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Abstract. Dynamic searchable symmetric encryption (DSSE) allows a
client to search or update over an outsourced encrypted database. Range
query is commonly needed (AsiaCrypt’18) but order-preserving encryp-
tion approach is vulnerable to reconstruction attacks (SP’17). Previous
range-searchable schemes (SIGMOD’16, ESORICS’18) require an ad-hoc
instance of encrypted database to store the updates and/or suffer from
other shortcomings, some brought by the usage of asymmetric primitives.
In this paper, with our encrypted index which enables queries for a se-
quence of contiguous keywords, we propose a generic upgrade of any
DSSE to support range query (a.k.a. range DSSE), and a concrete con-
struction which provides a new trade-off of reducing the client storage to
“reclaim” the benefits of outsourcing.
Our schemes achieve forward security, an important property which mit-
igates file injection attacks. We identify a variant of file injection attack
against a recent solution (ESORICS’18). We also extend the definition of
backward security to range DSSE and show our schemes are compatible
with a generic transformation for achieving backward security (CCS’17).
We comprehensively analyze the computation and communication over-
heads including some parts which were ignored in previous schemes, e.g.,
index-related operations in the client side. Our experiments demonstrate
the high efficiency of our schemes.
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1 Introduction

Searchable symmetric encryption (SSE) allows a client to outsource encrypted
data to an untrusted server. The client can issue search queries over the en-
crypted data to retrieve files containing specific keywords, with leakage to the
server under precise control. Various SSE schemes with different trade-offs among
efficiency, security, and functionality have been proposed. A milestone is dynamic
SSE (DSSE) by Kamara et al. [18], which further enables the client to efficiently
update over the outsourced data without re-encrypting from scratch. Some later
schemes [17,23] also support parallelism.

In the context of DSSE, forward security [29] requires newly updated data
remains private against the server who possesses some knowledge about pre-
vious queries. Leakages of non-forward-secure schemes [7,33] can be exploited.
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Zhang et al. [33] clearly point out that forward security can mitigate the most
efficient attack proposed by them. There are a number of forward-secure DSSE
schemes based on either advanced cryptographic primitives [5,6] or novel data
structures [24,31,28]. Among them, Bost [5] gives the formal definition of forward
security and Lai and Chow give a generalized version [24]. Security (e.g., secu-
rity against chosen keyword attacks, forward security) is established by formally
confining the leakage.

Also regarding updates, backward security ensures that results which are
deleted will be indeed inaccessible to the server afterwards. More specifically,
for a keyword-based DSSE, after a keyword-file pair has been added and then
deleted, subsequent search queries of this keyword reveal nothing about the file
in this updated pair. Bost et al. [6] define three levels of backward security. The
techniques for backward security are still evolving [30,9].

Most existing forward/backward-secure DSSE schemes or generic transfor-
mations for forward security [24] or backward security [6] only support single-
keyword queries or similarity search [31]. Searching over a range of keywords
is a common operation. To have meaningful support [12,10,11,34], it should be
more efficient than searching each point in the range one by one. Handling range
queries without order-preserving encryption is posed as an open problem for
supporting SQL on encrypted databases [16].

Demertzis et al. [10] design range-queryable searchable encryption schemes.
The core idea is to reduce the query to the multiple single-keyword queries of the
underlying SSE using the range-covering techniques with tree-like indexes. How-
ever, their instantiations can only handle updates in batch by setting up a new
instance. It is essential for DSSE to support flexible update, which enables any
number of updates (even just one) to be processed in real-time without involving
a new instance of encrypted indexes. It might be possible to instantiate their
schemes with DSSE instead, yet there is neither security proof nor performance
analysis for it. As we will illustrate, multiple inter-related issues are involved in
designing such a scheme, such as forward security and client-side storage.

A recent work by Zuo et al. [34] exploits a similar tree-like index, which
is essentially a complete binary tree with leaf nodes representing keywords, to
allow queries for a range of contiguous keywords (over consecutive leaf nodes).
For each query, the client finds a set of minimum tree nodes which covers all
keywords (leaf nodes) in the queried range, and generates search queries for the
nodes in the set. Compared with searching for every single keyword in the range,
the number of search queries is reduced. Yet, their schemes are not satisfactory.

1.1 Another Look at the State-of-the-Art

Zuo et al. [34] obtained two schemes by applying the above complete binary
tree to a DSSE scheme [5] (scheme-A) or constructing a file index encrypted by
homomorphic encryption [27] (scheme-B). Both possess some shortcomings.

Before searching/updating, the client needs to build a binary tree, whose
number of leaf nodes equals to the maximum sequence number of existing key-
words, which makes the search/update computation overhead linear in it. Also,
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in the worst case [34] for a update, scheme-A requires the server to send back
all updates since initialization.

Both constructions do not possess desirable features of some recent DSSE
schemes, e.g., physical deletion [1] for reclaiming space and caching the previous
search results [28,15] for boosting search efficiency. Their use of asymmetric
primitives (trapdoor permutation [5] or Paillier encryption [27]) also negatively
impacts their performance.

In particular, scheme-B uses homomorphic encryption (HE) to encrypt as
many bits as the maximum number of documents (each serves as a presence bit
denoting whether a keyword is in the corresponding document) Using HE enables
processing encrypted data, yet it also brings in a number of inconveniences.

– The number of documents supported by scheme-B is restricted by the se-
curity parameter of some asymmetric cryptographic primitives.

– Each query and index node bear the cost incurred by many “empty slots”
especially when the pre-defined maximum is too large (when compared with
the number of stored documents).

– This pre-defined maximum number also impacts the dynamism. Another
instance is needed when adding a new document after the limit is reached.

– As the client needs to decrypt the ciphertext storing the matching identifiers,
getting the results takes 2 rounds.

– The update operation (which crucially relies on the additive homomorphism
of HE) can only switch the presence bit for the corresponding document.
Without another search (or a local copy of the database), the client essen-
tially cannot confirm insertion/deletion without the risk of error.

Table 1: Property Comparison of (Range) DSSE Schemes

Scheme
Range Update → ← # No False Symmetric-key
Query Flexibility Positive Building Block∑

oϕoς [5] % ! ! % ! ! %

FASTIO [28] % ! ! % ! ! !

Janus++ [30] % ! ! ! ! ! !

Logarithmic-SRC [10] ! % ! % ! % !

Logarithmic-SRC-i [10] ! % ! % ! % !

Logarithmic-BRC/URC [10] ! % ! % ! ! !

Scheme-A [34] ! ! ! % ! ! %

Scheme-B [34] ! % % ! % ! %

ServeDB [32] ! ! % % ! % !

Our Generic Construction ! ! ! ! ! ! !

Our Less-Storage Construction ! ! ! ! ! ! !
* →: Forward Security, ←: Backward Security, #: Large Number of Documents
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Table 2: Efficiency Comparison of Range DSSE Schemes

Scheme
Client Computation Server Computation Communication

Search Update Search Update Search Update

Log.-SRC [10]
See Sec. 2 n/a

O(N)
n/a

O(|DB(q)|+ ε)
n/aLog.-SRC-i [10] O(wq + |DB(q)|) O(|DB(q)|+ ε′)

Log.-BRC/URC [10] O(|DB(q)|) O(|DB(q)|)

Scheme-A [34] O(Wx + wq)
O(Wx)

worst: O(N)†
O(nq)

O(logW )

worst: O(N)†
O(|DB(q)|)

O(logW )

worst: O(N)†

Scheme-B [34] O(Wx + wq) O(Wx) O(wq)
‡ O(logW ) O(wq)

‡ O(logW )

Generic Range DSSE

(using FASTIO [28])
O(wq) O(log |W|) O(nq) O(log |W|) O(|DB(q)|) O(log |W|)

Range DSSE

with Less Client Storage
O(wq) O(W + log |W|) O(nq) O(log |W|) O(|DB(q)|) O(log |W|)

* W is the number of distinct keywords in the database. Wx is the largest sequence number of existing keywords.
wq is the number of keywords within a range query. |W| is the size of keyword space.
nq(< nq) is the total number of updates that contain the keywords in a query q since the last search of them.
nq is the total number of updates (add + del) that contain the keywords in a range query q since initialization.
|DB(q)| (= nq if no deletion) is the number of files matching a range query q. ε/ε′ refers to the false positives.
N is the database size (largest here), i.e., the total number of updates (add + del) since initialization.
Special notes for complexity marked with †/‡ can be found in Section 2/4.1.

More importantly, apart from the aforementioned issues of features and per-
formance, inelegant design, and the use of public-key primitives, we point out
a security issue. We design a variant of the adaptive file injection attack [33],
which targets at determining the queried range instead of a single queried key-
word. This attack breaks the claim about the forward security of scheme-B [34].
Our result may carry independent interest in studying the security of dynamic
range-searchable encryption schemes (or range DSSE). In this paper, we keep
our focus on provably secure schemes1.

1.2 New Constructions

Under a range DSSE framework, we propose two schemes using range-covering
techniques with tree-like indexes.

Our first scheme is a generic construction which transforms any typical DSSE
to range DSSE. It can be viewed as a generalization of scheme-A [34] with
a different implementation of the tree. As shown in Table 2, compared with
scheme-A [34], our instantiation realizes a better performance on many criteria
(e.g., search complexity of both client and server) and avoids the worst update
overhead, at a little more cost of client storage (Table 3).

We propose our second range DSSE scheme to reduce the client storage re-
quirement. While most features remain competitive, this scheme guarantees the
client storage for a complete database, before all possible non-overlapping range

1 % in Table 1 (e.g., for forward security) means no proof ([32]) or a refuted one ([34]).
More related works will be discussed in Section 2.
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have been queried, is always less than that of previous round-optimal construc-
tions. Table 2 shows that our schemes outperforms others under many criteria.

