a proof that the scheme has a reasonable failure
probability. A clear conclusion of our work in is therefore that any reasonable
method of predicting noise growth behaviour in the FV and BGV schemes will
only loosely upper bound the growth seen in practice in implementations of these
schemes. That is, these bounds are the best possible in terms of a theoretical
analysis, and we must take a different approach in order to obtain bounds that
more closely model the noise growth behaviour that we see in practice.

Moreover, any implementation of a scheme will have differences to the scheme
in theory. For example, SEAL implements the BEHZ variant [6] of FV, and
as a result many objects in SEAL are always stored and manipulated in an
RNS format. In contrast, the bounds for FV presented in Section 4 assume
the ciphertext is a pair of polynomials in Rq rather than an isomorphic RNS
representation. This could partly explain the discrepancy we have seen between
the heuristic bounds and the noise in SEAL ciphertexts. We therefore believe that
an important direction to better model the noise growth behaviour is to tailor the
analysis to the specific implementation. Future work should focus on obtaining
such library-specific heuristic bounds, which would result in the most accurate
and tight bounding of ciphertext noise growth in practice. This would be the best
step towards automating parameter selection for correctness, which is crucial for
the real world deployment of FHE [26, 47] and the ongoing standardisation
process [1].

An important contribution of our work is evidence that in their implementa-
tions, BGV and FV present only minor performance differences, from the point

26



of view of possibility to support a specific homomorphic evaluation. In particu-
lar, from Section 6 we can conclude that a computation supported in SEAL by a
particular parameter set would be supported in HElib with the same parameter
set. Indeed, we have seen that the noise growth behaviour (for all definitions of
noise) of BGV and FV is very similar. This is not surprising: we can see from
the BGV and FV encryption algorithms that the part of a fresh ciphertext that
is not the message part (that is, m in BGV and ∆m in FV) is essentially the
same: terms of the form −eu + e1 + e2s (scaled by t in the case of BGV). We
conclude that a preference for BGV over FV (or vice versa) should not be the
deciding factor for the implementor choosing which library to use.

In practice, many things will impact the decision to use one scheme or li-
brary over another, such as computational performance, support for different
programming languages, robustness and quality of available implementations,
and the relative ease-of-use. In future work it would be interesting to include
such aspects into a comparative analysis, although they can be hard to quan-
tify.

Acknowledgements

Rachel Player was supported by the French Programme d’Investissement d’Avenir
under national project RISQ P141580 and by the European Union PROMETHEUS
project (Horizon 2020 Research and Innovation Program, grant 780701). We
thank Shai Halevi for helpful comments on HElib and Nigel Smart for sharing
the experimental code used in [22].

References

[1] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod
Vaikuntanathan. Homomorphic encryption security standard. Technical report,
HomomorphicEncryption.org, Toronto, Canada, November 2018.

[2] Martin R. Albrecht. On dual lattice attacks against small-secret LWE and pa-
rameter choices in HElib and SEAL. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 103–
129. Springer, Heidelberg, April / May 2017.

[3] Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on over-
stretched NTRU assumptions - cryptanalysis of some FHE and graded encoding
schemes. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part I, volume 9814 of LNCS, pages 153–178. Springer, Heidelberg, August 2016.

[4] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of
learning with errors. J. Mathematical Cryptology, 9(3):169–203, 2015.

[5] Ahmad Al Badawi, Yuriy Polyakov, Khin Mi Mi Aung, Bharadwaj Veeravalli,
and Kurt Rohloff. Implementation and performance evaluation of RNS variants
of the BFV homomorphic encryption scheme. Cryptology ePrint Archive, Report
2018/589, 2018. https://eprint.iacr.org/2018/589.

27

https://eprint.iacr.org/2018/589


[6] Jean-Claude Bajard, Julien Eynard, M. Anwar Hasan, and Vincent Zucca. A full
RNS variant of FV like somewhat homomorphic encryption schemes. In Roberto
Avanzi and Howard M. Heys, editors, SAC 2016, volume 10532 of LNCS, pages
423–442. Springer, Heidelberg, August 2016.

