
Multi-Adjustable Join Scheme

Shahram Khazaei and Mojtaba Rafiee

Sharif University of Technology, Tehran, Iran

Abstract. In this paper, we introduce the syntax and security notions
of multi-adjustable join (M-Adjoin) schemes as an extension of the ad-
justable join (Adjoin) schemes [Popa-Zeldovich 2012]. An M-Adjoin is
a symmetric-key primitive that enables a user to securely outsource his
database to a server, and later to privately issue the join queries for a list
of column labels (instead of a pair in an Adjoin scheme). The security
definitions of Adjoin [Mironov-Segev-Shahaf 2017] extends to M-Adjoin
in a straightforward way. It turns out that even though the 3Partition

security does capture the minimal leakage of an Adjoin scheme, it does
not carry the expected minimal leakage of an M-Adjoin scheme. We
propose a new security notion for this purpose, which we refer to as
M3Partition. The gap between 3Partition and M3Partition is filled
with a sequence {M3Pk}k∈N of security definitions where M3P1 and M3P∞,
respectively, correspond to 3Partition and M3Partition. We propose
constructions for achieving both M3Partition and M3Pk security levels.
Our M3Partition-secure scheme joins m columns, each containing n ele-
ments, in time O(nm−1) with minimal leakage. Our M3Pk-secure scheme
uses ideas from secret sharing in its construction and does the job in time
O((m−1)nk/k) with some leakage that we refer to as the k-monotonous
leakage. It remains open if this barrier is inherent to the security def-
initions. Our schemes are substantially more efficient (both in compu-
tation and storage) than the previous ones due to the type of pairing
(asymmetric vs symmetric) and the hardness assumption that we rely
on. Additionally, we present some separation results between different
security definitions, which were left open in previous works.

Keywords: Database outsourcing, Join query, Monotonicity, Non-tranisitivity,
Secure outsourcing

1 Introduction

There has been a surge in the usage of cloud services, especially storage and
computing ones in recent years. In such settings, used by both enterprises and
individuals, a user outsources his data to an external server. Over time, the
user sends queries to the server and receives back the result of each one. The
superiority of these services is that a user with limited computational and storage
power can take advantage of the unlimited capabilities of the cloud server.

Database management systems (DBMS) are one of these services with great
interests in industry and business. In such services, since there is no trust to the

2 Shahram Khazaei and Mojtaba Rafiee

external servers, the databases are encrypted prior to outsourcing. CryptDB,
designed by Popa et al. [21–24], is one such notable system that supports a
variety of SQL queries over encrypted databases. One of the most challenging
issues in designing these services is supporting SQL queries, such as selections,
projections, joins, aggregates, and orderings, on the encrypted database.

In this paper, we focus on the secure join queries on the encrypted databases.
The scenario model for this functionality considers two main parties: a user and a
server. The user outsources a database to the server, where a database contains a
number of tables and each table includes several data records that are vertically
partitioned into columns. When the user would like to issue a join query on his
database, he generates a join token and sends it to the server. A join query is
formulated as a list of column labels. Finally, the server executes the requested
join query on the encrypted database and returns the join result to the user.

The adjustable join scheme (Adjoin), first proposed by Popa et al. [24], is a
symmetric-key primitive that supports the secure join queries on an encrypted
database. Subsequently, several research such as [13, 15, 17] studied adjustable
join schemes and provided solutions with various trade-offs between security
and efficiency. Recently, Mironov et al. [18] proposed a strong and intuitive no-
tion of security, called 3Partition, for the adjustable join schemes, and argued
that it indeed captures the security of such schemes. Also, they introduced nat-
ural simulation-based and indistinguishability-based notions that captured the
minimal leakage of such schemes, and proved that the 3Partition notion is po-
sitioned between their adaptive and non-adaptive variants with respect to some
natural minimal leakage.