In previous works, the algorithmic details of the range-covering technique
with tree-like index were not mentioned [10]. This was also omitted in the anal-
ysis of the client computation overhead [34]. We clearly illustrate how to realize
it with an implicit tree-like index in our constructions and include the overhead
in Table 2. It can serve as a reference for instantiating related structures.

Both our schemes realize all the desired properties listed in Table 1. Partic-
ularly, our schemes only use symmetric primitives and achieve forward security.
With a two-roundtrip generic upgrade [6], they also provide backward security,
under the definition we extend from single-keyword DSSE to range DSSE. Note
that backward security is less studied [6,30,9], it turns out we need to be care-
ful in defining it for range DSSE (see Section 3.4). We also devote Section 7 to
explain how to obtain backward privacy starting from our two constructions.

Our schemes support both searched results archives and physical deletion,
which are provided by recent DSSE schemes (e.g., [28]). With a cache of the pre-
vious search results, a DSSE scheme can archive the file identifiers in previously
authorized searches2. This saves the future search time. Physical deletion sup-
ports reclamation of space allocated for the deleted items. Reclaiming space at a
later point can be non-trivial (possibly due to other requirements such as back-
ward security). For example, it may take a secure two-party oblivious sorting
protocol [29] to maintain the search efficiency of the underlying data structure
while preventing the leakage incurred by the (logical) deletion and the reclaim-
ing process, which takes O(log2N) update complexity where N is the database
size. It is desirable to ensure O(1) (amortized) overhead for a single deletion.

Table 1 summarizes a comparison of various properties of (range) DSSE
schemes. We can see that scheme-A of Zuo et al. [34] achieves the most de-
sirable properties among the listed range DSSE schemes except ours. In Table 2,
we show that both our constructions require less search computation overhead
and avoid the massive update overhead in the worst case. Furthermore, we con-
cretely list the client storage overhead of forward-secure range DSSE schemes
in Table 3, which exhibits the advantage of our construction with less client
storage. We implemented both constructions and comprehensively analyze their
efficiency and security.

Organization. In Section 2, we discuss the related work for range query over
encrypted data. Section 3 introduces the preliminaries and a framework of range
DSSE, and discusses forward security and backward security in the context of
range DSSE. Section 4 reviews file injection attack and presents a variant of
the attack against an existing construction [34]. We propose two constructions
of range DSSE in Sections 5 and 6 respectively, together with their efficiency
and security analyses. Section 7 illustrates how to equip our constructions with
backward security. Section 8 presents our implementations and evaluations.

2 Archiving does not contradict with forward security since the scheme can still leak
nothing during the update until the same search has been authorized again. Back-
ward security is deferred to Section 7.
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Table 3: Client Storage of Forward-Secure Range DSSE
Scheme Client Storage

Logarithmic-SRC [10] (2.5− 21−m)W − logW

Logarithmic-SRC-i [10]
(2.5− 21−m)W − logW

+ (2.5− 21−`)D − logD

Logarithmic-BRC/URC [10] 2W

Scheme-A [34] 2W

Our Generic Range DSSE 2W + log |W| − logW

Our Less-Client-Storage Range DSSE W + s

We follow the notations in Table 2. D is the number of distinct
files in the database. s is the number of distinct overlapping ele-
ments in all queries. (See Section 6.3). For simplicity, we assume
that W = 2m, D = 2`, and existing keywords are contiguous.

2 Related Work

Range query is one of the most common query types. Naturally, there are mul-
tiple efforts for supporting range queries in SSE. Faber et al. [12] support range
queries by building a binary tree for the dataset. The tree nodes covering the
queried range are searched with an underlying static SSE called OXT [8] which
supports disjunctive queries. Also, keywords are located in leaf nodes labeled
according to the tree level. Adding/deleting node probably requires changing
the existing information for consistency, and it is unclear how to do it efficiently.

The work by Demertzis et al. [10] utilizes a similar index as Faber et al. [12]
and calls it range-covering techniques. Based on this index and its extensions,
they propose six range-queryable SSE schemes with different trade-offs between
security and efficiency. Among those adaptively-secure schemes3, Logarithmic-
SRC and Logarithmic-SRC-i (where SRC stands for Single Range Cover) provide
constant-size search token for any queried range while incurring false positive
in the result. Besides, Logarithmic-SRC-i requires an extra round of interac-
tion between the client and the server. Logarithmic-BRC and Logarithmic-URC
(where BRC and URC stand for Best Range Cover and Uniform Range Cover
respectively) provide good performance without false positive.

Notably, all these constructions [10] are instantiated with static SSE scheme
and the authors do not discuss whether they can be instantiated with DSSE.
Instead, they design a method for batched updates, i.e., create a new instance for
the next batch of updates and periodically merge different indexes. This method
is not flexible enough when updates happen frequently. Worse still, for the same
keyword, the client needs many tokens for different instances before the instances
are merged, which increases the search overhead. Yet, the combination of static

3 Constant-BRC and Constant-URC avoid extra storage overhead for the index. Yet,
due to the inherent limitation of underlying delegatable pseudorandom functions [21],
both cannot be proven secure against adaptive adversaries that are allowed to issue
intersecting range queries, as acknowledged by the original paper [10].
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SSE and batched updates makes the consideration of forward security a non-
issue, as the subsequent updates, which happen in another instance, naturally
cannot be linked with previous search queries.

Different realizations for index provide diverse trade-offs between the search
computation overhead and the client-side storage overhead, e.g., the client can
reconstruct the index during search [34]. Table 2 thus does not provide search
complexities for the schemes of Demertzis et al. since we think that the algo-
rithmic details are underspecified. That said, since outsourcing the unencrypted
index to the server inevitably violates security, we assume the client stores it
locally. We can then estimate the client storage in the three different settings:

– Logarithmic-BRC/URC: The index is essentially a binary tree with leaf nodes
representing keywords.

– Logarithmic-SRC: The index is the same as that of Logarithmic-BRC/URC
except that there will be a common node between every two neighboring
nodes at the same level.

– Logarithmic-SRC-i: Apart from a tree like that in Logarithmic-SRC for key-
words, the same structure is used for existing files.

Table 3 provides the concrete number of stored tuples of Demertzis et al. [10],
yet this evaluation is purely for the index and there may be some other storage
overhead omitted, e.g., the storage required by the underlying SSE.

Zuo et al. [34] propose two schemes with range-covering techniques. Their
design is similar to Logarithmic-BRC/URC [10] yet supporting flexible updates.
Before searching or updating, the client needs to reconstruct a binary tree whose
number of leaf nodes equals to the maximum sequence number of existing key-
words, for getting the relations between tree nodes. In other words, the tree size
depends on existing keywords. This incurs heavy update overheads whenever the
update for a new keyword meets a perfect binary tree. In this case, the client is
required to get back all historical updates of the old root and re-encrypt them
for the new root, which incurs the worst complexity (O(N) in Table 2) in all
update-related criteria. Assume keywords are inserted in order, the scheme en-
counters the worst case for approximately O(log |W|) times before all keywords
exist. It is hard to accept such a heavy overhead, especially for large databases.

Their scheme-A uses
∑

oϕoς [5] as the underlying DSSE, which requires trap-
door permutation (an asymmetric cryptographic primitive). To realize forward
security,

∑
oϕoς requires the client to store a state for every keyword.

To save client storage and avoid the worst update overhead, scheme-B uses
ciphertexts of HE [27] to store file identities for every node in the server side.
However, we figure out that scheme-B is not forward-secure in contrast to what
was claimed [34] and suffers from a variant of adaptive file injection attack [33].
There are also other drawbacks due to the usage of the asymmetric cryptographic
primitive (refer to Section 4.1 for a discussion).

We also note that the client computation overhead for operating the tree-
like index, before searching or updating, seems to be not seriously considered in
both existing works [10,34]. Demertzis et al. [10] omitted details for this in their
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instantiations. Zuo et al. [34] explained how to realize this part, which requires
rebuilding the index whenever there is a search or update. Yet, this overhead
is not included in their comparison table (Table 1 in [34]). The search/update
efficiency may not be as good when it is implemented.

Order-preserving encryption (OPE) is another way to support range query
over encrypted data. OPE preserves the order of plaintexts in the ciphertext do-
main, yet leaks information about the plaintexts [3]. Order-revealing encryption
(ORE) [4] aims to reduce the leakage of OPE. Instead of comparing ciphertexts
as is, ORE uses an algorithm to reveal the order of the selected ciphertexts. How-
ever, as observed by Kerschbaum and Tueno [20], ORE-based SSE schemes still
suffer from plaintext-guessing attack [14]. They proposed a scheme which is free
from the attack and only needs linear-space complexity in the server side (cf.
replicated index [10,12,34]). It, however, requires multiple rounds of interactions.

Beyond the one-dimensional case, Wu et al. [32] propose ServeDB, which con-
siders multi-dimensional range queries by using a hierarchical encoding system
to map data of different dimensions to a single dimension. The encoded data
are also arranged in the leaf nodes of a binary tree. Non-leaf nodes are associ-
ated with Bloom filters [2] to determine whether a query involves its descendants,
which incurs false positive. Wu et al. explain how their scheme supports updates,
yet their security analysis do not consider the update leakage, let alone forward
or backward security. Their work additionally considers verifiability [26].

3 Preliminary

Notation. We denote the security parameter by n and negl(n) is a negligible
function in n. PPT stands for probabilistic polynomial-time. For a set X, x←$X
samples an element x uniformly from X. For an algorithm A, x ← A means x
is an output of A. In a two-party protocol (cout; sout) ← P (cin; sin) between a
client and a server, cin (resp., sin) and cout (resp., sout) are inputs and outputs
of the client (resp., server). || denotes string concatenation.

