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Abstract. We give a number of approaches which, to a newcomer, may
seem like natural ways to attack the SIDH/SIKE protocol, and explain
why each of these approaches seems to fail, at least with the specific setup
and parameters of SIKE. Our aim is to save some time for others who
are looking to assess the security of SIDH/SIKE. We include methods
that fail to attack the pure isogeny problem, namely: looking at the Fp-
subgraph, lifting to characteristic zero, and using Weil restrictions. We
also include methods that fail to make use of the public 2-power and 3-
power torsion points, namely: interpolation techniques, any purely group-
theoretic approaches, and constructing an endomorphism à la Petit to
exploit the auxiliary points, but with balanced parameters.
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1 Introduction

Isogeny-based cryptography is a relatively new approach to post-quantum key
exchange and other, more advanced (pre- and post-quantum) cryptographic con-
structions. Isogeny-based key exchange initially attracted attention due to the
relatively tiny key sizes, while at the same time offering decent performance. In
addition, it has by now crystallized that isogenies may actually be suitable for
functionality that no other known post-quantum construction offers (efficiently),
such as non-interactive key exchange.

An isogeny is a certain kind of map between two elliptic curves (or more
generally, abelian varieties) that preserves these objects’ structural properties:
They are group homomorphisms which are given by rational maps; more pre-
cisely, an isogeny is a surjective morphism of elliptic curves (or abelian varieties)
that preserves the identity.

The historically first practical isogeny-based key exchange is this paper’s
topic of interest: Supersingular Isogeny Diffie–Hellman (SIDH), conceived by Jao
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and De Feo in 2011 [18], is first and foremost an ephemeral Diffie–Hellman-like
key exchange. Unfortunately, it seems impossible to efficiently determine whether
a public key was generated honestly; this leads to an active reaction attack which
recovers a static private key in a linear (in the key size) number of queries [16].
Based on this observation, SIDH was later transformed into SIKE [17], a key-
encapsulation mechanism (KEM) which is currently a second-round contestant
in NIST’s call for post-quantum cryptographic constructions [27]. In SIKE, one
party (the server) can use a static key, while the other party generates a new
ephemeral key pair for every connection. The construction is generally the same
as SIDH, except that as part of his side of the key exchange, Bob encrypts his
private key with the shared secret and sends it to Alice, who can then verify
that the public key matches what one would get from Bob’s alleged private key
when following the protocol honestly. If Alice performs this check before doing
anything else with the shared secret, she can be sure not to leak any information
to dishonest clients: Bob only learns whether he was honest or not, but he is
probably already aware of that.

This paper summarizes some of our and others’ fruitless attempts to crypt-
analyze SIDH, including a discussion of the reasons why they failed. We hope
that this will be useful to other (in particular, novice) researchers in the field of
isogeny-based cryptography: In the past, we have observed a tendency among
practitioners to rediscover, and sink time into, some of the ideas outlined in
the following. Ideally, this paper will provide a shortcut for those poor souls,
allowing them to skip past some of the approaches doomed to fail. Finally, we
strongly believe that publishing negative results can be valuable: One person’s
useless observation may be another person’s missing link.

Finally, note that we do expect the ideas outlined in the following to strike
experienced readers as naïve or foolish. This is by design: Documenting the
insight to be gained while debunking— in hindsight—flawed ideas is exactly
the point of this paper. ‘Trivial’ is but another word for ‘we understood it’.

Acknowledgements. The negative results presented in the paper are the result
of discussions with many other researchers. We have tried to acknowledge all
specific discussions in the relevant subsections. We would like to especially thank
Tanja Lange for useful discussions regarding almost every part, if not every part,
of this paper, as well as Dan Bernstein, Dan Boneh, Steven Galbraith, Ben Smith,
and Fre Vercauteren for many insightful discussions.

2 Preliminaries

In this section, we give an account of the SIDH construction, introduce the
problems it poses to cryptanalysts, and finally summarize the most important
mathematical properties of the objects of interest.



2.1 The SIDH key-exchange protocol [18]

The core idea in isogeny-based key exchange is to compose two random walks
on an isogeny graph of elliptic curves in such a way that the end node of both
ways of composing is the same. However, the graph used in SIDH is chaotic— it
does not carry a computationally useful structure regular enough to support the
evident Diffie–Hellman-style key exchange depicted in Figure 1.

Figure 1. Left: Diffie–Hellman on a (too) structured graph. Right: The supersingular
{2, 3}-isogeny graph over F4312.

This creates a serious correctness challenge for key-exchange schemes trying
to make use of this graph. The resolution of this problem is the core contribution
of SIDH: By sending extra information (so-called ‘auxiliary points’) that helps
Alice and Bob orient themselves when walking from the other party’s public key
node, they are able complete the DH ‘diamond’ to obtain a shared secret.

Recall the following fundamental result [34, Prop. III.4.12]:

Lemma 1. Let E be an elliptic curve and H a finite subgroup of E. Then there
exists an elliptic curve E/H and a separable isogeny ϕH : E −→ E/H whose
kernel is H. The codomain E/H and isogeny ϕH are unique up to isomorphism.

Parameters. The main parameter in SIDH is a large prime p of the form
p = `nAA · `

nB
B · f − 1, where À, B̀ are small distinct primes (typically 2, 3) and f

is a small cofactor (often 1) not divisible by À or B̀.
Other parameters are: a supersingular elliptic curve E0/Fp,1 a basis (PA, QA)

of E0[`
nA
A ], and a basis (PB, QB) of E0[`

nB
B ]. Typically, E0 : y

2 = x3 + x is used.
Note that the choice of p and E0 implies that PA, QA, PB, QB are all defined

over Fp2, since E0(Fp2) ∼= Z/(p+ 1)× Z/(p+ 1).

