
SIKE Round 2 Speed Record
on ARM Cortex-M4

Hwajeong Seo1, Amir Jalali2 and Reza Azarderakhsh2

IT Department, Hansung University, Seoul, South Korea, hwajeong84@gmail.com
Department of Computer and Electrical Engineering and Computer Science,

Florida Atlantic University, FL, USA,
ajalali2016@fau.edu, razarderakhsh@fau.edu

Abstract. We present the first practical software implementation of Supersingular
Isogeny Key Encapsulation (SIKE) round 2, targeting NIST’s 1, 2, and 5 security
levels on 32-bit ARM Cortex-M4 microcontrollers. The proposed library introduces a
new speed record of SIKE protocol on the target platform. We achieved this record
by adopting several state-of-the-art engineering techniques as well as highly-optimized
hand-crafted assembly implementation of finite field arithmetic. In particular, we
carefully redesign the previous optimized implementations of filed arithmetic on 32-bit
ARM Cortex-M4 platform and propose a set of novel techniques which are explicitly
suitable for SIKE/SIDH primes. Moreover, the proposed arithmetic implementations
are fully scalable to larger bit-length integers and can be adopted over different
security levels. The benchmark result on STM32F4 Discovery board equipped with
32-bit ARM Cortex-M4 microcontrollers shows that the entire key encapsulation
over p434 takes about 326 million clock cycles (i.e. 1.94 seconds @168MHz). In
contrast to the previous optimized implementation of the isogeny-based key exchange
on low-power 32-bit ARM Cortex-M4, our performance evaluation shows feasibility
of using SIKE mechanism on the target platform. In comparison to the most of the
post-quantum candidates, SIKE requires an excessive number of arithmetic operations,
resulting in significantly slower timings. However, its small key size makes this scheme
as a promising candidate on low-end microcontrollers in the quantum era by ensuring
the lower energy consumption for key transmission than other schemes.
Keywords: Post-quantum cryptography, SIKE, key encapsulation mechanism, finite
field arithmetic, ARM assembly, ARM Cortex-M4

1 Introduction
The hard problems of traditional PKC (e.g. RSA and ECC) can be easily solved by using
Shor’s algorithm [Sho94] and its variant on a quantum computer. The traditional PKC
approaches cannot be secure anymore against quantum attacks. A number of post-quantum
cryptography algorithms have been proposed in order to resolve this problem. Among
them, Supersingular Isogeny Diffie-Hellman key exchange (SIDH) protocol proposed by Jao
and De Feo is considered as a premier candidate for post-quantum cryptosystems [JF11].
Its security is believed to be secure even for quantum computers. SIDH is the basis of the
Supersingular Isogeny Key Encapsulation (SIKE) protocol [ACC+17], which is currently
under consideration by the National Institute of Standards and Technology (NIST) for
inclusion in a future standard for post-quantum cryptography [The18]. One of the attractive
features of SIDH and SIKE is their relatively small public keys which are, to date, the
most compact ones among well-established quantum-resistant algorithms. In spite of this
prominent advantage, the “slow” speed of these protocols has been a sticking point which

mailto:hwajeong84@gmail.com
mailto:ajalali2016@fau.edu
mailto:razarderakhsh@fau.edu


2 SIKE Round 2 Speed Record on ARM Cortex-M4

hinders them from acting like the post-quantum cryptography. Therefore, speeding up SIDH
and SIKE has become a critical issue as it judges the practicality of these isogeny-based
cryptographic schemes. In CANS’16, Koziel et al. presented first SIDH implementations
on 32-bit ARM Cortex-A processors [KJA+16]. In 2017, Jalali et al. presented first SIDH
implementations on 64-bit ARM Cortex-A processors [JAKJ17]. In CHES’18, Seo et al.
improved previous SIDH and SIKE implementations on high-end 32/64-bit ARM Cortex-A
processors [SLLH18]. At the same time, the implementations of SIDH on Intel and FPGA
are also successfully evaluated [FHLOJRH18, BF18a, KYK+18, KAMK16]. Afterward, in
2018, first implementation of SIDH on low-end 32-bit ARM Cortex-M4 microcontroller was
suggested [KPHS18]. The paper shows that an ephemeral key exchange (i.e. SIDHp751)
on a 32-bit ARM Cortex-M4@120MHz requires 18.833 seconds to perform - too slow to
use on low-end microcontrollers.

In this work, we challenge to the practicality of SIKE round 2 protocols for NIST
PQC competition (i.e. SIKEp434, SIKEp503, and SIKEp751) on low-end microcontrollers.
We present new optimized implementation of modular arithmetic for the case of low-
end 32-bit ARM Cortex-M4 microcontroller. The proposed modular arithmetic, which is
implemented on top of the SIKE round 2 reference implementation [ACC+19], demonstrates
that the supersingular isogeny-based protocols are practical on 32-bit ARM Cortex-M4
microcontrollers.

Organization. In Section 2, we briefly review the SIKE encapsulation mechanism. In
Section 3, we introduce the target microcontroller (i.e. 32-bit ARM Cortex-M4). Sec-
tions 4.1, 4.2, 4.3, and 4.4 describe the proposed multi-precision multiplication, squaring,
Montgomery reduction, and modular addition/subtraction, respectively. Thereafter, we
summarize our experimental results on the ARM Cortex-M4 microcontroller in Section 5,
and conclude the paper in Section 6.

2 Supersingular Isogeny Key Encapsulation
SIKE mechanism is constructed by applying a transformation of Hofheinz, Hövelmanns,
and Kiltz [HHK17] to the supersingular isogeny Public Key Encryption (PKE) scheme
described in [JF11]. It is an actively secure key encapsulation mechanism (IND-CCA KEM)
which addresses the static key vulnerability of SIDH due to active attacks in [GPST16].

2.1 Public parameters
Similar to SIDH, SIKE can be defined over a prime of the form p = `eA

A ·`
eB

B ·f±1. However,
for efficiency reasons, `A = 2, `B = 3, and f = 1 are fixed, thus the SIKE prime has the
form of p = 2eA · 3eB − 1. The starting supersingular elliptic curve E0/Fp2 : y2 = x3 + x
with cardinality equal to (2eA · 3eB )2, along with base points 〈PA, QA〉 = E0[2eA ] and
〈PB , QB〉 = E0[3eB ] are defined as public parameters.

2.2 Key encapsulation mechanism
The key encapsulation mechanism can be divided into three main operations: Alice’s key
generation, Bob’s key encapsulation, and Alice’s key decapsulation. We describe each
operation in the following. Figure 1 presents the entire key encapsulation mechanism in a
nutshell.

Key generation. Alice randomly chooses an integer skA ∈ Z/2eAZ and by applying an
isogeny φA : E0 → EA with kernel RA := 〈PA + [skA]QA〉 to the base points {PB , QB},



Hwajeong Seo, Amir Jalali and Reza Azarderakhsh 3

Alice Bob
Key generation:
pkA = [EA, φA(PB), φA(QB)]
s ∈R {0, 1}t

Encapsulation:
m ∈R {0, 1}t

r = H1(m ‖ pkA)
pkB(r) = [EB , φB(PA), φB(QA)]
j = j(EBA)
c = (c0, c1) = (pkB(r), H2(j)⊕m)
K = H3(m ‖ c)

(c0,c1)←−−−−
Decapsulation:
j = j(EAB)
m′ = c1 ⊕H2(j)
r′ = H1(m′ ‖ pkA)
If (pkB(r′) = c0)→ K = H3(m′ ‖ c)
If (pkB(r′) 6= c0)→ K = H3(s ‖ c)

Figure 1: SIKE mechanism.

computes her public key pkA = [EA, φA(PB), φA(QB)]. Moreover, she generates an t-bit1
random sequence s ∈R {0, 1}t.

Encapsulation. Bob generates a t-bit random message m ∈R {0, 1}t, concatenates it with
Alice’s public key pkA and computes an eB-bit hash value r using cSHAKE256 hash function
H1, taking m ‖ pkA as the input. Using r, he applies a secret isogeny φB : E0 → EB
to the base points {PA, QA} and forms his public key pkB(r) = [EB , φB(PA), φB(QA)].
Bob also computes the common j-invariant of curve EBA by applying another isogeny
φ′B : EA→ EBA using Alice’s public key. Bob forms a ciphertext c = (c0, c1), such that:

c = (c0, c1) = (pkB(r), H2(j(EBA))⊕m),

where H2 is a cSHAKE256 hash with a custom length output and a defined initialization
parameter. Finally, Bob computes the shared secret as K = H3(m ‖ c) and sends c to
Alice.