3.1 Dynamic Searchable Symmetric Encryption

We review the syntax and security definition of DSSE [5].

Definition 1. A DSSE scheme is a tuple of polynomial-time algorithms/protocols
(Setup,Search,Update).

(K,EDB, st)← Setup(1n) is a probabilistic algorithm that takes as input a se-
curity parameter 1n. It outputs a secret key K, an (initially empty) encrypted
database EDB, and a state st.

((st ′,R); (EDB′,R))← Search(K, st , q;EDB) is a protocol between the client (with
a secret key K, a state st, and a query q) and the server (with an encrypted
database EDB). The client outputs a new state st ′, while the server outputs a
(possibly) updated database EDB′. Both parties output a sequence of responses R.
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(st ′;EDB′)← Update(K, st , op, up;EDB) is a protocol between the client (with a
secret key K, a state st, an operation op ∈ {add, del}, and an update query up
parsed as a file identity id and a set of keywords {w}id) and the server (with
an encrypted database EDB). The client outputs a new state st ′ and the server
outputs an updated encrypted database EDB′.

In a round-optimal scheme, Search (resp., Update) outputs a token tq (resp., tu)
for the server to process locally over EDB without further help from the client.

A DSSE scheme is correct if for all security parameters 1n, all (K,EDB, st) ∈
Setup(1n), and all sequences of Search and Update operations, Search(K, st , q;EDB)
must returns the correct result.

Security Definition. Adaptive security for DSSE is captured under the
real/ideal simulation paradigm with a stateful leakage function set L for simu-
lation. Each component of L = {LStp,LSrch,LUpdt} corresponds to the leakage
during setup, search, and update operations respectively.

Definition 2. Let DSSE = (Setup,Search,Update) be a dynamic searchable sym-
metric encryption scheme. We say DSSE is L-adaptively-secure, where L =
{LStp,LSrch,LUpdt} is a set of stateful leakage functions, if for any PPT adversary
A, there exists a PPT simulator S such that:

|Pr[RealA(1n) = 1]− Pr[IdealA,S(1n) = 1]| ≤ negl(n) ,

where Real and Ideal are probabilistic experiments defined below.
RealA(1n): The challenger executes Setup(1n) and sends (initially empty)

EDB to A. Then A adaptively makes a polynomial number of search queries q
and update queries (op, up). The challenger returns the transcripts generated by
running Search or Update protocol on q or (op, up) respectively. Eventually, A
returns a bit b that is output by the experiment.

IdealA,S(1n): S generates (initially empty) EDB using LStp and sends it to
A. A adaptively makes a polynomial number of search queries with input q and
update queries with input (op, up). For a query q, S returns the transcripts gen-
erated with LSrch(q). For an update (op, up), S returns the transcripts generated
with LUpdt(op, up). Eventually, A returns a bit b that is output by the experiment.

Search Pattern and Update History. Definition 2 captures the informa-
tion leaked in DSSE with the leakage function set L. Concretely, L maintains an
operation list Q to record all operations issued so far. Assume u is the times-
tamp when an operation happens, Q records (u,w) for a search on keyword w,
or (u, op, w, id) for an update with (op, up = (w, id)). Each individual leakage
function (LStp,LSrch,LUpdt) implicitly takes Q as input, whose last record is the
last operation before evaluating the leakage. This pinpoints the leakage incurred
due to the last operation while taking all historical operations into consideration.

Using Q, we define the repetition of queried keywords as the search pattern
sp, which is the information leaked in typical SSE schemes. We use hist to record
the update history for every keyword since initialization. Formally,

sp(w) = {u|(u,w) ∈ Q} and hist(w) = {(u, op, id)|(u, op, w, id) ∈ Q}.
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3.2 Best Range-Covering Technique

We review the best range cover (BRC) [10] used by Zuo et al. [34] and our
constructions. We construct a full binary tree over its values bottom-up. Given
a range (i.e., a sequence of contiguous values) over a domain D, BRC essentially
selects the minimum set of nodes that cover exactly the range. For the example
in Figure 1, D = {0, . . . , 7}. BRC of range [2, 7] contains nodes τ2,3 and τ4,7
(shown as black nodes). Obviously, the number of nodes in BRC is always no
more than the number of values in the range.

τ0,7

τ4,7

τ6,7

7

τ7

6

τ6

τ4,5

5

τ5

4

τ4

τ0,3

τ2,3

3

τ3

2

τ2

τ0,1

1

τ1

0

τ0

Range

Fig. 1: Example for Best Range-Covering of [2, 7]

3.3 A General Framework of Range DSSE

Faber et al. [12] design a range SSE scheme by extending OXT [8] while De-
mertzis et al. [10] provide a generic framework of range DSSE with batched
updates. Zuo et al. [34] propose two range DSSE schemes based on

∑
oϕoς [5]

or homomorphic encryption. The main idea of these works is to reduce a range
search to multiple single-keyword searches of an index-based SSE.

The range considered here is one-dimensional which is over a single attribute
from a domain W. We assume W is a set of contiguous positive integers. It
is possible to convert a domain in real-world applications, e.g., temperature
records, to W with scaling and transformation. Each file owned by the client
contains at least one keyword in W. The goal is to build a secure index in the
server side such that the server can answer range queries from the client that
retrieve the identifiers of files containing any keyword in the range.

In this paper, we consider an extended version for range DSSE, which sup-
ports flexible updates instead of batched updates [10] and can be built on top
of typical DSSE. Scheme-A of Zuo et al. [34] implicitly exploits this idea. We
describe the general framework of range DSSE as follows. Note that the “key-
word” in the following discussion is an artifact used for searching and updating
over the underlying DSSE mechanism, which is different from real keywords in
W that may appear in the queried range.
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Setup.

1. Break W into a set of (potentially overlapping) ranges, and associate a
unique “keyword” of the underlying DSSE to every range.

2. Utilize DSSE.Setup to generate an (initially empty) encrypted database.

Search.

1. Break the queried range into sub-ranges, and map them to “keyword”.
2. Generate search tokens for these “keyword” with DSSE.Search.

Update.

1. Parse an update query up as a file identity and a set of keywords in W.
2. Associate the identity with the “keyword” whose corresponding range cov-

ers any keyword of the set, by executing DSSE.Update for these “keyword”.

Security. The L-adaptive security for range DSSE can be defined as that
of DSSE in Definition 2. The security of range DSSE obtained via the above
generic framework is highly related to that of the underlying DSSE. Its leakage
can be obtained by augmenting the leakage functions L = {LStp,LSrch,LUpdt} of
the underlying DSSE scheme to capture the extra leakage stemming from the
keyword mapping4 and index structure.

3.4 Forward and Backward Security for (Range) DSSE

Forward security requires that Update reveals nothing about which keywords
are involved in the keyword-file pairs to be updated. We review the definition
by Bost [5] for single-keyword DSSE, which is widely used/extended in follow-up
works. This definition is also applicable to range DSSE.

Definition 3 (Forward Security [5]). An L-adaptively-secure (range) DSSE
scheme is forward-secure if the update leakage function LUpdt can be written as:

LUpdt(op, up) = L′(op, {(id i, µi)})

where op ∈ {add, del} is an operation, up is an update input parsed as a file
identity and a set of keywords, {(id i, µi)} is a set which captures all updates as
the number of keywords µi modified in file id i; L′ is stateless, i.e., the output
solely depends on the input.

Backward security requires that, whenever a keyword-file pair (w, id) has
been added then deleted, searching over keyword w reveals nothing about file id .
Bost et al. [6] formalize backward security by introducing three leakage functions
constructed from the operation list Q:

TimeDB(w) = {(u, id) | (u, add, w, id) ∈ Q ∧ ∀u′, (u′, del, w, id) /∈ Q},
4 The leakage caused by different keyword-mapping strategies and its trade-off with

the efficiency have been discussed throughly [10,12].
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which represents the documents currently matching w and when they are added;

UpdTime(w) = {u | (u, add, w, id) ∨ (u, del, w, id) ∈ Q},

which indicates the timestamp when all the updates on w happened, and

DelHist(w) = {(uadd, udel) | ∃id s.t . (udel, del, w, id) ∈ Q ∧ (uadd, add, w, id) ∈ Q},

which lists the timestamp-pairs of deletions and corresponding insertions on w.
With above leakage functions, we extend three levels of backward security [6]

from single-keyword DSSE to range DSSE. We define them by considering a range
query q for Search. Suppose KSetq is the “keyword” set associated with the sub-
ranges of q as illustrated in Section 3.3. Since (range) DSSE usually processes
Update for every single keyword-file pair, we parse an update up as a keyword-file
pair (w, id) to be updated.

We omit the leakages that are confirmed from the initialization of the database
and unrelated to forward/backward security, e.g., the size of the keyword space.
The definitions of backward security below start from the strongest one.

Definition 4 (Backward Security). An L-adaptively-secure range DSSE is

– insertion-pattern revealing backward-secure if

LUpdt(op, w, id) = L′(op),

LSrch(q) = L′′((TimeDB(k), ak)k∈KSetq )

where ak is the total number of updates on k.
– update-pattern revealing backward-secure if

LUpdt(op, w, id) = L′(op, w),

LSrch(q) = L′′((TimeDB(k),UpdTime(k))k∈KSetq ).

– weakly backward-secure if

LUpdt(op, w, id) = L′(op, w),

LSrch(q) = L′′((TimeDB(k),DelHist(k))k∈KSetq ).

where L′ and L′′ are stateless, i.e., their outputs solely depend on the inputs.

It is oblivious that any search query on keyword w, happening between the
insertion and the deletion of keyword-file pair (w, id) for the same keyword w,
will expose the file identity id associated with the deletion. Bost et al. [6] exclude
this case when considering backward security for single-keyword DSSE.

