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Abstract

We present a scalable protocol for database joins on secret shared data in
the honest-majority three-party setting. The key features of our protocol are
a rich set of SQL-like join/select queries and the ability to compose join oper-
ations together due to the inputs and outputs being generically secret shared
between the parties. Provided that all joins operate on unique primary keys, no
information is revealed to any party during the protocol. In particular, not even
the sizes of intermediate joins are revealed. All of our protocols are constant-
round and achieve O(n) communication and computation overhead for joining
two tables of n rows.

These properties make our protocol ideal for outsourced secure computation.
In this setting several non-colluding servers are setup and the input data is
shared among them. These servers then perform the relevant secret shared
computation and output the result. This model has recently been gaining
traction in industry, e.g. Facebook’s Crypten, Cape Privacy’s TFEncrypted,
Mozilla Telemetry.

We additionally implement two applications on top of our framework. The
first application detects voter registration errors within and between agencies
of 50 US states, in a privacy-preserving manner. The second application allows
several organizations to compare network security logs to more accurately iden-
tify common security threats, e.g. the IP addresses of a bot net. In both cases,
the practicality of these applications depends on efficiently performing joins on
millions of secret shared records. For example, our three party protocol can
perform a join on two sets of 1 million records in 4.9 seconds or, alternatively,
compute the cardinality of this join in just 3.1 seconds.

1 Introduction

We consider the problem of performing SQL-style join operations on tables that
are secret shared among three parties, in the presence of an honest majority. Our
proposed protocol takes two or more arbitrarily secret shared database tables and
constructs another secret shared table containing a join of the two tables, without
revealing any information beyond the secret shares themselves. Our protocol is
constant-round and has computation and communication overhead that is linear
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in the size of the tables. Simulation-based security is achieved in the semi-honest
setting with an honest-majority. Our protocol can perform inner, left and full joins
along with union and arbitrary computation on the resulting table, with the best
performance and security guarantees when joins operate on unique primary keys.

New techniques [PSZ14, PSSZ15, PSZ16, KKRT16, PSWW18, CLR17, CHLR18,
IKN+17, RA18, KLS+17, OOS17, KMP+17] for performing set intersection, inner
join and related functionalities have shown great promise for practical deployment.
The vast majority of these works perform private set intersection (PSI), which is
analogous to revealing the entire result of an inner join. Computing a join without
revealing it (i.e., performing further joins, filtering, or computing only aggregate
information) is significantly harder, and optimizations for such a setting do not
automatically translate to our composable setting. We highlight a few notable
results that hide the contents of a join (revealing only some function of it):

Ion et al. recently deployed a private set intersection sum protocol[IKN+17]
to allow customers of Google Adwords to correlate online advertising with offline
sales, while preserving user privacy. Pinkas et al. [PSWW18] also introduced a
practical protocol that can compute any (symmetric) function of the intersection and
associated data. These protocols can be framed in terms of SQL queries consisting
of an inner join followed by an aggregation on the resulting table, e.g. summing
a column. Neither of these protocols (and almost no prior related results) support
secret-shared inputs, but rather require the source tables to be held in the clear by
each party.

The majority of these protocols consider the two party setting and are based on
various cryptographic primitives, e.g. exponentiation [IKN+17], oblivious transfer[PSWW18],
or fully homomorphic encryption[CLR17]. However, in this work we alter the se-
curity model to consider three parties with an honest majority. The motivation is
that typical protocols in this setting (e.g.[AFL+16]) require less computation and
communication than similar two party protocols, by a factor of at least the security
parameter κ = 128. Moreover, we will see that the honest majority enables various
algorithms which are orders of magnitude more efficient, e.g. oblivious permutations
require O(n) work instead of O(n log nκ) [MS13].

Given this observation we investigate how to leverage the efficiency gains in the
three party setting to construct practical protocols for performing set intersection
and other SQL-like operations where both the inputs and outputs are secret shared.
One critical aspect of this input/output requirement is that join operations can
then be composed together, where the output of a join can be the input to another.
Allowing this composability greatly increases the ability to perform highly complex
queries and enables external parties to contribute data simply by secret sharing it
between the primary parties which participate in the protocol.

The fact that we support secret-shared inputs also leads to outsourced secure
computation. Three non-coluding servers can be established, and inputs can be
provided by the servers themselves or by external parties simply by secret sharing
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the input among the servers. This model has been gaining traction in industry.
Mozilla recently deployed a service to collect telemetry data about Firefox[RH18]
using two non-colluding servers running the Prio protocol[CB17]. Other examples
include privacy preserving machine learning frameworks which support secret shared
inputs such as Facebook’s Crypten built for PyTorch[Fac20] and Cape Privacy’s
FTEncrypted built for TensorFlow[MD20].

Complex joins on secret-shared inputs/outputs are valuable in all of these exam-
ples. Most privacy preserving machine learning publications[MR18, Fac20, MD20,
WGC19, RSC+19] assume that the data being trained on has already been joined
together. However, without a framework like ours it is unclear how this would
be accomplished while preserving privacy and efficiency. The generality of our ap-
proach allows us to solve these problems and many others, e.g. the two applications
presented in Section 5.

1.1 Functionality

Our protocol offers a wide variety of functionality including set intersection, set
union, set difference and a variety of SQL-like joins with complex boolean queries.
Generally speaking, our protocol works on tables of secret shared data which are
functionally similar to SQL tables. This is in contrast to traditional PSI and PSU
protocols[PSZ14, PSSZ15, PSZ16, KKRT16] in that each record is now a tuple of
values as opposed to a single key.

We define our database tables in the natural way. Each table can be viewed
as a collection of rows or as a vector of columns. For a table X, we denote the
ith row as X[i] and the jth column as Xj . Our core protocol requires each table
to contain unique values in the column defining the join (i.e., we can only join
on “unique primary keys”). For example, if we consider the following SQL styled
join/intersection query

select X2 from X inner join Y on X1 = Y1

then the join-keys are X1 and Y1. This uniqueness condition can be extended to the
setting where multiple columns are being compared for equality. Later on we will
discuss the case when such a uniqueness property does not hold. Our protocols also
support a where clause that filters the selection using an arbitrary predicate of the
X and Y rows. Furthermore, the select clause can also return a function of the
two rows. For example,

select X1,max(X2, Y2) from X inner join Y

on X1 = Y1 where Y2 > 23.3

In general, the supported join operations can be characterized in three parts: 1)
The select function S(·) that defines how the rows of X,Y are used to construct
each output row, e.g. S(X,Y ) = (X1,max(X2, Y2)) . 2) The predicate P (·) that
defines the where clause, and 3) which columns are being joined on.
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Several other types of joins are also supported including left and right joins, set
union and set minus (difference) and full joins. A left join takes the inner join and
includes all of the missing records from the left table. For the records solely from
the left table, the resulting table contains NULL for the columns from the right table.
Right join is defined symmetrically. A full join is a natural extension where all the
missing rows from X and Y are added to the output table.

We define the union of two tables to contain all records from the left table,
along with all the records from the right table which are not in the intersection with
respect to the join-keys. Note that this definition is not strictly symmetric with
respect to the left and right tables due to rows in the intersection coming from the
left table. Table minus is similarly defined as all of the left table whose join-column
value is not present in the right table.

Beyond these various join operations, our framework supports two broad classes
of operations which are a function of a single table. The first is a general SQL select
statement which can perform computation on each row (e.g. compute the max of
two columns) and filter the results using a where clause predicate. The second class
is referred to as an aggregation which performs an operation across all of the rows of
a table — for example, computing the sum, counts, or the max of a given column.

1.2 Our Results

We present the first practical secure multi-party computation protocol for perform-
ing SQL-style database joins with linear overhead and constant rounds. Our protocol
is fully composable in that the input and output tables are generically secret shared
between the parties. We achieve this result by combining various techniques from
private set intersection and secure computation more broadly. We build on the
the binary secret sharing technique of [AFL+16] with enhancements described by
[MR18]. We then combine this secret sharing scheme with cuckoo hashing[PSZ14],
an MPC friendly PRF[ARS+15] and a custom protocol for evaluating an oblivious
switching network[MS13]. Using these building blocks our protocol is capable of
computing the intersection of two tables of n = 220 rows in 4.9 seconds. Beyond
these two specific functionalities, our protocol allows arbitrary computation applied
to a shared table. Compared to existing three party protocols with similar function-
ality (composable), our implementation is roughly 1000× faster. When compared
with non-composable two party protocol, we observe a larger difference ranging from
our protocol being 1.25× slower to 4000× faster depending on the functionality.

Building on our proposed protocol we demonstrate its utility by showcasing two
potential applications. The first prototype would involve running our protocol be-
tween and within the states of the United States to validate the accuracy of the voter
registration data in a privacy preserving way. The Pew Charitable Trust[Smi14] re-
ported 1 in 8 voter registration records in the United States contains a serious error
while 1 in 4 eligible citizens remain unregistered. Our privacy preserving protocol
identifies when an individual’s address is out of date or more seriously if someone is
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registered to vote in more than one state which could allow them to cast two votes.
Due to how the data is distributed between different governmental agencies, it will
be critical that our protocol allows for composable operations. We implement this
application and demonstrate that it is practical to run at a national scale (250M
records) and low cost.

The second application that we consider allows multiple organizations to com-
pare computer security incidents and logs to more accurately identify unwanted
activities, e.g. a bot net. Several companies already offer this service including
Facebook’s ThreatExchange[thr18] and an open source alternative[alt18]. One of
the primary limitations of these existing solutions is the requirement that each or-
ganization send their security logs to a central party, e.g. Facebook. We propose
using our protocol to distribute the trust of this central party between three parties
such that privacy is guaranteed so long as there is an honest majority.

1.3 Related Work

We now review several related works that use secure computation techniques. With
respect to functionality the closest related work is that of Blanton and Aguiar[BA12]
which describes a relatively complete set of protocols for performing intersections,
unions, set difference, etc. and the corresponding SQL-like operations. Moreover,
these operations are composable in that the inputs and outputs are secret shared
between the parties. At the core of their technique is the use of a generic MPC
protocol and an oblivious sorting algorithm that merges the two sets. This is followed
by a linear pass over the sorted data where a relation is performed on adjacent items.
Their technique has the advantage of being very general. However, the proposed
algorithm has complexityO(n log2 n), is not constant round, and also requires unique
join keys. This results in poor concrete performance as shown in Section 6.

Pinkas, Schneider and Zohner [PSZ14] introduced a paradigm for set intersection
that combines a hash table technique known as cuckoo hashing with a randomized
encoding technique using oblivious transfer. Due to the hashing technique, the
problem is reduced to comparing a single item x to a small set {y1, ..., ym}. Oblivi-
ous transfer is then used to interactively compute the randomized encoding x′ of x
while the other party locally computes the encodings {y′1, ..., y′m}. A plaintext in-
tersection can then be perform directly on these encodings. With the use of several
optimization[PSSZ15, PSZ16, KKRT16, OOS17] this paradigm is extremely efficient
and can perform a set intersection using O(n) calls to a random oracle and O(n)
communication. These protocols are not composable since the input must be known
in the clear. Making them composable is non-trivial and they would likely introduce
a large overhead.

Laur, Talvista and Willemson[LTW13] present techniques in the honest majority
setting for composable joins, unions and many other operations at the expense of
information leakage. Consider two parties each with a sets X,Y . The parties first
generate secret shares of the sets and then use a generic MPC protocol to apply a
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pseudorandom function (PRF) F to the shared sets to compute X ′ = {Fk(x) | x ∈
X}, Y ′ = {Fk(y) | y ∈ Y } where the key k is uniformly sampled by the MPC protocol
(i.e. neither party knows k). X ′ and Y ′ are then revealed to both parties who use
this information to infer the intersection, union and many other SQL-like operations.
This basic approach dates back to the first PSI protocols [Mea86, HFH99] where
the (oblivious) PRF was implemented using a Diffie-Hellman protocol. [LTW13]
extended this paradigm to allow the input sets to be secret shared as opposed to
being known in the clear.