[7] Charlotte Bonte, Carl Bootland, Joppe W. Bos, Wouter Castryck, Ilia Iliashenko,
and Frederik Vercauteren. Faster homomorphic function evaluation using non-
integral base encoding. In Wieland Fischer and Naofumi Homma, editors,
CHES 2017, volume 10529 of LNCS, pages 579–600. Springer, Heidelberg, Septem-
ber 2017.

[8] Carl Bootland, Wouter Castryck, Ilia Iliashenko, and Frederik Vercauteren. Effi-
ciently Processing Complex-Valued Data in Homomorphic Encryption. Proceed-
ings of MathCrypt 2018, Journal of Mathematical Cryptology, to appear, 2018.

[9] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved se-
curity for a ring-based fully homomorphic encryption scheme. In Martijn Stam,
editor, 14th IMA International Conference on Cryptography and Coding, volume
8308 of LNCS, pages 45–64. Springer, Heidelberg, December 2013.

[10] Christina Boura, Nicolas Gama, and Mariya Georgieva. Chimera: a unified frame-
work for B/FV, TFHE and HEAAN fully homomorphic encryption and pre-
dictions for deep learning. Cryptology ePrint Archive, Report 2018/758, 2018.
https://eprint.iacr.org/2018/758.

[11] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 868–886. Springer, Heidelberg, Au-
gust 2012.

[12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully ho-
momorphic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS
2012, pages 309–325. ACM, January 2012.

[13] Michael Brenner, Wei Dai, Shai Halevi, Kyoohyung Han, Amir Jalali, Miran Kim,
Kim Laine, Alex Malozemoff, Pascal Paillier, Yuriy Polyakov, Kurt Rohloff, Erkay
Savaş, and Berk Sunar. A standard API for RLWE-based homomorphic encryp-
tion. Technical report, HomomorphicEncryption.org, Redmond WA, USA, July
2017.

[14] Wouter Castryck, Ilia Iliashenko, and Frederik Vercauteren. Homomorphic SIM2D
operations: Single instruction much more data. In Jesper Buus Nielsen and Vin-
cent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages
338–359. Springer, Heidelberg, April / May 2018.

[15] Hao Chen, Kim Laine, and Rachel Player. Simple encrypted arithmetic library -
SEAL v2.1. In Michael Brenner, Kurt Rohloff, Joseph Bonneau, Andrew Miller,
Peter Y. A. Ryan, Vanessa Teague, Andrea Bracciali, Massimiliano Sala, Federico
Pintore, and Markus Jakobsson, editors, FC 2017 Workshops, volume 10323 of
LNCS, pages 3–18. Springer, Heidelberg, April 2017.

[16] Hao Chen, Kim Laine, and Rachel Player. Simple encrypted arithmetic library -
SEAL v2.2. Technical report, 2017.

[17] Hao Chen, Kim Laine, Rachel Player, and Yuhou Xia. High-precision arithmetic
in homomorphic encryption. In Nigel P. Smart, editor, CT-RSA 2018, volume
10808 of LNCS, pages 116–136. Springer, Heidelberg, April 2018.

[18] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for NTRU
problems and cryptanalysis of the GGH multilinear map without a low level
encoding of zero. Cryptology ePrint Archive, Report 2016/139, 2016. http:

//eprint.iacr.org/2016/139.

28

https://eprint.iacr.org/2018/758
http://eprint.iacr.org/2016/139
http://eprint.iacr.org/2016/139


[19] Jung Hee Cheon, Jinhyuck Jeong, Joohee Lee, and Keewoo Lee. Privacy-
preserving computations of predictive medical models with minimax approxima-
tion and non-adjacent form. In Michael Brenner, Kurt Rohloff, Joseph Bonneau,
Andrew Miller, Peter Y. A. Ryan, Vanessa Teague, Andrea Bracciali, Massimil-
iano Sala, Federico Pintore, and Markus Jakobsson, editors, FC 2017 Workshops,
volume 10323 of LNCS, pages 53–74. Springer, Heidelberg, April 2017.

[20] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic en-
cryption for arithmetic of approximate numbers. In Tsuyoshi Takagi and Thomas
Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages 409–
437. Springer, Heidelberg, December 2017.