Decapsulation. Upon receipt of c, Alice computes the common j-invariant of EAB by
applying her secret isogeny to EB . She computes m′ = c1 ⊕H2(j(EAB)) and r′ = H1(m ‖
pkA). Finally, she validates Bob’s public key by computing pkB(r′) and comparing it
with c0. She generates the same shared secret K = H3(m′ ‖ c) if the public key is valid,
otherwise she outputs a random value K = H3(c ‖ s) to be resistant against active attacks.

2.3 SIKE Round 2
In 2019, NIST announced the second round candidates for post-quantum cryptography
competition. The second round SIKE submission [ACC+19] has some changes compared
to the first round. These changes are outlined as follows:

• Two new parameter sets for NIST security level 1 and 3 have been added (i.e.
SIKEp434 and SIKEp610).

1The value of t is defined by the implementation parameters.



4 SIKE Round 2 Speed Record on ARM Cortex-M4

• One parameter set (i.e. SIKEp964) has been removed.

• Security categories for parameter sets have been adjusted upward (i.e. NIST security
levels of SIKEp503 and SIKEp751 are changed to 2 and 5, respectively.).

• The starting curve has been changed.

• A public key compression has been implemented.

3 ARM Cortex-M4 Architecture
With over 100 billion ARM-based chips shipped worldwide as of 2017 [ARM17], ARM is
the most popular instruction set architecture (ISA), in terms of quantity. In this work,
we target the popular low-end 32-bit ARM Cortex-M4 microcontrollers, which belong
to the “microcontroller” profile implemented by cores from the Cortex-M series. The
ARM Cortex-M architecture is a reduced instruction set computer (RISC) using a load-
store architecture. The ARM Cortex-M4 microcontrollers support a three-stage pipeline,
and memory accesses involving 1 register and n registers take 2 cycles and n+ 1 cycles,
respectively.

As other traditional 32-bit ARM architectures, the ARM Cortex-M4 ISA is equipped
with 16 32-bit registers (R0∼R15), from which 15 (R0∼R12, R13 (SP), R14 (LR)) are
available. R13, R14, and R15 registers are reserved for stack pointer, link register, and
program counter, respectively. The R13 and R14 registers can be freed up by saving it in
slower memory and retrieving it after the register has been used.

Since the maximum capacity of the 15 registers is of only 480 bits (32× 15), efficient
use of the available registers to minimize the number of memory accesses is a critical
strategy for optimized implementations of multi-precision multiplications (i.e. 512-bit and
768-bit). The ARM Cortex-M4 provides an instruction set supporting 32-bit operations or,
in the case of Thumb and Thumb2, a mix of 16- and 32-bit operations. The instruction
set is comprised of standard instructions for basic arithmetic (i.e. addition and addition
with carry operations) and logic operations. However, in contrast to other lower processor
classes, the ARM Cortex-M4 supports for the so-called DSP instructions, which include
unsigned multiplication with double accumulation UMAAL instruction.

The UMAAL instruction performs a 32× 32-bit multiplication followed by accumulations
with two 32-bit values. This instruction achieves the same latency (i.e. 1 clock cycle) and
throughput of the unsigned multiplication instruction, which means that accumulation (i.e.
two 32-bit addition operations) is virtually executed for free. The detailed descriptions of
multiplication operations are as follows:

• UMULL (unsigned multiplication):
UMULL R0, R1, R2, R3 computes (R1 ‖ R0) ← R2 × R3.

• UMLAL (unsigned multiplication with accumulation):
UMLAL R0, R1, R2, R3 computes (R1 ‖ R0) ← (R1 ‖ R0) + R2 × R3.

• UMAAL (unsigned multiplication with double accumulation):
UMAAL R0, R1, R2, R3 computes (R1 ‖ R0) ← R1 + R0 + R2 × R3.

The popularity of ARM Cortex-M4 microcontrollers in different applications introduced
a post-quantum cryptography software library (pqm4) which targets this family of micro-
controllers [KRSS]. The pqm4 library provides a framework for benchmarking and testing,
started as a result of the PQCRYPTO project funded by the European Commission in
the H2020 program. The library currently contains implementations of 10 post-quantum
key-encapsulation mechanisms and 3 post-quantum signature schemes targeting the ARM
Cortex-M4 family of microcontrollers. In particular, pqm4 targets the STM32F4 Discovery



Hwajeong Seo, Amir Jalali and Reza Azarderakhsh 5

board, featuring an ARM Cortex-M4 CPU@168MHz, 1MB of Flash, and 192KB of RAM.
The library offers a simple build system that generates an individual static library for
each implementation for each scheme. After compilation, the library provides automated
benchmarking for speed and stack usage. As a result, we chose to evaluate the perforamnce
of our proposed library with pqm4 framework to provide a fair and valid comparison with
other PQC schemes.

In the following Section, we describe the proposed engineering techniques for designing
highly-optimized arithmetic libraries, targeting different security levels of SIKE and SIDH
schemes on 32-bit ARM Cortex-M4 microcontrollers.

4 Optimized SIKE/SIDH Arithmetic on ARM Cortex-M4
4.1 Multiprecision Multiplication
In this work, we describe the multi-precision multiplication method in multiplication
structure and rhombus form.

Figure 2, 3, and 4 illustrate different strategies for implementing 256-bit multiplication
on 32-bit ARM Cortex-M4 microcontroller. Let A and B be operands of length m bits each.
Each operand is written as A = (A[n− 1], ..., A[1], A[0]) and B = (B[n− 1], ..., B[1], B[0]),
where n = dm/we is the number of words to represent operands, and w is the computer
word size (i.e. 32-bit). The result C = A ·B is represented as C = (C[2n−1], ..., C[1], C[0]).
In the rhombus form, the lowest indices (i, j = 0) of the product appear at the rightmost
corner, whereas the highest indices (i, j = n − 1) appear at the leftmost corner. A
black arrow over a point indicates the processing of a partial product. The lowermost
points represent the results C[i] from the rightmost corner (i = 0) to the leftmost corner
(i = 2n− 1).

There are several works in the literature that studied the use of UMAAL instructions to
implement multi-precision multiplication or modular multiplication on 32-bit ARM Cortex-
M4 microcontrollers [dG15, DSS16, FA17, LLP+17, KPHS18, HL19]. Among them, Fujii
et al. [FA17], Haase et al. [HL19], and Koppermann et al. [KPHS18] provided the most
relevant optimized implementations to this work, targeting Curve25519 and SIDHp751 by
using optimal modular multiplication and squaring methods.

In [FA17], authors combine the UMAAL instruction with (Consecutive) Operand Caching
(OC) method for Curve25519 (i.e. 256-bit multiplication). The UMAAL instruction handles
the carry propagation without additional costs in Multiplication ACcumulation (MAC)
routine. The detailed descriptions are given in Figure 2. The size of operand caching is 3,
which needs three rows (3 = d8/3e) for 256-bit multiplication on 32-bit ARM Cortex-M4.
The multiplication starts from initial block and performs rows 1 and 2, sequentially. The
inner loop follows column-wise (i.e. Product-Scanning) multiplication.

In [HL19], a highly-optimized usage of registers and the partial products are performed
with the Operand Scanning (OS) method, targeting Curve25519 (i.e. 256-bit multiplication).
The detailed descriptions are given in Figure 3. In particular, the order of partial products
has an irregular pattern which only works for the target operand length (i.e. 256-bit
multiplication) due to the extremely compact utilization of available registers in each
partial product. However, for a larger length integer multiplication, this greedy approach
is not suitable since the number of register is not enough to cache sufficient operands and
intermediate results to achieve the optimal performance.

In [KPHS18], authors proposed an implementation of 1-level additive Karatsuba
multiplication with Comba method (i.e. Product Scanning) as the underlying multiplication
strategy, targeting 768-bit multiplication . They integrated their arithmetic library into
SIDHp751 and reported the first optimized implementation of SIDH on ARM Cortex-M4
microcontrollers. However, the product scanning is inefficient with the UMAAL instruction,



6 SIKE Round 2 Speed Record on ARM Cortex-M4

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

C[0]C[14]

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

2

C[0]C[14]

Init

1

Init

1

2

C[0]C[14]

1

2

3
4

5

Q[0]M[7]

Q[0]M[15]

Q[15]M[15]

Q[15]M[7]

T[7]T[22]T[30]

T[7]T[30]

1

2

3

4

1

Init

1-F

1-R
1-L

1-B

Init

1
I-FI-B

1

2

4

3

5

1-F

1-M
1-B

1

2-F

2-M
2-B

2

3-F

3-M
3-B

3

4-F

4-M
4-B

4

Figure 2: 256-bit Operand Caching multiplication at the word-level where e is 3 on ARM
Cortex-M4 [FA17], Init© : initial block; 1© → 2©: order of rows.