For range DSSE, we cannot reuse this verbatim. In other words, between the
insertion and the deletion of keyword-file pair (w, id), we cannot just exclude
any search query on w. We need to exclude any search query on any “keyword”
associated with any range covering the updated keyword w. For example, a file f ,
added for keyword 6, will also be added for “keyword” associated with [4, 7]. If a
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search query on [4, 7] is issued before the deletion of the keyword-file pair (6, f),
the adversary may trivially link file f with the deleted file of 6 by observing the
insertion and deletion time revealed by a subsequent query on 6. In this case,
trivial extension cannot guarantee the privacy of the deleted file.

All three levels of backward security satisfy the intuitive requirement mainly
by controlling the search leakage. As argued by Bost et al. [6], even a combination
of forward security and weak backward security is enough for a DSSE scheme to
limit the update leakage to the type of involved operations. Moreover, while a
scheme which hides the update pattern can be obtained by ORAM, the usage of
it would be rather expensive. Thus, weaker notions are considered for efficiency.

4 Injection Attack against (Range) DSSE

We first start with a critical review of a recently proposed range DSSE scheme [34]
called scheme-B here. We then review the file injection attack against DSSE and
illustrate how a variant of it can be executed over this scheme.

4.1 Review of Scheme-B [34]

Scheme-B of Zuo et al. [34] adopts the best range covering technique and relies
on the homomorphism of HE, e.g., Paillier encryption [27] in their instantiation
to realize a range DSSE scheme with less client storage. Its communication com-
plexity for Update is O(logW ), while their scheme-A [34] can be as worst as
O(N) when a new root is created for the binary tree of existing keywords.

Concretely, keywords are represented as leaf nodes in the binary-tree-like
index for range covering techniques. Every tree node corresponds to a bit-string
of length being the maximum number of documents supported by the scheme.
Whether the i-th document contains any keyword within the covering range
of the node is indicated by the i-th bit of the string (1 for positive and 0 for
negative). The server stores an HE encryption of the bit-string for every node.

With this structure, the maximum document number is limited to the maxi-
mum length of plaintext supported by underlying public-key HE, which accounts
for the “small” number of documents in Table 1. In contrast, for most other DSSE
schemes, even if some kinds of limitations on the number of documents exist, it
is related to symmetric-key primitives and enlarging it has less implication on
the efficiency of the whole system. Also, for every existing tree node, the server
has to store a bit-string of length being the maximum document number. Many
of these bits are “empty slots” before corresponding documents are uploaded.

To issue a range query, the client finds the minimal set of nodes covering the
range, i.e., BRC, and generates the search tokens for these nodes. With search
tokens, the server accesses the locations for the encrypted bitstrings and returns
these ciphertexts, which can be decrypted by the client for the matching file
identities of the queried range. This accounts for O(wq) search communication
overhead in Table 2, which are actually ciphertexts of Paillier encryption [27].
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It also requires the client to perform decryption and incurs one more round of
communication to get the matching files.

To update a file containing a specific keyword, the client finds the path from
the leaf node of this keyword to the root of the tree. The client generates an
encryption of a bitstring to be homomorphically added to the ciphertext of the
bitstring at each node along the path. The expected result is to flip every bit
corresponding to this file along the path. This procedure by itself requires only
some basic information of the index, which accounts for its O(1) client storage.
However, the client is not supposed to know the original bit value to be updated
in the outsourced database, and thus cannot make sure whether an update can
really work as an insertion or a deletion, unless taking an additional round of
Search before Update. (Applying an insertion update over an existing record, cf.,
clicking “Save” twice in editing a document, now results in deletion!)

4.2 File Injection Attack

The efficient file-injection attack by Zhang et al. [33] shows the importance of
forward security for DSSE. In their setting, the server sends files of its choice to
the client who then encrypts and uploads them as normal DSSE schemes. Sup-
pose that the keyword space is W and the target dataset supports |W| distinct
keywords at most. The server could inject dlog |W|e files, each of which con-
tains exactly half of the keywords from W. By observing the set of injected files
matching a search token, the adversary could tell which keyword is contained in
the token. This is a non-adaptive attack and can be mitigated by a threshold T
which limits the number of keywords in a single file.

An adaptive attack is thus proposed against the threshold-based countermea-
sure, where the keyword space is divided into d|W|/T e subsets. The server first
injects (d|W|/T e−1) files, each of which contains T keywords, to determine which
subset the keyword of the search token lies in. For the target subset, the server
only needs to inject O(log T ) files to figure out the exact keyword like the above
non-adaptive attack. This adaptive attack efficiently breaks the threshold-based
countermeasure. The result of Zhang et al. [33] showed that, after the target
subset is known, only 8 new files have been injected when T = 200. However,
this attack requires the leakage of the relation between newly injected files and
the keyword in the target search token, which is exactly hidden by forward se-
curity. In other words, this adaptive attack, together with some other similar
attacks, will not work for a forward-secure DSSE scheme.

4.3 Attack on Scheme-B [34]

We have the following observations for scheme-B of [34]. If a range covering a
specific keyword was searched before, the update for this keyword (e.g., add
a file containing this keyword) would let the server operate over at least one
location accessed in the previous search. In other words, scheme-B leaks to the
server whether the keyword in a later update is contained in any previous search,
which obviously violates Definition 3. The construction is thus not forward-secure
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as claimed5. We then concretely show how an adversary with the power of file
injection could exploit this information to efficiently determine the queried range.

Consider the threshold setting [33] reviewed in Section 4.2, the server first
injects d|W|/T e − 1 files, each contains T contiguous keywords in the keyword
space W, and records the accessed locations for each injected file. For a target
search query from the client, the server selects the previous injected files, which
are associated with at least one identical location accessed in this search phase.
The server generates a union set of contiguous keywords in the selected files,
whose size is an integral multiple of T . Specifically, if the set size is nT and wq
is the number of keywords within the target range, the parameters satisfy the
relation that wq < nT < wq + 2T .

For the first and the last T contiguous keywords in the selected set, the server
adaptively injects files to accurately determine the target range. Concretely, for
the first T keywords, the server injects a file containing the first half of these
keywords. If the update does not access any locations overlapped with those of
the target search, the server injects a file containing the first T/4 keywords of
the second half; otherwise, it injects a file containing the first T/4 keywords of
the first half. The operation repeats until the server rules out all false keywords,
whose updates do not access any location in the target search, i.e., these key-
words are out of the searched range. Above operations are also executed over
the last T contiguous keywords in the selected set. Finally, the range for the
previous search can be figured out.

This variant of attack against scheme-B exploits its lack of forward security.
The server only needs to adaptively inject O(log T ) files after it fixed a rough
range of size nT .

5 Generic Forward-Secure Range DSSE

Our generic construction of forward-secure range DSSE is based on a binary-
tree-like index and any forward-secure DSSE Π. Figure 2 describes its details.
Its security analysis can be found in Appendix A.

In our construction, CSet is the covering node set which helps the client to
record elements in the BRC of a given range, and RSet is for the server to record
the search result during the search operation.

Without loss of generality, we assume the size of keyword space |W| = 2m.
We represent the (k + 1)-bit binary form of an integer a as a0 · · · ak := [a]bin
(prepending 0s if needed) and set a0 =“ ”.

Our construction uses the binary representation of the keyword value to
implicitly maintain a binary tree with depth logarithmic in the size of keyword
space. If w1 · · ·wm is the binary form of a keyword w, we represent the ancestors
for the leaf node corresponding to w by w0,w0w1,w0w1w2, . . ., and w0 · · ·wm−1.
Among the ancestors, w0 always represents the root with representation “ ”.

5 The update leakage LUpdt of scheme-B is claimed [34] to be the number of updates
made to the keyword w and when the update happened. As we show, it leaks more.
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Setup(1n)

1 : (K,EDB, st)← Π.Setup(1n)

2 : return (K,EDB, st)

Update(K, st , op, up;EDB)

1 : Parse up as (w, id)

2 : w0 · · ·wm := [w]bin

3 : for i := 0 to m do

4 : upi := (w0 · · ·wi, id)

5 : (st ′;EDB′)←
Π.Update(K, st , op, upi;EDB)

6 : st := st ′,EDB := EDB′

7 : endfor

8 : return (st ′;EDB′)

Search(K, st , q;EDB)

1 : Parse q as [a, b]

2 : CSet , RSet← ∅, i := 0

3 : a0 · · · am := [a]bin, b0 · · · bm := [b]bin

4 : while a0 · · · am−i < b0 · · · bm−i do
5 : if am−i = 1 then

6 : CSet := CSet ∪ {a0 · · · am−i}
7 : if bm−i = 0 then

8 : CSet := CSet ∪ {b0 · · · bm−i}
9 : a0 · · · am−i := a0 · · · am−i + [1]bin

10 : b0 · · · bm−i := b0 · · · bm−i − [1]bin

11 : i := i+ 1

12 : endwhile

13 : if a0 · · · am−i = b0 · · · bm−i then
14 : CSet := CSet ∪ {a0 · · · am−i}
15 : for τ ∈ CSet do

16 : ((st ′,R); (EDB′,R))

← Π.Search(K, st , τ ;EDB)

17 : RSet := RSet ∪R
18 : st := st ′,EDB := EDB′

19 : endfor

20 : return ((st ′, RSet); (EDB′, RSet))

Fig. 2: Our Generic Construction of Forward-Secure Range DSSE

Given a range query, the client first figures out the BRC of the range and
stores them in the covering node set CSet (line 1–14 of Search). For every element
in CSet , the client performs search operations of the underlying DSSE (line 15–
19). The server will return the union set of all results.