[21] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster
fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume
10031 of LNCS, pages 3–33. Springer, Heidelberg, December 2016.

[22] Ana Costache and Nigel P. Smart. Which ring based somewhat homomorphic
encryption scheme is best? In Kazue Sako, editor, CT-RSA 2016, volume 9610 of
LNCS, pages 325–340. Springer, Heidelberg, February / March 2016.

[23] Anamaria Costache. On the Practicality of Ring-Based Fully Homomorphic En-
cryption Schemes. PhD thesis, University of Bristol, 2018.

[24] Anamaria Costache, Nigel P. Smart, Srinivas Vivek, and Adrian Waller. Fixed-
point arithmetic in SHE schemes. In Roberto Avanzi and Howard M. Heys, editors,
SAC 2016, volume 10532 of LNCS, pages 401–422. Springer, Heidelberg, August
2016.

[25] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–662.
Springer, Heidelberg, August 2012.

[26] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin E. Lauter, Saeed
Maleki, Madanlal Musuvathi, and Todd Mytkowicz. CHET: compiler and runtime
for homomorphic evaluation of tensor programs. CoRR, abs/1810.00845, 2018.

[27] Yarkın Doröz, Yin Hu, and Berk Sunar. Homomorphic AES evaluation using
the modified LTV scheme. Designs, Codes and Cryptography, 80(2):333–358, Aug
2016.

[28] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive, Report 2012/144, 2012. http://eprint.
iacr.org/2012/144.

[29] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM Press, May / June
2009.

[30] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption
with polylog overhead. In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT 2012, volume 7237 of LNCS, pages 465–482. Springer, Heidelberg,
April 2012.

[31] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the
AES circuit. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 850–867. Springer, Heidelberg, August 2012.

[32] Shai Halevi, Yuriy Polyakov, and Victor Shoup. An improved RNS variant of
the BFV homomorphic encryption scheme. Cryptology ePrint Archive, Report
2018/117, 2018. https://eprint.iacr.org/2018/117.

[33] HElib. https://github.com/shaih/HElib, January 2019.

29

http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144
https://eprint.iacr.org/2018/117
https://github.com/shaih/HElib


[34] Miran Kim and Kristin Lauter. Private genome analysis through homomorphic
encryption. BMC Medical Informatics and Decision Making, 15(5):S3, Dec 2015.

[35] Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks on overstretched
NTRU parameters. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 3–26. Springer, Hei-
delberg, April / May 2017.

[36] Tancrède Lepoint and Michael Naehrig. A comparison of the homomorphic en-
cryption schemes FV and YASHE. In David Pointcheval and Damien Vergnaud,
editors, AFRICACRYPT 14, volume 8469 of LNCS, pages 318–335. Springer,
Heidelberg, May 2014.

[37] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based
encryption. In Aggelos Kiayias, editor, CT-RSA 2011, volume 6558 of LNCS,
pages 319–339. Springer, Heidelberg, February 2011.

[38] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multi-
party computation on the cloud via multikey fully homomorphic encryption. In
Howard J. Karloff and Toniann Pitassi, editors, 44th ACM STOC, pages 1219–
1234. ACM Press, May 2012.

[39] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 1–23. Springer, Heidelberg, May / June 2010.

[40] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. Cryptology ePrint Archive, Report 2013/293, 2013. http:

//eprint.iacr.org/2013/293.

[41] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer, Heidelberg, April
2012.

[42] Sean Murphy and Rachel Player. A central limit framework for ring-lwe decryp-
tion. Cryptology ePrint Archive, Report 2019/452, 2019. https://eprint.iacr.
org/2019/452.

[43] Sean Murphy and Rachel Player. δ-subgaussian random variables in cryptog-
raphy. In J. Jang-Jaccard and F. Guo, editors, ACISP 2019: The 24th Aus-
tralasian Conference on Information Security and Privacy, 2019. Available at
https://eprint.iacr.org/2017/698.

[44] PALISADE v1.0. https://git.njit.edu/palisade/PALISADE, 2017. New Jersey
Institute of Technology (NJIT).

