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Abstract. Code-based cryptographic schemes recently raised to promi-
nence as quantum-safe alternatives to the currently employed number-
theoretic constructions, which do not resist quantum attacks. In this
article, we discuss the Courtois-Finiasz-Sendrier signature scheme and
derive code-based signature schemes using the Fiat-Shamir transforma-
tion from code-based zero-knowledge identification schemes, namely the
Stern scheme, the Jain-Krenn-Pietrzak-Tentes scheme, and the Cayrel-
Veron-El Yousfi scheme. We analyze the security of these code-based
signature schemes and derive the security parameters to achieve the 80-
bit and 128-bit level of classical security. To derive the secure parameters,
we have studied the hardness of Syndrome Decoding Problem. Further-
more, we implement the signature schemes, based on the Fiat-Shamir
transform, which were mentioned above, and compare their performance
on a PC.

Keywords: post-quantum cryptography · code-based cryptography · signature
scheme · identification scheme.

1 Introduction

Digital signature scheme is an important primitive in the arsenal of public-
key cryptography. Security of the schemes, already used in practice, relies on
the number-theoretic hardness assumptions. Unfortunately, these problems are
known to be solvable in polynomial time on quantum computers using Shor’s
algorithm [33]. Hence, quantum computers would be able to break popular cryp-
tosystems such as RSA or ElGamal (including its elliptic-curve variant) in poly-
nomial time. Given these circumstances, it is important to consider the transition
to digital signature schemes which are secure in the post-quantum era. Code-
based digital signature schemes are the one of such promising alternatives.

The journey of code-based public-key cryptography started with the work
by McEliece [25]. McEliece proposed a public-key encryption scheme based on
the hardness of the general decoding problem (see Section 2). In 1986, Niederre-
iter [28] proposed another code-based public-key encryption scheme, which can
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be seen as a dual version of the McEliece construction. Security of the Neider-
rieter encryption scheme is based on the hardness of the syndrome decoding
problem (see Section 2). When both McEliece and Niederreiter schemes are seen
as functions, one can observe that their outputs are quite sparse in the respec-
tive domains. For instance, decodable syndromes that represent the Niederreiter
ciphertexts normally constitute a negligible fraction of the binary strings of the
corresponding length. Therefore, constructing the FDH-type signature (a la RSA
signature), from the Niederreiter PKE is not a straightforward task. The first
successful construction of such code-based signature scheme, in 2001, by Cour-
tois et al. [11] is based on the Niederreiter public-key encryption scheme with
particular parameters. Specifically, high-rate codes are used, which makes the
signature feasible via rejection sampling. It is worth noting that apart from the
Courtois et al. scheme, secure code-based signature proposals are mainly repre-
sented by the constructions obtained from code-based identification schemes via
the Fiat-Shamir transform. Hence, the motivation for this work is to study the
practical performance of these prospective signature schemes.
Organization: Recalling the basic definitions and notions in Section 2, we will
discuss various code-based signature schemes in Section 3. We will study their
secure parameters in Section 4. In Section 5, we will describe the implementation
results of the Stern signature scheme, the Jain-Krenn-Pietrzak-Tentes signature
scheme, and the Cayrel-Veron-El Yousfi signature scheme and conclude in Sec-
tion 6.

2 Preliminaries

2.1 Notations

We will use the following notations throughout the article.

– {0, 1}∗: bit string of arbitrary length.
– Fq: Galois field of q elements.
– Fnq : Vector with n elements over Fq.
– Fm×nq : Matrix with m rows and n columns whose elements are in Fq.
– wt(c): Hamming weight of string c, i.e., the number of non-zero positions of

the string.
– ‖: Concatenation of strings.
– ST : Transposition of the matrix S.
– Sn: Set of permutations over n-length string.
– [A,B]: An interactive protocol between the parties A and B. For simplicity,

we will also use this notation for the transcript of the corresponding protocol.
Then, [A,B] = 1 will denote the fact that the protocol is accepted by B.

2.2 Zero-knowledge Identification Scheme

An identification scheme consists of three probabilistic, polynomial-time algo-
rithms (G,P, V ) such that:
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– The randomized key generation algorithm G takes as input the security
parameter 1λ. It outputs a pair of keys (pk, sk), where pk is called the public
key and sk is called the private key. We assume the security parameter is
implicit in both pk and sk.

– P and V are the probabilistic algorithms. The prover algorithm P takes as
input a private key sk and the verification algorithm V takes as input a
public key pk. At the conclusion of the protocol, V outputs 1 or ⊥.

The following properties hold:

Completeness: [P (sk), V (pk)] = 1.
Honest V always accepts honest P .

Soundness: Pr([P ∗, V (pk)] = 1) = negl(λ).
Cheating P ∗ (not knowing sk) is rejected with overwhelming probability.