1 In principle, it is not required that E0 be defined over Fp, but this is beneficial for
a variety of reasons. However, there are some reasons to be concerned about special
curves like the common choice j = 1728; see Section 4.3.



We refer to the curves used in SIDH as ‘SIDH curves’. It turns out that these
curves actually form a complete set of representatives of all isomorphism classes
of supersingular elliptic curves over Fp.

Keys. Alice’s secret key is an integer a ∈ {0, ..., `nAA − 1}, defining the cyclic
subgroup A = 〈PA+ [a]QA〉 ≤ E0[`

nA
A ].

Her public key is the curve E0/A together with the images ϕA(PB), ϕA(QB)
of Bob’s public basis under her (secret) isogeny ϕA : E0→ E0/A.

Bob follows the same process: his secret key is an integer b ∈ {0, ..., `nBB − 1}
defining the cyclic subgroup B = 〈PB + [b]QB〉 ≤ E0[`

nB
B ], and his public key is

the tuple (E0/B, ϕB(PA), ϕB(QA)).

Key exchange. Bob takes Alice’s public key (E0/A, ϕA(PB), ϕA(QB)) and uses
the points contained in it to shift his secret B ≤ E0[`

nB
B ] to E0/A: He obtains

B′ := ϕA(B) = 〈ϕA(PB) + [b]ϕA(QB)〉 ≤ (E0/A)[`
nB
B ] .

This allows him to compute the shared secret (E0/A)/B
′ ∼= E0/〈A,B〉.

Alice proceeds in exactly the same way: she computes A′ := ϕB(A) to obtain
the shared secret (E0/B)/A′ ∼= E0/〈A,B〉.

2.2 Basic observations

Rational points. Tate’s theorem [37] implies that EA and EB have the same
number of points as E0, that is, (p+1)2. Even stronger, [40, Theorem 4.4] shows
that all SIDH curves E have isomorphic groups of Fp2-rational points:

E(Fp2) ∼= Z/(p+ 1)× Z/(p+ 1) .

Among other things, this (together with the smoothness of p + 1) implies that
the Pohlig–Hellman algorithm can compute discrete logarithms in E(Fp2) in
polynomial time, and very efficiently in practice. Similarly, the generalization to
‘two-dimensional discrete logarithms’—or in other words, decomposing a point
in E(Fp2) over a basis of the group of rational points— is easy [35, Algorithm 9.3].
Therefore, the information ϕA(PB), ϕA(QB) and ϕB(PA), ϕB(QA) that Alice and
Bob transmit reveals much more than just the action of the secret on mere two
points: it encodes the action of ϕA resp. ϕB on the entire `nBB - resp. `nAA -torsion.

The graph structure. As mentioned before, the set of (isomorphism classes
of) SIDH curves together with (a subset of) the rational isogenies between them
can be viewed as a graph, a very useful viewpoint for understanding and arguing
about isogeny-based cryptosystems. For example, for every finite set S ⊆ Z≥2,
one obtains an S-isogeny graph where the edges are isogenies whose degree is
in S; an important special case is S = {`} where ` is a (typically small) prime.
One can prove [14] that (up to isomorphism) there are bp/12c+ ε supersingular



elliptic curves defined over Fp, where ε ∈ {0, 1, 2}.2 It turns out that all of these
isomorphism classes have a representative defined over Fp2, hence the SIDH
protocol actually works on the graph of all supersingular elliptic curves defined
over characteristic-p fields.

Moreover, the `-isogeny graph is always connected (for p - `), and it has
excellent mixing properties [30,18]: Any two nodes are expected to be connected
via only O(log` p) steps in the `-isogeny graph, that is, an `O(log` p)-isogeny. By
counting, it is clear that one cannot hope for faster mixing: Since the `-isogeny
graph is O(`)-regular, there are at most O(`d) nodes at distance ≤ d from any
given point in the graph. Setting d ∈ Ω(log` p) makes sure one can at least
hope to reach all Θ(p) nodes within d steps, and the theory guarantees that this
is indeed true. More careful handling of the constants in the relevant mixing
bounds shows that the leading coefficient of the O(log` p) is in fact a small
constant (< 6 for reasonably-sized p), hence the SIDH shared secret is close to
uniformly random in the supersingular isogeny graph. On the other hand, this is
clearly not true for the public keys, which (by counting) lie in a negligibly small
subset whose density is only O(1/

√
p).

Endomorphism rings. It is a classical result of Deuring [11] that the (full) en-
domorphism ring of a supersingular elliptic curve defined over Fp is (isomorphic
to) a maximal order in the quaternion algebra Bp,∞ ramified at p and∞. In the
SIDH setting,3 this means there exists a ring isomorphism from the endomorph-
ism algebra End◦(E) = End(E)⊗ZQ to the Q-algebra Bp,∞ = Q⊕iQ⊕jQ⊕ijQ
with multiplication rules i2 = −1, j2 = −p, and ij = −ji. The endomorphism
ring End(E) is thus generated by four linearly independent elements of Bp,∞
which span a maximal proper subring with respect to inclusion. The most prom-
inent example is the SIDH starting curve E0 : y

2 = x3+x: Its endomorphism ring
is generated as a ring by the endomorphisms ι and (ι+π)/2, where ι is an auto-
morphism of order 4 given by ι : (x, y) 7→ (−x,

√
−1 · y), and π : (x, y)→ (xp, yp)

is the p-power Frobenius endomorphism.4 Hence a Z-basis of End(E0) is given
by 〈1, ι, ι+π2 , 1+ιπ2 〉. Note that one can in principle, although there are usually
computational hurdles, express the endomorphisms of any other supersingular
elliptic curve over Fp with respect to this basis: Fixing an `-isogeny ψ : E0→ E,
we get an injective ring homomorphism

End(E) ↪→ End◦(E0) ∼= Bp,∞, α 7→ ψαψ̂/`. (1)

Notice that evaluating an endomorphism given in this representation requires
first computing an elliptic-curve point division by `, which typically lies in a

2 In the SIDH setting, where p ≡ 11 (mod 12), we have ε = 2.
3 The technical condition here is p ≡ 3 (mod 4); the other cases are slightly different
but not harder in principle.