[45] Rachel Player. Parameter selection in lattice-based cryptography. PhD thesis,
Royal Holloway, University of London, 2018.

[46] Simple Encrypted Arithmetic Library (release 3.1.0). https://github.com/

Microsoft/SEAL, December 2018. Microsoft Research, Redmond, WA.

[47] Alexander Viand and Hossein Shafagh. Marble: Making fully homomorphic en-
cryption accessible to all. In Proceedings of the 6th Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, WAHC ’18, pages 49–60, New
York, NY, USA, 2018. ACM.

A Proof of Lemma 18

In this section, we provide the proof of Lemma 18.

30

http://eprint.iacr.org/2013/293
http://eprint.iacr.org/2013/293
https://eprint.iacr.org/2019/452
https://eprint.iacr.org/2019/452
https://eprint.iacr.org/2017/698
https://git.njit.edu/palisade/PALISADE
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL


Proof. Let ct = (c0, c1). By definition of modulus switching,

ctmod =

(
p

q
(c0 + δ0),

p

q
(c1 + δ1)

)
,

for δi such that δi = −ci (mod q
p ) and δi = 0 (mod t). Then by definition of

invariant noise in ct,

ctmod(s) =
p

q
(c0 + δ0) +

(
p

q
(c1 + δ1)

)
s

=
p

q
(c0 + c1s) +

p

q
(δ0 + δ1s)

=
p

q
(m+ v) +

p

q
(δ0 + δ1s)

= m− q − p
q

m+
p

q
v +

p

q
(δ0 + δ1s) .

Hence the invariant noise is given by vmod = − q−pq m + p
q v + p

q (δ0 + δ1s) and
can be bounded as

‖vmod‖can =

∥∥∥∥−q − pq m+
p

q
v +

p

q
(δ0 + δ1s)

∥∥∥∥can
≤ q − p

q
‖−m‖can +

∥∥∥∥pq v +
p

q
(δ0 + δ1s)

∥∥∥∥can
≤ p

q
‖v‖can + t

√
n

(√
3(q − p)
q

+
√

3 +
8
√
h√
3

)
,

using Lemma 6 and the bound ‖m‖can ≤ t
√

3n. ut

B Proof of Lemma 21

In this section, we provide the proof of Lemma 21.

Proof. Firstly, note that we can bound ‖a0‖can as follows:

‖a0‖can =
1

t
‖[m1 +m2]t −m1 −m2‖can

≤ 1

t
(‖[m1 +m2]t‖can + ‖m1‖can + ‖m2‖can)

≤ 1

t

(
3 · t
√

3n
)

= 3
√

3n .

Let ct1 = (c0, c1) and ct2 = (d0, d1). By definition of ctadd, and by definition
of noise in ct1 and ct2, for some integer polynomials k0, k1, a1, a2,

t

q
ctadd(s) =

t

q
(c0 + d0 + k0q + c1s+ d1s+ k1qs)

31



=
t

q
(c0 + c1s) +

t

q
(d0 + d1s) + t(k0 + k1s)

=
t

q
∆m1 + v1 + a1t+

t

q
∆m2 + v2 + a2t+ t(k0 + k1s)

=
t

q
∆(m1 +m2) + v1 + v2 + t(a1 + a2 + k0 + k1s)

=
t

q
∆([m1 +m2]t − a0t) + v1 + v2 + t(a1 + a2 + k0 + k1s)

=
t

q
∆([m1 +m2]t −

∆t2

q
a0 + v1 + v2 + t(a1 + a2 + k0 + k1s)

=
t

q
∆([m1 +m2]t −

t(q − rt(q))
q

a0 + v1 + v2 + t(a1 + a2 + k0 + k1s)

=
t

q
∆([m1 +m2]t +

rt(q) · t
q

a0 + v1 + v2 + t(−a0 + a1 + a2 + k0 + k1s) .

Hence by definition the scaled inherent noise in this ciphertext is vadd = v1 +

v2 + t·rt(q)
q a0. This can be bounded as

‖vadd‖can =

∥∥∥∥v1 + v2 +
rt(q)

q
a0t

∥∥∥∥can
≤ ‖v1‖can + ‖v2‖can +

t · rt(q)
q

‖a0‖can ,

and the result follows. ut

C Proof of Lemma 22

In this section, we provide the proof of Lemma 22.