The minimal leakage [19] reveals some accepted information such as the
database dimensions (i.e total number of columns and the length of each col-
umn), the search pattern (i.e., the repetition of columns in different queries), the
result pattern (i.e., the positions in which all columns of a join query contain
identical elements) as well as the duplication pattern [18] (i.e., the positions in
each column with identical contents for every column in the database).

1.1 Contributions

In this paper, we extend the notion of the adjustable join schemes to the multi-
adjustable join (M-Adjoin) schemes, where the join queries are formulated as a
list of column labels instead of a pair of column labels. We then show that unlike
the Adjoin scheme, 3Partition security is not stronger than the non-adaptive
variant with respect to the minimal leakage. We conclude that an extension of
3Partition, which we call M3Partition, is what we are looking for.

We define a family {M3Pk}k∈N of security notions that fills the gap between
3Partition and M3Partition security notions. More precisely, M3P1 is exactly
the 3Partition security, M3Pk positions between M3Pk−1 and M3Pk+1 but bel-
low M3Partition. The M3Pk security positions between the non-adaptive and
adaptive securities with respect to some leakage function that we refer to as the
k-monotonous leakage. We call a multi-adjoin scheme k-monotonous if it allows
an adversary to compute the join of an unqueried list of columns of size k+ 1 if

Multi-Adjustable Join Scheme 3

it has already queried a superset of the list. This property induces some leakage
which, if minimized, is what we call the k-monotonous leakage. That is, in ad-
dition to the above-mentioned information revealed by the minimal leakage, the
k-monotonous leakage reveal the result pattern for every subset of size k + 1 of
a join query.

Two M-Adjoin schemes with 1-monotonous leakage function have been pro-
posed in [18]. For every integer k, we propose a more flexible and substantially
more efficient scheme with k-monotonous leakage function.

The size of adjustment token of our scheme is m group elements and the pre-
vious ones are 4m and 2m group elements, where m is the number of columns
in a join query. Nevertheless, due to use of asymmetric pairing in our construc-
tion, the difference in the hidden constant factor is noticeable (a factor of 6 for
their more efficient scheme and for 128-bit security level). The encoded word size
is also reduced by a factor of 12. The execution time for computing the adjust-
ment token and the encoded word decreases by factors of 30 and 10, respectively.
See Section 10 for further details.

A k-monotonous scheme makes it possible to compute the join of m ≥ k + 1
columns, each of length n, in time O((m − 1)nk/k). Additionally, we propose
another construction which is M3Partition-secure (and hence non-monotonous),
but it requires O(nm−1) join time.

As an additional contribution, we prove separation results between some
security notion that were left open in [18].

1.2 Paper organization

In Section 2, we provide notations and definitions that are required throughout
this paper. Section 3 present the M-Adjoin syntax. In Section 4, the syntax
and security definitions of adjoin are reviewed but they are adopted for the
case of multi-adjoin schemes. Section 5 introduces the M3Partition and M3Pk
security notions and Section 6 studies how they are positioned in an hierarchy
of security levels. Section 7 studies the relations between different leakage-based
security definitions and Section 8 summarizes the relations between all security
notions. Our two proposed constructions for M-Adjoin, and their security proofs
are presented in Section 9. The performance analysis for different M-Adjoin
schemes is presented in Section 10. Finally, Section 11 concludes the paper and
points out future directions.

2 Preliminaries

2.1 Notation

Throughout the paper, we use [m] to denote the set {1, . . . ,m}, where m is a
positive integer. The security parameter is denoted by λ. Assuming that A is a
(possibly) probabilistic algorithm, y ← A(x) means that y is the output of A on
input x. When A is a finite set, x← A stands for uniformly selecting an element

4 Shahram Khazaei and Mojtaba Rafiee

x from A. We say that a function is negligible, if it is smaller than the inverse
of any polynomial in λ for sufficiently large values of λ.