4 To see why (ι + π)/2 is an (integral) endomorphism of E0, note that the affine 2-
torsion points of E0 are all of the form (ξ, 0) where ξ3+ξ = 0, hence ξ ∈ {0,±

√
−1}.

Since ξp = −ξ, we have (ι+ π)(ξ, 0) = (−ξ, 0) + (ξp, 0) = [2](−ξ, 0) =∞.



field extension of degree Ω(`), hence special care needs to be taken to make sure
this is feasible: for instance, choose ` to be powersmooth [15, Algorithm 5].

Also note that End(E) has many commutative subrings, the most important
example being Z[π] when E is defined over Fp. In principle, an efficient commut-
ative subring can give rise to a subexponential quantum attack [4], although it
seems just as hard to find an endomorphism as to break the scheme in the first
place. Therefore the only known example of this idea being useful is Z[π]. It does
mean, however, that finding an isogeny to a curve defined over Fp can lead to a
subexponential quantum attack; cf. Section 3.1.

Not only is the endomorphism ring isomorphic to a maximal quaternion
order, but this so-called Deuring correspondence also works in the other direc-
tion: there is a bijection between the set of supersingular elliptic curves over
Fp, up to isomorphism, and the set of ‘oriented’ maximal orders in Bp,∞ [38,
Section 42.4]. Simply put, this means for every maximal order O ⊆ Bp,∞ there
is a set {j, j′} ⊆ Fp2 such that curves with j-invariant j or j′ have endomorphism
ring O; furthermore, we have j′ = jp, hence there is either one such curve, which
can be defined over Fp, or the two curves are both defined over Fp2 and Galois
conjugates of each other.

Moreover, this correspondence is categorical: Fixing a supersingular elliptic
curve E0 as a base object, every `-isogeny α : E0→ E corresponds to a left5 ideal
a ⊆ End(E0) of norm `, and vice-versa (up to post-composition with isomorph-
isms) [38, Section 42.3]. The codomain E is determined up to isomorphism by the
left-ideal class of a, hence finding different representatives of an ideal class cor-
responds to finding different isogenies between two fixed curves. Notably, given
a left ideal a ⊆ E0, it is easy to find the endomorphism ring of the image curve of
the corresponding isogeny: Under the embedding End(E0) ↪→ Bp,∞ given in (1),
it is isomorphic to another maximal order of Bp,∞, and in fact, it turns out that
the right order is the adequately named right order

OR(a) = { r ∈ Bp,∞ | ar ⊆ a } .

It may suggest itself at first that this correspondence will be very useful as an
attack tool against SIDH. However, it seems that one simply cannot efficiently
transcend into this alternate, equivalent reality: All known approaches to com-
pute the endomorphism ring of a given curve essentially go through first finding
an isogeny to either another curve with known endomorphism ring (such that
one can compute the right order as above), or to itself [21].

2.3 Attack avenues against SIDH

The obvious way to attack SIDH is to try to recover one of the secret isogenies
ϕA, ϕB from the public information. (We will often, without loss of generality,
silently assume that we are attacking Alice’s key.) A priori, it may seem like

5 Since conjugation swaps the role of left- and right-multiplication, everything can
equivalently be phrased in terms of right ideals.



one requires one of the actual secret isogenies; however, Galbraith–Petit–Shani–
Ti have demonstrated that any isogeny ψ between E0 and one of {EA, EB} is
enough to recover the right isogeny and therefore break the system [16]. The
reduction makes use of the fact that the secret isogenies in SIDH are relatively
‘short’ compared to a ‘random’ isogeny between two given curves: There are
Θ(
√
p) different secrets, while the graph size is Θ(p), hence only an exponen-

tially small fraction of SIDH curves can be reached from the starting curve by
isogenies shorter than the secret keys. This observation is combined with the
fact that isogenies from E0 correspond to left ideals of End(E0), and isogeny
codomains correspond to left-ideal classes (see Section 2.2): The reduction first
finds the ideal defining the known isogeny ψ : E0 → EA, then employs lattice-
basis reduction to compute an equivalent ideal of small norm. Except for rare
cases of bad luck, this small-norm ideal corresponds to the secret isogeny ϕA.
The ‘pure’ problem of finding an isogeny between E0 and a given SIDH curve is
discussed in Section 3.

The isogeny-finding problem does not capture the full power of an attacker
in SIDH. In addition to the target curve, attackers also see the action of the
secret isogeny on a coprime torsion subgroup, represented by the action on a few
points that span said subgroup. These auxiliary points are the main innovation
of SIDH, and the new setting they enable is the reason for SIDH’s improved
quantum security over other isogeny-based key exchanges [9,32,3], but the addi-
tional information that Alice and Bob disclose may also be worrisome: Petit has
obtained cryptanalysis results on modified variants of SIDH using these extra
points [29]. (Un)fortunately, it seems like there is little hope for his approach to
apply to the original, balanced parameters; see Section 4.3. Other potential (but
fruitless) approaches based on the extra points are outlined in Section 4.