The primary limitation of this approach is that all operations require all parties
to know X ′ and Y ′. This prevents the protocol from being composable without
significant information leakage. In particular, the cardinality of X ′ ∩ Y ′ and the
result of the where clause for each row is revealed. This is of particular concern when
several dataset are being combined. Learning the size of the intersection or the union
can represent significant information. For instance, in the threat log application the
union of many sets are taken. Each of these unions would reveal how many unique
logs the new set has. Alternatively, taking the join between a set of hospital patients
and a set of HIV positive patients would reveal how many have HIV. When combined
with other information it could lead to the ability to identify some or all of these
patients. Beyond this, the provided three party implementation achieved relatively
poor performance. A join between two tables of a million records is estimated to
require one hour on their three benchmark machines[LTW13]. Looking forward,
our protocol can perform a similar join operation in 4 seconds while preventing all
leakage.

Bater, Elliott, et al.[BEE+17] describe a outsourced MPC protocol where a client
sends a SQL query to one of the computational parties who runs a garbled circuit
based protocol amongst themselves. They present optimizations where some the
computation is performed outside the MPC. We leave it as future work to explore
the application of our new techniques in their setting.

2 Preliminaries

2.1 Security Model

Our protocols are presented in the semi-honest three-party setting with an honest
majority. That is, the received messages of any single party are computationally
indistinguishable from messages that are only dependent of their final output. We
present our ideal functionality in Figure 7. See [AFL+16] for a more details of our
simulation based security model.

2.2 Notation

Let [m] denote the set {1, 2, ...,m}. Let V be a vector with elements V = (V1, ..., Vn).
We also use the notion V [i] to index the ith element Vi. We define a permutation of
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size m as an injective function π : [m] → [m]. We extend this definition such that
when π is applied to a vector V of m elements, then π(V ) = (Vπ(1), ..., Vπ(m)). The
image of a function f : X → Y is defined as image(f) := {y ∈ Y : ∃x ∈ X, f(x) =
y}. Preimage of a pair (f, y) is defined as preimage(f, y) := {x ∈ X : f(x) = y}.
We use n to represent the number of rows a table has. Parties are referred to as
P0, P1, P2. We use κ to denote the computational security parameter, e.g. κ = 128,
and λ as the statistical security parameters, e.g. λ = 40.

2.3 Secret Sharing Framework

Our protocol builds on the ABY3 framework of Rindal and Mohassel [MR18] for
secure computation of circuits. That is, we use their binary/arithmetic addition
and multiplication protocols along with their share conversion protocols. We will
use the notation that JxK is a 2-out-of-3 binary replicated secret sharing of the value
x. That is, (x0, x1, x2) are sampled uniformly s.t. x = x0 ⊕ x1 ⊕ x2. Party Pi holds
the shares xi, xi+1 mod 3. We use the notation JxKi to refer to share xi. JxK can
locally be converted to a 2-out-of-2 sharing ⟪x⟫ where Pi holds x′0 and Pj holds x′1
s.t. x = x′0 ⊕ x′1, e.g. i = 0, j = 1. ⟪x⟫k refers to x′k. ⟪x⟫ can also be converted
back to JxK using one round of communication.

2.4 Cuckoo Hash Tables

The core data structure that our protocols employ is a cuckoo hash table which is
parameterized by a capacity n, two (or more) hash functions h0, h1 and a vector T
which has m = O(n) slots, T [1], ..., T [m]. For any x that has been added to the hash
table, there is an invariant that x will be located at T [h0(x)] or T [h1(x)]. Testing if
an x is in the hash table therefore only requires inspecting these two locations. x is
added to the hash table by inserting x into slot T [hi(x)] where i ∈ {0, 1} is picked
at random. If there is an existing item at this slot, the old item y is removed and
reinserted at its other hash function location. Typically the required table size is
m ≈ 1.6n for λ = 40 bits of statistical security, see [DRRT18].

3 Our Construction

3.1 Overview

First we describe our join algorithm without any privacy and then we will discuss
how this translates to the secret shared setting. Figure 1 depicts our algorithm with
the following phases:

1. Y is inserted into a cuckoo hash table T based on the join-key(s). That is, let
us assume the columns Y1 and X1 are the join keys. Then row Y [i] is inserted
at T [j] for some j ∈ {h0(Y1[i]), h1(Y1[i])}.
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…

…

… … …

JY K XT = Cuckoo(Y ) Ŷ 0 Ŷ 1

1) Cuckoo hash Y

using oblv. permutation.

∃j s.t. T [hj(Y [i])] = Y [i].

2) Select Cuckoo locations T [hj(X[i])]

using oblv. switching network.

Ŷ j [i] = T [hj(X[i])].

3) Compare Ŷ 0[i], Ŷ 1[i] w/ X[i]
using MPC circuit and

construct output row.

Figure 1: Overview of the join protocol using oblivious switching network.

2. Each rowX[i] needs to be compared with the rows T [j] for j ∈ {h0(X1[i]), h1(X1[i])}.
As such, T [h0(X1[i])] is mapped to a new row Ŷ 0[i] and T [h1(X1[i]) to Ŷ 1[i].

3. It is now the case that if row X[i] has a machining key in Y , then this row will
be located at Ŷ 0[i] or Ŷ 1[i]. As such, these rows can directly be compared to
determine if there is a match on the join keys and the where clause evaluates
to true. Let bi = 1 if there is such a match and 0 otherwise.

4. Various types of joins can then be constructed from locally comparing row i
from these tables, i.e. X[i], Ŷ 0[i], Ŷ 1[i]. For example, an inner join is con-
structed from all the rows where bi = 1 by selecting the values from X[i] and
either Ŷ 0[i] or Ŷ 1[i] depending on which one matches. If there is no match,
then that output row is set to NULL.

The main challenge in bringing the described algorithm to the secret shared
setting is constructing the cuckoo hash table T and selecting rows from T with-
out leaking sensitive information. We achieve this with the use an MPC friendly
randomized encoding and a new three-party protocol called an oblivious switching
network.

Let us continue to assume that the columns X1 and Y1 are the join-keys. Our
protocol begins by generating a randomized encoding for each of the secret shared
join-key JxiK ∈ JX1K and JyiK ∈ JY1K. Figure 2 contains the ideal functionality for
this encoding which takes secret shares from the parties, apply a PRF Fk to the
reconstructed value using a internally sampled key k, and returns the resulting value
to one of the three parties. For JxiK := JX1K[i], P0 will learn Fk(xi) while P1 will
learn Fk(yi) for JyiK := JY1K[i]. Since the join-keys xi (resp. yi) are unique and k is
not known, this can be simulated by sending random values to P0 (resp. P1).

Party P1 proceeds by constructing a secret shared cuckoo hash table ⟪T⟫ from
the rows of JY K where the hash function values for row i are defined as hj(yi) =
H(j||Fk(yi)). Note that P1 knows only the randomized encodings Fk(yi) of each row
Y [i], and not the contents of the row itself. The goal in this step is to construct a
secret shared cuckoo table ⟪T⟫ such that row Y [i] is located at T [hj(yi)] for some

8



j. We construct ⟪T⟫ using a three-party oblivious permutation protocol where P1

inputs a permutation π, all parties input secret shares of Y , and the result is secret
shares of “Y permuted according to π” which forms T (details follow later). This
completes Step 1 and is the first transformation shown in Figure 1.

It is now the case that ⟪T⟫ is a valid cuckoo hash table of JY K which is se-
cret shared between P0 and P1. Party P0, who knows the randomized encodings
Fk(xi) for all JxiK := JX1K[i], now must compare the rows of ⟪T⟫ indexed by
hj(xi) = H(j||Fk(xi)) with the row JXK[i]. In particular, assuming we use two
cuckoo hash functions, then P0 constructs two oblivious switching networks that
maps the shares ⟪T [h0(xi)]⟫ and ⟪T [h1(xi)]⟫ to be “aligned” with JXK[i]. Exactly
how such a network operates is discussed later but the result is two new tables
⟪Ŷ 0⟫, ⟪Ŷ 1⟫ such that T [hj(xi)] = Ŷ j [i]. This completes Step 2 and is the second
transformation shown in Figure 1.

Once the shares of Ŷ 0[i] = T [h0(xi)], Ŷ
1[i] = T [h1(xi)] are obtained using the

switching network, the parties employ an MPC protocol to directly compare these
rows with JXK[i]. That is, they compute a bit JbK which equals one if the join-keys
are equal and the where clause P (⟪Ŷ j⟫[i], JXK[i]) outputs one for some j. For each
row, the output row for an inner join is constructed as S(⟪Ŷ j⟫[i], JXK[i]) using MPC
where S is the user defined selection circuit. In addition, the MPC circuit outputs
the secret shared flag JbK indicating whether this row is set to NULL.

Left joins work in a similar way except that all rows of X are output and marked
not NULL. Finally, unions can be computed by including all of Y in the output and
all of the rows of X where the comparison bit JbK is zero. Regardless of the type
of join, the protocols do not reveal any information about the tables. In particular,
not even the cardinality of the join is revealed due to the use of NULL rows.

3.2 Randomized Encodings

The randomized encoding functionality Fencode of Figure 2 enables the parties to
coordinate their secret shares without revealing the underlying values. In particular,
the parties will construct a cuckoo hash table using these encodings. The function-
ality takes as input several tuples (JBiK, JXiK, Pi) where Bi ∈ {0, 1}d is an array of
d bits, Xi ∈ ({0, 1}σ)d is a array of d strings and Pi that denotes that party Pi
should be output the encodings for this tuple. The functionality assigns a random
` bit encoding for each input x ∈ {0, 1}σ. For j ∈ [d], if the bit Bi[j] = 0 then the
functionality outputs the encoding for Xi[j] and otherwise a random ` bit string.
Looking forward, Bi[j] = 1 will mean that the key Xi[j] is actually set to NULL and
a random encoding should be returned.

LowMC Encodings. We realize this functionality using the LowMC block cipher[ARS+15].
When implemented with the honest majority MPC protocols[AFL+16], this ap-
proach results in extremely high throughput, computing up to one million encodings
per second. Once the parties have their secret shared inputs, they sample a secret
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Parameters: Input string size of σ bits and output encoding size of ` bits.
[Encode] Upon receiving command (Encode, {(JBiK, JXiK, Pi)}) from all parties where
Xi ∈ ({0, 1}σ)di , Bi ∈ {0, 1}di for some di ∈ Z∗.

1. Sample a uniformly random F : {0, 1}σ → {0, 1}`. Define F ′ : {0, 1}× {0, 1}σ →
{0, 1}` as F ′(b, x) = bF (x) + br where r ← {0, 1}` is sampled each call.

2. For each (JBiK, JXiK, Pi), send {F ′(b, x) | (b, x) ∈ zip(Bi, Xi)} to Pi.

Figure 2: The Randomized Encoding ideal functionality Fencode

shared LowMC key uniformly and encrypt each input under that key using the MPC
protocol. These encryptions are revealed as the encodings to the appropriate party.

The LowMC cipher is parameterized by a block size `, keys size κ, s-boxes per
layer m and the desired data complexity d. To set these parameters, observe that the
adversary only sees a bounded number of block cipher outputs (encodings) per key.
As such, the data complexity can be bounded by this value. For our implementation
we upper bound the number of outputs by d = 230. The remaining parameters are
set to be ` ∈ {80, 100} and m = 14 which results in r = 13 rounds and computational
security of κ = 128 bits[ARS+15]. The circuit for ` = 80 contains 546 and gates
(meaning each party will send only 546 bits per encoding).

One issue with the LowMC approach alone is that the input size is fixed to
be at most ` ∈ {80, 100} bits. However, we will see that the larger join protocol
requires an arbitrary input size σ. This is accommodated by applying a universal
hash function to the input shares. Specifically, the parties jointly pick a random
matrix E ← {0, 1}σ×`. The parties can then locally multiply each secret shared
input before it is sent into the LowMC block cipher.

The security of this transformation follows from xE 6= x′E with overwhelming
probability if x 6= x′. In particular, f(x) = xE is a universal hash function given
that E is independent of x. As such the probability that f(x) = f(x′) for any x 6= x′

is 2−`. Applying the birthday bound we obtain that probability of any collisions
among the tuples is 2−`+p where p = log2D

2/2 = 2 log2(D) − 1 and D =
∑

i di is
the total number of encodings.

Conditioned on the inputs to the block cipher being unique, the outputs of the
block cipher is also distinct and indistinguishable from random ` bit strings. As
such, in the simulation the real outputs can be replaced with that of the ideal
functionality so long as 2−`+p is statistically negligible, i.e. `− p ≥ λ.