5.1 The Best Range Covering (BRC) Technique

We realize the best range covering technique with an implicit tree-like index.
It can serve as a reference for instantiating related structures assumed by the
literature [34,10]. The pseudocode is in line 1–14 of Search protocol in Figure 2.

Suppose we want to figure out the BRC for a range of contiguous positive
integers within a domain. We consider a binary tree, whose leaf nodes from
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left to right representing values from 0 to the largest value in the domain. We
represent the value of every leaf node as a binary string with the length being
the depth of the tree. The binary string for any parent is that for its child with
its last bit truncated. In addition, we denote the root node as a null string “ ”.
For example, the binary form of node τ4 in Figure 1 is “ 100” and its parent
(τ4,5) can be represented as “ 10”. With the knowledge of the domain, we can
follow the representation of tree nodes without explicitly building the tree.

For any given range, we transform its upper bound and lower bound to their
binary form first (line 3 of Search). If the last bit of the lower bound equals 1
(resp., the last bit of the upper bound equals 0), the value of the lower (resp.,
upper) bound will be inserted into the BRC (line 5–8). This case implicitly
corresponds to the case that the tree node for the lower (resp., upper) bound is
a right (resp., left) child of its parent and none of its ancestors covers solely the
values in the range. The value of the lower (resp., upper) bound will be increased
(resp., decreased) by 1 afterward (line 9–10).

Then, we truncate the last bit of the binary form of both bounds by moving
a cursor (line 11) and set the truncated binary strings as the new bounds. We
repeat the above operations until the lower bound is not smaller than the upper
bound. If eventually the lower bound equals the upper bound, we also insert the
value of the bound into the BRC (line 13–14).

Consider BRC of [2, 7] in Figure 1, we transform it into “ 010” and “ 111”.

– The last bit of the lower bound is not 1, so we increase it by 1 (i.e., “ 011”)
and get the new lower bound by truncating the last bit of the resulting binary
string (i.e., “ 01”).

– The last bit of the upper bound is not 0, so we decrease it by 1 (i.e., “ 110”)
and get the new upper bound by truncating the last bit of the resulting
string (i.e., “ 11”).

– The last bit of the new lower bound is 1, so we insert “ 01” into the BRC
and update the lower bound as above (i.e., “ 1”).

– The last bit of the new upper bound is not 0, so we update the upper bound
as above (i.e., “ 1”).

– Two bounds are now equal, we insert their value “ 1” into the BRC and end
the loop.

The BRC of range [2, 7] is {“ 01”, “ 1”} corresponding to τ2,3 and τ4,7 in
Figure 1.

5.2 Update Protocol

When adding/deleting the index with a keyword-file pair, the client represents
the keyword in its binary form (line 2 of Update). Besides the keyword itself,
every ancestor of it will be treated as a “keyword” (line 3–4) to be updated with
the underlying DSSE scheme accordingly (line 5). The client does not need to
rebuild the binary tree (cf. [34]) since the ancestors’ locations can be found with
the knowledge of the (binary form of) keyword value. The client just needs to
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record the height of the implicit tree (which is also the bit length of the keyword
value) to process this binary-tree-like index correctly for the next Search/Update
operation.

5.3 Efficiency Analysis

For a clear comparison with previous solutions, we give the asymptotic complex-
ity of our generic construction instantiated with a scheme called FASTIO [28].
We defer experimental evaluations to Section 8.

In the client side, the computational overhead for Search is O(wq), where wq
is the number of keywords within a range query q, as the number of the covering
nodes is at most wq. The computational overhead for Update is O(log |W|) as
the updates need to be done for every ancestor of the leaf node corresponding to
the keyword in the binary tree. Assume that keywords are added in order, our
client stores approximately (2W + log |W|− logW ) tuples, which are essentially
the number of existing keywords and the non-leaf nodes on their way to the root.

In the server side, the computational overhead for Search is O(nq), where nq
is the number of updates that contain the keywords in the queried range since
the last search of them. For Update, the computational overhead is O(log |W|).

The communication for Search is O(|DB(q)|), where |DB(q)| is the number of
files matching query q. The communication for Update is O(log |W|), which is
related to the number of the update tokens.

Comparison with the Existing Forward-Secure Range DSSE. Our
construction avoids the index reconstruction during Search and Update of scheme-
A [34], which incurs overhead linear in the maximum sequence number of existing
keywords Wx. For the client search computation, ours is definitely better. For
the client update computation, ours is better than scheme-A if Wx is larger than
log |W|. Consider the size of keyword space |W| = 220. We perform better under
this criterion if Wx > 20, which is likely to happen in practice for a database
containing more than 20 distinct keywords. Our client storage is more than that
of scheme-A (Table 3). Yet, when the number of distinct keywords increases,
the gap narrows down. Eventually, two constructions realize the same overhead,
which is O(|W|).

Advantages of Our Generic Construction. Our generic construction
naturally benefits from the development of DSSE. For example, when instan-
tiated with FASTIO [28], our construction inherits the advantages of physical
deletion and caching the previous search results. The search complexity of the
server is O(nq), where nq is the total number of updates that contain the key-
words in the queried range since the last search of them. In contrast, scheme-
A [34] requires O(nq), where nq is the total number of updates (add + del) that
contain the keywords in the queried range since initialization.
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Setup(1n)

1 : W,Te,Tc ← ∅
2 : K1,K2 ←$ {0, 1}λ

3 : return ((K1,K2), (Te,Tc),W)

Update(K1,W, op, up;Te)

Client:

1 : Parse up as (w, id)

2 : SSet , tu ← ∅, cnt := 0

3 : w0 · · ·wm := [w]bin

4 : (kτ , c
h, cu)←W[w0 · · ·wm]

5 : if (kτ , c
h, cu) = ⊥ then

6 : kτ := F (K1,w0 · · ·wm)

7 : ch := cu := 0

8 : endif

9 : SSet := SSet ∪ {(kτ , c
u)}, cnt := ch

10 : W[w0 · · ·wm] := (kτ , c
h + 1, cu + 1)

11 : for i := m− 1 to 0 do

12 : (kτ , c
h, cu)←W[w0 · · ·wi]

13 : if (kτ , c
h, cu) = ⊥ then

14 : cnt := cnt+

histUptCnt(W,m,w0 · · ·wiw̄i+1)

15 : kτ := F (K1,w0 · · ·wi), ch := cnt

16 : SSet := SSet ∪ {(kτ , c
h)}

17 : else

18 : SSet := SSet ∪ {(kτ , c
u)}, cnt := ch

19 : endif

20 : endfor

21 : for (kτ , c) ∈ SSet do

22 : addr := H1(kτ ||(c+ 1))

23 : val := (id ||op)⊕H2(kτ ||(c+ 1))

24 : tu := tu ∪ {(addr , val)}
25 : endfor

26 : send tu to server

Server:

27 : for (addr , val) ∈ tu do

28 : Te[addr ] := val

29 : endfor

Search((K1,K2),W, [a, b];Te,Tc)

Client:

1 : Generate CSet as Search in Figure 2

2 : tq ← ∅
3 : for τ ∈ CSet do

4 : (kτ , c
h, cu)←W[τ ]

5 : if (kτ , c
h, cu) = ⊥ then

6 : ch := histUptCnt(W,m, τ)

7 : if ch = 0 then

8 : continue

9 : kτ := F (K1, τ), c := cu := ch

10 : endif

11 : if cu 6= 0 then

12 : kw := kτ , kτ ←$ {0, 1}λ, c := cu

13 : else

14 : kw := ⊥, c := 0

15 : W[τ ] := (kτ , c
h, 0)

16 : nymw := F (K2, τ)

17 : tq := tq ∪ {(nymw, kw, c)}
18 : endfor

19 : send tq to server

Server:

20 : R ← ∅
21 : for (nymw, kw, c) ∈ tq do

22 : RSet := Tc[nymw]

23 : if kw 6= ⊥ then

24 : for i := 1 to c do

25 : addr := H1(kw||i)
26 : (id , op) := Te[addr ]⊕H2(kw||i)
27 : if op = del then

28 : RSet := RSet \ {id}
29 : else

30 : RSet := RSet ∪ {id}
31 : delete Te[addr ]

32 : endfor

33 : endif

34 : Tc[nymw] := RSet

35 : R := R∪RSet
36 : endfor

37 : send R to client

Fig. 3: Our Less-client-storage Construction of Forward-Secure Range DSSE
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6 Range DSSE with Less Client Storage

6.1 Motivation

To our knowledge, the best client storage for round-optimal single-keyword
forward-secure DSSE (e.g., [5,24]) is linear in the number of distinct keywords.
From the discussion in Section 2 and Table 3, we observe that existing forward-
secure range DSSE constructions require the client storage to be at least twice
as much as that of single-keyword forward-secure DSSE, even if no range query
has been issued. Scheme-B of Zuo et al. [34] attempts to solve this problem, but
it is not forward-secure (Section 4.3).

In practice, this extra client-side overhead for supporting range query may
dampen users’ enthusiasm. On one hand, for a very large database with billions
of distinct keywords, even a constant-number increase over complexity incurs
a large cost for the client-side disk space. On the other, some clients perform
range queries but may not be as frequent as single-keyword queries. Persistently
paying a large overhead for an infrequent operation is unreasonable.

We thus propose a new scheme with less client storage, which provides the
same client storage as single-keyword forward-secure DSSE if no range query
happens. The client storage will increase when any range is queried for the first
time. Only when all possible ranges have been queried will the client storage
grow as previous range DSSE.

6.2 Description of Our Scheme

Overview. Observe that for every keyword existing in a forward-secure DSSE,
the client needs to store a tuple to record related information (e.g., a key and
a counter). When a binary-tree-like structure is used for range query, current
constructions (e.g., scheme-A [34] and our generic range DSSE in Section 5)
additionally store the same type of tuple for every tree node, which makes the
client storage at least twice in the number of existing keywords in total.