Finally, note that analogously to the classical Diffie–Hellman setting, there is
of course also the potential for an attack that obtains the shared secret without
first recovering one party’s secret key. Similar to the classical case, we are not
aware of any ideas to attack SIDH from this direction.

3 Failed attempts to attack the pure isogeny problem

The pure isogeny problem for supersingular elliptic curves is:

Given supersingular E and E′/Fp2, optionally with the guarantee that
E and E′ are `n-isogenous for some `n, compute an isogeny φ : E → E′.

We refer to this as the ‘pure’ isogeny problem because the hardness assumption
on which SIDH is based features a stronger attacker: they also have knowledge
of the images of some points under the isogenies ϕA, ϕB in addition to just the
domain and the codomains. Moreover, recall from Section 2.3 that it is sufficient
to recover an isogeny between E0 and one of EA, EB; the correct isogeny can
then (usually) be found by employing ideal-based techniques.

The best known classical or quantum attack to find an isogeny E0→ EA in
the SIDH setting is essentially a generic approach searching for Alice’s secret



isogeny ϕA: compute and store random walks of length nA/2 in the À-isogeny
graph starting from E0 and EA until two of them ‘meet in the middle’; this
algorithm takes time O(p1/4) as Alice’s isogeny from E0 to EA has degree ap-
proximately p1/2. In practice, the memory cost of this algorithm is prohibitively
high, so parallel versions of van Oorschot–Wiener’s collision search algorithm
with almost the same theoretical time complexity but much better time-space
tradeoffs and hence superior real-world performance, are considered to be the
best known attack against SIDH/SIKE [1,8]. Note that Tani’s O(p1/6) quantum
algorithm [36] for the claw-finding problem is deemed unlikely to outperform the
classical algorithm of van Oorschot–Wiener:

Our conclusion is that an adversary with enough quantum memory to
run Tani’s algorithm with the query-optimal parameters could break
SIKE faster by using the classical control hardware to run van Oorschot–
Wiener. [20]

3.1 Finding the Fp-subgraph

The idea of using the Fp-subgraph to get a better classical attack on the pure
isogeny problem was first studied by Delfs and Galbraith [10]. Biasse, Jao, and
Sankar [2] later applied the same ideas to construct a more efficient quantum
algorithm. The (other) attempts at exploiting the Fp-subgraph presented here
have certainly been considered by many people, but not written down as it has
not (yet?) led to an improved attack on SIDH.

Trying to find a path to a curve in the Fp-subgraph turns out to be common
theme in attempts at attacking SIDH, so we now discuss the consequences such
an algorithm would have.

Definition 2. Let S be set of nodes in the SIDH `-isogeny graph G, and let
S′ ⊆ S be the subset of those nodes that are defined over Fp. We define the
Fp-subgraph of G to be the full subgraph of G with nodes from S′.

Fundamentally, the Fp-subgraph forms a distinguished subset of the full isogeny
graph that is easily recognizable once we have found it, and it is also easy to
identify those edges that go to another node inside this subgraph.

Delfs–Galbraith use this observation to split the problem of finding an `-
isogeny between two arbitrary curves E,E′ into two smaller subproblems: finding
a path from both E and E′ to curves defined over Fp, and then connecting these
two curves by an isogeny inside the subgraph. The composition of these three
isogenies forms an isogeny E → E′.

In total, one can show that there are approximately √p supersingular elliptic
curves defined over Fp. The Fp-subgraph G′ of the SIDH `-isogeny graph, with `
a prime, is either (if ` odd) a disjoint union of cycles of the same length, or (if
` = 2) such a union of cycles with one single extra leaf ‘hanging down’ from each
node in the cycles. The components of these graphs are known as a volcanoes,
and we call the set of non-leaf nodes the surface.



Note that this implies that the surface subgraph is 2-regular, hence using
a single `-isogeny Fp-subgraph leads to a time complexity of Θ(

√
p) for either

finding a path between two given nodes or determining that they do not lie
in the same component. Using multiple ` yields an improvement, though: One
can show that subexponentially many ` are sufficient to connect all nodes, and
(under GRH) that random walks on this combined graph mix quickly [19]. Thus
the usual meet-in-the-middle techniques apply, reducing the time complexity of
connecting two Fp-subgraph curves to Õ(p1/4). Note how this is not better at
attacking SIDH than the easier meet-in-the-middle attack outlined before; this
is because the isogenies in SIDH are known to be particularly short, a property
which cannot be exploited by the Delfs–Galbraith approach since almost none
of the curves on the path are defined over Fp.

Moreover, finding the Fp-subgraph in the first place by brute force costs
Õ(
√
p): The density of that subgraph is roughly 1/

√
p, hence random walks can

be expected to find a curve defined over Fp after walking approximately a number
of steps that is the reciprocal of this proportion, i.e., √p.

With respect to quantum attacks, similar problems apply: Once the Fp-
subgraph has been found, isogeny walks can be interpreted as a commutative
class-group action of an imaginary quadratic number ring, and therefore two
nodes can be connected using a subexponential-time hidden-shift quantum al-
gorithm [22,23]. This was first applied to isogeny graphs of elliptic curves in [4].
However, there is still no known efficient quantum algorithm to find the Fp-
subgraph, hence this does not lead to an improved attack.