3.3 Oblivious Switching Network

The ideal functionality of a switching network was introduced by Mohassel and
Sadeghian[MS13]. It obliviously transform a vector A = (A1, ..., An) such that the
output is A′ = (Aπ(1), ..., Aπ(m)) for an arbitrary function π : [m] → [n]. The ac-
companying protocol of [MS13] was designed in the two party setting where the first
party inputs A while the second party inputs a description of π. We introduce a
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Parameters: Input, output size of σ, ` bits (respectively). Computational security
parameter κ.
[Encode] Upon receiving command (Encode, {(JBiK, JXiK, Pi)}) from all parties where
each Xi ∈ ({0, 1}σ)di . Let d = maxi(di).

1. If σ > `, the parties jointly sample a matrix E ∈ {0, 1}σ×`. Otherwise E is the
σ × ` identity matrix.

2. The parties have Fmpc evaluate the following circuit:

(a) Uniformly sample a key k for a LowMC cipher with block size `, security κ
and data complexity at least d blocks.

(b) For each (JBiK, JXiK, Pi) input pair, reveal {F ′(b, x) | (b, x) ∈ zip(Bi, Xi)}
to Pi where F ′(b, x) = LowMCk(xE) ⊕ br and r ← {0, 1}` is sampled for
each call.

Figure 3: The randomized encoding LowMC protocol.

Parameters: 3 parties denoted as the Pp, Ps and Pr. Elements are strings in Σ := {0, 1}σ.
An input vector size of n and output size of m.
[Switch] Upon the command (switch, π, ⟪A⟫0) from the Pp and (switch, ⟪A⟫1) from
the Ps:

1. Interpret π : [m]→ [n] and A ∈ Σn.

2. Compute A′ ∈ Σm s.t. ∀i ∈ [m], Aπ(i) = A′i.

3. Generate ⟪A′⟫ and send ⟪A′⟫0 to Pp and ⟪A′⟫1 to Pr.

Figure 4: The Oblivious Switching Network ideal functionality FSwitch. See Fig-
ure 12, 14 for FPermute and FDuplicate.

new oblivious switching network protocol tailored for the honest majority setting
with significantly efficiency improves. Our protocol has O(n) overhead and is con-
stant round. [MS13] requires O(n log nκ) communication/computation and O(log n)
rounds.

The ideal functionality of our protocol is given in Figure 4 with three parties, a
programmer Pp, a sender Ps and a receiver Pr. Pp has a description of π while Pp,Ps

have a secret sharing of a vector A ∈ Σn where Σ = {0, 1}σ. Pp and Pr are each
output a share of ⟪A′⟫ s.t. A′ = (Aπ(1), ..., Aπ(m)). For ease of presentation, we will
initially assume A is the private input of Ps.

Permutation Network. We begin with a restricted class of switching networks where
the programming function π is injective. That is, each input element Ai will be
mapped to a maximum1 of one location in the output A′. As we will see later, this
property will simplify the implementation since we do not need to duplicate any
element. Intuitively, the Permute protocol of Figure 5 instructs Ps to first shuffled
A in a random order (as specified by π0) and then secret share it between Pp & Pr.

1Strictly speaking, this protocol implementation a generalization of a permutation network since
it allows some elements to not appear in the output, i.e. m < n and π : [m] → [n].
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Then Pp & Pr will reorder these shares (as specified by π1) to be in the desired order
(i.e. π). This is done as follows, Pp samples two random functions π0, π1 such that
π1 ◦ π0 = π, π0 : [n]→ [n] is bijective and π1 : [m]→ [n] is injective. Pp sends π1 to
Pr and π0, S ← Σn to Ps who sends B := (Aπ0(1) ⊕ S0, ..., Aπ0(n) ⊕ Sn) to Pr. The
final shares of A′ = π(A) are defined as Pp holding ⟪A′⟫0 := (Sπ1(1), ..., Sπ1(m)) and
the Pr holding ⟪A′⟫1 := (Bπ1(1), ..., Bπ1(m)).

The simulation of this protocol is perfect. The view of Ps contains a uniform
permutation π0 and vector S. Similarly, the view of Pr contains π1 which is uniformly
distributed (when π0 is unobserved) and the uniform vector B. See Section B.1 for
details. In our computational secure setting, π0, S can be generated locally by Pp

and Ps using a common source of randomness, e.g. a seeded PRG. This reduces the
rounds to 1.

Shared Inputs. As presented here in the text our protocols assume the input vector
A being transformed is the private input of the Ps. However, the full protocols
will require the input A to secret shared. Let us assume we have some switching
network protocol Π which takes input A from Ps, π from Pp and output shares
of π(A). Then this can be transform to shared input ⟪A⟫. The parties invoke Π
where Ps input their share ⟪A⟫1 and Pp inputs π. Pp and Pr receive ⟪B⟫ from
the functionality. The final result can then be computed as Pr holding ⟪A′⟫1 :=
⟪B⟫1 while Pp locally defines ⟪A′⟫0 := ⟪B⟫0 ⊕ π(⟪A⟫0). It is easy to verify that
A′ = π(⟪A⟫1)⊕π(⟪A⟫0) = π(A). The protocol descriptions in Figure 5 include this
shared input modification. However, here in the text we will continue to assume A
is the sole input of Ps.

Duplication Network.
The Duplication protocol of Figure 5 considers a second type of restricted net-

work where π : [n]→ [n], s.t. π(1) = 1 and π(i) ∈ {i, π(i− 1)} for i = 2, ..., n. That
is, each output position is either a copy of the same input position (i.e. π(i) = i)
or is a duplicate of the previous output position (i.e. π(i) = π(i − 1)). For ex-
ample, let the truth table of π be (π(1), ..., π(6)) = (1, 1, 3, 4, 4, 4) and therefore
A′ = (A1, A1, A3, A4, A4, A4). Note the only change is that A1, A4 were duplicated
into the next position(s). This transformation can be characterized by a vector
b ∈ {0, 1}n where bi = 1 denotes that the output position i should be a copy of
output position i − 1, i.e. b = (0, 1, 0, 0, 1, 1) for the example above. Therefore we
get the relation A′i = biAi ⊕ biA′i−1 for i ∈ [2, n].

As a warm-up, let us fix some index i and consider the simpler relation where

A′i = biAi ⊕ biAi−1,

i.e. A′i is either Ai or Ai−1 and not A′i−1 as described before. Conceptually, we
will implement this using an OT-like protocol with OT messages (Ai, Ai−1) and
select-bit bi. Ps samples three uniform strings ⟪A′i⟫1, w0, w1 ← Σ and a uniform
bit φ ← {0, 1}. Ps constructs two messages m0 = Ai ⊕ ⟪A′i⟫1 ⊕ wφ and m1 =
Ai−1 ⊕ ⟪A′i⟫1 ⊕ wφ⊕1. Ps sends w0, w1 to Pr and sends m0,m1, φ to Pp who sends
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Parameters: 3 parties denoted as Pp, Ps and Pr. Elements are strings in Σ := {0, 1}σ.
An input, output vector size of n,m.

[Permute] Upon the command (Permute, π, ⟪A⟫0) from Pp and (Permute, ⟪A⟫1)
from Ps. Require that π : [m]→ [n] is injective and ⟪A⟫0, ⟪A⟫1 ∈ Σn. Then:

1. Pp uniformly samples a bijection π0 : [n]→ [n] and let π1 : [n]→ [m] s.t. π1◦π0 = π.
Pp sends π0 and S ← Σn to Ps.

2. Ps sends B := (⟪Aπ0(1)⟫1 ⊕ S1, ..., ⟪Aπ0(n)⟫1 ⊕ Sn) to Pr.

3. Pp sends π1 and T ← Σm to Pr who outputs ⟪A′⟫0 := {Bπ1(1)⊕T1, ..., Bπ1(m)⊕Tm}.
Pp outputs ⟪A′⟫1 := {Sπ1(1) ⊕ T1 ⊕ ⟪Aπ(1)⟫0, ..., Sπ1(m) ⊕ Tm ⊕ ⟪Aπ(m)⟫0}.

[Duplicate] Upon the command (Duplicate, π, ⟪A⟫0) from Pp and
(Duplicate, ⟪A⟫1) from Ps. Require that π : [n] → [n] s.t π(1) = 1 and
π(i) ∈ {i, π(i− 1)} for i ∈ [2, n] and A ∈ Σn. Then:

1. Pp computes the vector b ∈ {0, 1}m such that b1 = 0 and for i ∈ [2, n], bi = 1 if
π(i) = π(i− 1) and 0 otherwise.

2. Ps samples ⟪B⟫1,W 0,W 1 ← Σn, ⟪B1⟫0 ← Σ and φ← {0, 1}n. Ps redefine ⟪B1⟫1 :=
⟪A1⟫1 ⊕ ⟪B1⟫0. For i ∈ [2, n], Ps sends

M0
i := ⟪Ai⟫1 ⊕ ⟪Bi⟫1 ⊕Wφi

i

M1
i := ⟪Bi−1⟫1 ⊕ ⟪Bi⟫1 ⊕Wφi

i

and ⟪B1⟫0, φ to Pp. Ps sends ⟪B⟫1,W 0,W 1 to Pr.

3. Pp sends ρ := φ ⊕ b, R ← Σn to Pr who responds with {W ρi
i : i ∈ [2, n]}. For

i ∈ [2, n], Pp defines

⟪Bi⟫0 := M bi
i ⊕W

ρi
i ⊕ bi⟪Bi−1⟫0

Pp outputs ⟪A′⟫0 := ⟪B⟫0 ⊕R⊕ π(⟪A⟫0) and Pr outputs ⟪A′⟫1 := ⟪B⟫1 ⊕R.

[Switch] Upon the command (Switch, π, ⟪A⟫0) from Pp and (Switch, ⟪A⟫1) from Ps

where π : [m]→ [n] and ⟪A⟫0, ⟪A⟫1 ∈ Σn.

1. Pp samples an injection π1 : [m] → [n] s.t. for i ∈ image(π) and k =
|preimage(π, i)|, ∃j where π1(j) = i and {π1(j + 1), ..., π1(j + k)} ∩ image(π) = ∅.
Pp sends (Permute, π1, ⟪A⟫0) to FPermute and Ps sends (Permute, ⟪A⟫1). Pp

receives ⟪B⟫0 ∈ Σm in response and Pr receives ⟪B⟫1 ∈ Σm.

2. Pp defines π2 : [m] → [m] s.t. for i ∈ image(π) and k := |preimage(π, i)| and
j where π1(j) = i, then π2(j) = ... = π2(j + k) = j. Pp and Pr respectively
send (Duplicate, π2, ⟪B⟫0) and (Duplicate, ⟪B⟫1) to FDuplicate. As a result Pp

obtains ⟪C⟫0 ∈ Σm from FDuplicate and Ps obtains ⟪C⟫1 ∈ Σm.

3. Pp computes the permutation π3 : [m] → [m] such that for i ∈ image(π) and
k = |preimage(π, i)|, {π3(`) : ` ∈ preimage(π, i)} = {j, ..., j+k} where i = π1(j). Pp

sends (Permute, π3, ⟪C⟫0) to FPermute and Ps sends (Permute, ⟪C⟫1). Pp receives
S ∈ Σm in response. Pp and Pr respectively receives and outputs ⟪A′⟫0, ⟪A′⟫1 ∈ Σm.

Figure 5: The Oblivious Switching Network protocols ΠPermute, ΠDuplicate,
ΠSwitch.
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ρ = φ⊕ bi to Pr. The final shares2 are constructed by having Pr send wρ to Pp who
computes ⟪A′i⟫0 := mbi ⊕ wρ. In our computationally secure setting observe that
sending w0, w1, φ can be optimized away using a seed.