Zero-knowledge: [P (sk), V ∗(pk)] ≈ [Sim, V ∗(pk)], where Sim is the simulator.
Cheating V ∗ learns nothing about sk.
For details of the identification schemes, see [22].

2.3 Digital Signature

A digital signature scheme Σ = (Key Generation, Signature Generation,
Signature Verification) consists of three algorithms.

Key Generation: The key generation algorithm takes a security parameter 1λ

and outputs a pair of keys (pk, sk).

Signature Generation: The signature generation algorithm takes a message
m and a private key sk as inputs and outputs a signature σ on the message
m.

Signature Verification: The signature verification algorithm takes as input a
public key pk, a message m and a signature σ, and outputs a bit denoting
accept or reject, respectively.

The standard security notion for a signature scheme is existential unforgeabil-
ity against chosen message attack (EUF-CMA) and strongly existential unforge-
ability against chosen message attack (SEUF-CMA): The forger gets a public
key from a challenger who generates a key pair (pk, sk). The forger can query a
signing oracle on polynomially many messages mi hereby obtaining signatures
σi.

We say that the forger wins the EUF-CMA game, if the forger successfully
outputs a pair (m∗, σ∗), where σ∗ is a valid signature of a message m∗ under the
private key with the restriction that m∗ has never appeared in the query phase.

We say that the forger wins the SEUF-CMA game, if the forger successfully
outputs a pair (m∗, σ∗), where σ∗ is a valid signature of a message m∗ under the
private key with the restriction that (m∗, σ∗) has never appeared in the query
phase. For more details on digital signatures, see, e.g., [22].
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2.4 Security Assumptions

An [n, k] linear code C is a subspace of dimension k of the vector space Fnq .
A linear code can be described by its parity-check matrix H. The parity-check
matrix describes the code as follows:

x ∈ C ⇔ HxT = 0 (∀x ∈ Fnq ).

The product HxT is known as the syndrome of the vector x.

Definition 1. Gilbert-Varshamov Bound:
Let C be an [n, k] linear code over Fq. The Gilbert-Varshamov (GV) Distance is
the largest integer ω such that

k

n
≥ 1−Hq

(ω
n

)
− ε, where 0 < ε ≤ 1−Hq

(ω
n

)
.

Here, Hq is the q-ary entropy function defined as follows:

Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x).

Now, we describe the main hard problems on which the security of code-based
signature schemes, presented in the paper, relies.

Definition 2. Syndrome Decoding Problem (SDP) [4]:

Input: a matrix H ∈ F(n−k)×n
2 , a positive integer ω, and a vector s ∈ Fn−k2 .

Output: a codeword x such that wt(x) = ω′ where 0 < ω′ ≤ ω and HxT = s.

This problem is NP-complete [8], which means that at least some instances
of the problem are hard. However, it is a common belief that it is hard on the
average (for well-chosen parameter ranges), which means that random instances
are hard. It is easy to show that, with overwhelming probability (taken over the
choice of a random code), there exists a unique solution to SDP if the weight ω
is below the GV Bound.

An extension of SDP over arbitrary finite field is as follows:

Definition 3. q-ary Syndrome Decoding Problem (q-SDP) [4]:

Input: a matrix H ∈ F(n−k)×n
q , a non negative integer ω and a vector s ∈ Fn−kq .

Output: a codeword x such that of wt(x) = ω′ where 0 < ω′ ≤ ω and HxT = s.

q-SDP is proven to be NP-hard by S. Barg [5].

Definition 4. Permuted Goppa Syndrome Decoding Problem (PGSDP) [26]:

Input: An (n − k) × n parity check matrix H for a binary irreducible Goppa
code G capable of correcting up to ω errors, a random (n−k)×(n−k) binary
non-singular matrix S and a random n× n permutation matrix P .

Output: A vector x ∈ Fn2 of Hamming weight at most ω, such that HpubxT = s,
where Hpub = SHP .
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Definition 5. General Decoding Problem (GDP):

Input: a matrix G ∈ Fk×n2 , a possitive integer ω, and a vector y ∈ Fn2 .
Output: a pair (m, e) ∈ Fk2 × Fn2 such that wt(e) = ω′ where 0 < ω′ ≤ ω and

mG⊕ e = y.

We observe that this problem was reformulated by Jain et al. in [20] as the
Exact Learning Parity with Noise (xLPN) problem. Its decisional version is as
follows:

Definition 6. Exact Learning Parity with Noise (xLPN) [20]:

Input: a matrix A ∈ Fk×n2 , s ∈ Fk2 , e ∈ {0, 1}n, such that wt(e) = ω.
Decide: if a given n-bit vector is sA⊕ e or a random one.