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

C[0]C[14]

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

2

C[0]C[14]

Init

1

Init

1

2

C[0]C[14]

1

2

3
4

5

Q[0]M[7]

Q[0]M[15]

Q[15]M[15]

Q[15]M[7]

T[7]T[22]T[30]

T[7]T[30]

1

2

3

4

1

Init

1-F

1-R
1-L

1-B

Init

1
I-FI-B

1

2

4

3

5

1-F

1-M
1-B

1

2-F

2-M
2-B

2

3-F

3-M
3-B

3

4-F

4-M
4-B

4

Figure 3: 256-bit Operand Scanning multiplication at the word-level on ARM Cortex-M4
[HL19], 1© → 2© → 3© → 4© → 5© : order of rows.



Hwajeong Seo, Amir Jalali and Reza Azarderakhsh 7

Table 1: Comparison of multiplication methods, in terms of memory-access complexity.
The parameter d defines the number of rows within a processed block.

Method Load Store
Operand Scanning 2n2 + n n2 + n

Product Scanning [Com90] 2n2 2n
Hybrid Scanning [GPW+04] 2dn2/de 2n
Operand Caching [HW11] 2dn2/ee dn2/ee+ n

Refined Operand Caching (This work) 2dn2/(e + 1)e+ 3(bn/(e + 1)c) dn2/(e + 1)e+ n

since all the intermediate results for long integer multiplication cannot be stored into
the small number of available registers. In order to improve their results, we studied the
performance evaluation of 448/512/768-bit multiplication by replacing the Comba method
with OC method, using the 1-level additive/subtractive Karatsuba multiplication. However,
we realized that the Karatsuba approach is slower than original OC method with UMAAL
instruction for large integer multiplication on Cortex-M4, due to the excessive number of
number of addition, subtraction, bit-wise exclusive-or, and loading/storing intermediate
results inside Karatsuba method. Furthermore, 32-bit ARM Cortex-M4 microcontroller
provides same latency (i.e. 1 clock cycle) for both 32-bit wise unsigned multiplication with
double accumulation (i.e. UMAAL) and 32-bit wise unsigned addition (i.e. ADD).

We acknowledge that on low-end devices, such as 8-bit AVR microcontrollers, Karatsuba
method is one of the most efficient approaches for multi-precision multiplication. In these
platforms, the MAC routine requires at least 5 clock cycles [HS15]. This significant
overhead is efficiently replaced with relatively cheaper 8-bit addition/subtraction operation
(i.e. 1 clock cycle). However, UMAAL instruction in ARM Cortex-M4 microcontroller can
perform the MAC routine within 1 clock cycle. For this reason, it is hard to find a
reasonable trade-off between MAC (i.e. 1 clock cycle) and addition/subtraction (i.e. 1
clock cycle) on the ARM Cortex-M4 microcontroller. Following the above analysis, we
adopted the OC method for implementing multiplication in our proposed implementation.
Moreover, in order to achieve the most efficient implementation of SIKE protocol on ARM
Cortex-M4, we proposed three distinguished improvements to the original method which
result in significant performance improvement compared to previous works. We describe
these techniques in the following.

4.1.1 Efficient register utilization

The OC method follows the product-scanning approach for inner loop but it divides the
calculation (i.e. outer loop) into several rows [HW11]. The number of rows directly affects
the overall performance, since the OC method requires to load the operands and load/store
the intermediate results by the number of rows2. Table 1 presents the comparison of
memory access complexity depending on the multiplication techniques. Our optimized
implementation (i.e. Refined Operand Caching) is based on the original OC method but
we optimized the available registers and increased the operand caching size from e to e+ 1.
In the equation, the number of memory load by 3(bn/(e + 1)c) indicates the operand
pointer access in each row.

Moreover, larger bit-length multiplication requires more memory access operations.
Table 2 presents the number of memory access operations in OC method for different
multi-precision multiplication size. In this table, our proposed R-OC method requires
the least number memory access for different length multiplication. In particular, in
comparison with original OC implementation, our proposed implementation reduces the

2The number of rows is r = bn/ec, where the number of needed words (n = dm/we), the word size of
the processor (w) (i.e. 32-bit), the bit-length of operand (m), and operand caching size (e) are given.



8 SIKE Round 2 Speed Record on ARM Cortex-M4

Table 2: Comparison of multiplication methods for different Integer sizes, in terms of the
number of memory access on 32-bit ARM Cortex-M4 microcontroller. The parameters d
and e are set to 2 and 3, respectively.

Method 448-bit 512-bit 768-bit
Load Store Total Load Store Total Load Store Total

OS 406 210 616 528 272 800 1,176 600 1,776
PS 392 28 420 512 32 544 1,152 48 1,200
HS 196 28 224 256 32 288 576 48 624
OC 132 80 212 172 102 274 384 216 600
R-OC 107 63 170 140 80 220 306 168 474

Table 3: Comparison of register utilization of the proposed method with previous works.
Registers Fujii et al. [FA17] Haase et al. [HL19] This work

R0 Result pointer Temporal pointer Temporal pointer
R1 Operand A pointer Operand A #1 Temporal register #1
R2 Operand B pointer Operand B #1 Operand A #1
R3 Result #1 Operand B #2 Operand A #2
R4 Result #2 Operand B #3 Operand A #3
R5 Result #3 Operand B #4 Operand A #4
R6 Operand A #1 Operand B #5 Operand B #1
R7 Operand A #2 Result #1 Operand B #2
R8 Operand A #3 Result #2 Operand B #3
R9 Operand B #1 Result #3 Operand B #4
R10 Operand B #2 Result #4 Result #1
R11 Operand B #3 Result #5 Result #2
R12 Temporal register #1 Temporal register #1 Result #3

R13; SP Stack pointer Stack pointer Stack pointer
R14; LR Temporal register #2 Temporal register #2 Result #4
R15; PC Program counter Program counter Program counter

total number of memory accesses by 19.8 %, 19.7 %, and 21 % for 448-bit, 512-bit, and
768-bit, respectively3.

In order to increase the size of operand caching (i.e. e) by 1, we need at least 3 more
registers to retain two 32-bit operand limbs and one 32-bit intermediate result value. To
this end, we redefine the register assignments inside our implementation. We saved one
register for the result pointer by storing the intermediate results into stack. Moreover, we
observed that in the OC method, both operand pointers are not used at the same time
in the row. Therefore, we don’t need to maintain both operand pointers in the registers
during the computations. Instead, we store them to the stack and load one by one on
demand.

Using the above techniques, we saved three available registers and utilized them to
increase the size of operand caching by 1. In particular, three registers are used for operand
A, operand B, and intermediate result, respectively. We state that our utilization technique
imposes an overhead in memory access for operand pointers. However, since in each row,
only three memory accesses are required, the overall overhead is negligible to the obtained
performance benefit. We provide a detailed comparison of register assignments of this
work with previous implementations in Table 3.

3Compared with original OC implementation, we reduce the number of row by 1 (4 → 3), 2 (5 → 3),
and 2 (7 → 5) for 448-bit, 512-bit, and 768-bit, respectively.



Hwajeong Seo, Amir Jalali and Reza Azarderakhsh 9

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

C[0]C[14]

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

2

C[0]C[14]

Init

1

Init

1

2

C[0]C[14]

1

2

3
4

5

Q[0]M[7]

Q[0]M[15]

Q[15]M[15]

Q[15]M[7]

T[7]T[22]T[30]

T[7]T[30]

1

2

3

4

1

Init

1-F

1-R
1-L

1-B

Init

1
I-FI-B

1

2

4

3

5

1-F

1-M
1-B

1

2-F

2-M
2-B

2

3-F

3-M
3-B

3

4-F

4-M
4-B

4

Figure 4: Proposed 256-bit Refined Operand Caching multiplication at the word-level
where e is 4 on ARM Cortex-M4, Init© : initial block; 1©: order of rows; F©: front part; R©:
middle right part; L©: middle left part; B©: back part.

4.1.2 Optimized front parts

As it is illustrated in Figure 4, our R-OC method starts from an initialization block (Init
section). In the Init section, both operands are loaded from memory to registers and the
partial products are computed. From the row1, only one operand pointer is required in
each column. The front part (i.e. I-F and 1-F) requires partial products by increasing the
length of column to 4.

Fujii et al. [FA17] implemented the front parts using carry-less MAC routines. In their
approach, they initialized up to two registers to store the intermediate results in each
column. Figure 5 illustrates their approach. Since the UMLAL and UMAAL instructions need
to update current values inside the registers, the initialized registers are required.