The protocol just described considers the setting where the parties select between
Ai, Ai−1. However, we require that at each iteration the messages being selected is
either Ai or A′i−1 where ⟪A′i−1⟫ was computed in the previous iteration. Fortunately
this can be achieved at no overhead by leveraging that fact that Pp knows bi and
⟪A′i−1⟫0 ahead of time. At index i, Ps uses ⟪A′i−1⟫1 instead of Ai−1 while the Pp

computes ⟪A′i⟫0 := mbi ⊕ wρ ⊕ bi⟪A′i−1⟫0. As such, Pp is manually adding other
other share of ⟪A′i−1⟫ when it is need. The full proof of security is in Section B.2.
To briefly show correctness, let us assume by induction that ⟪A′i−1⟫ is correct, then:

A′i = (mbi ⊕ wρ ⊕ bi⟪A′i−1⟫0)⊕ (⟪A′i⟫1)

= (biAi ⊕ bi⟪A′i−1⟫1 ⊕ ⟪A′i⟫1 ⊕ wbi⊕φ ⊕ wρ ⊕ bi⟪A′i−1⟫0)⊕ (⟪A′i⟫1)

= biAi ⊕ biA′i−1

Universal Switching Network. Our Switch protocol of Figure 5 is a universal switch-
ing network for an arbitrary π : [m]→ [n] and is constructed in three phases[MS13]:

A
π1→ B

π2→ C
π3→ A′ = π(A).

Let us first work through an example π[6] → [8] where (π(1), ..., π(6)) =
(4, 3, 4, 7, 4, 7). Observe that 4 appears three times, 7 appears twice and {1, 2, 5, 6, 8}
are “unused”. First we apply the permutation B = π1(A) which ensures A4 is fol-
lowed by two unused elements andA7 is followed by one, e.g. B = (A3, A4, A1, A2, A7, A8).
In general, an element that should appear k > 1 times will be followed by k− 1 un-
used elements. Note that |B| = |A′| and need not be the size of A. This is achieved
by dropping some unused elements, e.g. A5, A6. The duplication network C = π2(B)
will duplicate A4 twice and A7 once, e.g. C = (A3, A4, A4, A4, A7, A7). Note that
only elements in A′ are left now and they have the correct multiplicity. Finally,
A′ = π3(C) permutes C to be in the desired order, e.g. A′ = (A4, A3, A4, A7, A4, A7).

More specifically, the transformations are defined as:

1. B := π1(A): Sample an injective π1 : [m]→ [n] s.t. if π maps an input position
i to k outputs positions (i.e. k = |preimage(π, i)| = |{j : π(j) = i}|), then
there exists a j such that π1(j) = i and {π1(j+1), ..., π1(j+k−1)}∩image(π) =
∅.

2. C := π2(B): Let π2 : [m] → [m] s.t. if Ai is mapped to k > 0 positions in
A′ = π(A), then for π1(j) = i it holds that Cj = ... = Cj+k−1 = Ai = Bj .
That is, π2(j) = ... = π2(j + k − 1) = j.

3. A′ := π3(C): Sample permutation π3 : [m] → [m] s.t. C is permuted to
the same ordering as π(A). That is, for i ∈ image(π) and π1(j) = i, sample

2Due to technique reasons about simulating output the full protocol additionally randomizes the
output shares.
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permutation π3 s.t. {π3(`) | ` ∈ preimage(π, i)} = {j, ..., j+|preimage(π, i)|−
1}.

Observe that steps π1, π3 can both be implemented using the oblivious permu-
tation protocol while π2 can be implemented with a duplication network. Figure 5
provides a formal description of the full switching network protocol. The simulation
of this protocol is presented in Section B.3 and follows from the simulation of the
permutation and duplication subprotocols.

Comparison. We compare with alternative constructions to illustrate the perfor-
mance improvement that our switching protocol provides. The first and most tra-
ditional is for Ps to use additive homomorphic encryption, e.g. Paillier, to encrypt
the shares ⟪A⟫1 and send these to Pp. Pp can apply the mapping function π to
these encryptions, rerandomize them and send the result back to Ps who decrypts it
to obtain their share of ⟪A′⟫1. This approach has a very high computational over-
head compared to ours due to additive homomorphic encryption being an intensive
process.

An alternative approach is that taken by [MS13] which can be viewed as the
two party version of our protocol. In their setting the permutation network is the
most expensive operation and is implemented using O(n log n) OTs[IKNP03]. Our
protocol is both asymptotically more efficient by a O(log n) factor and has smaller
constants since our protocol does not require the relatively more expensive OT
primitive.

3.4 Join Protocols

Our join protocol can be divided into four phases:

1. Compute randomized encodings of the join-columns/keys.

2. Party P1 constructs a cuckoo table T for table Y and arranges the secret shares
using a permutation protocol.

3. For each row x in X, P0 uses an oblivious switching network to map the
corresponding location i1, i2 of the cuckoo hash table to a secret shared tuple
(x, T [i1], T [i2]).

4. The join-key(s) of x is compared to that of T [i1], T [i2]. If one of them match
then the corresponding Y ′ row is populated; otherwise the Y ′ row is set to
NULL.

5. The various types of joins can then be constructed by comparing row i of X
and Y ′.

Steps 1 through 4 are performed by the Map routine of Figure 6 while step 5 is
performed in the Join routine. Figure 7 contains the ideal functionality of the join
protocol.
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Randomized Encodings. We begin by generating randomized encodings of the columns
being used for the join-keys. For example, selecting all columns of X and Y
where X1 = Y1 and X2 = Y3. In this case there are two join-keys, X1, X2 from
X and Y1, Y3 from Y . The protocol has P0 learn the randomized encoding for
each row of X and P1 learn them for Y . Importantly, is that after a previous
join operation, some (or all) of the rows being joined can be NULL. We require
that the randomized encodings of these rows not reveal that they are NULL. For
table X, a special column XNULL encodes if for each row is logically NULL. The
Fencode functionality will then return a random encoding for all NULL rows. Specifi-
cally, the parties will send (Encode, {(JXNULLK, JXj1 ||...||XjlK, P0), (JYNULLK, JYk1 ||...||
YklK, P1)}) to Fencode where j1, ..., jl and k1, ..., kl index the join-keys of X and Y .
Let Ex,Ey ∈ ({0, 1}`)n be the encodings that P0 and P1 respectively receive from
Fencode.

For correctness, we require the encoding bit-length ` to be sufficiently large
such that the probability of a collision between encodings is statistically negligible.
Given that there are a total of D = 2n encodings, the probability of this is at most
2−`+2 log2D−1 which we require to be less than 2−λ, therefore ` ≥ λ + 2 log2D − 1.
Our implementation uses λ = 40 and ` ∈ {80, 100} depending on D.

Constructing the Cuckoo Table. The next phase of the protocol is for P1 to con-
struct a secret shared cuckoo table for Y where each row is inserted based on its
encoding in Ey. P1 locally inserts the encodings Ey into a plain cuckoo hash table
t with m ≈ 1.5n slots using the algorithm specified in Section 2 and [DRRT18]. In
the presentation we assume two hash functions are used. P1 samples an injective
function π : [m]→ [m] such that t[j] = Ey[i], then π(j) = i.

Parties P0 and P1 convert JY K to ⟪Y ⟫ such that P0 holds ⟪Y ⟫0. P1 sends
(Switch, π, ⟪Y ⟫1) to Fswitch and P0 sends (Switch, ⟪Y ⟫0). In response Fswitch

sends ⟪T⟫1 to P1 and ⟪T⟫0 to P2. It is now the case that T is a valid secret shared
cuckoo hash table of Y .

Selecting from the Cuckoo Table.. The next phase of the protocol is for each row of
X, select the appropriate rows of T so the keys can be compared. P0 knows that if
the join-keys of the X[i] row will match with a row from Y , then this row will be
at T [j] for some j ∈ {h1(e), h2(e)} where e = Ex[i].

To obliviously compare these rows, P0 will construct two switching networks
with programming π1, π2 : [n]→ [m] such that if hl(Ex[i]) = j then πl(i) = j. Each
of these will be used to construct the tables ⟪Ŷ 1⟫, ⟪Ŷ 2⟫ which are the result of
applying the switching networks π1, π2 to ⟪T⟫. For i ∈ [n], the parties select either
⟪Ŷ 1⟫[i] or ⟪Ŷ 2⟫[i] and assign it to JY ′K[i] based on which has matching joins keys
with JXK[i]. If there is no match then JY ′K[i] = NULL.

Inner Join. Given the secret shared tables JXK, JY ′K as described above, the parties
do a linear pass over the n rows to construct the join between X and Y . Recall that
the inner join consists of all the selected columns from the rows X[i], Y [j] where the
join-keys of the rows X[i] and Y [j] are equal.
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If row X[i] has a matching row in Y then this row will have been mapped
to Y ′[i]. Next, the where clause further filters the output table as a function of
Y ′[i] and X[i]. The MPC protocol sets the NULL-bit of the final output table Z
as ZNULL[i] := XNULL[i] ∨ Y ′NULL[i] ∨ ¬P (Y ′[i], X[i]) where P is the predicate function
specified by the where clause. Finally, the computation specified by the select

query is performed, e.g. copying the columns of X,Y or computing a function of
them.

Left/Right Join. A left join query is similar to an inner join except that all of the
rows from the left table X are included. All rows that are in the inner join are
computed as before. For rows only in X, the bit Y ′NULL[i] will equal one and is used
to initialize the missing columns from Y to a default, typically NULL. A right join
can be implemented symmetrically.

Union and Set Minus.. Our framework is also capable of computing the union of
two tables with respect to the join-keys. Specifically, we define the union operator
as taking all of the rows from the left table and all of the rows from the right
table that would not be present in the inner join. First we compute Y \X by only
including X[i] if Y ′[i] is NULL, i.e. X[i] has no matching row in Y . The union of X
and Y is then constructed as (Y \X)||X where the || operator denotes the row-wise
concatenation of X to the end of Y \X.

Full Join.. We construct a full join as (X left join Y ) union Y . The left join merge
the rows in the intersection and the union includes the missing rows of Y . The
overhead of this protocol is effectually twice that of the other protocols.

We note that under some restrictions on the tables being joined, a more efficient
protocol for full joins can be achieved. We defer an explanation of this technique to
Section 5.2.

Security. The simulation of these protocols directly follow from the composibility
of the subroutines Fencode, Fswitch and Fmpc. First, the output of Fencode simply
outputs random strings and it is therefore straightforward to simulate. Fswitch and
Fmpc both output secret shared values. Finally, correctness is straight forward to
analysis and holds so long as there is no encoding collisions and cuckoo hashing
succeeds. Parameters are chosen appropriately so these failure events happen with
probability at most 2−λ. See B.4 for a full proof of security.

3.5 Non-unique Join on Column

When values in the join-column are not unique within a single table, the security
guarantees begin to erode. Recall that the randomized encodings for X,Y are re-
vealed to P0, P1 respectively. Repeated values in the join-columns will lead to
duplicate randomized encodings and therefore reveal their location. Learning the
distribution of these duplicates reveals that the underlying table has the same dis-
tribution. In the event that only one of the tables contains duplicates, the core
protocol can naturally be extended to compute the various join operations subject
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Parameters: Table size n. For all command, X,Y are tables and {Xj | j ∈ J}
and {Yk | k ∈ K} are the join-keys of X and Y respectively. S, P are resp. the
select and where function.
[Map] Upon receiving (Map, JXK, J, JY K,K) from all parties.

1. The parties send (Encode, {(JXNULLK, JXJ1 ||...||XJlK,
P0), (JYNULLK, JYK1 ||...||YKl

K, P1)}) to Fencode where l = |J | = |K|. P0

receives Ex and P1 receives Ey from Fencode.

2. P1 constructs a cuckoo hash table t for the set Ey. Define π0 such that
π0(j) = i where Ey[i] = t[j].

3. P0 and P1 convert JY K to ⟪Y ⟫. P1 sends (Permute, π0, ⟪Y ⟫1) to FPermute

and P0 sends (Permute, ⟪Y ⟫0). P1 receives ⟪T⟫1 and P2 receives ⟪T⟫0 from
FPermute.

4. Let h1, ..., hw be the cuckoo hash functions. P1 defines π1, ..., πw such that
πl(i) = j where hl(Ex[i]) = j.

5. For l ∈ [w], P1 sends (Switch, πl, ⟪T⟫1) to FSwitch and P2 sends
(Switch, ⟪T⟫0). P0 receives ⟪Ŷ l⟫0 and P1 receives ⟪Ŷ l⟫1 from FSwitch.