Proof. Throughout the proof we model a message as a polynomial with random
coefficients in [− t

2 ,
t
2 ] as in [22], so that ‖m‖can ≤ t

√
3n. We will frequently use

that fact that q = ∆t+ rt(q), so that ∆t
q = q−rt(q)

q = 1− rt(q)
q . We first establish

some bounds on certain terms that will appear later.
Let a0 be an integer polynomial such that [m1m2]t = m1m2 + a0t. We can

bound a0 as follows:

‖a0‖can =
1

t
‖[m1m2]t −m1m2‖can

≤ 1

t
(‖[m1m2]t‖can + ‖m1m2‖can)

≤ 1

t

(
t
√

3n+ 16 · t
√
n√

12
· t
√
n√

12

)
≤
√

3n+
4tn

3
.

32



For i ∈ {0, 1, 2} let εi be polynomials with coefficients uniformly distributed

in [− 1
2 ,

1
2 ]. We can bound

∥∥∥ tq∑2
i=0 εis

i
∥∥∥can as follows [45]:∥∥∥∥∥ tq

2∑
i=0

εis
i

∥∥∥∥∥
can

≤ t

q
(‖ε0‖can + ‖ε1 · s‖can + ‖ε2 · s · s‖can)

≤ t

q

(
6 ·
√
n√
12

+ 16 ·
√
n√
12
·
√

2

3
n+ 40 ·

√
n√
12
·
√

2

3
n ·
√

2

3
n

)

=
2t
√
n

q
√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

)
.

For j ∈ {1, 2} we can bound ‖ctj(s)‖can as follows [45]:

‖ctj(s)‖can =
∥∥cj,0 + cj,1s+ cj,2s

2
∥∥can

≤ ‖cj,0‖can + ‖cj,1s‖can +
∥∥cj,2s2∥∥can

≤ 6 · q
√
n√

12
+ 16 · q

√
n√

12
·
√

2

3
n+ 40 · q

√
n√

12
·
√

2

3
n ·
√

2

3
n

=
2q
√
n√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

)
.

This enables us to bound ‖ajt‖can as follows:

‖ajt‖can =

∥∥∥∥ tqctj(s)− t

q
∆mj − vj

∥∥∥∥can
≤ t

q
‖ctj(s)‖can +

∆t

q
‖mj‖can + ‖vj‖can

≤ 2t
√
n√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

)
+
∆t2
√

3n

q
+ ‖vj‖can .

Let ct1 = (c0, c1) and ct2 = (d0, d1). By definition of ctmult and by the
definition of noise in ct1 and ct2 we have, for some polynomials ‖εi‖ ≤ 1

2 and
for some integer polynomials ki,

t

q
ctmult(s) =

t

q

(
t

q
c0d0 + ε0 + k0q +

t

q
(c0d1 + c1d0)s+ ε1s+ k1qs

)
+
t

q

(
t

q
(c1d1)s2 + ε2s

2 + k2qs
2

)
=
t

q
(c0 + c1s) ·

t

q
(d0 + d1s) +

t

q

(
2∑
i=0

εis
i

)
+ t

(
2∑
i=0

kis
i

)

=

(
t

q
∆m1 + v1 + a1t

)
·
(
t

q
∆m2 + v2 + a2t

)
+
t

q

(
2∑
i=0

εis
i

)

33



+ t

(
2∑
i=0

kis
i

)

=
(t∆)2

q2
m1m2 +

t∆

q
(m2v1 +m1v2) +

t∆

q
(m2a1t+m1a2t) + v1v2

+ v2a1t+ v1a2t+
t

q

(
2∑
i=0

εis
i

)
+ t

(
2∑
i=0

kis
i + a1a2t

)
.

Considering the first term, we have that

(t∆)2

q2
m1m2 =

(t∆)2

q2
([m1m2]t − a0t)

=
t∆

q

(
1− rt(q)

q

)
([m1m2]t − a0t)

=
t∆

q

(
[m1m2]t − a0t−

rt(q)

q
[m1m2]t +

rt(q)

q
a0t

)
=
t

q
∆[m1m2]t −

t2∆

q
a0 −

rt(q)∆t

q2
[m1m2]t +

t2rt(q)∆

q2
a0 .