An Fp-compass? As stated above, the main problem to solve is finding an iso-
geny to a curve defined over Fp. The evident brute-force approach is not cheaper
than breaking SIDH ‘directly’ using meet-in-the-middle or collision finding, and
more sophisticated methods seem out of reach. For instance, one observation
is that a curve at distance d from the Fp-subgraph in the `-isogeny graph has
an endomorphism of degree `2dp given by walking to the Fp-subgraph, apply-
ing Frobenius, and walking back. Why this may seem a promising approach for
detecting the Fp-subgraph, it runs into the same problems as always: Checking
whether a curve has an endomorphism of a certain norm seems to boil down to
simply trying to find that endomorphism, which is infeasible unless (here) the
distance d to the Fp-subgraph is already extremely small. We have seen many
similar or equivalent, but equally fruitless, attempts in this direction come and
go in the past. For example, if a curve E is close to the Fp-subgraph, there is
a short isogeny between E and its Galois conjugate E(p), but again there is no
known way to detect that isogeny unless we are already close enough to find the
Fp-subgraph with a generic approach.

Other subrings? One way to interpret the Fp-subgraph is as the subset of
curves with a certain endomorphism of norm p, namely the p-power Frobenius
endomorphism. Hence, one is implicitly looking for those supersingular elliptic



curves whose endomorphism ring contains the Frobenius order Z[π], and in prin-
ciple the same sort of subgraph exists for other commutative subrings, like for
example Z[ι], although in this case it only consists of the single node E0.

Finding, for instance, a bigger commutative subring than Z[π] that is con-
tained in almost all endomorphism rings in the graph would potentially allow
to spend less time on searching for the associated subgraph, but still apply the
subexponential quantum attack once it is found.

However, there are a number of problems associated with this approach, one
fundamental in nature and the others (as usual) computational: The embedding
End(E) ↪→ Bp,∞ is highly non-canonical. This means that even if one was able
to compute (subrings of) the endomorphism rings of two curves, there is still no
way to tell how these rings are related under the embedding from (1). The usual
strategy to deal with this problem in theory is to make sure the embeddings are
always compatible when considering two isogenous curves, but without knowing
an isogeny, this of course seems impossible to do in practice. This issue does not
apply to Z[π] as, given a curve E/Fp, the endomorphism π is always trivial to
find (it is just (x, y) 7→ (xp, yp)), and since (by definition) isogenies defined over
Fp commute with π, we automatically have ψπψ̂/(degψ) = πψψ̂/(degψ) = π
for all isogenies ψ : E → E′ defined over Fp. Therefore it is possible to identify a
canonical subring of the endomorphism ring which is automatically compatible
between different Fp-isogenous curves.

The computational problems are the usual: It is not clear how to tell whether
a given curve E has an endomorphism of a given norm and trace, it seems
impossible to make sure these endomorphisms are compatible choices without
first finding an isogeny between the two curves in question, and for the quantum
part of the attack it must also be efficient to evaluate the endomorphisms on
points.

3.2 Lifting to characteristic zero

It is relatively well-known that to an ordinary elliptic curve E/Fq one can ca-
nonically associate an elliptic curve E′/Qq6 with the same endomorphism ring
(viewed as an order in a quadratic number field)— this is normally referred to
as the ‘canonical lift’ [24] [26, Appendix], and E is the (unique) reduction of E′.

It is possible to compute this lift, for example via Satoh’s algorithm [33],
albeit not efficiently for large characteristic p. Furthermore, it is functorial—we
can also lift (and reduce) isogenies. A natural question is:

Given a supersingular elliptic curve E/Fp2 with endomorphism ring O,
is there a way to canonically construct an elliptic curve E′/C whose
endomorphism ring is isomorphic to a (well-chosen) commutative subring
of O?

6 The field Qq, which can be embedded into C, is the fraction field of Zq, which is a
finite extension of the p-adic integers Zp, which has as elements power series in p.



Suppose for the sake of argument that such a construction is efficiently com-
putable and that we can also lift and reduce isogenies. Then to find a path
between E1/Fq and E2/Fq we could first compute their canonical lifts E′1/Qq
and E′2/Qq respectively and then compute an isogeny E′1→ E′2, which one could
subsequently hope to reduce back to Fq. As Qq ↪→ C, the lifts E′1 and E′2 can be
viewed as complex elliptic curves. As a complex elliptic curve is nothing but a
torus and an isogeny between two such curves is just a C-linear map, one may
hope to be able to easily compute an isogeny over C using some linear algebra.

Unfortunately, the computational methods for computing the lift of an ordin-
ary elliptic curve E/Fq, such as Satoh’s [33], all exploit a known endomorphism
τ on E—in their case τ is the Frobenius π—and construct an elliptic curve
E′/C with endomorphism algebra End◦(E′) ∼= Q(τ).

For a generic supersingular elliptic curve E/Fp2, the only endomorphisms we
know of are scalar multiplications, i.e., lie in Z. (Recall that in the SIDH case the
p2-power Frobenius is just [−p].) So even if we could lift E in a meaningful and
computable way to E′/C while preserving a known endomorphism, we simply
wouldn’t know how to find that endomorphism in the first place (as usual).

Computing a path from a generic supersingular elliptic curve E/Fp2 to a
curve defined over Fp would be helpful in this context, but then there would
then be easier ways to proceed, see Section 3.1.

3.3 Weil restrictions

Acknowledgements. Some of the ideas in this section were discussed with par-
ticipants of the Spontaneous Isogeny Day in Leuven in October 2018. We had
particularly enlightening discussions on this topic with Wouter Castryck, Steven
Galbraith, Joost Renes, Ben Smith, and Fre Vercauteren (alphabetical order).