6. For i ∈ n, if ∃j ∈ [w] s.t. Ŷ j
NULL[i] = 0 ∨ JXJ1 ||...||XJlK[i] = JŶ j

K1
||...||Ŷ j

Kl
K[i]

then JŶ ∗K[i] := ⟪Ŷ j⟫[i]. Otherwise JŶ ∗K[i] := (NULL, 0, ...). Output JŶ ∗K.

[Join] Upon receiving command (Join, type, JXK, J, JY K,K, S, P ) from all par-
ties.

1. The parties send (Map, JXK, J, JY K,K) to Πmap and receive JY ′K.

2. Output the table JZK defined by the case type:

Inner: For i ∈ [n], Fmpc evaluate JZNULLK[i] := JXNULLK[i] ∨ JY ′NULLK[i] ∨
¬P (JXK[i], JY ′K[i]) and JZK[i] := S(JXK[i], JY ′K[i]).

Left: For i ∈ [n], Fmpc evaluate JZNULLK[i] := JXNULLK[i] ∨¬P (JXK[i], JY ′K[i])
and JZK[i] := S(JXK[i], JY ′K[i]).

Union: For i ∈ [n], Fmpc evaluate JZNULLK[i] := JXNULLK[i] ∨ ¬P (JXK[i], NULL)
and JZK[i] := S(JXK[i], NULL).

For i ∈ [n], Fmpc evaluate JZNULLK[n + i] := JYNULLK[i] ∨ ¬JXNULLK[i] ∨
¬P (NULL, JY ′K[i]) and JZK[n+ i] := S(NULL, JY ′K[i]).

Full: all parties sending (Join, Left, JXK, J, JY K,K, S′, P ) to
Πjoin and receiving JX ′K in response. They then send
(Join,Union, JX ′K, J, JY K,K, S′′, P ′) to Πjoin and output the re-
sponse, where S′, S′′ and P ′ are appropriately updated version of S, P .

Figure 6: Join protocols Πmap and Πjoin.
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[Join] Upon receiving command (Join, type, JXK, J, JY K,K, S, P ) from all par-
ties. J,K index the join columns of X,Y respectively. Let nX and nY denote
the number of rows in X,Y respectively. Define Keys(X, J, i) = (Xj [i])j∈J .
Output the table JZK defined by the case type:

Inner: Let the rows of Z be {S(X[i], Y [j]) | ∃i, j s.t. ¬XNULL[i] ∧ ¬YNULL[j] ∧
Keys(X, J, i)=Keys(Y,K, j)∧P (X[i], Y [i])} along with zero or more
NULL rows s.t. Z has nX rows.

Left: Let the rows of Z be {S(X[i], Y [j]) | ∃i, j s.t. ¬XNULL[i] ∧ ¬YNULL[j] ∧
Keys(X, J, i)=Keys(Y,K, j) ∧ P (X[i], Y [i])} ∪ {S(X[i], NULL) |
∃i,∀j s.t. ¬XNULL[i]∧Keys(X, J, i) 6= Keys(Y,K, j)∧ P (X[i], NULL)}
along with zero or more NULL rows s.t. Z has nX rows.

Union: Let the rows of Z be {S(X[i], NULL) | ∃i s.t. ¬XNULL[i] ∧
P (X[i], NULL)}∪{S(NULL, Y [i]) | ∃i,∀j s.t. ¬YNULL[i]∧Keys(X, J, j) 6=
Keys(Y,K, i)∧P (NULL, Y [i])} along with zero or more NULL rows s.t.
Z has nX + nY rows.

Full: Let the rows of Z be {S(X[i], Y [j]) | ∃i, j s.t. ¬XNULL[i] ∧ ¬YNULL[j] ∧
Keys(X, J, i)=Keys(Y,K, j) ∧ P (X[i], Y [i])} ∪ {S(NULL, Y [i]) |
∃i,∀j s.t. ¬YNULL[i]∧Keys(X, J, j) 6= Keys(Y,K, i)∧P (NULL, Y [i])}∪
{S(X[i], NULL) | ∃i,∀j s.t. ¬XNULL[i]∧Keys(X, J, i) 6= Keys(Y,K, j)∧
P (X[i], NULL)}

Figure 7: Join functionality Fjoin.
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to P0 learning the duplicate distribution. This is achieved by requiring the left table
X contain the duplicates rows. After learning the randomized encodings for this
table P0 can program the switching networks appropriately to query the duplicate
locations in the cuckoo hash table.

When both tables contain duplicates we fall back to a less secure protocol archi-
tecture. This is required due to the cuckoo table not supporting duplicates. First,
P1 samples two random permutations π0, π1 and computes X ′ = π1(X), Y ′ = π2(Y )
using the oblivious permutation protocol. P0 then learns all of the randomized en-
codings for the permuted tables X ′ and Y ′. Given this, P0 can compute the size
of the output table and inform the other two parties of it. Alternatively, an upper
bound on the output table size can be communicated. Let n′ denote this value. P0

can then construct two switching networks which map the rows of X ′ and Y ′ to the
appropriate rows of the output table. The main disadvantage of this approach is
that P0 learns the size of the output, the distribution of duplicate rows and how
these duplicate rows are multiplied together. However, unlike [LTW13] which takes
a conceptually similar approach, our protocol does not leak any information to P1

and P2, besides the value n′.

3.6 Revealing Results

Revealing a secret shared table JXK requires two operations. First observe that the
data in the NULL rows is not cleared out by the join protocols. This is done as an
optimization. As such naively reconstructing these rows would lead to significant
leakage. Instead X[i] is updated as X[i] = (¬XNULL[i]) ·X[i]. The second operation
is to perform an oblivious shuffle of the rows. This operation randomly reorders all
the rows without revealing the ordering to any of the parties. In general this step
is necessary since the original ordering of the result table is input-dependent. For
example, say X is a list of patents info, Y is patent billing status, and Z is a list
of patent diseases. Say we reveal select X.name, Y.balance from X,Y on X.id
= Y.id and select X.gender, Z.desease from X,Z on X.id = Z.id. Without re-
ordering you could connect X.name,X.gender, Y.balance and Z.desease by the row
index and infer secret information. However, by randomly shuffling this connection
is destroyed and the reveal can be simulated.

4 Computing a Function of a Table

In addition to join queries, our framework can perform computation on a single
secret shared table. For example, selecting X1 + X2 where X3 > 42. For each row
i we generate the corresponding output row Z[i] by computing the new NULL-bit as
ZNULL[i] := XNULL[i]∨P (X[i]) where P (·) is the where predicate. The new column(s),
e.g. Z1 = X1 +X2, can then be constructed in a straightforward MPC protocol, e.g.
[MR18, AFL+16]. The key property is that all of the operations are with respect to
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a single row of X, allowing them to be evaluated in parallel.
Our framework also considers a second class of functions on a table that allow

computation between rows. For example, computing the sum of a column. We refer
to this broad class of operations as an aggregation function. Depending on the exact
computation, various levels of efficiencies can be achieved. Our primary approach
is to employ the ABY3 framework [MR18] to express the desired computation in an
efficient way and then to evaluate the resulting circuit. Next we highlight a sampling
of some important aggregation operations:

� Sum: For a column JXjK, compute JsK =
∑

iJXjK[i] where Xj [i] ∈ Z2` and i in-
dexes only non-NULL rows. The parties compute JsKA :=

∑
i∈[n] B2A((¬JXNULLK[i])·

JXjK[i]) where B2A is the boolean to arithmetic share conversion of [MR18].
In total this requires 2n` binary gates and ` + 1 rounds[MR18]. The parties
can then convert JsKA back to JsK if desired.

� Count/Cardinality: Here, we consider two cases. 1) In the general case there is
an arbitrary table over which the count is being computed. This is performed
by computing JsKA :=

∑
i∈[n] B2A(¬JXNULLK[i])

2) Consider case where some of the parties should learn the cardinality of a
join without a where clause. First, w.l.o.g. let us assume that P2 should learn
the cardinality. The randomized encodings Ex,Ey are respectively revealed P0

and P1 as done in the standard join protocol. These encodings are then sent
to P2 in a random order. P2 outputs |Ex ∩ Ey| as the count/cardinality. In
the event that P0 or P1 should also learn the cardinality, P2 sends |Ex ∩ Ey|
to them.

� Min/Max: We propose a recursive algorithm where the min/max of the first
and second half of the rows is recursively computed. The final result is then
the min/max of these two values. Concerning NULL rows, the corresponding
value can be initialized to a maximum or minimum sentential value which
guarantee that the other value will be propagated. The overall complexity of
this approach is O(n`) binary gates and O(`logn) rounds when using a basic
comparison circuit[MR18].

More generally, any polynomial time function can generically be expressed using
the ABY3 framework[MR18]. However, the resulting efficiency may not be adequate
for practical deployment.

5 Applications

5.1 Voter Registration

Improving the privacy and integrity of the United States voter registration system
was a primary motivation of the developed protocols. In the United States Electoral
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College, each state has the responsibility of maintaining their own list of registered
citizens. A shortcoming of this distributed process is that without coordination
between states it is possible for a voter to register in more than one state. If this
person then went on to cast more than one vote the integrity of the system would
be compromised. In the case of double registering, it is often a result of a person
moving to a new state and failing to unregister from the old state. Alternatively,
when a voter moves to a new state it may take them some time to register in the
new state, and as such their vote may go uncast. The Pew Charitable Trust[Smi14]
reported 1 in 8 voter registration records in the United States contains a serious
error while 1 in 4 eligible citizens remain unregistered. The goal in this application
of our framework is to improve the accuracy of the voting registration data and help
register eligible voters.

A naive solution to this problem is to construct a centralized database of all
the registered voters and citizen records. It is then a relatively straightforward pro-
cess to identify persons with inaccurate records, attempt to double register or are
simply not register at all. However, the construction of such a centralized repos-
itory of information has long had strong opposition in the United States due to
concerns of data privacy and excessive government overreach. As a compromise
many states have volunteered to join the Electronic Registration Information Cen-
ter (ERIC)[eri18] which is a non-profit organization with the mission of assisting
states to improve the accuracy of America’s voter rolls and increase access to voter
registration for all eligible citizens. This organization acts as a semi-trusted third
party which maintains a centralized database containing hashes of the relevant in-
formation, e.g. names, addresses, drivers license number and social security number.

We propose adding another layer of security with the deployment of our secure
database join framework. Within a single state, different agencies will first secret
share their data to construct a join table containing the registration status of ev-
eryone within that state. This joined table can then be joined with the respective
table from all of the other stated. In total, there would be 50 intra-state joins and
then 50× 49 inter-state joins.

We envision that the intra-state join will be perform with ERIC and the state
agencies as the participating parties. The inter-state joins can then be performed by
ERIC and one of the agencies from each state. This ensures that the data remains
secret shared at all times. The data that each state requires can then be revealed
at the end of the computation. For more details see Appendix A.

The average US state has an approximate population of 5 million with about
4 million of that being of voting age. For this set size, our protocol is capable of
performing the specified query in 30 seconds and 6GB of total communication. If
we consider running the same query where one of the states is California with a
voting population of 30 million, our protocol can identify the relevant records in five
minutes. For a more details see Section 6.
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5.2 Threat Log Comparison

Another motivating application is referred to as threat log comparison where multi-
ple organizations share data about current attacks on their computer networks. The
goal of sharing this data is to allow the participating parties to identify and stop
threats in a more timely manner. Facebook has a service called ThreatExchange[thr18]
which provides this functionality. One drawback of the Facebook approach is that
all of the data is collected on their servers and is often viewable by the other par-
ticipants. This architecture inherently relies on trusting Facebook with this data.

We propose using our distributed protocol to provide a similar functionality
while reducing the amount of trust in any single party, e.g. Facebook. In this
setting we consider a moderate number of parties each holding a dataset containing
the suspicious events on their network along with possible meta data on that event,
e.g. how many times that event occurred. All of the parties input these sets into our
join framework where the occurrences of each event type are counted. An example
of such an event is the IP address that makes a suspicious request.

There are at least two ways to securely compute the occurrences of these events.
One method is to perform a full join of all the events where the counts are added
together during each join. The resulting table would contain all of the events and
the number of times that each event occurred. The drawback of this approach is
that each full joins require performing a left join followed by a union, twice the
overhead compared to other join operations.