We let {0, 1}λ denote the set of all strings of length λ, called words, and(
{0, 1}λ

)∗
denote the set of all finite lists of λ-bit long words. We use the notation

w and l for denoting a word and a label, respectively, which for simplicity both1

are considered to be λ-bit long (i.e., w, l ∈ {0, 1}λ). The labels are used to
identify a column C in a database. Also, database columns are considered as a
list of words (i.e., C ∈

(
{0, 1}λ

)∗
). As a convention, we denote the output of a

defined experiment by the experiment name itself.

2.2 Computational Indistinguishability

Let Xλ, Yλ be distributions over {0, 1}l(λ) for some polynomial l(λ). We say that
the families {Xλ} and {Yλ} are computationally indistinguishable, and write
Xλ ≈ Yλ, if for all probabilistic polynomial-time (PPT) distinguisher D, there
exists a negligible function ε such that

|Pr[t← Xλ : D(t) = 1]− [t← Yλ : D(t) = 1] ≤ ε(λ).

For a pair of distributions Xλ and Yλ, if Xλ ≈ Yλ then for any PPT algo-
rithms M , it holds that M(Xλ) ≈ M(Yλ). This is known as the closure under
efficient operations.

Let X1, X2, · · · , Xm be a sequence of probability distributions. Assume that
the distinguisher D can distinguish between X1 and Xm with advantage ε. Then,
there exists some i ∈ [1, · · · ,m−1] such that the distinguisher D can distinguish
Xi and Xi+1 with advantage ε

m . This is known as the hybrid lemma.

2.3 Basic primitives

Pseudorandom function: Let X, Y be two sets. A polynomial-time com-
putable function F : {0, 1}λ ×X → Y is a pseudorandom function (PRF) if for
every PPT adversary A, the following quantity is negligible:

AdvPRFF,A(λ) = |Pr[k ← {0, 1}λ : AFk(·)(1λ) = 1]− Pr[f ← RF : Af(·)(1λ) = 1]|,

where RF is the set of all functions from X to Y.

Bilinear map: Let G1, G2, GT be cyclic groups of prime order q, and g1, g2 be
generators for G1, G2, respectively. A bilinear map is a map e : G1 ×G2 → GT ,
which satisfies the following properties:

1. Bilinearity: ∀x, y ∈ Zq : e(gx1 , g
y
2) = e(g1, g2)xy,

2. Non-degeneracy: e(g1, g2) 6= 1,
3. Computability: e can be computed efficiently.

We assume that we have a PPT bilinear map generator G that on security
parameter as input, outputs a tuple Param = (G1,G2,GT , g1, g2, q, e).
1 It is easy to remove this assumption and work with long messages and short labels as

it is the case in practice. To keep our discussion simple, we stick to this conversion.

Multi-Adjustable Join Scheme 5

3 M-Adjoin syntax

A multi-adjustable join scheme (M-Adjoin) is a symmetric-key primitive that
enables to generate an encoding of any word relative to any column label, and
to generate a tuple of tokens enabling to compute the join of any given set of
columns.

M-Adjoin schemes are used as follows. A user wishing to outsource his database
to a server, first generates a secret key K and public parameters Param us-
ing a key generation algorithm denoted by Gen. Then, the user computes an
encoded-word w̃ for every word w relative to any database column label l using
an encoding algorithm denoted by Encod and sends them along with the pub-
lic parameters Param to the server. Later, when the user wants to send a join
query q = (l1, · · · , lm) to the server, he computes a list of adjustment tokens
(at1, · · · , atm) using a token generation algorithm denoted by Token. Upon re-
ceiving adjustment tokens (at1, · · · , atm), the server computes an adjusted word
aw for every encoded-word relative to every column label in the join query using
an adjustment algorithm denoted by Adjust. Finally, the server computes the
result set from the adjusted words using an evaluation algorithm denoted by
Eval, and sends them to the user. Below we formalize the primitive.