To any (supersingular) elliptic curve E/Fp2, one can in a natural way asso-
ciate a (supersingular) principally polarizable abelian surface7 W (E)/Fp called
the Weil restriction.8 Modulo (many) technical details, the fundamental idea is
to interpret the defining equation of E over Fp2 as a set of equations over Fp
instead by plugging in, then splitting over, an Fp-basis of Fp2. The Weil restric-
tion is functorial: isogenies of elliptic curves defined over Fp2 restrict to isogenies
of their Weil restrictions over Fp. This means that the the isogeny graph of su-
persingular elliptic curves defined over Fp2 can be viewed as a subgraph of the
isogeny graph of supersingular principally polarized abelian surfaces over Fp.

The centre of the Fp-rational endomorphism ring EndFp(A) of an abelian
variety defined over Fp is is an order in Q(π), where π is the p-power Frobenius
of A [37, Theorem 2].

One might hope that in fact EndFp(A) ⊗Z Q = Q(π), as happens when
dim(A) = 1. We considered what the consequences of this might be: Assume that

7 To read more about principally polarized abelian varieties, see [13, Chapter 11].
8 To read more about Weil restrictions, see [12].



for the Weil restriction W (EA) of EA (Alice’s public key), the Fp-rational endo-
morphism ring is commutative. For all but finitely many primes `, we then ex-
pect that the (`, `)-isogeny9 graph of supersingular principally polarized abelian
surfaces defined over Fp is a disjoint union of cycles, as justified at the end of
this section. If there is a list `1, . . . , `n such that the connected component of
the union of the (`1, `1), . . . , (`n, `n)-isogeny graphs containsW (E0) andW (EA),
then the problem of finding a path from W (E0) to W (EA) can be viewed as a
hidden shift problem, for which, if the individual steps in the path, i.e., isogenies,
can be efficiently computed, there is a subexponential quantum algorithm due
to Kuperberg [22,23].

Any hope? We need the probability of W (E0) and W (EA) being in the same
connected component C of the union of the (`1, `1), . . . , (`n, `n)-isogeny graphs
to be high, which can only happen if C contains the Weil restrictions of almost
all the supersingular elliptic curves defined over Fp2.

We expect (as justified at the end of this section) that the (`i, `i)-isogeny
graphs will be the disjoint union of cycles of length O(

√
p). There exist Θ(p)

(Weil restrictions of) supersingular elliptic curves defined over Fp2, so to have
any chance of C covering almost all of these, we would need to take n to be at
least Ω(

√
p).

Currently we can’t compute (`, `)-isogenies efficiently enough unless ` = 2,10
so we assume for the sake of argument that the complexity of a somewhat op-
timized algorithm to do this would scale at least as badly as Vélu’s formulas for
elliptic curves. That is, we assume that the evaluation of an (`, `)-isogeny takes
time Ω(`) or Ω(`2). Since we need to take at least Ω(

√
p) different primes `, it is

then definitely not true that ‘the individual steps in the path, i.e. isogenies, can
be efficiently computed’.

More ideas? We considered two variations on this idea:

1. Instead of hoping thatW (EA) is in the same connected component isW (E0),
hope that it is in the same connected component of the Weil restriction of
some curve defined over Fp. Approximately one in √p (Weil restrictions of)
elliptic curves over Fp2 are (Weil restrictions of) elliptic curves over Fp, so
looking at one cycle of length O(

√
p), i.e., just one (`, `)-isogeny graph, might

be enough.
However, since we don’t know which curve over Fp we’re looking for, it seems
impossible to phrase this as a hidden shift problem, so Kuperberg’s algorithm
doesn’t apply.

2. Recall that we assume that EndFp(W (EA)) is an order in Q(π), where π is
the p-power Frobenius onW (EA). We explain below that π = ζ8

√
p, where ζ8

is an eighth root of unity, and that we then expect that the application of an

9 To read more about (`, `)-isogenies, see [6].
10 To read more about computing (2,2)-isogenies efficiently, see [7].



(`, `)-isogeny to a supersingular principally polarized abelian surface A/Fp
can be viewed as the action of an ideal in the class group cl(OQ(ζ8

√
p)) (the

` are chosen so that OQ(ζ8
√
p) = Z[ζ8

√
p] locally at `). The reason that we

expect the cycles in the (`, `)-isogeny graph to have length approximately √p
comes from this action—this is (heuristically) the size of this class group.
However OQ(ζ8

√
p) is not the largest commutative subring of EndFp

(A) (loc-
ally at `): Since Frobenius commutes with every endomorphism, we could
add another endomorphism to get a rank-4 Z-module, the class group of
which is likely to have a higher class number. But this is of course equivalent
to finding non-obvious endomorphisms, which, if we could do, would lead to
a much easier way of attacking SIDH, as explained in Section 2.2.

A couple of handwavy mathematical details. As stated above, we ex-
pect that, under the assumption that EndFp

(W (EA)) is commutative: For all
but finitely many primes `, the (`, `)-isogeny graph of supersingular principally
polarized abelian surfaces defined over Fp is a disjoint union of cycles. We also
conjectured that the cycles have length Ω(

√
p) (subject to some heuristics). We

briefly justify our expectations here.
Suppose that ` does not divide the index

[
OQ(π) : Z[π]

]
, where π is the p-

power Frobenius on W (EA). Since under our assumptions for any supersingular
abelian surface over A/Fp with commutative Fp-rational endomorphism ring we
have that

Z[π] ⊆ EndFp(A) ⊆ OQ(π),

it follows that every supersingular abelian surface over A/Fp has endomorphism
ring OQ(π) locally at `. An isogeny of abelian surfaces is uniquely determined by
its kernel (just like with elliptic curves). In particular, if I is an ideal of EndFp

(A)
then we define fI to be the isogeny from A with kernel⋂

α∈I
ker(α).