Now consider a different strategy for this problem. First, the parties can compute
and reveal the union of the events. Given this information the parties can locally
compute the number of times this event occurred on their network and secret share
this information between the parties. The parties then add together this vector of
secret shared counts and reveal it.

One shortcoming of this approach is no ability to limit which events are revealed.
For example, it can be desirable to only reveal an event if it happens on k out of
the n networks. This can be achieved by having the parties compute and reveal
the randomized encodings for all of the items in the union, instead of the items
themselves. Under the same encoding key, each party holding a set employs the
three server parties to compute the randomized encodings for the items in their set.
These encodings are revealed to the party holding the set. For each encoding in
the union, the parties use the MPC protocol to compute the number of occurrences
that event had and conditionally reveal the value. For example, if at least k of
the networks observed the event. Other computation on meta data can also be
performed as this stage.
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6 Experiments

We implemented our full set of protocols and applications along with a performance
evaluation of them here. They will be open source. We considered set intersec-
tion (without associated values), our various join and union operations, intersection
cardinality, and intersection sum of key-value pairs along with the two application
described in Section 5. We also compare to protocols that offer a similar function-
ality, i.e. [KKRT16, PSWW18, BA12, CGT12, IKN+17]. Our implementation is
written in c++ and building on primitives provided by [Rin]. Crucial to the per-
formance of implementation is the widespread use of SIMD instructions that allow
processing 128 binary gates with a throughput of one cycle.

Experimental Setup. We performed all of our experiments on a single server acquired
in 2015 which is equipped with two 18 core CPUs at 2.7 GHz and 256 GB of RAM.
Despite having many cores, our implementation restricts each party to a single
thread. We note this is a limitation of development time/resources and not of the
protocols themselves. The parties communicate over a loopback device on the local
area network which allows to shape the traffic flow to emulate a LAN and WAN
setting. Specifically, the LAN setting allows 10 Gbps throughput with a latency of
a quarter millisecond while the WAN setting allows an average 100 Mbps and 40
millisecond latency. Despite having such a fast LAN bandwidth, our protocol only
utilizes a peak bandwidth of 1Gbps.

All cryptographic operations are performed with computational security pa-
rameter κ = 128 and statistical security λ = 40. We consider set/table sizes of
n ∈ {28, 212, 216, 220, 224} and n = 226 in some cases. Times are reported as the
average of several trials.

Set Intersection. We first consider set intersection. In this case the two tables of
our protocol consist of a single column which is used as the join-key. We compare
our protocol to [KKRT16] which is a two party set intersection protocol where the
input sets each are known in the clear to one of the parties and one party learns
the intersection exactly. This is contrasted by our three party protocol where the
input and output sets are secret shared between the parties. That is, our protocol
is composable & supports outsourced MPC while [KKRT16] does not and can not
be trivially modified to do so without a large overhead. Both our protocol and
[KKRT16] were benchmarked on the same hardware. We also compare to the three
party protocol of [BA12] which is composable and was not benchmarked on the same
hardware. Due to the code of the [BA12] protocol not being publicly available, we
cite their benchmarks which were performed on three AMD Opteron computers at
2.6GHz connected on a 1Gbps LAN network. Given the relative performance of
our machines, we believe this to yield a fair comparison. This protocol first sorts
the two input sets/tables which in practice requires O(n log2 n) overhead[BA12]. In
contrast, our protocol and [KKRT16] has O(n) overhead and O(1) rounds.

This asymptotic difference also translates to a large difference in the concrete
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LAN Time (sec.) WAN Time (sec.) Total Communication (MB)

Operation
Protocol, n n n
# Parties 28 212 216 220 224 28 212 216 220 224 28 212 216 220 224

Intersection
This ,3 0.02 0.03 0.2 4.9 117 2.3 2.5 6.4 41.4 902 0.2 3.0 48.1 769.4 12,318
[KKRT16] ,2 0.2 0.2 0.4 3.8 58 0.6 0.6 1.3 7.5 106 0.04 0.5 8.1 127.2 1,955
[BA12]∗ ,3 2.9 23.4 374.4 ∗5,990.4 ∗95,846 – – – – – – – – – –

Joins/Union
This ,3 0.02 0.03 0.3 9.1 192 2.6 2.9 6.6 61.4 1,337 0.3 4.9 78.1 1,249.4 19,998
[LTW13]∗ ,3 2.0 8.0 128.0 ∗2,048.0 ∗32,768 – – – – – – – – – –

Cardinality
This ,3 0.01 0.02 0.2 3.1 74 1.1 1.1 1.8 15.8 267 0.1 2.0 32.6 521.5 8,344
[PSWW18]a ,2 ∗0.1 2.2 9.1 86.6 ∗1385 – 10.0 45.3 389.9 ∗6,238 – 52.7 826.1 9,971.4 ∗159,542
[PSWW18]b ,2 – – – – – – 13.0 56.2 ∗899.2 ∗14,387 – 14.3 171.3 ∗2,740.8 ∗43,852
[CGT12] ,2 1.0 16.0 262.0 4190.0 67,100 – – – – – 0.1 0.4 6.2 99.0 1,584

Sum
This ,3 0.03 0.04 0.3 6.8 158 3.7 4.0 7.9 51.0 1,099 0.3 2.0 33.1 526.5 8,372
[IKN+17] ,2 7.0 115.0 1,860.0 29,700.0 475,000 – – – – – 0.1 1.9 30.2 483.0 7,728

Voter Intra-state This ,3 0.01 0.02 0.2 4.7 114 1.0 1.0 2.2 27.1 456 0.2 3.4 54.1 867.1 13,903
Voter Inter-state This ,3 0.01 0.02 0.3 7.0 134 1.6 1.6 4.0 45.4 747 0.4 5.7 91.3 1,463.9 23,482
Threat Log N = 2 This ,3 0.02 0.03 0.2 5.1 121 2.4 2.5 4.8 34.6 585 0.2 3.1 50.2 804.2 12,867
Threat Log N = 4 This ,3 0.05 0.09 0.9 17.9 388 6.6 6.8 13.1 108.7 1,739 0.6 9.7 155.4 2,487.8 39,804
Threat Log N = 8 This ,3 0.10 0.19 1.7 47.1 1,021 14.9 15.3 30.0 264.3 4,228 1.4 22.8 365.7 5,854.9 93,677

Figure 8: The running time in seconds and communication overhead in MB for
various join operations and application. The input tables each contain n rows. The
[PSWW18] protocol has two implementation where [PSWW18]b is optimized for
the WAN setting. – denotes that the running time is not available. * denotes that
the running times were linearly extrapolated from the values of n provided by the
publication.

running time as shown in Figure 8. Out of these three protocol [KKRT16] is the
fastest requiring 3.8 seconds in the LAN setting to intersect two sets of size n = 220

while our protocol requires 4.9 seconds. However, our protocol is fully composable
while [KKRT16] is not. Considering this we argue that a slowdown of 1.28× is
acceptable. When compared to [BA12] which provides the same composable func-
tionality, our protocol is estimated3 to be 1220× faster.

In the WAN setting our protocol has a relative slowdown compared to [KKRT16].
This can be contributed to our protocol requiring more rounds and communication.
For instance, with n = 220 the protocol of [KKRT16] in the WAN setting requires
7.5 seconds while our protocol requires 41 seconds, a difference of 5.5×. With
respect to the communication overhead, our protocol for n = 220 requires 769 MB
of communication and [KKRT16] requires 127 MB, a difference of 6×. The WAN
running time and communication overhead of [BA12] is not known due to their code
not being publicly available.

Joins/Union. The second point of comparison is performing an inner join protocol
on two tables consisting of five columns of 32-bit values. We note that [BA12] is
capable of this task but no performance results were available. Instead we compare
with the join protocol of [LTW13]. This protocol is composable but requires that the
cardinality of the intersection be revealed after each join is performed. As previously
discussed, this leakage limits the suitability of the protocol in many applications.
The numbers reported for [LTW13] are from their paper and the experiments were
performed on three servers each with 12 CPUs at 3GHz in the LAN setting. As

3We linearly extrapolate the overhead of their protocol, despite having O(n logn) complexity.
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can be seen in Figure 8, we estimate4 our protocol is roughly 200× faster in the
LAN setting. For example, with n = 220 our protocol requires a running time of
9.1 seconds while [LTW13] requires a running time of 2048 seconds. Moreover, our
protocol scales quite well with the addition of these extra four columns as compared
to a intersection protocol. For example, in the WAN setting an intersection with
n = 220 requires 41 seconds while the addition of the four columns results in a
running time of 61 seconds. For both protocols, operations such as left join and
unions can be performed with little to no additional computation as compared to
inner join.

We observed the following relative performance of the various operations of our
protocol. Secret sharing the input tables tool 3% of the time, computing the ran-
domized encodings via Πencode required 50%, constructing the cuckoo hash table
via ΠPermute required 6%, selecting the rows from the cuckoo table required 26%,
and the final circuit computation via Fmpc required 14%. These percentages were
obtained for n = 220 in the LAN setting and hold relatively stable regardless of n.

Cardinality. The set cardinality protocol presented here also outperforms all previ-
ous protocols. As described in Section 4, our cardinality protocol allows the omission
of the switching network which reduces the amount of communication and overall
running time. We demonstrate the performance by comparing with the two-party
protocols of Pinkas et al. [PSWW18] and De Cristofaro et al. [CGT12]. The
protocol of [PSWW18] was benchmarked on two multi-core i7 machines at 3.7GHz
and 16GB of RAM with similar network settings. For the protocol of [CGT12], we
performed rough estimates on the time required for our machine to perform the com-
putation without any communication overhead. For sets of size n = 220 our protocol
requires 3.1 seconds in the LAN setting and 15.8 in the WAN setting. The next
fastest protocol is [PSWW18] which requires 86.6 seconds in the LAN setting and
390 seconds in the WAN setting. In both cases this represents more than a 20× dif-
ference in running time. [PSWW18] considers a variant of their protocol optimized
for the WAN setting which reduces their communication at the expense of increased
running time. The protocol of [CGT12] requires the most running time by a large
margin due to the protocol being based on exponentiation. Just to locally perform
these public key operations requires roughly 4200 seconds of computation on our
benchmark machine, a difference of 1350×. However, the protocol of [CGT12] also
requires the least amount of communication, consisting of 99MB for n = 220 while
our protocol requires 521MB followed by [PSWW18] with almost 10GB.

Sum. The last generic comparison we perform is for securely computing the weighted
sum of the intersection. Our protocol for performing this task is described in Sec-
tion 4. We compare to the protocol of Ion et al. [IKN+17] which is the protocol
behind Google’s Join-and-Compute. This protocol can be viewed as an extension of
the public key based cardinality protocol of [CGT12]. In particular, [IKN+17] also

4Again, we linearly extrapolate the overhead of the protocol.
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revealed the cardinality of the intersection and then performs a secondary compu-
tation using Paillier homomorphic encryption to compute the sum. Although this
protocol reveals more information than ours, we still think it is a valuable point of
comparison. Not surprisingly, the protocol of [IKN+17] requires significantly more
computation time than our protocol. For a dataset size of n = 220, their protocol
requires almost 30000 seconds to just perform the public key operations without any
communication. Our protocol requires just 6.8 seconds in the LAN setting and 51
in the WAN setting. Both of these protocols also consume roughly the same amount
of communication with [IKN+17] requiring 483 MB and our protocol requires 527
MB, a increase of just 9 percent.

Voter Registration. We now turn our attention to the application of auditing the
voter registration data between and within the states of the United States as de-
scribed in Section 5.1 & Appendix A. In summary, this application checks that a
registered voter is not registered in more than one state and cross validates that
their current address is correct. Only the identities of the voters which have con-
flicting data are revealed to the appropriate state to facilitate a process to contact
the individual. In addition, the application can be extended to assist the process of
enrolling unregistered citizens. This audit process is performed using two types of
join queries. First, each state computes a left join between the DMV database and
the list of registered voters. In Figure 9 we call this join Voter Intra-state. For all
pairs of states, these tables are then joined to identify any registration error, e.g.
double registered. This join is referred to as Voter Inter-state. Performance metrics
are reported for each of these joins individually and then we estimate the total cost
to perform the computation nation wide.