3 Signature Schemes

During the last thirty years, there were several proposals of signature schemes
based on linear codes. The initial attempts [1,19,37] have no security reduction to
any hard problem. The first successful construction featuring a security reduction
was by Courtois et al. [11]. Currently, there are two major directions in the liter-
ature, both invoking the random oracle model: the FDH-like scheme by Courtois,
Finiasz, and Sendrier [11] (we will refer to it as the CFS signature) and the sig-
natures based on identification schemes using the Fiat-Shamir (FS) transform
(see, e.g., [2,32]). Dallot [12] modified the CFS signature scheme (we will refer
to it as the mCFS signature), where a randomly chosen value will be concate-
nated with the message rather than an accumulative counter used in the original
CFS signature scheme. The mCFS scheme was proven existentially unforgeable
under chosen message attack (EUF-CMA) by Dallot [12] under hardness of the
Goppa-Parametrized Bounded Decoding (GPBD) problem and the Goppa-Code
Distinguishing (GD) problem. Even with the existence of a distinguisher [16] for
the Goppa codes of high rate, a simple modification can provide SEUF-CMA
security for the CFS signature [26]. However, from the practical perspective,
signing time of mCFS signature is somewhat high due to the difficulty of finding
decodable syndromes. A variant of CFS was proposed by Barreto et al. [6] with
an aim to reduce the key size. However, the key recovery attack [17] against
it devised. One can construct signature schemes using Fiat-Shamir transforma-
tion [30] on zero-knowledge identification schemes by Stern [35], Jain et al. [20]
and Cayrel et al. [10]. Note that Jain et al. [20] pointed out a flaw in the proof
of zero-knowledge property of Veron’s code-based identification scheme [36], and
then they provided an alternative scheme which is indeed ZK. As a security as-
sumption, Jain et al. used the so-called Exact-LPN (xLPN) problem [20], which
is, in fact, identical to the general decoding problem considered both in Veron’s
paper, and in the paper by Roy et al. [32].3 We need to use the extended version

3 Jain et al. presented the ZK identification scheme based on the standard LPN prob-
lem as well, but it had the soundness error 4/5, while that based on xLPN had the
soundness error 2/3. Hence, the former scheme would result in signatures of larger
size.
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Algorithm 1: Signature Generation in mCFS signature scheme

Input: Private key sk = (U,H0, P ), message m, and the system parameters
Output: Signature Sig

1 ri ←$ {0, 1}n−k;
2 Compute x = DecodeH0(U−1h(M‖ri));
3 If no x was found, then go to Step 1;
4 Sig = (ri, xP );
5 return Sig ;

of Fiat-Shamir transformation [3] to derive a signature scheme from Cayrel et
al.’s scheme [10]. Kabatianskii et al. [21] proposed signature schemes based on
random error-correcting codes (we will refer to them as the KKS signature). It
was shown by Otmani et al. [29] that the KKS-like signatures are not secure,
even when used only once (i.e., as one-time signatures).

In this section, we will describe the constructions of mCFS [12,26] and the
signatures based on Stern’s [35], Jain et al.’s [20] and Cayrel et al.’s [10] identifi-
cation schemes. For simplicity, we will call them Stern’s, Jain et al.’s, and Cayrel
et al.’s signature, respectively.

3.1 mCFS Signature Scheme

System Parameters The mCFS signature scheme uses the following system pa-
rameters:

– Positive integer n (length of the code),

– Positive integer k such that k < n (dimension of the code),

– Set ω = (n− k)/ log2 n,

– Random oracle: h : {0, 1}∗ → Fn−k2 .

Key Generation The key generation algorithm outputs the pair of the private
key sk and public key pk.

1. Parity check matrix H0 ∈ F(n−k)×n
2 of an (n, k) binary Goppa code C0 de-

coding ω errors.

2. Non-singular matrix U ∈ F(n−k)×(n−k)
2 sampled randomly.

3. Permutation matrix P ∈ Fn×n2 sampled randomly.

4. Calculate H = UH0P .

5. Output private key sk = (U,H0, P ) and public key pk = H.

Signature Generation The signature generation algorithm takes as input private
key sk and a message m, and output Sig . The detailed algorithm is described in
Algorithm 1.
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Signature Verification The signature verification algorithm takes as input public
key pk, message m, Sig . Compute s = HxT , s′ = h(M‖ri), then output 1 if the
following respective equations hold:{

Check s = s′

Check wt(s) ≤ ω
,

or ⊥ otherwise.

3.2 Stern’s Signature Scheme

System Parameters The Stern signature scheme uses the following system pa-
rameters:

– Positive integer n (length of the code),

– Positive integer k such that k < n (dimension of the code),

– Positive integer ω (minimum distance of the code),

– Matrix H ∈ F(n−k)×n
2 sampled randomly.

– Random oracle: h : {0, 1}∗ → {0, 1}∗.
– Random oracle: O : {0, 1}∗ → {0, 1, 2}.

Key Generation The key generation algorithm outputs the pair of the private
key sk and public key pk.

1. Sample a vector s ∈ Fn2 such that wt(s) = ω.

2. Calculate a vector y ∈ Fn−k2 as y = HsT .

3. Output private key sk = s and public key pk = y.

Signature Generation The signature generation algorithm takes as input private
key sk and a message m, and output Sig . The detailed algorithm is described in
Algorithm 2.