Following exactly the same proof strategy as for elliptic curves, it is believable
that the class group of OQ(π) acts on the set of supersingular abelian surfaces
over Fp with endomorphism ring OQ(π) via

I ∗ E = fI(E).

Going one step further, we suppose for the sake of argument that horizontal
(`, `)-isogenies even come from the action of an ideal l such that `OQ(

√
−p) = ll.

If, as in the elliptic curve case, the results for supersingular abelian surfaces over
a prime field turn out to be analogous to results for ordinary abelian surfaces,
then such an ideal would send a supersingular abelian surface A/Fp with endo-
morphism ring OQ(π) equipped with a principal polarization ζ : A → A∨ to a
supersingular abelian surface fl(A)/Fp with endomorphism ring OQ(π) equipped
with a principal polarization `ζ. The analogous result for the ordinary case that
we refer to here is [25, Proposition 3.6.1].



If all of this holds, then the (`, `)-isogeny graph of any prime ` not dividing[
OQ(π) : Z[π]

]
that splits in OQ(π) is a cycle. Suppose that `OQ(π) = ll. Then the

length of the cycle is given by the order of [l] in cl(OQ(π)).
Furthermore, by a theorem of Manin and Oort [28, p. 116], the Frobenius π

equals ζ√p, where ζ is a root of unity. By a theorem of Tate [37, Theorem 2],
our assumption that the endomorphism algebra B = EndFp

(W (EA)) ⊗Z Q is
commutative is equivalent to saying that [B : Q] = 4, so ζ = ζ8 is in fact an
eighth root of unity, and the characteristic polynomial of Frobenius is x4 − p2.
According to standard class group heuristics [5], we expect that cl(OQ(ζ8

√
p)) is

cyclic or almost cyclic, and has order Ω(
√
p)—hence the (`, `)-isogeny graph,

where ` satisfies all of the conditions above, is heuristically speaking the disjoint
union of cycles of length approximately √p.

4 Failed attack attempts that use the auxiliary points

The attacker has more information available than just two isogenous curves:
They also get the action of Alice’s and Bob’s secret isogenies ϕA resp. ϕB on
the `nBB - resp. `nAA -torsion. We focus on the problem of recovering the secret from
a public key. Without loss of generality, suppose that `nAA < `nBB and we are
attacking Alice’s public key (EA, ϕA(PB), ϕA(QB)).

First, note that the extra information defines the secret isogeny uniquely:
Consider two distinct d-isogenies φ, ψ : E → E′ with the same action on the
m-torsion. Then ker(φ − ψ) ⊇ E[m], hence deg(φ − ψ) ≥ #ker(φ − ψ) ≥ m2.
On the other hand, Lemma V.1.2 of [34] implies deg(φ − ψ) ≤ 4d. Combin-
ing these bounds yields m2 ≤ 4d. In SIDH, this implies that an `nAA -isogeny is
uniquely defined by its action on the `nBB -torsion unless the parameters are highly
unbalanced. However, no efficient way to make use of this information is known.

4.1 Interpolation problems

By definition, isogenies are rational maps, hence it is clear that given enough
inputs and outputs, one can in principle recover the coefficients of that rational
map [39, Section 5.8]. One can show [31, Proposition 1] that in the SIDH setting,
the isogeny ϕA can be written as

ϕA : (x, y) 7−→
(
f(x), c0y · f ′(x)

)
for some rational map f ∈ Fp2(x) of degree `nAA and a constant c0 ∈ Fq. Therefore,
being given the action of ϕA, and thereby f , on ‘enough’ points, one might hope
to recover f and thus Alice’s secret isogeny ϕA.

However, this is computationally infeasible: Even printing the result of the
interpolation takes time linear in the degree, which in SIDH is exponentially
large (in the bit length of the involved objects). One might wonder whether it
is possible to evaluate the function while reconstructing it, thus circumventing
the exponentially big output, but all known ways to do (polynomial or rational)



interpolation still take time at least linear in the degree. The only conceivable
way to succeed with this approach would be to reconstruct the rational map
while at the same time rewriting it as a composition of rational maps, such that
each of these maps has a degree polynomially small in À. While there are of
course methods to decompose polynomials and rational maps into a composition
of smaller-degree maps, these algorithms require first storing the input in full.

Generally, the approach of rational-function interpolation seems similar in
spirit to the interpolation idea in the next section, except that so far we haven’t
made any use of the group structure underlying the rational maps in question.
Since we’ve been working with less than all the available structure, it seems
reasonable to assume that this approach is fundamentally inferior to the ideas
in the next sections.

4.2 Group-theoretic approaches

Perhaps the most obvious idea to make use of the auxiliary points is to try
to extrapolate the known action of ϕA on the `nBB -torsion to a bigger torsion
subgroup to subsequently recover (part of) the secret.

Unfortunately, it is evident that purely group-theoretic methods are doomed
to fail: Let gcd(m, `nBB ) = 1. By the structure theorem of finite abelian groups,
the `nBB - and m-torsion subgroups of an elliptic curve are independent ; i.e., there
are simply no nontrivial relations between points of B̀-power order and points
of order m in the curve group. (In other words, the `nBB m-torsion subgroup is an
internal direct product of the `nBB - and the m-torsion.) Perhaps a reliable extra-
polation is too much to ask for, but it seems that even obtaining any information
about the action on the À-torsion with success probability (non-negligibly) bet-
ter than random guessing seems infeasible. In a sense, this is remarkable, since
elliptic curves are also equipped with a geometric structure, and many purely
group-theoretical morphisms defined on elliptic curve groups do not come from
an isogenies, i.e., do not respect the geometric structure. However, nobody has
yet discovered an efficient way to exploit this.