As shown in Figure 9, our protocol can perform the Voter Intra-state join with
an input set size of 16 million voters (n = 224) in 115 seconds on a LAN network
and in 456 seconds on a WAN network. Considering all but three states have a
voting population less than n = 224, we consider this a realistic estimate on the
running time overhead. Our protocol also achieves relatively good communication
overhead of 13.9 GB, where each of the servers sends roughly one third of this. On
average, that is 830 bytes for each of the n records. Given these tables, the Voter
Inter-state join is performed between all pairs of states. For two states with n = 224,
the benchmark machine required 135 seconds in the LAN setting and 748 seconds in
the WAN setting. The added overhead in this second join protocol is an additional
where clause which requires a moderate sized binary circuit to be securely evaluated.
This join requires 23.4 GB of communication.

Given the high value and low frequency of this computation we argue that these
computational overheads are very reasonable. Given the current population esti-
mates of each state, we extrapolate that the overall running time to run the protocol
between all pairs of 50 states in a LAN setting would be 53,340 seconds (14.8 hours)
or 285,687 seconds (about 80 hours) in the WAN setting. However, the running
time in the WAN setting could easily be reduced by running protocols in parallel
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and increasing the bandwidth above the relatively low 100Mbps per party. The
total communication overhead is 9,131 GB which is the main bottleneck. While this
amount of communication is non-negligible, the actual dollar amount on a cloud
such as AWS[aws18] is relatively low (given the importance of the computation),
totaling roughly $820[Has17].

Threat Log. In this application N party secret share their data between the three
computational parties and delegate the task of identifying the events that appear in
at least k out of the N data sets. As described in Section 5.2, the protocol proceeds
by taking the union of the sets and then the number of times each event occurred
is counted and compared against k. Each event that appears more than k times is
then revealed to all parties. The union protocol can only function with respect to
two input sets. To compute the union of N sets we use a binary tree structure where
pairs of sets are combined. As such, there are a total of N − 1 union operations and
a depth of logN protocol instances.

When benchmarking we consider N = {2, 4, 8} input sets each of size n ∈
{28, 212, 216, 220, 224}. Since we do not reveal the size of the union, the final ta-
ble will be of size nN . For N = 2 sets each with n = 224 items our protocol requires
121 seconds in the LAN setting and 586 seconds in the WAN setting. The total
communication is 804MB, or approximately 24 bytes per record. If we increase the
number of sets to N = 8 we observe that the LAN running time increases to 1,021
seconds and 4,228 seconds in the WAN setting. Given the the total input size in-
creased by 4×, we observe roughly an 8× increase in running time. This difference is
due to each successive union operation being twice as big. Theoretically the running
time and communication of this protocol is O(nN logN).
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LAN WAN

Application
n n

28 212 216 220 224 226 28 212 216 220 224 226

Voter Intra-state 0.01 0.02 0.2 4.7 114.7 2,190.1 1.0 1.0 2.2 27.1 456.1 7,463.9

Voter Inter-state 0.01 0.02 0.3 7.0 134.8 2,546.4 1.6 1.6 4.0 45.4 747.7 12,284.1

Threat Log N = 2 0.02 0.03 0.2 5.1 121.4 488.1 2.4 2.5 4.8 34.6 585.6 2,342.4

Threat Log N = 4 0.05 0.09 0.9 17.9 388.4 1,553.9 6.6 6.8 13.1 108.7 1,739.2 6,956.8

Threat Log N = 8 0.10 0.19 1.7 47.1 1,021.0 16,336.1 14.9 15.3 30.0 264.3 4,228.8 16,915.2

Figure 9: The running time in seconds for the Voter Registration and Threat Log
applications. The input tables each contain n rows.

A Voter Query Details

Given the problem statement from 5.1, a naive solution is to construct a central-
ized database of all the registered voters and citizen records. It is then a relatively
straightforward process to identify persons with inaccurate records, attempt to dou-
ble register or are simply not register at all. However, the construction of such a
centralized repository of information has long had strong opposition in the United
States due to concerns of data privacy and excessive government overreach. As a
compromise many states have volunteered to join the Electronic Registration Infor-
mation Center (ERIC)[eri18] which is a non-profit organization with the mission of
assisting states to improve the accuracy of America’s voter rolls and increase access
to voter registration for all eligible citizens. This organization acts as a semi-trusted
third party which maintains a centralized database containing hashes of the rele-
vant information, e.g. names, addresses, drivers license number and social security
number.

In particular, instead of storing this sensitive information in plaintext, all records
are randomized using two cryptographically strong salted hash functions. Roughly
speaking, before this sensitive information is sent to ERIC, each state is provided
with the first salt value salt1 and updates each value v as v := H(salt1||v). This
hashed data is then sent to ERIC where the data is hashed a second time by ERIC
which possesses the other salt value. The desired comparisons can then be applied
to the hashed data inside ERIC’s secure data center. When compared with existing
alternative, this approach provides a moderate degree of protection. In particular,
so long as the salt values remain inaccessible by the adversary, deanatomized any
given record is likely non-trivial. However, a long series of works, e.g. [NS06, Mer12,
DSS12, OGE16, ZW18], have shown that a significant amount of information can be
extracted with sophisticated statistical techniques. Moreover, should the adversary
possess the salt values a straightforward dictionary attack can be applied.

We propose adding another layer of security with the deployment of our secure
database join framework. In particular, two or more of the states and ERIC will
participate in the MPC protocol. From here we consider two possible solutions.
The first option is to maintain the existing repository but now have it secret shared
between the computational parties. Alternatively, each state could be the long-term
holder of their own data and the states perform all pairwise comparison amongst

33



themselves. For reason of preferring the more distributed setting we further explore
the pairwise comparison approach.

The situation is further complicated by how this data is distributed within and
between states. In the typical setting no single state organization has sufficient
information to identify individuals which are incorrectly or double registered. For
example, typical voter registration forms requires a name, home address and state
ID/driver’s license number. If two states compared this information there would be
no reliable attribute for joining the two records. The name of the voter could be
used but names are far from a unique identifier. The solution taken by ERIC is
to first perform a join between a state’s registered voters and their Department of
Motor Vehicles (DMV) records, using the state ID/driver’s license number as the
join-key. Since the DMV typically possesses an individual’s Social Security Number
(SSN), this can now be used as a unique identifier across all states. However, due
to regulations within some states this join is only allowed to be performed on the
hashed data or, presumably, on secret shared data.

In addition to identifying individuals that are double registered, the mission
of ERIC is to generally improve the accuracy of all voter records. This includes
identifying individuals that have moved and not yet registered in their new state or
that have simply moved within a state and not updated their current address. In
this case the joins between/within states should also include an indicator denoting
that an individual has updated their address at a DMV which is different than the
voter registration record. There are likely other scenarios which ERIC also identifies
but we leave the exploration of them to future work.

Given the building blocks of Section 3 it is a relatively straightforward task to
perform the required joins. First a state performs a left join between their DMV
data and the voter registration data. Within this join the addresses in the inner join
are compared. In the event of a discrepancy, the date of when these addresses were
obtained can be compared to identify the most up to date address. Moreover, the
agency with the older address can be notified and initial a procedure to determine
which, if any, of the addresses should be updated.

Once this join is performed, each state holds a secret shared table of all their
citizens that possess a state ID and their current registration status. Each pair of
states can then run an inner join protocol using the social security number as the
key. There are several cases that a result record can be in. First it is possible for
a person to have a DMV record in two states and be registered in neither. The
identity of these persons should not be revealed as this does not effect the voting
process. The next case is that a person is registered in both states. We wish to
reveal this group to both states so that the appropriate action can be taken. The
final case that we are interested in is when a person is registered in state A and
has a newer DMV address in state B. In this case we want to reveal the identity of
the person to the state that they are registered to. This state can then contact the
person to inquire whether they wish to switch their registration to the new state.
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This approach has additional advantages over the hashing technique of ERIC.
First, all of the highly sensitive information such as a persons address, state ID
number and SSN can still be hashed before being added to the database5. However,
now that the data is secret shared less sensitive information such as dates need not
be hashed. This allows for the more expressive query described above which uses a
numerical comparison. To achieve the the same functionality using the current ERIC
approach these dates would have to be stored in plaintext which leaks significant
information. In addition, when the ERIC approach performs these comparison the
truth value for each party of the predicate is revealed. Our approach reveals no
information about any intermediate value.

stateA = select DMV.name,

DMV.ID,

DMV.SSN,

DVM.date > V oter.date ?

DMV.date : V oter.date as date,

DVM.date > V oter.date ?

DMV.address : V oter.address as address,

DVM.address 6= V oter.address as mixedAddress,

V oter.name 6= NULL as registered

from DMV left join V oter

on DMV.ID = V oter.ID

stateB = select ...

resultA = select stateA.SSN

stateA.address as addressA

stateB.address as addressB

stateA.registered

stateB.registered

from stateA inner join stateB

on stateA.SSN = stateB.SSN

where (stateA.date < stateB.date and stateA.registered)

or (stateA.registered and stateB.registered)

resultB = select ...

Figure 10: SQL styled join query for the ERIC voter registration application.

Once the parties construct the tables in Figure 10, state A can query the table
stateA to reveal all IDs and addresses where the mixedAddress attribute is set to
true. This reveals exactly the people who have conflicting addresses between that
state’s voter and DMV databases. When comparing voter registration data between

5The hashing originally performed by ERIC can be replaced with the randomized encoding
protocol.
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Parameters: 3 parties denoted as Pp, Ps and Pr. Elements are strings in Σ := {0, 1}σ.
An input, output vector size of n,m.

[Permute] Upon the command (Permute, π, ⟪A⟫0) from Pp and (Permute, ⟪A⟫1)
from Ps. Require that π : [m]→ [n] is injective and ⟪A⟫0, ⟪A⟫1 ∈ Σn. Then:

1. Pp uniformly samples a bijection π0 : [n]→ [n] and let π1 : [n]→ [m] s.t. π1◦π0 = π.
Pp sends π0 and S ← Σn to Ps.

2. Ps sends B := (⟪Aπ0(1)⟫1 ⊕ S1, ..., ⟪Aπ0(n)⟫1 ⊕ Sn) to Pr.

3. Pp sends π1 and T ← Σm to Pr who outputs ⟪A′⟫0 := {Bπ1(1)⊕T1, ..., Bπ1(m)⊕Tm}.
Pp outputs ⟪A′⟫1 := {Sπ1(1) ⊕ T1 ⊕ ⟪Aπ(1)⟫0, ..., Sπ1(m) ⊕ Tm ⊕ ⟪Aπ(m)⟫0}.

Figure 11: The Oblivious Permutation Network protocol Πpermute repeated.

Parameters: 3 parties denoted as the Pp, Ps and Pr. Elements are strings in Σ := {0, 1}σ.
An input vector size of n and output size of m.
[Permute] Upon the command (Permute, π, ⟪A⟫0) from the Pp and
(Permute, ⟪A⟫1) from the Ps:

1. Interpret π : [m]→ [n] as an injective function and A ∈ Σn.

2. Compute A′ ∈ Σm s.t. ∀i ∈ [m], Aπ(i) = A′i.

3. Generate ⟪A′⟫ and send ⟪A′⟫0 to Pp and ⟪A′⟫1 to Pr.

Figure 12: The Oblivious Permutation Network ideal functionality Fpermute.

states, state B should define stateB in a symmetric manner as stateA. The table
resultA contains all of the records which are revealed to state A and resultB, which
is symmetrically defined, contains the results for state B. We note that resultA and
resultB can be constructed with only one join.

Both types of these queries can easily be performed in our secure framework.
All of the conditional logic for the select and where clauses are implemented using
a binary circuit immediately after the primary join protocol is performed. This has
the effect that overhead of these operation is simply the size of the circuit which
implements the logic times the number of potential rows contained in the output.

B Omitted Proofs

B.1 Permutation Network

We now formally prove that the oblivious permutation network protocol in Figure 5
and repeated in Figure 11 is secure with respect to the Fpermute functionality of
Figure 12.
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Theorem 1. Protocol Πpermute of Figure 11 securely realized the ideal functionality
Fpermute of Figure 12 given at most one party is corrupted in the semi-honest model.