In order to optimize the explicit register initialization, we redesign the front part with
product scanning. In contrast to Fujii’s approach, we used UMULL and UMAAL instructions.
As a result, the register initialization is performed together with unsigned multiplication
(i.e. UMULL). This technique improves the overall clock cycles since each instruction directly
assigns the results to the target registers. In particular, we are able to remove all the
register initialization routines, which is 9 clock cycles for each front part compared to
[FA17]. Moreover, the intermediate results are efficiently handled with carry-less MAC
routines by using the UMAAL instructions. Figure 6 presents our 4-word strategy in further
details.

4.1.3 Efficient instruction ordering

The ARM Cortex-M4 microcontrollers are equipped with 3-stage pipeline in which the
instruction fetch, decode, and execution are performed in order. As a result, any data
dependency between consecutive instructions imposes pipeline stalls and degrades the
overall performance considerably. In addition to the previous optimizations, we reordered
the MAC routine instructions in a way which removes data dependency between instructions,
resulting in minimum pipeline stalls. The proposed approach is presented in Figure 6 (1-R
section). In this Figure, the operand and intermediate result are loaded from memory and
partial products are performed column-wise as follows:



10 SIKE Round 2 Speed Record on ARM Cortex-M4

U
M
LA
L

rHI

rLO

rLO

rHI

B

A

U
M
LA
L

rHI

rLO

rLO

rHI

B

A

U
M
A
A
L

rHI

rLO

rLO

rHI

B

A

U
M
LA
L

rHI

rLO

rLO

rHI

B

A

U
M
LA
L

rHI

rLO

rLO

rHI

B

A

U
M
LA
L

rHI

rLO

rLO

rHI

B

A

A[0]

B[0]

0

0

C[0]

C[1]

C[2]

A[1]

B[0]

0

A[0]

B[1]

0

A[2]

B[0]

A[1]

B[1]

0

0

A[0]

B[2]

Figure 5: 3-word integers with the product scanning approach using the UMLAL and UMAAL
instructions for front part of OC method [FA17].

...
LDR R6, [R0,#4 ∗ 4] //Loading operand B[4] from memory
LDR R1, [SP,#4 ∗ 4] //Loading intermediate result C[4] from memory
UMAAL R14, R10, R5, R7 //Partial product (B[1]*A[3])
UMAAL R14, R11, R4, R8 //Partial product (B[2]*A[2])
UMAAL R14, R12, R3, R9 //Partial product (B[3]*A[1])
UMAAL R1, R14, R2, R6 //Partial product (B[4]*A[0])
...

The intermediate result (C[4]) is loaded to the R1 register. At this point, updating R1
register in the next instruction results in pipeline stall. To avoid this situation, first,
we updated the intermediate results into other registers (R10, R11, R12, R14), while
R1 register was updated during the last step of MAC. We followed a similar approach
in 1-L section, where operand (A) pointer is loaded to a temporary register, and then
the column-wise multiplications are performed with the operands (A[4], A[5], A[6], and
A[7]). In the back part (i.e. 1-B), the remaining partial products are performed without



Hwajeong Seo, Amir Jalali and Reza Azarderakhsh 11

U
M
A
A
L

rHI

rLO

rLO

rHI

B

A

U
M
U
LL

rHI

rLO

B

A

U
M
U
LL

rHI

rLO

B

A

U
M
A
A
L

rHI

rLO

rLO

rHI

B

A

U
M
U
LL

rHI

rLO

B

A

U
M
A
A
L

rHI

rLO

rLO

rHI

B

A

U
M
A
A
L

rHI

rLO

rLO

rHI

B

A

U
M
A
A
L

rHI

rLO

rLO

rHI

B

A

U
M
U
LL

rHI

rLO

B

A

U
M
A
A
L

rHI

rLO

rLO

rHI

B

A

U
M
A
A
L

rHI

rLO

rLO

rHI

B

A

U
M
A
A
L

rHI

rLO

rLO

rHI

B

A

U
M
A
A
L

rHI

rLO

B

A

U
M
A
A
L

rHI

rLO

rLO

rHI

B

A

rLO

rHI

1-F1-R

A[0]

B[0]

C[0]

C[1]

C[2]

C[3]C[4]

C[4]

A[0]

B[1]

A[1]

B[0]

A[2]

B[0]

A[1]

B[1]

A[0]

B[2]

A[3]

B[0]

A[2]

B[1]

A[1]

B[2]

A[0]

B[3]

A[3]

B[1]

A[2]

B[2]

A[1]

B[3]

A[0]

B[4]

Figure 6: 4-word integers with the product scanning approach using the UMULL and UMAAL
instructions for front part of OC method.



12 SIKE Round 2 Speed Record on ARM Cortex-M4

Table 4: Comparison results of 256-bit multiplication on ARM Cortex-M4 microcontrollers.
Methods Timings [cc] Scalability Bit length

Fujii et al. [FA17] 239 3 256
Haase et al. [HL19] 212 7 256

This work 196 3 256

operand loading. This is efficiently performed without carry propagation by using the
UMAAL instructions.

To compare the efficiency of our proposed techniques with previous works, we eval-
uated the performance of our 256-bit multiplication with the most relevant works on
Cortex-M4 platform. To obtain a fair and uniform comparison, we benchmarked the pro-
posed implementations in [FA17, HL19]4,5 with our implementation on our development
environment.

Table 4 presents the performance comparison of our library with previous works in
terms of clock cycles. We observe that our proposed multiplication implementation method
is faster than previous optimized implementation on the same platform. Furthermore, in
contrast to the compact implementation of 256-bit multiplication in [HL19], our approach
provides scalability to larger integer multiplication without any significant overhead.

4.2 Multiprecision Squaring
Most of the optimized implementations of cryptography libraries use optimized multiplica-
tion for computing the square of an element. However, squaring can be implemented more
efficiently since using one operand reduces the overall number of memory accesses by half,
while many redundant partial products can be removed (i.e. A[i]×A[j] +A[j]×A[i] =
2×A[i]×A[j]).

Similar to multiplication, squaring implementation consists of partial products of the
input operand limbs. These products can be divided into two parts: the products which
have two operands with the same value and the ones in which two different values are
multiplied. Computing the first group is straightforward and it is only computed once for
each limb of operand. However, computing the latter products with different values and
doubling the result can be performed in two different ways: doubled-result and doubled-
operand. In doubled-result technique, partial products are computed first and the result is
doubled afterwards (A[i]×A[j]→ 2×A[i]×A[j]), while in doubled-operand, one of the
operands is doubled and then multiplied to the other value (2×A[i]→ 2×A[i]×A[j]).

In the previous works [FA17, HL19], authors adopted the doubled-result technique
inside squaring implementation. Figure 7 and 8 show their techniques for implementing
optimized squaring on Cortex-M4 platform. The red parts in the figures present the partial
products where the input values are the same and the black dots with gray background
represent the doubled-result products.

Figure 7 demonstrates Sliding Block Doubling (SBD) based squaring method in [FA17].
This method is based on the product scanning approach. The squaring consists of two
routines: initialization and row 1 computation. The intermediate results are doubled
column-wise as the row 1 computations are performed.

Figure 8 presents the Operand Scanning (OS) based squaring method in [HL19].
In contrast to previous method, computations are performed row-wise. However, the
intermediate results are doubled in each column. Note that in this method, the order of
computation is designed explicitly for 256-bit operand to maximize the operand caching.

4Fujii et al. https://github.com/hayatofujii/curve25519-cortex-m4
5Haase et al. https://github.com/BjoernMHaase/fe25519

https://github.com/hayatofujii/curve25519-cortex-m4
https://github.com/BjoernMHaase/fe25519


Hwajeong Seo, Amir Jalali and Reza Azarderakhsh 13

A[0]A[0]A[7]A[7]

C[0]C[7]C[14]

A[0]A[0]A[7]A[7]

C[0]C[7]C[14]

A[0]A[0]A[7]A[7]

C[0]C[7]C[14]

C[0]

Init

1

2
C[14]

C[0]C[14]

Init

1

C[0]C[14]

1

2

3

Init

12

Init

1

1
23

Figure 7: 256-bit Sliding Block Doubling squaring at the word-level on ARM Cortex-M4,
Init© : initial block; 1©: order of rows [FA17].