Definition 3.1 (M-Adjoin syntax) A multi-adjustable join scheme is a col-
lection of five polynomial-time algorithms Π = (Gen,Encod,Token,Adjust,Eval)
such that:

– (Param,K)← Gen(1λ): is a probabilistic key generation algorithm that takes
as input a security parameter λ, and returns a secret key K and public pa-
rameters Param.

– w̃ ← EncodK(w, l): is a deterministic encoding algorithm that takes as input
a secret key K, a word w and a column label l, and outputs an encoded-word
w̃.

– (at1, · · · , atm) ← TokenK(l1, · · · , lm): is a probabilistic token generation al-
gorithm that takes as input a secret key K and a list of distinct column labels
(l1, · · · , lm), and returns a tuple (at1, · · · , atm) of adjustment tokens.

– aw ← AdjustParam(w̃, at): is a deterministic algorithm that takes as input
the public parameters Param, an encoded-word w̃ and an adjustment token
at, and outputs an adjusted word aw.

– b ← EvalParam(aw1, · · · , awm): is a deterministic evaluation algorithm that
takes as input the public parameters Param and a list of adjusted words
aw1, · · · , awm, and outputs a bit b.

Correctness. The scheme is said to be correct, if for any integer m ≥ 2, any list
of column labels (l1, · · · , lm) ∈ ({0, 1}λ)m and any list of words (w1, · · · , wm) ∈
({0, 1}λ)m, it holds that

6 Shahram Khazaei and Mojtaba Rafiee

AdvCorΠ (λ) = Pr



(Param,K)← Gen(1λ);

(at1, · · · , atm)← TokenK(l1, · · · , lm);

∀i ∈ [m] w̃i ← EncodK(wi, li);

∀i ∈ [m] awi ← AdjustParam(w̃i, ati) :

Eval(aw1, · · · , awm) = 1


≤ ε(λ),

if wi 6= wj for some distinct i, j ∈ [m], and that the above probability is 1 if
w1 = · · · = wm.

4 M-Adjoin security

In this section, we adapt the security definitions for the Adjoin [18] to M-Adjoin.
These definitions can be classified in three categories: 1) the 3Partition security
notion, 2) the indistinguishability-based security notions and 3) the simulation-
based security notions. Each of these notions are first explained informally and
then the formal definitions are provided. We need the notion of leakage to define
the latter two, which will be given in Section 4.2.

4.1 The 3Partition security notion

The adversary of the 3Partition notion of security first defines three disjoint
groups of columns, denoted by L (left), M (middle) and R (right). It can then
adaptively receive encoded-word of every selected word relative to any chosen
column label. The adversary can adaptively obtain the join tokens related to
allowed queries. A query q = (l1, · · · , lm) is allowed if it is of one of the following
two types:

T1) (l1, · · · , lm) ∈ L ∪ M or,
T2) (l1, · · · , lm) ∈M ∪ R.

The 3Partition notion of security requires that such an adversary should
not be able to compute the join of any list of column labels (l1, · · · , lm) such
that l1, · · · , lm ∈ L ∪R, {l1, · · · , lm}∩L 6= ∅ and {l1, · · · , lm}∩R 6= ∅. This is
modeled by enabling the adversary to output a pair of challenge words w∗0 , w

∗
1 ,

and providing the adversary either with the encodings of w∗0 for all columns in
R or with the encodings of w∗1 for all columns in R. The adversary must be
unable to distinguish these two cases with a non-negligible advantage, as long
as the adversary did not explicitly ask for an encoding of w∗0 or w∗1 relative to
some column label in M ∪ R. Here is the formal definition.

Definition 4.1 (3Partition security) An M-Adjoin scheme such as Π = (Gen,
Encod,Token,Adjust,Eval) is 3Partition-secure if for all PPT algorithms A,
there exists a negligible function ε such that

|Pr[Exp3PΠ,A(λ, 0) = 1]− Pr[Exp3PΠ,A(λ, 1) = 1]| ≤ ε(λ),

where for each b ∈ {0, 1}, the experiment Exp3PΠ,A(λ, b) is defined as follows:

Multi-Adjustable Join Scheme 7

1. Setup phase: The challenger Chal samples (Param,K) ← Gen(1λ), and
initialize L = M = R = ∅. The public parameters Param are given as
input to the adversary A.