For the binary-tree-like structure, storing such tuples for the leaf nodes is
hard to avoid as they are the “basis” required by existing forward-secure DSSE
schemes. Yet, it is possible that some information about the non-leaf nodes (e.g.,
the update number) can be computed from the tuples of related leaf nodes. We
also note that the key is useless before any search over the node happens. Thus,
we record the key only when necessary (concretely, after the first search happens
over the node corresponding to the key in our scheme). This is how our scheme
saves client storage.

For forward security, we adopt a generic trick [24] (also similar to FAS-
TIO [28]) which uses a new random key after every search to avoid the linkage.

Formal Description. Figure 3 presents the detailed construction of our forward-
secure range DSSE with less client storage in which utilizes the implicit binary-
tree-like index. Without loss of generality, we assume the size of keyword space
is |W| = 2m.
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Besides the covering node set CSet and the result set RSet as the generic
construction, we use a state set SSet to record the state of elements to be updated.
tq and tu are collections of the search tokens and the update tokens respectively.

Setup. H1 and H2 are cryptographic hash functions with an appropriate
domain and output length. The client outputs two n-bit pseudorandom function
(PRF) keys K1 and K2 for F , together with three empty maps W, Te, and
Tc. The client keeps K = (K1,K2) and st = W secretly in his/her side, while
EDB = (Te,Tc) is sent to the server. The purpose of each map is explained as
follows.

– Te is used to store the encrypted index.
– Tc is used to store the last search results.
– For each keyword w (i.e., leaf node) and each internal node that has been

searched in the implicit binary tree, W stores a (kτ , c
h, cu) tuple:

• a key kτ that is either an output of PRF when the node τ is added for
the first time or a random string after each search over the node,

• a history counter ch to record the number of historical updates over the
node since the initialization, and

• an update counter cu to indicate the number of updates over the node
after last search.

Before describing Search, we define histUptCnt, a function for the client to
compute chτ of non-leaf node τ (without storing it) from handy information stored
at its descendant nodes. This count is required in Search and Update.

chτ ← histUptCnt(W,m, τ) is a deterministic algorithm that takes the map W,
the depth of the implicit binary tree m, and a node τ in the implicit binary tree.
It outputs chτ , which is essentially the sum of ch over the existing leaf descendants
of τ . Section 6.3 will discuss its implementation.

Search. For a query q of range [a, b], Search takes (K1,K2,W) from the
client and (Te,Tc) from the server.

1. (Line 1–2) The client figures out the covering node set CSet , i.e., the BRC
of the queried range (Section 5.1), and resets the update token collection tq.

2. For each τ in CSet :
(Line 3–10) If W[τ ] does not exist, i.e., node τ has not been retrieved before,
the client uses histUptCnt to get the historical updates ch of τ . If ch 6= 0,
node τ will be searched for the first time. The client sets kτ as F (K1, τ) and
cu as ch for τ .
(Line 11–20) The client generates (nymw, kw, c):
– nymw is a pseudonym for locating previous records related to τ from Tc,
– kw is set as kτ from W[τ ] if cu 6= 0, and
– c is a counter that indicates how many updates have been performed on
τ after the last search for it or since the initialization if not searched.

For every node to be retrieved, the client assigns a random key to kτ ,
records history counter ch, and resets update counter cu. All search tokens
{(nymw, kw, c)} are collected in tq and sent to the server.
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3. (Line 21) For every search token in tq:
(Line 22) The server accesses the last search results in Tc with nymw, and
puts them into the result set RSet.
(Line 23–34) If kw 6= ⊥, the server gets its updates since the last search from
Te with locations generated by (kw, c). If the operation op = del, remove
the corresponding file identity id from RSet; otherwise, insert id into RSet.
The accessed storage for current search in Te can be physically deleted
afterward. The search results are archived into Tc.

4. (Line 35–37) The server outputs a response R, a union set of the result sets
for all search tokens in tq.

Update. Updateworks similarly as our generic construction since both use
the same tree-like index, but with special housekeeping for saving client storage.

The server input is Te. For an update tuple (op, up = (w, id)), The client
takes (K1,W) as input, sends to the server the update token collection tu, which
contains update tokens for nodes corresponding to w and all of its ancestors.

1. (Line 3–10) For keyword w (i.e., leaf node), if W[[w]bin] does not exist, the
client sets kτ as F (K1, τ) and initializes ch and cu for w. The tuple (kτ , c

u)
from W[[w]bin] is put to SSet . cu and ch in W[[w]bin] will increase by 1.

2. (Line 11–20) For every ancestor of w, the client gets (kτ , c
h, cu) from W. If

(kτ , c
h, cu) 6= ⊥, i.e., the node has been retrieved, the client inserts (kτ , c

u)
into SSet ; otherwise, the client gets the number of historical updates ch with
histUptCnt, assigns kτ to be the PRF output , and inserts (kτ , c

h) into SSet .
Note that the client is not required to store these values currently. To avoid
repetitive access for W by histUptCnt, we use a temporary counter cnt to
record the sum of historical updates in previous nodes.

3. (Line 21–26) For each (kτ , c) in SSet , the client generates update token
(addr , val), where addr is a location based on the hash of kτ and the in-
cremental counter c, and val is the concatenation of id and op ∈ {add, del}
encrypted by another hash of kτ and c. sent as tu.

4. (Line 27–29) For each (addr , val) in tu, the server stores val for addi-
tion/deletion of a keyword-file pair at the location addr of the encrypted
index Te.

6.3 Efficiency Analysis

In the client side, the storage overhead is O(W + s) where s is the number of
distinct overlapping elements in all queries, i.e., the size of the union set of all
CSets (BRCs of range queries) since initialization. The value of s only increases
when a query accesses any implicit node that has never been retrieved. Consider
the example in Figure 1. If the first range query is [2, 7], s = 2 since τ2,3 and
τ4,7 are retrieved for the first time. Afterward, s will not increase until any range
query beyond [2, 7], [2, 3], and [4, 7] is issued.

In this construction, information of any node besides the existing leaf nodes
will not be stored until it is retrieved for the first time. We trade the up-
date complexity and obtain the following advantages which are hardly found
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in other range DSSE constructions. Our construction has the same client storage
as single-keyword forward-secure DSSE if no range query happens. For a “com-
plete” database (with all possible keywords) our client storage is always less than
that of existing range DSSE constructions before every possible non-overlapping
range has been queried, i.e., all nodes in the index have been retrieved.

The client overhead for Update is O(W+log |W|). Compared with our generic
construction, an extra O(W ) is needed, which is the worst case for histUptCnt
where the client accesses all existing leaf nodes and sums the counters of them
accordingly to get the number of historical updates over the target. Yet, when
the number of queried ranges increases, we can implement histUptCnt with an
O(1) overhead. The idea is to exploit the information for the adjacent nodes
of the target exists in the client storage since the number of historical updates
over a non-leaf node is exactly the sum of historical updates of its children.
For example, if the parent and the sibling of the target have been retrieved,
histUptCnt returns the difference of their history counters; if both children of the
target have been retrieved, histUptCnt returns the sum of their history counters.

The search complexity for the client is still O(wq), as either the size of CSet
or the number of accessed nodes by histUptCnt is no more than wq.

In the server side, the computational overheads for search and update are the
same as our generic construction instantiated with FASTIO [28]. In particular,
the server does not carry out any operations over the part of search results which
was archived into Tc beyond putting it in the result set. Our less-client-storage
construction keeps the optimal search communication overhead (i.e.,O(|DB(q)|)).

6.4 Discussion on Reconstruction Attack

The proof of our scheme is given in Appendix B. Here, we discuss reconstruction
attacks [19,13] which reconstruct the database by observing the (volumes of)
search results of an enough number of search queries.

Range DSSE is less likely to suffer from this attack than a static range SSE
since the addition/deletion of records will change the volume which has already
been observed by the adversary6. Some typical attacks have the assumption that
the database is static. One may argue that the volume of the response given by
range DSSE may also stay unchanged, say, between two updates or when there
is no subsequent update. Even so, the state-of-the-art reconstruction attack [13]

requires the observation of O(|W|2 log |W|) uniformly distributed range queries.
Consider our setting in Section 8 where |W| = 220. The adversary needs to see
around 20 · 240 uniformly distributed range queries to launch the attack. It may
be too many for an attack in practice.

Moreover, the client can choose to rebuild the encrypted database at the
proper time to reduce the risk. The client storage in our second scheme, which is

6 Update recovery attack of Grubbs et al. [13] assumes that the adversary has already
executed either the reconstruction attack or a one-time compromise of the database,
which is out of the scope here.
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directly related to the number of distinct range queries, can serve as an indicator
for this proper time without incurring additional storage.

There are also attacks [22] which fully negate encryption or at least recon-
struct the original data within a constant ratio of error. Such attacks require
the target dataset to be dense or with an auxiliary distribution available to the
adversary. For example, age data cannot be secured by current encrypted search
approaches. In this case, one may consider additional protection strategy [25].

7 Backward Security for Range DSSE

7.1 A Quick Review of a Generic Upgrade

We upgrade both our range DSSE constructions with the two-roundtrip transfor-
mation proposed by Bost et al. [6]. The transformation provides at least update-
pattern-revealing backward security, originally for single-keyword DSSE, by using
an additional PRF secret key to derive Kw for keyword w. To carry out update
operation op for the keyword-file pair (w, id), the transformation lets the client
add a pair of (w,EncKw(id , op)) instead. Thus, the server only sees ciphertexts
(e.g., EncKw(id , add),EncKw(id , del)) even after Search. The client then needs to
decrypt all retrieved results and remove the deleted file identities locally to get
the actual search results. It thus takes an additional round for the client to get
the matching files and re-encrypt the ciphertexts of non-deleted identities.