A[0]A[0]A[7]A[7]

C[0]C[7]C[14]

A[0]A[0]A[7]A[7]

C[0]C[7]C[14]

A[0]A[0]A[7]A[7]

C[0]C[7]C[14]

C[0]

Init

1

2
C[14]

C[0]C[14]

Init

1

C[0]C[14]

1

2

3

Init

12

Init

1

1
23

Figure 8: 256-bit Operand Scanning squaring at the word-level on ARM Cortex-M4, 1© →
2© → 3©: order of rows [HL19].

Similar to their multiplication implementation, the proposed method does not provide
scalability to larger bit-length multiplications.

In this work, we proposed a hybrid approach for implementing a highly-optimized
squaring operation which is explicitly suitable for SIKE/SIDH application. In general,
doubling operation may result in one bit overflow which requires an extra word to retain.
However, in the SIDH/SIKE settings, moduli are smaller than multiple of 32-bit word
(434-bit, 503-bit, and 751-bit) which provide an advantage for optimized arithmetic design.
Taking advantage of this fact, we designed our squaring implementation based on doubled-
operand approach. We divided our implementation into three parts: one sub-multiplication
and two sub-squaring operations. We used R-OC for sub-multiplication and SBD for
sub-squaring operations. Figure 9 illustrates our hybrid method in detail. First, the input
operand is doubled and stored into the stack memory. Taking advantage of doubled-operand
technique, we perform the initialization part by using R-OC method.

Second, the remaining rows 1 and 2 are computed based on SBD methods. In contrast
to previous SBD method, all the doubling operations on intermediate results are removed
during MAC routines. This saves several registers to double the intermediate results since
doubled-results have been already computed. Furthermore, our proposed method is fully
scalable and can be simply adopted to larger integer squaring.

In order to verify the performance improvement of our proposed approach, we bench-
marked our 255-bit squaring implementation with the most optimized available implemen-
tations in the literature. Table 5 presents the performance comparison of our method with
previous implementations on our target platform.

Our hybrid method outperforms previous implementations of 256-bit squaring, while



14 SIKE Round 2 Speed Record on ARM Cortex-M4

A[0]A[0]A[7]A[7]

C[0]C[7]C[14]

A[0]A[0]A[7]A[7]

C[0]C[7]C[14]

A[0]A[0]A[7]A[7]

C[0]C[7]C[14]

C[0]

Init

1

2
C[14]

C[0]C[14]

Init

1

C[0]C[14]

1

2

3

Init

12

Init

1

1
23

Figure 9: 255-bit proposed squaring at the word-level on ARM Cortex-M4, Init© : initial
block; 1© → 2©: order of rows.

Table 5: Comparison results of 255/256-bit squaring on ARM Cortex-M4 microcontrollers.
Methods Timings [cc] Scalability Bit length

Fujii et al. [FA17] 218 3 256
Haase et al. [HL19] 141 7 256

This work 136 3 255

in contrast to [HL19], it is scalable to larger parameter sets. In particular, it enabled us
to implement the same strategy for computing SIKE/SIDH arithmetic over larger finite
fields.

4.3 Modular Reduction

Modular multiplication is a performance-critical building block in SIDH and SIKE protocols.
One of the most well-known techniques used for its implementation is Montgomery
reduction [Mon85]. We adapt the implementation techniques described in sections 4.1
and 4.2 to implement modular multiplication and squaring operations. Specifically, we
target the parameter sets based on the primes p434, p503, and p751 for SIKE round 2
protocol [CLN16, ACC+19]. Montgomery multiplication can be efficiently exploited and
further simplified by taking advantage of so-called “Montgomery-friendly” modulus, which
admits efficient computations, such as all-zero words for lower part of the modulus.

The efficient optimizations for the modulus were first pointed out by Costello et
al. [CLN16] in the setting of SIDH when using modulus of the form 2x · 3y − 1 (referred to
as “SIDH-friendly” primes) are exploited by the SIDH library [CLN18].

In CHES’18, Seo et al. suggested the variant of Hybrid-Scanning (HS) for “SIDH-
friendly” Montgomery reduction on ARM Cortex-A15 [SLLH18]. Similar to OC method,
the HS method also changes the operand pointer when the row is changed. By using the
register utilization described in Section 4.1, we increase the parameter d by 1 (3 → 4.
Moreover, the initial block is also optimized to avoid explicit register initialization and the
MAC routine is implemented in the pipeline-friendly approach. Compared with integer
multiplication, the Montgomery reduction requires fewer number of registers to be reserved.
Since the intermediate result pointer and operand Q pointer are identical value (i.e. stack),
we only need to maintain one address pointer to access both values. Furthermore, the
modulus for SIKE (i.e. operand M ; SIKEp434, SIKEp503, and SIKEp751) is a static value.
As a result, instead of obtaining values from memory, we assign the direct values to the
registers. This step can be performed with the two instructions, such as MOVW and MOVT.
The detailed 32-bit value assignment (e.g. 0x87654321) to register R1 is given as follows:



Hwajeong Seo, Amir Jalali and Reza Azarderakhsh 15

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

C[0]C[14]

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

2

C[0]C[14]

Init

1

Init

1

2

C[0]C[14]

1

2

3
4

5

Q[0]M[7]

Q[0]M[15]

Q[15]M[15]

Q[15]M[7]

T[7]T[22]T[30]

T[7]T[30]

1

2

3

4

1

Init

1-F

1-R
1-L

1-B

Init

1
I-FI-B

1

2

4

3

5

1-F

1-M
1-B

1

2-F

2-M
2-B

2

3-F

3-M
3-B

3

4-F

4-M
4-B

4

Figure 10: 503-bit “SIDH-friendly” Montgomery reduction at the word-level, where d is
4 on ARM Cortex-M4, 1© → 2© → 3© → 4©: order of rows; F©: front part; M©: middle
part; B©: back part; where M , R, T , and Q are modulus, Montgomery radix, intermediate
results, and quotient (Q← T ·M ′ mod R).

...
MOVW R1,#0x4321 //R1 = #0x4321
MOVT R1,#0x8765 //R1 = #0x8765 � 16 | R1
...

In Figure 10, the 503-bit “SIDH-friendly” Montgomery reduction on ARM Cortex-M4
microcontroller is described. The Montgomery reduction starts from row 1, 2, 3, to 4.

In the front of row 1 (i.e. 1-F), the operand Q is loaded from memory and the
operand M is directly assigned using constant value. The multiplication accumulates the
intermediate results from memory using the operand Q pointer and stored them into the
same memory address. In the middle of row 1 (i.e. 1-M), the operand Q is loaded and
the intermediate results are also loaded and stored, sequentially. In the back of row 1 (i.e.
1-B), the remaining partial products are computed. Furthermore, the intermediate carry
values are stored into stack and used in the following rows.

Using the above techniques, we are able to reduce the number of row by 1 (5→ 4), 2
(6→ 4), and 2 (8→ 6) for 448-bit, 512-bit, and 768-bit, respectively, compared to original
implementation of HS based Montgomery reduction.

Recently, Bos et al. [BF18b] and Koppermann et al. [KPHS18] proposed highly
optimized techniques for implementation of modular multiplication. They utilized the
product-scanning methods for modular reduction. However, our proposed method outper-
foms both implementations in terms of clock cycles. In particular, our proposed method
provides more than 2 times faster result compared to Bos et al. [BF18b], while the
benchmark results in [BF18b] were obtained on the high-end ARMv7 Cortex-A8 proces-
sors which is equipped with 15 pipeline stages and is dual-issue super-scalar. Table 6
shows the detailed performance comparison of multiplication, squaring, and reduction
over SIDH/SIKE primes in terms of clock cycles. We state that, the benchmark results
for [CLN18] are based on optimized C implementation and they are presented solely as a
comparison reference between portable and target-specific implementations.



16 SIKE Round 2 Speed Record on ARM Cortex-M4

Table 6: Comparison results of modular multiplication and squaring for SIDH on 32-bit
ARM Cortex-M4 microcontrollers.

Methods Timings [cc] Modulus ProcessorFp mul Fp sqr reduction
This work 1,110 981 544 2216 · 3137 − 1 ARM Cortex-M4

SIDH v3.0 [CLN18] 25,399 – 10,917 2250 · 3159 − 1 ARM Cortex-M4This work 1,333 1,139 654
Bos et al. [BF18b] – – 3,738

2372 · 3239 − 1

ARM Cortex-A8
SIDH v3.0 [CLN18] 55,178 – 23,484

ARM Cortex-M4Koppermann et al. [KPHS18] 7,573 – 3,254 ARM Cortex-M4
This work 2,744 2,242 1,188

4.4 Modular Addition and Subtraction
Modular addition operation is performed as a long integer addition operation followed by a
subtraction from the prime. To have a fully constant-time arithmetic implementation, the
final reduction is performed using a masked bit. In this case, even if the addition result
is inside the field, a redundant subtraction is performed, so the secret values cannot be
retrieved using power and timing attacks. The detailed operations are presented in the
following:

• Modular addition: (A+B) mod P
1© C←A+B 2© {M,C}←C-P 3© C←C+(P&M).