An effective Tate’s theorem? Rather than extrapolating to a coprime torsion
subgroup, one may instead attempt to lift the action of ϕA on the `nBB -torsion to
a higher B̀-power torsion subgroup. In the limit, this lifting process would yield
the action of ϕA on the B̀-adic Tate modules T

B̀
(E0).11 Write ` = `B.

If one knew how to do the lifting step, this observation may inspire hope: It
is known [34, Theorem 7.7] that the natural map

HomFp2
(E0, EA)⊗Z Z` −→ HomFp2

(T`(E0), T`(EA))

is an isomorphism of Z`-modules, hence the action of an isogeny defined over Fp2
on a sufficiently high `k-torsion completely determines the map. While this is

11 The functor T` is defined as the inverse limit T`(E) = lim←−n
E[`n] under the evident

restriction maps [`] : E[`n+1] � E[`n]; see for instance [34, Section III.7].
Note that if ` 6= 0 in the field of definition of the curve E, then T`(E) ∼= Z`× Z`.



an abstract result, Petit [29] found a way to turn this into an efficient algorithm
assuming k grows big enough; see Section 4.3.

However, in any case, it seems that similar obstacles as in the previous sec-
tion (extrapolating to another torsion subgroup) apply: Group-theoretically, the
action on E[`k] can be lifted to an action on E[`k+1] in `4 different ways. Also
taking into account the known information about the degree (coprime to `), this
expansion factor shrinks slightly,12 but there still is no hope to learn anything
about the action on the `∞-torsion without making use of the geometry of the
underlying elliptic curve.

4.3 Constructing endomorphisms to exploit the auxiliary points

Acknowledgements. The ideas in this section are all based on Petit’s paper [29],
and in particular are the result of discussions with Dan Bernstein (who showed
us the technique used below to estimate the expected size of solutions), Tanja
Lange, and Christophe Petit (alphabetical order).

Recall that in two-party SIDH

`nAA ≈ `
nB
B ≈

√
p ,

corresponding to Alice’s and Bob’s secret isogenies having approximately the
same degree. Petit [29] shows how to construct an endomorphism on EA if instead

`nBB � `nAA ,

such that the capability to evaluate this endomorphism on the `nBB -torsion—
which is granted to the attacker in the SIDH setting by means of the auxiliary
points (see Section 2.2)—allows one to reconstruct Alice’s secret isogeny.

Petit’s attack. Following the notation of Section 2.2, let π be the p-power
Frobenius on E0 and let ι be the order-4 automorphism (x, y) 7→ (−x,

√
−1·y) on

E0. Then for any a, b, c ∈ Z, we have an endomorphism aιπ+ bπ+ cι ∈ End(E0),
and using the (unknown) `nAA -isogeny ϕA : E0 → EA we can, for every d ∈ Z,
define the endomorphism

α = ϕA(aιπ + bπ + cι)ϕ̂A+ d ∈ End(EA)

of degree (or equivalently, norm)13

deg(α) = `2nA

A pa2 + `2nA

A pb2 + `2nA

A c2 + d2.

12 The expansion factor is smaller, but still significant, for endomorphisms with known
degree and trace: Forcing the characteristic polynomial limits the amount of choice.
Concretely, there are `2 different ways to lift a known action on the `n-torsion to the
`n+1-torsion while satisfying a given characteristic polynomial χ mod `n+1.

13 A reader comparing this with the formula given in [29, p. 15] may wonder where q
has gone, but the norm of this specific endomorphism ι is q = 1.



Of course, since the attacker does not know ϕA, they cannot compute α directly.
However, writing N1 = `nAA and N2 = `nBB , Petit gives conditions under which one
can efficiently find a, b, c, d ∈ Z such that

N2
1pa

2 +N2
1pb

2 +N2
1c

2 + d2 = eN2 , (2)

where e is a small cofactor controlling the remaining amount of brute-force work
the attacker has to do. If N2 = `nBB is big enough relative to N1 = `nAA , then kerα,
and subsequently the secret kerϕA, can be recovered from the action of ϕA on
the `nBB -torsion in polynomial time.

Any hope for `nA

A ≈ `nB

B ≈ √p? We can heuristically estimate the expected
size of solutions to (2) as follows. Suppose we want to count solutions with e ≤M
for some fixed bound M . Since all the terms in (2) are nonnegative, they cannot
be bigger than the right-hand side ≈M√p. Hence

a, b <∼
√
M · p−3/4 ; c <∼

√
M · p−1/4 ; d <∼

√
M · p1/4 .

This means the total number of possible assignments for the variables a, b, c, d, e
is approximately

M3p−3/2 .

Assuming (wrongly, but for the sake of a rough estimate) that for each such
assignment, the left- and right-hand side of (2) are uniformly random nonnegat-
ive integers upper bounded by ≈ M

√
p, the expected number of solutions with

e ≤M is seen to be about

M3p−3/2

M
√
p

=M2p−2 ,

implying that one needs to increase M to approximately p before a solution can
be expected. This means that the smallest expected solution to (2) features the
undesirable property e ≈ p, which means that in this case, Petit’s attack per-
forms much worse than simply applying one of the known graph-walking attacks
from Section 3 directly. We can therefore conclude that at least heuristically, it
seems extremely unlikely that Petit’s attack can possibly apply to the actual,
balanced SIDH parameters.
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