7.2 Backward-Secure Range DSSE

Our generic construction of range DSSE is based on any DSSE. Thus, we apply
this generic upgrade on the underlying DSSE of our generic construction. We
omit the largely repetitive description of the resulting scheme but highlight the
important aspects. For Update, since our generic construction adopts an implicit
binary-tree-like index, the client needs to operate along the path from the leaf,
corresponding to the updated keyword, to the root of the tree. Following the
transformation, any update over any node of this path are now encrypted under
a different key (e.g., [3], [2, 3]) which the server never gets to see. Thus, the
file identities, inserted for nodes in the covering node set CSet of the query, will
not be exposed before the client removes the deleted ones. After each search
query, we follow the generic upgrade and require the matching file identities to
be re-encrypted and uploaded to the server. According to our Definition 4, the
transformed scheme satisfies update-pattern-revealing backward-security7.

For our less-client-storage scheme, recall that the server keeps the archives for
the searched keyword (Tc), one may concern whether the adversary can violate
backward security, say, by analyzing the searched results in different stages and
gaining some information of deleted files. However, the archives are only refreshed
when a new search query is processed, that is, any potential leakage involved

7 Bost et al. [6] claimed that for a certain type of DSSE, the transformed scheme can
be insertion-pattern-revealing backward-secure.
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with the archive can only manifest itself after a new search. As discussed in
Section 3.4, the case that a search query happens between the insertion and the
corresponding deletion is excluded from the consideration of backward security.

Concretely, for Update over a keyword, the transformation over our less-
client-storage construction requires the client inserts the ciphertext of the con-
catenation of the operation and the updated document. This will leak the size of
SSet (i.e., the size of keyword space), yet it is not relevant to backward privacy.
For Search of a range q, the client decrypts the retrieved ciphertexts correspond-
ing to the best range covering set of q. Then, the client removes the deleted file
identities since the last search of it, which guarantees backward privacy. The
server is informed of the identities, which should be removed from the archives
of each corresponding tree node, and returns the matching files accordingly.
Despite an additional round, the transformed construction maintains the same
complexities, and most importantly, preserves less-client-storage property.

We summarize the leakage functions LStp,LSrch,LUpdt of our two backward-
secure range DSSE constructions as follows, where DB(τ) is the files matching a
query over τ .

– LStp = ⊥.
– LSrch(q) = ((sp(τ)8,DB(τ),UpdTime(τ))τ∈BRC of q).
– LUpdt(op, up) = |W|.

8 Experimental Evaluation

We implement our generic range DSSE (denoted by RSSE-BRC) and range DSSE
with less client storage (denoted by RSSE-LC) in C++11. We instantiate the DSSE
of RSSE-BRC with an adaptation of FASTIO, a recent forward-secure single-
keyword DSSE scheme [28]. For cryptographic components, we instantiate our
PRFs and hash functions with AES-128 and SHA-256 from crypto++ library
respectively. For non-cryptographic parts, we store the maps with RocksDB and
build the communication between the client and the server with gRPC9. In our
experiment, we consider the size of keyword space |W| = 220, i.e., the keyword
domain is {0, . . . , 1048575}. We deploy the server with a single Intel Core i7-4790
3.60GHz CPU and 16GB of RAM, and the client machine with a single Intel
Core i5-6500 3.20GHz CPU and 8GB of RAM in a LAN setting.

8.1 Update Evaluation

Table 4 evaluates the update efficiency by measuring the time needed to up-
date keyword-file pairs. Concretely, we measure the time for performing 103–106

update operations (with 9×102–9×105 distinct keywords respectively) and cal-
culate the average time for updating a single keyword-file pair in RSSE-BRC and
RSSE-LC respectively. Both constructions only require symmetric cryptographic
primitives, which explains the high performance.

8 Some backward-secure (range) DSSE also leak the search pattern sp(w), e.g.,
Janus [6], Janus++[30], and Scheme-B [34].

9 RocksDB: https://rocksdb.org; gRPC: https://grpc.io

https://rocksdb.org
https://grpc.io
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Table 4: Update Efficiency of RSSE-BRC and RSSE-LC
RSSE Time for updating n pairs (s) Avg. single
Scheme n = 103 n = 104 n = 105 n = 106 update time

BRC 1.43 14.15 141.41 1483.32 1.47× 10−3

LC 3.38 22.80 223.42 2225.14 2.23× 10−3

The update operation in RSSE-LC is slower than RSSE-BRC, which is what
RSSE-LC trades for less client storage.

8.2 Search Evaluation

We calculate how many search tokens our schemes can reduce compared with
single-keyword DSSE. The number of search tokens is exactly the size of BRC
for the queried range in RSSE-BRC and RSSE-LC, while in single-keyword DSSE
it is the size of the queried range. For comparison, we issue multiple queries
with ranges of 5 × 102, 5 × 103, and 5 × 104 uniformly distributed over the
keyword domain, and measure the average number of search tokens. As shown
in Table 5, the gap could be large especially when the query covers a wide range.
Note that the network latency is a common bottleneck for DSSE in practice, our
schemes save the communication overhead and the time needed for Search.

Table 5: Average Number of Search Tokens
Queried Range 5× 102 5× 103 5× 104

Single-keyword DSSE 5× 102 5× 103 5× 104

Our constructions 8.17 9.67 13.16

We also measure the search time over a database containing 5×107 keyword-
file pairs with 5×105 distinct keywords. We start counting when the client starts
generating the search token until the client receives the search results. Multiple
queries with ranges of 5 × 102, 5 × 103, and 5 × 104 are uniformly distributed
over the keyword domain. Table 6 shows the performance. The search operation
in RSSE-BRC is slightly faster than that of RSSE-LC since RSSE-LC exploits
histUptCnt to get the update counters when generating the search tokens. For
either of constructions, the search complexity remains competitive in practice.

8.3 Storage Evaluation

To evaluate the client storage, we first measure the space required for database
sizes of 103–106. We issue a different number of queries (0, 20, . . . , 20000) to
demonstrate the disk space required by RSSE-LC since its storage overhead in-
creases with the number of newly queried elements (i.e., s in Table 2). Each
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Table 6: Search Efficiency of RSSE-BRC and RSSE-LC

Scheme
Time for searching a range of ` (ms)
` = 5× 102 ` = 5× 103 ` = 5× 104

First Rep. First Rep. First Rep.

RSSE-BRC 71.34 41.80 110.35 57.41 283.01 195.16

RSSE-LC 74.22 45.49 121.82 61.81 298.70 204.22
* “First” denotes a query issued for the first time.

“Rep.” denotes the repeats of a previous query.

query, covering a range of 500, is uniformly distributed over the keyword do-
main. In Tables 7 and 8, the number of issued queries is appended to RSSE-LC.

Table 7 illustrates that our RSSE-LC requires less client storage than our
generic RSSE-BRC even after many range queries. We remark that it only reflects
the storage complexity to some degree, as RocksDB requires additional storage
for the long-term startup information and periodically updated log files. The
performance may vary when different data structures are used for instantiation.

For a more precise illustration of the storage overhead, we measure the actual
number of the stored state tuples in the same setting. Note that the state tuple
number of RSSE-LC-0 is essentially the number of the existing keyword.

RSSE-LC only stores information of leaf nodes in the implicit binary tree
while RSSE-BRC additionally stores information of elements from the leaf to the
root. Table 8 confirm that before any query has been issued, the client storage
of RSSE-LC is significantly less than that of RSSE-BRC.

Table 7: Storage Overhead of RSSE-BRC and RSSE-LC

Scheme
Storage for n keyword-file pairs (MB)
n = 103 n = 104 n = 105 n = 106

RSSE-BRC 0.86 6.19 37.08 123.17

RSSE-LC-0 0.16 1.31 12.32 38.87

RSSE-LC-20 0.16 1.32 12.34 38.90

RSSE-LC-200 0.17 1.68 14.92 46.12

RSSE-LC-2000 0.30 2.45 18.60 55.23

RSSE-LC-20000 0.63 4.97 28.33 71.02

9 Conclusion

We study DSSE for range queries [10], highlight the importance of forward se-
curity [5,24] in this context, and extend the definition and generic construction
for backward privacy [6] for range DSSE. We design a variant of file injection at-
tack [33], which aims at revealing the queried range instead of a single keyword,
to illustrate that a recently proposed construction [34] fails to provide forward se-
curity as claimed. Based on an implicit realization of the tree-like range covering
technique, we propose a generic construction and a less-client-storage construc-



28 Jiafan Wang and Sherman S. M. Chow

Table 8: Comparison for The Number of State Tuples

Scheme
# of state tuples for n keyword-file pairs
n = 103 n = 104 n = 105 n = 106

RSSE-BRC 11178 78319 454955 1610020

RSSE-LC-0 996 9955 95457 644650

RSSE-LC-20 1009 10005 95572 644814

RSSE-LC-200 1101 10487 96710 646445

RSSE-LC-2000 1765 14536 106126 659573

RSSE-LC-20000 4350 33076 165537 754111

tion of range DSSE, both of which are forward-secure and backward-secure. Our
experiments demonstrate their high efficiency.

Our work complements existing research for supporting SQL over encrypted
databases [16] without using order-preserving encryption which is vulnerable to
reconstruction attack [19,14]. We left as future works to consider integration of
our range DSSE framework with the techniques for reducing dimension [32] or
achieving verifiability [26].
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A Security for Our Generic Construction

Our generic construction relies on an underlying forward-secure DSSE, which
normally leaks the search pattern (sp) and the update history (hist) for the
keywords (e.g., [5,24,28]). Beyond that, the only information leaked by our con-
struction for Search is a partitioning of sp and hist, which exposes the overlapping
nodes induced by the overlapping ranges. We summarize the leakages as follows.