• Modular subtraction: (A-B) mod P
1© {M,C}←A-B 2© C←C+(P&M).

Previous optimized implementations of modular addition on Cortex-M4 [SLLH18,
KPHS18], provided the simple masked technique using hand-crafted assembly. However,
In this work, we optimized this approach further by introducing three techniques:

• Proposed modular addition: (A+B) mod P
1© {M,C}←A+B-P 2© C←C+(P&M).

First, we take advantage of the special shape of SIDH-friendly primes which have
multiple words equal to 0xFFFFFFFF. Since this value is the same for multiple limbs, we
load it once inside a register and use it for multiple single-precision subtraction. This
operand re-using technique reduces the number of memory access by n and n

2 for modular
addition and modular subtraction, where the number of needed words (n = dm/we), the
word size of the processor (w) (i.e. 32-bit), and the bit-length of operand (m) are given,
respectively.

Second, we combine Step 1© (addition) and 2© (subtraction) into one operation
({M,C}←A+B-P). In order to combine both steps, we catch both intermediate carry and
borrow, while we perform the combined addition and subtraction operation.

Figure 11 illustrates the proposed technique in details. In this Figure, first, 4-word
addition operations (A[0 ∼ 3] +B[0 ∼ 3]) compute the addition result. Subsequently, a
single register is set to constant (i.e. 0xFFFFFFFF), which is used for the carry catching
step. In Figure 11, this step is shown in the last row of fourth column. When the carry
overflow happens from fourth word addition (i.e. A[3] +B[3] +CARRY ), the carry catcher
register is set to 232−1 (i.e. 0xFFFFFFFF← 0xFFFFFFFF + 0xFFFFFFFF + 0x00000001) by
using the constant (i.e. 0xFFFFFFFF) in last row of fourth column (Constant + Constant
+ Carry). Otherwise, the carry catcher register is set to 232 − 2 (i.e. 0xFFFFFFFE ←
0xFFFFFFFF + 0xFFFFFFFF + 0x00000000).



Hwajeong Seo, Amir Jalali and Reza Azarderakhsh 17

A
D
D
S

R

C_OUT

B

A

A
D
C
S

R

C_OUT

B

AC_IN

S
U
B
S

R

B_OUT

B

A

S
B
C
S

R

B_OUT

B

AB_IN

A
D
C
S

R

C_OUT

B

AC_IN
S
B
C
S

R

B_OUT

B

AB_IN

A
D
C
S

R

C_OUT

B

AC_IN

S
B
C
S

R

B_OUT

B

AB_IN
A
D
C
S

R

C_OUT

B

AC_IN

S
B
C
S

R

B_OUT

B

AB_IN

A
D
D
S

R

C_OUT

B

A

A
D
C
S

R

C_OUT

B

AC_IN

S
U
B
S

R

B_OUT

B

A
S
B
C
S

R

B_OUT

B

AB_IN

A
D
C
S

R

C_OUT

B

AC_IN

S
B
C
S

R

B_OUT

B

AB_IN

A
D
C
S

R

C_OUT

B

AC_IN

S
B
C
S

R

B_OUT

B

AB_IN

A
D
C
S

R

C_OUT

B

AC_IN

S
B
C
S

R

B_OUT

B

AB_IN

A
D
C
S

R

C_OUT

B

AC_IN

S
B
C
S

R

B_OUT

B

AB_IN

A[0]

B[0]

A[1]

B[1]

A[2]

B[2]

A[3]

B[3]

0xFFFFFFFF

P[0]

0xFFFFFFFF

P[1]

P[2]

P[3]

Borrow 
catcher
Borrow 
catcher

C[0]

C[1]

C[2]

C[3]

0xFFFFFFFF

<<31

A[4]

B[4]

A[5]

B[5]

A[6]

B[6]

A[7]

B[7]

0xFFFFFFFF

0xFFFFFFFF

Carry 
catcher

Pointer

P[4]

P[5]

P[6]

P[7]

Borrow 
catcher
Borrow 
catcher

Borrow 
catcher

C[4]

C[5]

C[6]

C[7]

Figure 11: Initial part of step 1© in 512-bit modular addition on ARM Cortex-M4 (i.e.
A[0∼7]+B[0∼7]-P[0∼7]).



18 SIKE Round 2 Speed Record on ARM Cortex-M4

M
O

V
W

 
M

O
V
T

R

HIGH

LOW

A
N

D

R

B

A

A
D
D
S

R

C_OUT

B

A

A
D
C
S

R

C_OUT

B

AC_IN

A
D
C
S

R

C_OUT

B

AC_IN

ML[0]

Borrow 
catcher

C[0]

MH[0]C[0]

C[1]

C[1]

Borrow 
catcher

C[(n-1)/2] Borrow 
catcher

Carry 
catcher

. . .

C[(n-1)/2]

Figure 12: Initial part of of step 2© in 512-bit modular addition/subtraction on ARM
Cortex-M4 (i.e. C[0∼(n-1)/2]+(P[0∼(n-1)/2]&M)).

This addition operation stores the carry bit to the first bit of carry catcher register.
The carry value in carry catcher register is used for the following addition steps (second
column in the Figure 11).

The stored carry in the first bit is shifted to the 32nd bit by using the barrel-shifter
module. Afterward, the value is added to the constant (i.e. 0xFFFFFFFF). If the first bit of
carry catcher is set, the carry happens (i.e. 0x00000001�31 + 0xFFFFFFFF). Otherwise,
no carry happens (i.e. 0x00000000�31 + 0xFFFFFFFF).

Similarly, we obtained the borrow bit. The results of 4-word addition operations
(A[0 ∼ 3] +B[0 ∼ 3]) are subtracted by modulus (P [0 ∼ 3]) in the third column. When the
borrow happens from fourth word subtraction (i.e. A[3] +B[3]− P [3]−BORROW ), the
borrow catcher register is set to 232 − 1 (i.e. 0xFFFFFFFF ← 0x00000000 - 0x00000001)
in last row of third column (Zero - Borrow). Otherwise, the borrow catcher register
is set to 0 (i.e. 0x00000000 ← 0x00000000 - 0x00000000). The borrow bit in borrow
catcher register is used for the following subtraction steps. To obtain the borrow bit,
the zero constant is subtracted by the borrow catcher register. For one constant register
optimization, we used the address pointer instead of zero constant.

Since the address pointer of 32-bit ARM Cortex-M4 microcontroller is aligned by 4-byte
(i.e. 32-bit), the address is always ranging from 0 (i.e. 0x00000000) to 232−4 (0xFFFFFFFC).
When the borrow catcher register is set, we can get the borrow bit through subtraction
(e.g. Pointer - 0xFFFFFFFF where pointer is ranging from 0 to 232 − 4). Otherwise, no
borrow happens. The combined modular addition routine reduces the number of memory
access by 2n since we can avoid both loading and storing the intermediate results.

In addition to the above techniques, the masked addition routine is also optimized.
This is shown as Step 2© of modular addition and subtraction. When the mask value
is set to 0xFFFFFFFF, the lower part of SIDH modulus is also 0xFFFFFFFF. Otherwise,



Hwajeong Seo, Amir Jalali and Reza Azarderakhsh 19

Table 7: Comparison results of modular addition and subtraction for SIDH/SIKE on ARM
Cortex-M4 microcontrollers.

Methods Timings [cc] Modulus ProcessorFp add Fp sub
This work 254 208 2216 · 3137 − 1 ARM Cortex-M4

SIDH v3.0 [CLN18] 1,078 740
2250 · 3159 − 1 ARM Cortex-M4Seo et al. [SLLH18] 326 236

This work 275 223
SIDH v3.0 [CLN18] 1,579 1,092

2372 · 3239 − 1 ARM Cortex-M4Koppermann et al. [KPHS18] 559 419
Seo et al. [SLLH18] 466 333

This work 388 284

both values are set to zero. We optimized the modulus setting (MOVW/MOVT) and masking
operation (AND) for lower part of SIDH modulus. The detailed descriptions for initial part
of step 2© in 512-bit modular addition/subtraction are given in Figure 12.

Using the above optimization techniques, we are able to reduce the number of memory
access for modular addition and subtraction by 3n (9n → 6n) and n/2 (6n → 11n/2),
respectively.