Signature Verification The signature verification takes as input public key pk,
message m, and Sig . Compute bi ← O(m‖ci) and output 1 if the following re-
spective equation holds for all 1 ≤ i ≤ δ:

Check ci,0 = h(σi‖Hui) and ci,1 = σi(ui). (bi = 0)

Check ci,0 = h(σi‖H(ui ⊕ s)⊕ y) and

ci,2 = h(σi(ui ⊕ s)). (bi = 1)

Checkci,1 = σi(ui), ci,2 = h(σi(ui)⊕ σi(s)),
and wt(σi(s)) = ω. (bi = 2)

,

or ⊥ otherwise.
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Algorithm 2: Signature Generation in Stern’s signature scheme

Input: Private key sk = s, Message m, and System parameters
Output: Signature Sig

1 for i← 0 to δ − 1 do
2 ui ←$Fn2 ;
3 σi ←$Sn;
4 ci,0 ← h(σi‖Hui);
5 ci,1 ← σi(ui);
6 ci,2 ← h(σi(ui ⊕ s));
7 ci = (ci,0‖ci,1‖ci,2);
8 bi = O(m‖ci);

9 rspi ←


σi‖ui (bi = 0)

σi‖(ui ⊕ s) (bi = 1)

σi(ui)‖σi(s) (bi = 2)

;

10 sig i = ci‖rspi;
11 end
12 Sig ← sig0‖sig1‖ · · · ‖sigδ−1;
13 return Sig ;

3.3 Jain et al.’s Signature Scheme

In this section, we will derive the signature scheme from the identification scheme
of [20]. We will present a slightly modified design [32]. Here, commitment func-
tion is implemented by collision-resistant hash function.

System Parameters

– Positive integer n (length of the code),
– Positive integer k such that k < n (dimension of the code).
– Positive integer ω (minimum distance of the code).
– Matrix A ∈ Fk×n2 sampled randomly.
– Radom oracle: h : {0, 1}∗ → {0, 1}∗.
– Random oracle: O : {0, 1}∗ → {0, 1, 2}.

Key Generation The key generation algorithm outputs the pair of the private
key sk and public key pk.

1. Sample (s, e)←$Fk2 × Fn2 such that wt(e) = ω.
2. Calculate y = sA⊕ e.
3. Output private key sk = e and public key pk = y.

Signature Generation The signature generation algorithm takes private key sk
and a message m, output Sig , and system parameters as inputs. Algorithm 3
describes the detailed algorithm.
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Algorithm 3: Signature Generation in Jain et al.’s signature scheme

Input: Private key sk = e, Message m, and System parameters
Output: Signature Sig

1 for i← 0 to δ − 1 do
2 ui ←$Fn2 ;

3 vi ←$Fk2 ;
4 σi ←$Sn;
5 yi,0 ← viA⊕ ui;
6 ci,0 ← h(σi‖yi,0);
7 yi,1 ← σi(ui);
8 ci,1 ← h(yi,1);
9 yi,2 ← σi(ui ⊕ e);

10 ci,2 ← h(yi,2);
11 ci ← ci,0‖ci,1‖ci,2;
12 bi ← O(m‖ci);

13 rspi ←


σi‖yi,0‖yi,1 (bi = 0)

σi‖yi,0‖yi,2 (bi = 1)

yi,1‖yi,2 (bi = 2)

;

14 sig i ← ci‖rspi;
15 end
16 Sig ← sig0‖sig1‖ · · · ‖sigδ−1;
17 return Sig ;

Signature Verification The signature verification algorithm takes as input public
key pk, message m, Sig , and system parameters. It computes bi ← O(m‖ci) and
outputs 1 if the following respective equation holds for all 0 ≤ i ≤ δ − 1:

Check ci,0 ← h(σi‖yi,0),

ci,1 ← h(yi,1), (bi = 0)

yi,0 ⊕ σ−1i (yi,1) = xA, for some x and σi ∈ Sn
Check ci,0 ← h(σi‖yi,0),

ci,2 ← h(yi,2), (bi = 1)

and yi,0 ⊕ σ−1i (yi,2)⊕ y = xA, for some x

Check ci,1 ← h(yi,1),

ci,2 ← h(yi,2), (bi = 2)

and wt(y1,i ⊕ y2,i) = ω

,

or ⊥ otherwise.

3.4 Cayrel et al.’s Signature Scheme

To present the Cayrel et al., signature scheme, first we introduce a special trans-
formation that will be used in the scheme.
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Definition 7. [10] Let σ ∈ Sn and γ = (γ1, · · · , γn) ∈ (F∗q)n such that γi 6= 0
for all i. The transformation Πγ,σ is defined as follows:

Πγ,σ :Fnq → Fnq
v 7→

(
γσ[0]vσ[0], γσ[1]vσ[1], · · · , γσ[n−1]vσ[n−1]

)
.