– LStp = ⊥.

– LSrch(q) = ((sp(τ), hist(τ))τ∈BRC of q).

– LUpdt(op, up) = |W|.

Theorem 1. Let Π be a forward-secure DSSE scheme. Our generic construction
is L-adaptively secure for L = {LStp,LSrch,LUpdt} as defined above.

Proof. To see the security of our generic construction, we extend the simulator
of underlying forward-secure DSSE scheme Π and explain how it can deal with
the simulation for (range) queries.

For LStp, our scheme leaks nothing. For LUpdt, we only leak the size of keyword
space |W|, which is a constant value since the initialization. Hence, the simulator
directly invokes the simulator-algorithm of Π to simulate Setup and Update.

To simulate the range query q, the simulator exploits the search pattern sp
to determine if any element in BRC of q has been retrieved before. Then the
simulator updates hist for elements that exist in any previous search and have
been updated afterward. As a result, it leaks the overlapping elements induced
by the overlapping queried ranges. With LSrch, which includes the leakage of
underlying DSSE, the simulator invokes the simulator-algorithm of Π for every
element in BRC of q to simulate Search.

Since Π is forward secure and our construction only additionally leaks the
size of keyword space |W| during Update, our construction is forward secure and
thus immune to the adaptive file injection attack [33].

B Security for Our Specific Range DSSE

We summarize the leakage functions LStp,LSrch,LUpdt of our less-client-storage
range DSSE construction as follows.

– LStp = ⊥.

– LSrch(q) = ((sp(τ), hist(τ))τ∈BRC of q).

– LUpdt(op, up) = |W|.

Theorem 2. Let F be a pseudorandom function, H1 and H2 be two hash func-
tions modeled as random oracles. Our construction for range DSSE with less
client storage is L-adaptively secure for L = {LStp,LSrch,LUpdt} as defined above.
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Proof. We derive a game sequence from the real-world game RealA(1n) to the
last game which is exactly the ideal-world game IdealA,S(1n). By showing that
each game (except the first) is indistinguishable from its previous one, we con-
clude that the adversary cannot distinguish RealA(1n) from IdealA,S(1n) with
non-negligible probability. Without loss of generality, we assume that the ad-
versary A makes at most q1 and q2 queries to the H1 oracle and the H2 oracle
respectively, and the output length of PRF is λ.

Game G0: G0 is Real in the real world. Pr[RealA(1n) = 1] = Pr[G0 = 1].
Game G1: Instead of invoking PRF with k2 when generating nymw, G1

maintains a map Tn to store (τ,nymw) pairs. When a new τ is queried, G1

returns a random string from {0, 1}λ and stores it in Tn[τ ]. Other parts of G1

are exactly the same as those of G0. If an adversary can distinguish G0 from G1,
we can then distinguish between the PRF and a truly random function.

Game G2: We obtain G2 from G1 similar to how G1 is derived from G0.
Instead of invoking PRF with k1, G2 maintains a map Ts and processes the map
like Tn in G1. With the same argument before, G1 and G2 are indistinguishable.

Game G3: Instead of querying H1 in Update, i.e., H1(kτ ||(c+ 1)), G3 picks
a random string from {0, 1}µ1 and stores it in a map Ta:

addr ←$ {0, 1}µ1 , Ta[kτ ||c+ 1] := addr .

Then, during Search of the client, if kw 6= ⊥ when (nymw, kw, c) is collected
in tq, we update the reference table H1 for the random oracle H1 by setting
H1[kw||i] := Ta[kw||i] for i ∈ [1, c].

In G3, addr for tuple (kτ , c+1) is generated in Update but will not be updated
in H1 until a corresponding search query is executed. If the adversary queries H1

for (kτ , c+ 1) before Search, the returned value which is a random string picked
by the random oracle will have an overwhelming probability to be different from
the one programmed for H1[kw||i] (i.e., H1[kτ ||i]) later during Search. Once this
inconsistency is observed, the adversary could figure out s/he is in G3. As other
parts of G3 are exactly the same as those of G2, Pr[G2 = 1] − Pr[G3 = 1] ≤
Pr[BAD], where BAD is the event that the inconsistency happens.

Since kτ is sampled from {0, 1}λ, the probability that the adversary queries
H1 for it equals to 2−λ. As we assume the adversary could at most make q1
queries to the H1 oracle, we have Pr[BAD] ≤ q1

2λ
which is negligible. Thus, we

conclude that G2 and G3 are indistinguishable.
Game G4: We obtain G4 from G3 in a similar way as how G3 is derived from

G2. Instead of querying H2 in Update (i.e., val := (id ||op) ⊕ H2(kτ ||(c + 1))),
G3 picks a random string from {0, 1}µ2 and stores it in a map Ta:

v←$ {0, 1}µ2 , Tv[kτ ||c+ 1] := v,

val := (id ||op)⊕ v.

Then, during Search of the client, if kw 6= ⊥ when (nymw, kw, c) is collected
in tq, we update the reference table H2 for the random oracle H2 by setting
H2[kw||i] := Tv[kw||i] for i ∈ [1, c]. Like G3, the probability that the adversary
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Setup(1n)

Ta,Tv,UpTkSet ← ∅
u := 0

Update(k1,W, op, up;Te)

Client :

Parse up as (w, id)

tu ← ∅
w0 · · ·wm := [w]bin

for i := m to 0 do

Append (u, op, id) to UpTkSet [w0 · · ·wi]
Ta[u]←$ {0, 1}µ1

Tv[u]←$ {0, 1}µ2

tu := tu ∪ {(Ta[u],Tv[u])}
u := u+ 1

endfor

send tu to server

Search((k1, k2),W, q;Te,Tc)

Client :

tq ← ∅
for τ ∈ BRC of q do

if Tn[τ ] = ⊥ then

Tn[τ ]←$ {0, 1}λ

endif

nymw := Tn[τ ]

if |UpTkSet [τ ]| = 0 then

kw := ⊥, c := 0

else

kw ←$ {0, 1}λ

if Ts[τ ] = ⊥ then

Ts[τ ] := kw

endif

c := |UpTkSet [τ ]|
Parse UpTkSet [τ ]

as ((u1, op1, id1), . . . , (uc, opc, idc))

for i := 1 to c do

H1[kw||i] := Ta[ui]

H2[kw||i] := (id i||opi)⊕Tv[ui]

endfor

endif

tq := tq ∪ {(nymw, kw, c)}
UpTkSet [τ ] := ∅

endfor

send tq to server

Fig. 4: Description of Game G5

discovers the inconsistency of the random oracle H2 is at most q2
2λ

which is
negligible. Thus, we can conclude that G3 and G4 are indistinguishable.

Game G5: We present G5 in Figure 4. The server part is omitted as all our
protocols are round-optimal and the transcripts of the client are not influenced
by the server. For every element, we use UpTkSet to record all updates over it
since its last search. Different from G4, kw (i.e., kτ ) is sampled during Search.
Also, instead of directly mapping kτ ||(c+ 1) to the values picked for Tv and Ta,
we implicitly map kτ ||(c+ 1) to the global time index via UpTkSet and update
the random oracle accordingly during Search.

We argue that G4 and G5 are indistinguishable. Update protocols in both
games output two uniformly random values. The distributions of (nymw, kw, c)
(i.e., the client-side output of Search) are the same. So Pr[G4 = 1] = Pr[G5 = 1].
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S.Setup(1n)

Ta,Tv ← ∅
u := 0

S.Update(|W|)

Client :

tu ← ∅
for i := 0 to log |W| do

Ta[u]←$ {0, 1}µ1

Tv[u]←$ {0, 1}µ2

tu := tu ∪ {(Ta[u],Tv[u])}
u := u+ 1

endfor

send tu to server

S.Search((sp(τ), hist(τ))τ∈BRC of q))

Client :

tq ← ∅
for every (sp(τ), hist(τ)) do

u := sp(τ).min, u := sp(τ).max

if Tn[u] = ⊥ then

Tn[u]←$ {0, 1}λ

endif

nymw := Tn[u]

if |hist(τ)>u| = 0 then

kw := ⊥, c := 0

else

kw ←$ {0, 1}λ

if Ts[u] = ⊥ then

Ts[u] := kw

endif

c := |hist(τ)>u|
Parse hist(τ)>u as ((u1, op1, id1), . . . , (uc, opc, idc))

for i := 1 to c do

H1[kw||i] := Ta[ui]

H2[kw||i] := (id i||opi)⊕Tv[ui]

endfor

endif

tq := tq ∪ {(nymw, kw, c)}
endfor

send tq to server

Fig. 5: Description of Simulator S

Game G6: G6 is exactly Ideal, where the simulator S generates a view only
based on the leakage function L. The only update leakage LUpdt is the size of the
keyword domain |W|. The search leakage LSrch contains the search pattern sp
and the update history hist for every element in the BRC of the queried range.

We present G6 in Figure 5. u := sp(τ).min denotes the timestamp when
τ is retrieved for the first time. Instead of using the unknown τ directly, the
simulator uses u to uniquely identify the items related to τ from Ts and Tn.
u := sp(τ).max denotes the timestamp when τ is retrieved last time. We define
hist(τ)>u as {(u, op, id)|u > u∧(u, op, w, id) ∈ Q}. We use |hist(τ)>u| to indicate
whether there is any update after τ is retrieved last time. Then we program the
random oracles accordingly with hist(τ)>u. The view of G6 is exactly the same as
that of G5. So Pr[G5 = 1] = Pr[G6 = 1]. By combining the above (in)equalities,
we have |Pr[RealA(1n) = 1]− Pr[IdealA,S(1n) = 1]| ≤ negl(n) .
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