We benchmarked the proposed optimized addition and subtraction implementations on
our target platform. We provide the performance evaluation of this work and previous
works over different security levels in Table 7. Compared to previous works, the proposed
method improved the performance by 16.7 % and 14.7 % for modular addition and
subtraction, respectively.

5 Performance Evaluation
In this section, we present the performance evaluation of our proposed SIDH/SIKE
implementations on 32-bit ARM Cortex-M4 microcontrollers. We implemented highly-
optimized arithmetic, targeting SIKE round 2 primes adapting our optimized techniques for
multiplication, squaring, reduction, and addition/subtraction. We integrate our arithmetic
libraries to the SIKE round 2 reference implementation [ACC+19] to evaluate the feasibility
of adopting this scheme on low-end Cortex-M4 microcontrollers.

All the arithmetic is implemented in ARM assembly and the libraries are compiled
with GCC with optimization flag set to -O3.6

Table 8 and 9 present the comparison of our proposed library with highly optimized
implementations in the literature over different security levels. The optimized C implemen-
tation timings by Costello et al. [CLN18] and the reference C implementation of SIKE
[ACC+19] illustrate the importance of target-specific implementations of SIDH/SIKE low-
end microcontrollers such as 32-bit ARM Cortex-M4. In particular, compared to optimized
C Comba based implementation in SIDH v3.0, the proposed modular multiplication for
503-bit and 751-bit provide 19.05x and 20.10x improvement, respectively.

The significant achieved performance improvement in this work is the result of our highly-
optimized arithmetic library. Specifically, our tailored multiplication minimizes pipeline
stalls on ARM Cortex-M4 3-stage pipeline, resulting in remarkable timing improvement
compared to previous works.

Moreover, the proposed implementation achieved 362 and 977 million clock cycles for
total computation of SIDHp503 and SIDHp751, respectively. The results are improved
by 10.51x and 12.97x for SIDHp503 and SIDHp751, respectively. In comparison with the

6Our library will be publicly available in the near future.



20 SIKE Round 2 Speed Record on ARM Cortex-M4

Table 8: Comparison of SIDHp434, SIDHp503, and SIDHp751 protocols on the ARM
Cortex-M4 microcontrollers. Timings are reported in terms of clock cycles.
Implementation Language Timings [cc] Timings [cc× 106]

Fp add Fp sub Fp mul Fp sqr Alice R1 Bob R1 Alice R2 Bob R2 Total

SIDHp434
This work ASM 254 208 1,110 981 65 74 54 62 255

SIDHp503
SIDH v3.0 [CLN18] C 1,078 740 25,399 – 986 1,086 812 924 3,808
This work ASM 275 223 1,333 1,139 95 104 76 87 362

SIDHp751
SIDH v3.0 [CLN18] C 1,579 1,092 55,178 – 3,246 3,651 2,669 3,112 12,678
Koppermann et al. [KPHS18] ASM 559 419 7,573 – 1,025 1,148 967 1,112 4,252
This work ASM 388 284 2,744 2,242 252 284 205 236 977

Table 9: Comparison of NIST PQC round 2 protocols on the ARM Cortex-M4 microcon-
trollers. Timings are reported in terms of clock cycles. Koppermann et al. [KPHS18] does
not provide results on SIKE implementations.
Implementation Language Timings [cc] Timings [cc× 106] Memory [bytes]

Fp add Fp sub Fp mul Fp sqr KeyGen Encaps Decaps Total KeyGen Encaps Decaps

SIKEp434
This work ASM 254 208 1,110 981 74 122 130 326 6,580 6,916 7,260

SIKEp503
SIDH v3.0 [CLN18] C 1,078 740 25,399 – 1,086 1,799 1,912 4,797 – – –
This work ASM 275 223 1,333 1,139 104 172 183 459 6,204 6,588 6,974

SIKEp751
SIDH v3.0 [CLN18] C 1,579 1,092 55,178 – 3,651 5,918 6,359 15,928 – – –
This work ASM 388 284 2,744 2,242 282 455 491 1,228 11,116 11,260 11,852

NIST PQC Round 2 [KRSS]
Frodo640-AES ASM – – – – 42 46 47 135 31,116 51,444 61,820
Frodo640-CSHAKE ASM – – – – 81 86 87 254 26,272 41,472 51,848
Kyber512 ASM – – – – 0.7 0.9 1.0 2.6 6,456 9,120 9,928
Kyber768 ASM – – – – 1.2 1.4 1.4 4.0 10,544 13,720 14,880
Kyber1024 ASM – – – – 1.7 2.1 2.1 5.9 15,664 19,352 20,864
Newhope1024CCA ASM – – – – 1.2 1.9 1.9 5 11,152 17,448 19,648
Saber ASM – – – – 0.9 1.2 1.2 3.3 12.616 14,896 15,992

most relevant work, our proposed modular multiplication and SIDHp751 outperforms the
optimized implementation in [KPHS18] by 2.75x and 4.35x, respectively.

Compared with other NIST PQC round 2 schemes, the SIKE protocol shows slower
execution time but the SIKE protocols show the most competitive memory utilization for
encapsulation and decapsulation7. Furthermore, small key size of SIKE ensures the lower
energy consumption for key transmission than other schemes. The low-energy consumption
is the most critical requirement for low-end (battery-powered) microcontrollers.

In Table 10, we evaluated the practicality of SIDH protocols on both high-end ARM
Cortex-A family of processors and low-end ARM Corex-M4 microcontrollers by measuring
the timing in seconds.

The fastest implementations of SIDHp503 on 64-bit ARMv8 Cortex-A53 and Cortex-
A72 only require 0.041 second and 0.021 second, respectively. For the case of 32-bit ARMv7
Cortex-A15, the SIDHp751 protocol is performed in 0.157 second. This results emphasize
that SIDH protocol is already a practical solution for those “high-end” processors.

Finally, prior to this work, supersingular isogeny-based cryptography was assumed to
be unsuitable to use on low-end devices due to the nonviable performance evaluations
[KPHS18]8. However, in contrast to benchmark results in [KPHS18], our SIKE and SIDH
implementation for NIST’s 1, 2, and 5 security levels are practical and can be used in real
settings. The proposed implementation of SIDHp434 only requires 0.813 second, which
shows that the quantum-resistant key exchange from isogeny of supersingular elliptic curve

7SIKEp434 requires more memory than SIKEp503 since SIKEp434 allocates more temporal storage
than SIKEp503 in Fermat based inversion.

8Authors reported 18 seconds to key exchange on the ARM Cortex-M4 @120 MHz processor



Hwajeong Seo, Amir Jalali and Reza Azarderakhsh 21

Table 10: Comparison of SIDH based key exchange protocols on high-end (ARM Cortex-A
series) processors and low-end (ARM Cortex-M4) microcontrollers. Timings are reported
in terms of seconds.

Protocol Implementation Platform Freq Latency [sec.] Comm. [bytes]
[MHz] Alice Bob A→B B→A

High-end ARM Processors

SIDHp503

[KJA+16] 32-bit ARMv7 Cortex-A8 1,000 0.216 0.229 378 378
[KJA+16] 32-bit ARMv7 Cortex-A15 2,300 0.064 0.067 378 378
[SLLH18] 2,000 0.042 0.046 378 378
[ACC+17] 64-bit ARMv8 Cortex-A53 1,512 0.061 0.050 378 378
[SLLH18] 1,512 0.050 0.041 378 378
[ACC+17] 64-bit ARMv8 Cortex-A72 1.992 0.030 0.025 378 378
[SLLH18] 1.992 0.025 0.021 378 378

SIDHp751
[KJA+16] 32-bit ARMv7 Cortex-A8 1,000 1.406 1.525 564 564
[KJA+16] 32-bit ARMv7 Cortex-A15 2,300 0.340 0.368 564 564
[SLLH18] 2,000 0.135 0.157 564 564

Low-end ARM Microcontrollers
SIDHp434 This work

32-bit ARMv7 Cortex-M4

168 0.715 0.813 326 326
SIDHp503 This work 168 1.028 1.143 378 378

SIDHp751 [KPHS18] 120 16.590 18.833 564 564
This work 168 2.727 3.099 564 564

is a practical solution on low-power microcontrollers.

6 Conclusion
In this work, we presented a highly optimized implementation of SIDH/SIKE on low-end
32-bit ARM Cortex-M4 microcontrollers. We proposed a new set of implementation
techniques, taking advantage of Cortex-M4 capabilities. In particular, we proposed a new
implementation method for finite field arithmetic implementation.

We integrated the proposed modular arithmetic implementations into SIDH/SIKE
reference implementations, targeting NIST’s 1, 2, and 5 security levels. Our library
significantly outperforms the previous state-of-the-art implementations of integer arithmetic
on our target platform, providing 4.35x faster results compared to the only available
optimized implementation of SIDHp751 on Cortex-M4 in the literature.