Notice that this transformation is linear transformation, and satisfies Πγ,σ(v +
w) = Πγ,σ(v) +Πγ,σ(w) and Πγ,σ(αv) = αΠγ,σ(v) for all v, w, α ∈ Fq. Further-
more, the transformation preserves the Hamming weight of the vector.

Now, we are in the state to present the signature scheme:

System Parameters The signature scheme uses the following system parameters:

– Positive integer n (length of codeword),

– Positive integer k such that k < n (dimension of the code),

– Positive integer ω (minimum distance of the code),

– Matrix H ∈ F(n−k)×n
q sampled randomly,

– Random oracle h : {0, 1}∗ → {0, 1}∗,
– Random oracle O1 : {0, 1}∗ → Fnq ,

– Random oracle O2 : {0, 1}∗ → {0, 1}.

Key Generation The key generation algorithm outputs the pair of the private
key s and public key y.

1. Sample a vector s ∈ Fnq such that wt(s) = ω.

2. Calculate a vector y ∈ Fn−kq as y = HsT .

3. Output private key s and public key y.

Signature Generation The signature generation algorithm takes as input private
key s and a message m, and output a signature Sig . The detailed algorithm is
described in Algorithm 4.

Signature Verification The signature verification algorithm takes public key y,
message m, and signature Sig as inputs. It computes αi ← O1(m‖ci) and bi ←
O2(m‖ci‖αi‖βi); then, it outputs 1 if the following respective equation holds for
all 0 ≤ i ≤ δ − 1:

Check ci,0 = h(σi‖γi‖HΠ−1γi,σi
(βi)− αiy) (bi = 0)

Check ci,1 = h(βi − αiΠγi,σi
(s)‖Πγi,σi

(s))

and wt(Πγ,σ(s)) = ω (bi = 1)

,

or ⊥ otherwise.
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Algorithm 4: Signature Generation in Cayrel et al.’s signature scheme

Input: Private key sk = s, Message m, and System parameters
Output: Signature Sig

1 for i← 0 to δ − 1 do
2 ui ←$Fnq ;
3 σi ←$Sn;
4 γi ←$ (Fq \ {0})n;
5 ci,0 ← h(σi‖γi‖Hui);
6 ci,1 ← h(Πγi,σi(ui)‖Πγi,σi(s));
7 ci ← ci,0‖ci,1;
8 αi ← O1(m‖ci);
9 βi ← Πγi,σi(ui + αis);

10 bi ← O2(m‖ci‖αi‖βi);

11 rspi ←

{
σi‖γi (bi = 0)

Πγi,σi(s) (bi = 1)
;

12 sig i = ci‖βi‖rspi;
13 end
14 Sig ← sig0‖sig1‖ · · · ‖sigδ−1;
15 return Sig ;

4 Security Analysis and Parameter Selection

4.1 Time Complexity of SDP

Security of code-based primitives, considered in this work, relies on the hardness
of SDP or its dual version GDP, where the weight ω is around GV-bound for the
instance of SDP. However, it is also required to consider the hardness of SDP
for other plausible regions of ω, which may open a new avenue for construction
of code-based primitives with advanced functionality [15]. In this section, we
will discuss the two SDP solvers, we call them SDP Solver-I and SDP Solver-II,
to analyze the time complexity of SDP for all possible values of ω. We note
that these constructions are rather folklore, although we are not aware of their
systematic study, and hence it is presented here4 .

SDP Solver-I: The SDP Solver-I solves SDP instances SDP(H, v, ω) where
(n − k)/2 ≤ w ≤ (n + k)/2 in a polynomial time. The SDP Solver-I outputs
a vector x such that HxT = v and wt(x) = ω in a polynomial time for given
matrix H, vector v, and positive integer ω. The matrix H can be represented as

H = (H1H2) where H1 ∈ F(n−k)×(n−k)
2 and H2 ∈ F(n−k)×k

2 . We can assume H1

is invertible without loss of generality. Otherwise, we can permute the columns
of H to make sure that its first n− k columns comprise an invertible matrix.

4 Just before the publication of this report, we became aware of the work by Debris-
Alazard et al. [13], which, in particular, contains an explanation of this issue.
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Algorithm 5: SDP Solver-I

Input: Matrix H, Vector v, and Positive integer w such that
(n− k)/2 ≤ w ≤ (n+ k)/2

Output: vector x such that HxT = v and wt(x) = ω
1 repeat

2 x2 ←$Fk2 such that wt(x2) = ω − (n− k)/2;

3 x1 ← H−1
1 (v +H2x

T
2 );

4 x← (x1‖x2);

5 until wt(x) = ω;
6 return x;

Theorem 1. The SDP Solver-I outputs a vector x such that Hx = v and
wt(x) = ω in a polynomial time for given matrix H, vector v, and natural number
ω.