Proof. Correctness follows directly from π1 ◦ π0 = π and that the masks cancel out.
With respect to simulation, consider the following three cases:

1. Corrupt Pp: The view of Pp contains no messages and therefore is trivial to
simulation.

2. Corrupt Ps: The view of Pp contains π1, S which are sent by Pp. The simulator
can uniformly sample π1 : [m] → [n] from all such injective functions and
uniformly sample S ← Σn. Clearly S has the same distribution.

With respect to π1, observe if π1 if first fixed uniformly at random then there
are exactly (n−m)! ways to choose π0. Moreover, for each choice of π1 there
is a disjoint set of possible π0 values. Therefore, Pp sampling π0 uniformly at
random results in the distribution of π1 also being uniform.

3. Corrupt Pr: The view of Pr contains B := (Aπ0(1) ⊕ S1, ..., Aπ0(n) ⊕ Sn) and
π1, T ∈ Σm. π1, T are sampled uniformly and therefore trivial to simulation.
similarly, each Bi = Aπ0(i)⊕Si where Si is uniformly distributed in their view.
Therefore Bi is similarly distributed.

B.2 Duplication Network

We now formally prove that the oblivious duplication network protocol in Figure 5
and repeated in Figure 11 is secure with respect to the Fdup functionality of Fig-
ure 14.

Theorem 2. Protocol Πduplicate of Figure 13 securely realized the ideal functionality
Fduplicate of Figure 14 given at most one party is corrupted in the semi-honest
model.

Proof. Correctness follows an inductive argument. It is easy to verify B1 = ⟪A1⟫1
and that this is correct since π(1) = 1 by definition. Inductively let us assume that
Bi−1 = ⟪Aπ(i−1)⟫1 and we will show that Bi = ⟪Aπ(i)⟫1. Observe that for i ∈ [2, n]

⟪Bi⟫0 = M bi
i ⊕W ρi

i ⊕ bi⟪Bi−1⟫0
= bi⟪Ai⟫0 ⊕ bi⟪Bi−1⟫1 ⊕ ⟪Bi⟫1 ⊕W bi⊕φi

i ⊕W ρi
i ⊕ bi⟪Bi−1⟫0

= bi⟪Ai⟫0 ⊕ biBi−1 ⊕ ⟪Bi⟫1
And therefore B = π(⟪A⟫1) and
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Parameters: 3 parties denoted as Pp, Ps and Pr. Elements are strings in Σ := {0, 1}σ.
An input, output vector size of n.

[Duplicate] Upon the command (Duplicate, π, ⟪A⟫0) from Pp and
(Duplicate, ⟪A⟫1) from Ps. Require that π : [n] → [n] s.t π(1) = 1 and
π(i) ∈ {i, π(i− 1)} for i ∈ [2, n] and A ∈ Σn. Then:

1. Pp computes the vector b ∈ {0, 1}m such that b1 = 0 and for i ∈ [2, n], bi = 1 if
π(i) = π(i− 1) and 0 otherwise.

2. Ps samples ⟪B⟫1,W 0,W 1 ← Σn, ⟪B1⟫0 ← Σ and φ← {0, 1}n. Ps redefine ⟪B1⟫1 :=
⟪A1⟫1 ⊕ ⟪B1⟫0. For i ∈ [2, n], Ps sends

M0
i := ⟪Ai⟫1 ⊕ ⟪Bi⟫1 ⊕Wφi

i

M1
i := ⟪Bi−1⟫1 ⊕ ⟪Bi⟫1 ⊕Wφi

i

and ⟪B1⟫0, φ to Pp. Ps sends ⟪B⟫1,W 0,W 1 to Pr.

3. Pp sends ρ := φ ⊕ b, R ← Σn to Pr who responds with {W ρi
i : i ∈ [2, n]}. For

i ∈ [2, n], Pp defines

⟪Bi⟫0 := M bi
i ⊕W

ρi
i ⊕ bi⟪Bi−1⟫0

Pp outputs ⟪A′⟫0 := ⟪B⟫0 ⊕R⊕ π(⟪A⟫0) and Pr outputs ⟪A′⟫1 := ⟪B⟫1 ⊕R.

Figure 13: The Oblivious Duplication Network protocol Πduplicate repeated.

Parameters: 3 parties denoted as the Pp, Ps and Pr. Elements are strings in Σ := {0, 1}σ.
An input vector size of n and output size of n.
[Duplicate] Upon the command (Duplicate, π, ⟪A⟫0) from the Pp and
(Duplicate, ⟪A⟫1) from the Ps:

1. Interpret π : [n]→ [n] as a function s.t. π(1) = 1, π(i) ∈ {i, π(i−1)} for i ∈ [2, n]
and A ∈ Σn.

2. Compute A′ ∈ Σm s.t. ∀i ∈ [n], Aπ(i) = A′i.

3. Generate ⟪A′⟫ and send ⟪A′⟫0 to Pp and ⟪A′⟫1 to Pr.

Figure 14: The Oblivious Duplication Network ideal functionality Fduplicate.
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A′ =⟪B⟫1 ⊕R⊕ π(⟪A⟫0)⊕ ⟪B⟫1 ⊕R
=B ⊕ π(⟪A⟫0)
=π(⟪A⟫1)⊕ π(⟪A⟫0)
=π(A)

With respect to simulation, consider the following three cases:

1. Corrupt Pp: The transcript of Pp contains M0,M1 ∈ Σn, ⟪B1⟫0 ∈ Σ, φ ∈
{0, 1}n from Ps and W bi⊕φi

i from Pr. First observe that ⟪B1⟫0, φ are sampled
uniformly and therefore can be simulated as the same.

Next recall that

M bi
i =...⊕ ⟪Bi⟫1

M bi
i =...⊕W bi⊕φi

i

where ⟪Bi⟫1,W bi⊕φi
i ∈ Σ are sampled uniformly can not in the view of Pp.

Therefore M0
i ,M

1
i are distributed uniformly.

2. Corrupt Ps: The transcript of Ps contains nothing and therefore is trivial to
simulate. Note that the distribution of the output shares in independent of
Ps’s random tape (view) due to Pp, Pr re-randomizing the shares with R← Σn.

3. Corrupt Pr: The transcript of Pr contains ⟪B1⟫1,W 0,W 1 from Ps and ρ from
Pp. W 0,W 1 are sampled uniformly and therefore can be simulated as the
same. ⟪B1⟫1 = A1⊕ ⟪B1⟫0 where ⟪B1⟫0 is sampled uniformly and not in the
view. Therefore ⟪B1⟫1 is distributed uniformly. The same applies to ρ since
φ is uniform and not in the view.

B.3 Switching Network

We now formally prove that the oblivious switching network protocol in Figure 5
and repeated in Figure 15 is secure with respect to the Fswitch functionality of
Figure 16. In the proof we will replace calls to the Permutaiton and Duplication
protocols of ΠSwitch with their ideal functionalities (Figure 12, 14).

Theorem 3. Protocol ΠSwitch of Figure 15 securely realized the ideal functionality
Fswitch of Figure 16 given at most one party is corrupted in the semi-honest model.
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Parameters: 3 parties denoted as Pp, Ps and Pr. Elements are strings in Σ := {0, 1}σ.
An input, output vector size of n,m.

[Switch] Upon the command (Switch, π, ⟪A⟫0) from Pp and (Switch, ⟪A⟫1) from Ps

where π : [m]→ [n] and ⟪A⟫0, ⟪A⟫1 ∈ Σn.

1. Pp samples an injection π1 : [m] → [n] s.t. for i ∈ image(π) and k =
|preimage(π, i)|, ∃j where π1(j) = i and {π1(j + 1), ..., π1(j + k)} ∩ image(π) = ∅.
Pp sends (Permute, π1, ⟪A⟫0) to FPermute and Ps sends (Permute, ⟪A⟫1). Pp

receives ⟪B⟫0 ∈ Σm in response and Pr receives ⟪B⟫1 ∈ Σm.

2. Pp defines π2 : [m] → [m] s.t. for i ∈ image(π) and k := |preimage(π, i)| and
j where π1(j) = i, then π2(j) = ... = π2(j + k) = j. Pp and Pr respectively
send (Duplicate, π2, ⟪B⟫0) and (Duplicate, ⟪B⟫1) to FDuplicate. As a result Pp

obtains ⟪C⟫0 ∈ Σm from FDuplicate and Ps obtains ⟪C⟫1 ∈ Σm.

3. Pp computes the permutation π3 : [m] → [m] such that for i ∈ image(π) and
k = |preimage(π, i)|, {π3(`) : ` ∈ preimage(π, i)} = {j, ..., j+k} where i = π1(j). Pp

sends (Permute, π3, ⟪C⟫0) to FPermute and Ps sends (Permute, ⟪C⟫1). Pp receives
S ∈ Σm in response. Pp and Pr respectively receives and outputs ⟪A′⟫0, ⟪A′⟫1 ∈ Σm.

Figure 15: The Oblivious Switching Network protocol Πswitch repeated.

Parameters: 3 parties denoted as the Pp, Ps and Pr. Elements are strings in Σ := {0, 1}σ.
An input vector size of n and output size of m.
[Switch] Upon the command (switch, π, ⟪A⟫0) from the Pp and (switch, ⟪A⟫1) from
the Ps:

1. Interpret π : [m]→ [n] and A ∈ Σn.

2. Compute A′ ∈ Σm s.t. ∀i ∈ [m], Aπ(i) = A′i.

3. Generate ⟪A′⟫ and send ⟪A′⟫0 to Pp and ⟪A′⟫1 to Pr.

Figure 16: The Oblivious Switching Network ideal functionality Fswitch repeated.
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Proof. Correctness follows from the first oblivious permutation call rearranges the
input vector such that each output item which appears k times is followed by k− 1
items which do not appear in the output. The duplication network then copies each
of these output items into the next k − 1 position. The final permutation places
these items in the final order.

With respect to simulation, the transcript of each party contains their transcripts
of three subprotocols: Permute, Shared-Duplicate and Shared-Permute. By Theo-
rem 1 the Permute subprotocol transcript can be simulated. Similarly, Theorem 1,2
also imply that the other two transcripts can be simulated. Therefore this implies
that the overall protocol can be simulated given that no other communication is
performed.

B.4 Join Protocol

Theorem 4. Protocol Πjoin of Figure 6 securely realized the ideal functionality Fjoin

of Figure 7 given at most one party is corrupted in the semi-honest FPermute,FSwitch,Fencode-
hybrid model with statistical security parameters λ.

Proof. First we demonstrate the correctness of the protocol. Recall that the set of
non-join keys {(XJ1 ||...||XJl)[i] | i ∈ [n]} are all distinct. The same holds true for
the Y table. As such, P0 receives n uniformly random values from Fencode. As
discussed in 3.2, given that these encodings are of length at least λ+ 2 log2(n) bits,
then with probability 1− 2−λ all the encodings are distinct.

Recall that P1 then constructs a cuckoo hash table using the encodings Ey. Given
that cuckoo hash table is parameterized as described in [DRRT18], this succeeds with
overwhelming probability, i.e. 1− 2−λ.

The correctness of the rest of the protocol is straight forward. The shared table
JY K are permuted to form a shared cuckoo hash table JT K. Based on the encodings
Ex, the shares in the table T are mapped to the corresponding row of X. It is easy
to verify that if Y has a matching row then it will have been mapped. Finally, Fmpc

is used to compute the circuit which constructs the output table.
With respect to simulation, consider the following cases:

1. Corrupt P0: The transcript of P0 contains the encodings Ex, the output ⟪Ŷ l⟫0
from FSwitch, and the output of Fmpc. Given that the inputs to Fencode are
either set to or all distinct values, the output Ex is uniformly distributed and
therefore can be sample as such by the simulator. Similarly, the output of
FSwitch,Fmpc are both uniform.

2. Corrupt P1: The transcript of P1 contains the encodings Ey, the output ⟪T̂⟫1
from FPermute, the output ⟪Ŷ l⟫1 from FSwitch, and the output of Fmpc. All
of these are distributed uniformly. The simulation of this transcript follows
the same as that of P0.
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3. Corrupt P2: The transcript of P2 contains the output ⟪T̂⟫0 from FPermute,
the output ⟪Ŷ l⟫0 from FSwitch, and the output of Fmpc. All of these are
distributed uniformly. The simulation of this transcript follows the same as
that of P0.
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