Using our proposed techniques and optimizations, the entire key encapsulation mecha-
nism over SIKEp434 runs in 1.94 seconds on a 168MHz ARM Cortex-M4 microcontroller
which shows the feasibility of using post-quantum isogeny-based cryptography on low-end
microcontrollers.

We hope the proposed implementation techniques motivate more engineering efforts on
the optimized implementation of SIKE mechanism on different embedded platforms. We
plan to adopt the same strategy in designing efficient software libraries, targeting different
families of microcontrollers in the future.

References
[ACC+17] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,

Basil Hess, Amir Jalali, David Jao, Brian Koziel, Brian LaMacchia,
Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, and
David Urbanik. Supersingular Isogeny Key Encapsulation – Submission
to the NIST’s post-quantum cryptography standardization process,
2017. Available at https://csrc.nist.gov/CSRC/media/Projects/

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip


22 SIKE Round 2 Speed Record on ARM Cortex-M4

Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.
zip.

[ACC+19] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,
Basil Hess, Amir Jalali, David Jao, Brian Koziel, Brian LaMacchia,
Patrick Longa, Michael Naehrig, Geovandro Pereira, Joost Renes, Vladimir
Soukharev, and David Urbanik. Supersingular Isogeny Key Encapsulation
– Submission to the NIST’s post-quantum cryptography standardization
process, round 2, 2019. Available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions/SIKE.zip.

[ARM17] ARM Holdings. Q1 2017 roadshow slides. https://www.arm.
com/company/-/media/arm-com/company/Investors/Quarterly%
20Results%20-%20PDFs/Arm_SB_Q1_2017_Roadshow_Slides_Final.
pdf, 2017.

[BF18a] Joppe Bos and Simon Friedberger. Arithmetic considerations for isogeny
based cryptography. IEEE Transactions on Computers, 2018.

[BF18b] Joppe W. Bos and Simon Friedberger. Faster modular arithmetic for
isogeny based crypto on embedded devices. IACR Cryptology ePrint
Archive, 2018:792, 2018.

[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for
supersingular isogeny Diffie-Hellman. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology - CRYPTO 2016, volume 9814 of
Lecture Notes in Computer Science, pages 572–601. Springer, 2016.

[CLN18] Craig Costello, Patrick Longa, and Michael Naehrig. SIDH Library. https:
//github.com/Microsoft/PQCrypto-SIDH, 2016–2018.

[Com90] Paul G. Comba. Exponentiation cryptosystems on the IBM PC. IBM
systems journal, 29(4):526–538, 1990.

[dG15] Wouter de Groot. A Performance Study of X25519 on Cortex-M3 and M4.
PhD thesis, Ph. D. thesis, Eindhoven University of Technology (Sep 2015),
2015.

[DSS16] Fabrizio De Santis and Georg Sigl. Towards side-channel protected X25519
on ARM Cortex-M4 processors. Proceedings of Software performance
enhancement for encryption and decryption, and benchmarking, Utrecht,
The Netherlands, pages 19–21, 2016.

[FA17] Hayato Fujii and Diego F Aranha. Curve25519 for the Cortex-M4 and
beyond. Progress in Cryptology-LATINCRYPT, 35:36–37, 2017.

[FHLOJRH18] Armando Faz-Hernández, Julio López, Eduardo Ochoa-Jiménez, and Fran-
cisco Rodríguez-Henríquez. A faster software implementation of the super-
singular isogeny diffie-hellman key exchange protocol. IEEE Transactions
on Computers, 67(11):1622–1636, 2018.

[GPST16] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the
security of supersingular isogeny cryptosystems. In Advances in Cryptology
- ASIACRYPT 2016 - 22nd International Conference on the Theory and
Application of Cryptology and Information Security,, pages 63–91, 2016.

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions/SIKE.zip
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions/SIKE.zip
https://www.arm.com/company/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/Arm_SB_Q1_2017_Roadshow_Slides_Final.pdf
https://www.arm.com/company/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/Arm_SB_Q1_2017_Roadshow_Slides_Final.pdf
https://www.arm.com/company/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/Arm_SB_Q1_2017_Roadshow_Slides_Final.pdf
https://www.arm.com/company/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/Arm_SB_Q1_2017_Roadshow_Slides_Final.pdf
https://github.com/Microsoft/PQCrypto-SIDH
https://github.com/Microsoft/PQCrypto-SIDH


Hwajeong Seo, Amir Jalali and Reza Azarderakhsh 23

[GPW+04] Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and Sheuel-
ing Chang Shantz. Comparing elliptic curve cryptography and RSA on
8-bit CPUs. In International workshop on cryptographic hardware and
embedded systems, pages 119–132. Springer, 2004.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the fujisaki-okamoto transformation. In Theory of Cryptography - 15th
International Conference, TCC 2017,, pages 341–371, 2017.

[HL19] Björn Haase and Benoît Labrique. AuCPace: Efficient verifier-based
PAKE protocol tailored for the IIoT. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 1–48, 2019.

[HS15] Michael Hutter and Peter Schwabe. Multiprecision multiplication on AVR
revisited. Journal of Cryptographic Engineering, 5(3):201–214, 2015.

[HW11] Michael Hutter and Erich Wenger. Fast multi-precision multiplication for
public-key cryptography on embedded microprocessors. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages 459–
474. Springer, 2011.

[JAKJ17] Amir Jalali, Reza Azarderakhsh, Mehran Mozaffari Kermani, and Daivd
Jao. Supersingular isogeny Diffie-Hellman key exchange on 64-bit ARM.
IEEE Transactions on Dependable and Secure Computing, 2017.

[JF11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. In Bo-Yin Yang, editor, Post-
Quantum Cryptography (PQCrypto 2011), volume 7071 of Lecture Notes
in Computer Science, pages 19–34. Springer, 2011.

[KAMK16] Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari-Kermani. Fast
hardware architectures for supersingular isogeny Diffie-Hellman key ex-
change on FPGA. In International Conference in Cryptology in India,
pages 191–206. Springer, 2016.

[KJA+16] Brian Koziel, Amir Jalali, Reza Azarderakhsh, David Jao, and Mehran
Mozaffari-Kermani. NEON-SIDH: efficient implementation of supersingular
isogeny Diffie-Hellman key exchange protocol on ARM. In International
Conference on Cryptology and Network Security (CANS 2016), pages 88–
103. Springer, 2016.

[KPHS18] Philipp Koppermann, Eduard Pop, Johann Heyszl, and Georg Sigl. 18
seconds to key exchange: Limitations of supersingular isogeny diffie-hellman
on embedded devices. Cryptology ePrint Archive, Report 2018/932, 2018.
https://eprint.iacr.org/2018/932.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https:
//github.com/mupq/pqm4.

[KYK+18] Suhri Kim, Kisoon Yoon, Jihoon Kwon, Seokhie Hong, and Young-Ho
Park. Efficient isogeny computations on twisted Edwards curves. Security
and Communication Networks, 2018, 2018.

[LLP+17] Zhe Liu, Patrick Longa, Geovandro Pereira, Oscar Reparaz, and Hwajoneg
Seo. FourQ on embedded devices with strong countermeasures against side-
channel attacks. In International Conference on Cryptographic Hardware
and Embedded Systems-CHES2017, pages 665–686, 2017.

https://eprint.iacr.org/2018/932
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4


24 SIKE Round 2 Speed Record on ARM Cortex-M4

[Mon85] Peter L Montgomery. Modular multiplication without trial division. Math-
ematics of Computation, 44(170):519–521, 1985.

[Sho94] Peter W Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In Foundations of Computer Science, 1994 Proceedings.,
35th Annual Symposium on, pages 124–134. IEEE, 1994.

[SLLH18] Hwajeong Seo, Zhe Liu, Patrick Longa, and Zhi Hu. SIDH on ARM: faster
modular multiplications for faster post-quantum supersingular isogeny key
exchange. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 1–20, 2018.

[The18] The National Institute of Standards and Technology (NIST).
Post-quantum cryptography standardization, 2017–2018.
https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization

	Introduction
	Supersingular Isogeny Key Encapsulation
	Public parameters
	Key encapsulation mechanism
	SIKE Round 2

	ARM Cortex-M4 Architecture
	Optimized SIKE/SIDH Arithmetic on ARM Cortex-M4
	Multiprecision Multiplication
	Multiprecision Squaring
	Modular Reduction
	Modular Addition and Subtraction

	Performance Evaluation
	Conclusion