Proof. The validity of the codeword can be evaluated as

HxT = (H1H2)(x1‖x2)T

= H1x
T
1 +H2x

T
2

= H1H
−1
1 (v +H2x

T
2 ) +H2x

T
2

= v +H2x
T
2 +H2x

T
2

= v,

in the third equation, we substitute xT1 = H−11 (v +H2x
T
2 ).

The validity of the Hamming weight is shown as

wt(x) = wt(x1) + wt(x2)

= (n− k)/2 + [w − (n− k)/2]

= ω.

All operations in the algorithm are completed in a polynomial time. The SDP
Solver-I terminates if the Hamming weight of x1 = H−11 (v + H2x

T
2 ) is exactly

(n− k)/2. The probability that it has weight n−k
2 can be estimated as

Pr

[
wt(x1) =

n− k
2

]
=

(n−k
n−k

2

)
2n−k

=
(n− k)![(

n−k
2

)
!
]2

2n−k

≈

√
2

π(n− k)

using Stirling’s approximation and an assumption that x1 follows the bino-
mial distribution B(n − k, 1/2). The expectation of the number of iteration is
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Table 1. Experimental results of SDP Solver-I

Value Theoretical Experimental

wt(x1) (n− k)/2 = 768 768.0

Variance of wt(x1)
√
n− k/2 = 19.60 19.59

Iteration number
√
π(n− k)/2 = 49.12 49.51

Algorithm 6: SDP Solver-II

Input: matrix H, vector v, positive integer ω such that 0 < ω < (n− k)/2
Output: vector x such that HxT = v and wt(x) = ω

1 v′ ← v +H1;
2 ω′ ← n− ω;

3 x′ ← SDPO(H,v′,ω′);
4 return x′ + 1;

√
π(n− k)/2 or O

(√
n− k

)
. Thus, the SDP Solver-I terminates in polynomial

time. ut
We implement the SDP Solver-I to experimentally confirm our assumption

that x1 follows that the binomial distribution B(n− k, 1/2) and the estimation
of the number of iteration in the SDP Solver-I are valid. Table 1 shows that the
experimental results agreed well with our theoretical predictions for n = 3, 072
and k = n/2 = 1, 536.

SDP Solver-II: The SDP Solver-II reduces an SDP instance SDP(H, v, ω) where
(n+k)/2 < ω < n to another SDP instance SDP(H, v′, ω′) where ω′ = n−ω and
0 < ω′ < (n− k)/2. The SDP Solver-II has an oracle to another SDP solver for
SDP instances SDP(H, v′, ω′) where 0 < ω′ < (n − k)/2 that outputs a vector
x′ such that Hx′T = v′ and wt(x) = ω′. Algorithm 6 describes the detailed
algorithm of the SDP Solver-II.

Theorem 2. The SDP Solver-II outputs a vector x such that HxT = v and
wt(x) = ω in a polynomial time for given a matrix H, a vector v, and a positive
integer ω such that (n + k)/2 < ω < n if an SDP solver for SDP instances
SDP(H, v, ω′) where 0 < ω′ < (n− k)/2 exists.

Proof. The validity of the codeword can be evaluated as

HxT = H(x′ + 1)T

= Hx′T +H1T

= v′ +H1T

= (v +H1T ) +H1T

= v.
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The validity of the Hamming weight is shown as

wt(x) = wt(x′ + 1)

= n− wt(x′)

= n− (n− ω)

= ω.

(n + k)/2 < wt(x) < n holds since 0 < wt(x′) < (n − k)/2. Furthermore, all
operations in the algorithm are completed in polynomial time. Thus, the SDP
Solver-II terminates in a polynomial time. ut

Discussion: The most efficient known algorithm to attack SDP (in the high-
noise regime, i.e., when the number of errors is proportional to n) is the In-
formation Set Decoding (ISD) algorithm by Prange [31], and it generalizations
and improvements, notably [34,18,24,9,7]. We will use the method of Finiasz
and Sendrier [18], since it provides a concrete running time estimates. Next, we
compare the method of Finiasz and Sendrier with our observations above. We
have plotted the graph by taking n = 3, 072 and k = n/2 = 1, 536 in Fig. 1.
It explicitly shows the region of ω yielding hard instances. We can observe that
hard instances of SDP correspond to a relatively narrow region of “small” values
of ω (as well as their “large” counterpart). It is apparent that the method of
Finiasz and Sendrier [18] was designed to cover the error weights up to (n−k)/2.
Hence, it should be used as we described in Solver-II when the error weight ω is
moderately high, specifically, beyond (n− k)/2 that is 768 in Fig. 1.