We also note that

− t
2∆

q
a0 = −a0t+

rt(q)

q
ta0

and

t∆

q
(m2a1t+m1a2t) = m2a1t+m1a2t−

rt(q)

q
(m2a1t+m1a2t).

Hence, t
qctmult(s) = t

q∆[m1m2]t + vmult + at, for the integer polynomial

a =

2∑
i=0

kis
i + a1a2t− a0 +m2a1 +m1a2 .

and the noise

vmult =
rt(q)

q
ta0 −

rt(q)∆t

q2
[m1m2]t +

t2rt(q)∆

q2
a0 +

t∆

q
(m2v1 +m1v2)

− rt(q)

q
(m2a1t+m1a2t) + v1v2 + v2a1t+ v1a2t+

t

q

(
2∑
i=0

εis
i

)
.

We previously established a bound for the final term in the expression. Let us
bound the remaining terms in turn. Firstly,∥∥∥∥rt(q)q

ta0

∥∥∥∥can =
rt(q) · t

q
‖a0‖can ≤

rt(q) · t
√

3n

q
+

4 · rt(q) · t2n
3q

.

34



Next, ∥∥∥∥−rt(q)∆tq2
[m1m2]t

∥∥∥∥can =
rt(q)∆t

q2
‖[m1m2]t‖can ≤

rt(q) ·∆t2
√

3n

q2
.

Next,∥∥∥∥ t2rt(q)∆q2
a0

∥∥∥∥can =
t2rt(q)∆

q2
‖a0‖can ≤

t2 · rt(q) ·∆
√

3n

q2
+

4t3n · rt(q) ·∆
3q2

.

Next, ∥∥∥∥ t∆q (m2v1 +m1v2)

∥∥∥∥can =
t∆

q
(‖m2‖can ‖v1‖can + ‖m1‖can ‖v2‖can)

≤ ∆t2
√

3n

q
(‖v1‖can + ‖v2‖can) .

Next,∥∥∥∥−rt(q)q
(m2a1t+m1a2t)

∥∥∥∥can ≤ rt(q)

q

(
‖m2‖can ‖a1t‖can + ‖m1‖can ‖a2t‖can

)
≤ rt(q)t

√
3n

q

(
2t
√
n√

3

(
3 +

8
√

2√
3

√
n+

40

3
n

)
+

2∆t2
√

3n

q
+ ‖v1‖can + ‖v2‖can

)
.

Next,
‖v1v2‖can ≤ ‖v1‖can ‖v2‖can .

Finally,

‖v2a1t+ v1a2t‖can ≤ ‖v2‖can
(

2t
√
n√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

)
+
∆t2
√

3n

q
+ ‖v1‖can

)
+ ‖v1‖can

(
2t
√
n√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

)
+
∆t2
√

3n

q
+ ‖v2‖can

)
≤ (‖v1‖can + ‖v2‖can)

(
2t
√
n√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

)
+
∆t2
√

3n

q

)
+ 2 ‖v1‖can · ‖v2‖can .

We therefore have vmult ≤ A ‖v1‖can ‖v2‖can +B (‖v1‖can + ‖v2‖can) +C, where
A = 3, and B and C are as follows:

B =
∆t2
√

3n

q
+
rt(q)t

√
3n

q
+

2t
√
n√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

)
+
∆t2
√

3n

q
,

C =
rt(q)t

√
3n

q
+

4rt(q)t
2n

3q
+
rt(q)∆t

2
√

3n

q2
+
t2rt(q)∆

√
3n

q2

+
4t3nrt(q) ·∆

3q2
+
rt(q)t

√
3n

q

(
4t
√
n√

3

(
3 +

8
√

2√
3

√
n+

40

3
n

)
+

2∆t2
√

3n

q

)

35



+
2t
√
n

q
√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

)
.

These expressions can be simplified to give the stated noise bound. ut

36


	Homomorphic noise growth in practice: comparing BGV and FV