4.2 Parameter Selection

The mCFS signature was shown SEUF-CMA secure [26]. Signature schemes,
constructed using Fiat-Shamir transformation and its extension to the 5-pass
case from zero-knowledge identification schemes, are EUF-CMA secure [3,30].
Moreover, EUF-CMA and SEUF-CMA security include the security against key-
recovery attack [22]. Therefore, to choose secure parameters, it is required to
measure the hardness of the problem, to which the EUF-CMA or SEUF-CMA
security is reduced.

The security of the Stern and Cayrel et al. signatures are reduced to the
hardness of SDP and qSDP, respectively. The most efficient known algorithm to
attack SDP is the Information Set Decoding (ISD) algorithm by Prange [31] and
its extensions, as discussed in the end of Section 4.1. The complexity of q-ary
SDP can be evaluated using the method of [27], which is an extension of [18]
from binary to an arbitrary finite field.

Security of the Jain et al. signature scheme is reduced to the hardness of
xLPN. Since xLPN here used in the “high-noise” regime, the best attack algo-
rithm is still ISD. We thus have used the method of [18] to measure its complex-
ity. Security of mCFS reduced to PGSD problem. Here again, the best attack
would use ISD, but now the code parameters correspond to mCFS, and so we
have used the modified method of [24] as in [23].
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Fig. 1. Time complexity of SDP

mCFS Signature Scheme: The mCFS signature scheme is based on the
Niederreiter cryptosystem that uses high-rate Goppa codes. For given integers m
and t, the length of the binary (irreducible) Goppa code is taken, for simplicity,
to be n = 2m, with dimension k = n −mt, and hence they are t-error correct-
ing. The so called complete decoding is used [Algorithm 1, [23]], and the actual
weight of the error vector that comes out of the decoder is denoted by ω. For
secure parameters, we will consider the estimation by Landais and Sendrier [23].
More specifically, we have used the non-asymptotic version of [24] (see appendix
A of [23]). The work-factor formula is as follows [23]:

WFMMT(n, k, ω) = min
p,l

2l

ε(p, l)

(
1

2l
+

1

L2
0

)
(1)

where

ε(p, l) =

(
n−k−l
ω−p

)(
min

(
n
ω

)
, 2n−k

) and L0 =

(k+l
2
p
4

)
.

The system parameters and data sizes are presented in Table 25 as in [23].

5 Note that the signature size can be reduced by trading it for the verification time
(see section 5.5 of [23]). We have calculated the size of secret key by assuming that
S is generated using a pseudorandom generator with a 128-bit seed
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Table 2. System parameters and data sizes for mCFS signature scheme.

Parameter 80-bit Security 126-bit Security

Independent parameters:

n 262144 16777216

Derived parameters:

k 261946 16776976
ω 11 12

Data size:

sk 6.5 MB 604 MB
pk 5.3 MB 500 MB

Signature 198 bit 288 bit

Stern’s Signature Scheme: We select parameters n, k and ω according to
the GV bound i.e.,

k

n
= 1−H2

(ω
n

)
, (2)

to maximize the security against attacks using the ISD algorithm as [18]

WF FS(n, k, ω) = min
p

2lmin
((
n
ω

)
, 2n−k

)
(1− e−1)

(
n−k−l
ω−p

)√(
k+l
p

) (3)

where

l = log2

(
2ω

√(
k

p

))
.

We select k = n/2 and ω around 0.110n. The number of rounds δ depends on
the soundness error of the underlying identification scheme. The soundness error
of one round [35] is 2/3. Hence, the number of round δ should satisfy (2/3)δ <
2−λ, , where λ is the security parameter, corresponding to the soundness error
(i.e., security failure probability) 2−λ. System parameters and data sizes are
presented in Table 3.

Jain et al.’s Signature Scheme: We select parameters n, k and ω according
to Eq. (3) and (2). The number of rounds δ depends on the soundness error of the
underlying identification scheme. Soundness error of the Jain et al. identification
scheme [20] is 2/3. Hence, δ should satisfy (2/3)δ < 2−λ. System parameters and
data sizes are presented in Table 4.

Cayrel et al.’s Signature Scheme: We select parameters n, k and ω according
to the GV bound i.e.,

k

n
= 1−Hq

(ω
n

)
,

to maximize the security against attacks using the ISD algorithm. We select
k = n/2 and ω is around 0.380n.
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Table 3. System parameters and data sizes for Stern’s signature scheme.

Parameter 80-bit Security 128-bit Security

Independent parameters:

n 620 1,024
δ 137 219

Derived parameters:

k 310 512
ω 68 112

Data size:

sk 620 bit 1024 bit
pk 310 bit 512 bit

Signature 93.3 kB 245 kB
Systemf param. 24.0 kB 65.5 kB

Table 4. System parameters and data sizes of Jain et al.’s signature scheme.

Name 80-bit Security 128-bit Security

Independent parameters:

n 620 1,024
δ 137 219

Derived parameters:

k 310 512
ω 68 112

Data size:

sk 930 bit 1536 bit
pk 620 bit 1024 bit

Signature 95.11 kB 263 kB
System param. 24.0 kB 65.5 kB

The relevant formula to evaluate the work factor is as follows [27]:

WF qISD(n, k, ω, q)

= min
l,p1,p2

Np,q(l)√
q − 1

(
λ−1q

(
2(q − 1)l

(q
(
l
p′2

)
(q − 1)p′2

+ p2

)

×

√(
k

p1

)(
l

p2

)
(q − 1)p−1 +Kq

(
k
p1

)(
l
p2

)
(q − 1)p−1

ql

)
where

Np,q(l) =
min(

(
n
ω

)
(q − 1)ω, qn−k)(

n−k−l
ω−p

)(
k
p1

)(
i
p2

)
(q − 1)ω

,

p = p1 + p2, p′2 = bp2/2c, λq = 1− e−1 ≈ 0.63 and bp2/2c denotes the maximum
integer that does not exceed p2/2. The value n should satisfy WF ISD(n, k, ω) >
2λ.

The number of rounds δ depends on the soundness error of the underlying
identification scheme. The soundness error of the Cayrel et al. identification
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Table 5. System parameters and data sizes for Cayrel et al.’s signature scheme over
F256.

Parameter 80-bit Security 128-bit Security

Independent parameters:

n 144 230
δ 80 128

Derived parameters:

k 72 115
ω 54 87

Data size:

sk 1.152 bit 1.840 bit
pk 576 bit 920 bit

Signature 89.6 kB 229 kB
System param. 10.4 kB 26.5 kB

scheme [10] is q
2(q−1) . Hence, δ should satisfy (1/2)δ < 2−λ. The parameters and

data sizes are presented in Table 5.

5 Implementations

We implement Stern’s, Jain et al.’s and Cayrel et al.’s signature schemes with
128-bit level of classical security in C language. Eight variables as the ele-
ments of F2 in Stern’s and Jain et al.’s signature schemes, and a variable as
an element of F256 in Cayrelet al.’s signature scheme are stored to an eight-bit
uint8 variable. Our implementation uses a pre-computation table for multipli-
cation between F256 elements. We used SHA3-256 to implement random oracles
used in the signature schemes. For example, a random oracle h : {0, 1}∗ →
{0, 1}1024 is implemented as v 7→ SHA3-256(0x00‖v)‖SHA3-256(0x01‖v)‖ · · ·
‖SHA3-256(0x03‖v). One byte prefix 0x00, 0x01, . . . , 0x03 are auxiliary inputs
to achieve independent hash functions. Durstenfeld Shuffle [14] in Algorithm 7
that outputs a random permutation within O(n) computational complexity, is
used in the signature schemes.

The signature size in Cayrel et al.’s signature scheme is smaller and the
execution time of the signature generation algorithm is smaller as compared
to Stern’s signature scheme. Conversely, the signature verification algorithm in
Stern signature scheme is faster than that in Cayrel et al. signature scheme
since it consists only of hash calculations, permutations, exclusive-or operations,
and Hamming weight checks. Table 6 shows the execution time of the signature
schemes on a PC with a 3.5 GHz CPU and 16 GB of RAM as well as the size
of the secret key, public key, and a signature. The size of the input messages is
32 B.

Discussion: We implemented the Stern’s signature scheme, the Jain-Krenn-
Pietrzak-Tentes’s signature scheme, and the Cayrel-Veron-El Yousfi’s signature
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Algorithm 7: Durstenfeld Shuffle

Input: Natural number n
Output: Random permutation σ[i] with n elements

1 for i← 0 to n− 1 do
2 σ[i]← i
3 end
4 for i← 0 to n− 1 do
5 target←$ {0, 1, . . . , n− 1};
6 tmp← σ[target];
7 σ[target]← σ[n− 1− i];
8 σ[n− 1− i]← tmp;

9 end
10 return σ[i];

Table 6. Summary of execution time and data size of the signature schemes

Stern Jain et al. Cayrel et al.

Keygen 0.0170 ms 0.0201 ms 0.339 ms
Sign 31.5 ms 16.5 ms 24.3 ms

Verify 2.27 ms 135 ms 9.81 ms

sk 1024 bit 1536 bit 1840 bit
pk 512 bit 1024 bit 920 bit

System prams. 65.5 kB 65.5 kB 229 kB
Signature 245 kB 263 kB 229 kB

scheme and compared their performance on a PC. Our implementation shows
the Stern’s signature scheme to be the most efficient regarding the execution
time of key generation and signature verification. The signature generation of
the Jain et al.’s scheme is the fastest, but the signature verification of the scheme
is slowest.

6 Conclusion

Among the code-based signature schemes Stern [35] features the smallest public
key size (512 bits for 128-bit security). We note that we consider the “classical”
128-bit security. It is an open problem to construct a secure code-based signature
scheme, especially with a good balance between the key sizes and the signature
size. A recent result by Debris-Alazard et al. [13] makes a step in this direction.
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