2. Pre-challenge query phase: The adversary A may adaptively issue Addlbl,
Encod and Token queries, which are defined as follows:

(a) Addlbl(l,X): adds the column label l to the group X, where X ∈ {L ,M ,R}.
The adversary A is not allowed to add a column label into more than one
set (i.e., the groups L ,M and R must always be pairwise disjoint).

(b) Encod(w, l): computes and returns an encoded-word w̃ ← EncodK(w, l)
to the adversary A, where l ∈ L ∪ M ∪ R.

(c) Token(l1, · · · , lm): computes and returns a list (at1, · · · , atm)← TokenK
(l1, · · · , lm) of adjustment tokens to the adversary A, where l1, · · · , lm
∈ L ∪ M or l1, · · · , lm ∈M ∪ R.

3. Challenge phase: The adversary A chooses words w∗0 and w∗1 subject to the
constraint that A did not previously issue a query of the form EncodK(w, l)
where w ∈ {w∗0 , w∗1} and l ∈M ∪R. As a response, the adversary A obtains
an encoded-word w̃ ← EncodK(w∗b , l) for every l ∈ R.

4. Post-challenge query phase: As in the pre-challenge query phase, with
the restriction that the adversary A is not allowed to issue a query of the
form Encod(w, l), where w ∈ {w∗0 , w∗1} and l ∈M ∪R. In addition, for each
Addlbl(l,R) query, the adversary A is also provided with w̃ ← EncodK(w∗b ,
l).

5. Output phase: The adversary A outputs a value σ ∈ {0, 1} which is defined
as the output of the experiment.

4.2 The leakage function

The indistinguishability-based and simulation-based security notions are param-
eterized with respect to an auxiliary deterministic polynomial-times function
Leak, called the leakage function. The leakage function models the information
that is reveled when a database is outsourced and later queried. The leaked infor-
mation, called leakage profile, typically includes information about the database
dimension (DIM), search pattern (SP), duplicate pattern (DP) and result pat-
tern (RP).

A typical leakage function, studied in the literature, is the minimal leakage
function. In this paper, we consider another one called the monotonous leakage
function. We present some notations before formally introducing them.

Database and join query. A database is a list of pairs DB =
(
(`i, Ci)

)
i∈[n],

where n is the number of columns, L = (`i)i∈[n] is a list of distinct column labels

with `i ∈ {0, 1}λ and Ci = (wi1, · · · , wini) ∈
(
{0, 1}λ

)∗
, is the column with label

`i. It is assumed that the total size of the database, i.e., N = n +
∑
i∈[n] ni,

is polynomial in security parameter λ. A join query is essentially a list q =
(l1, · · · , lm) ∈ Lm of column labels, for some integer m ≥ 2.

8 Shahram Khazaei and Mojtaba Rafiee

Extended algorithms. We extend the Token algorithm such that it outputs
TokenK(Q) =

(
TokenK(q)

)
q∈Q on a list Q of queries. Similarly, we extend the

encoding algorithm to take a column C = (w1, · · · , wt) and a label l, and

compute an encoded column C̃ ← EncodK(C, l) where C̃ = (w̃1, · · · , w̃t) and
w̃i ← EncodK(wi, l), for i = 1, · · · , t.

Finally, we allow the encoding algorithm to take a key K and a database
DB =

(
(`i, Ci)

)
i∈[n] and output an encoded database D̃B ← EncodK(DB) where

D̃B =
(
(i, C̃i)

)
i∈[n] where C̃i = EncodK(Ci, `i).

Equality pattern and search pattern. We define the equality pattern and
search pattern of a join query q = (`i1 , · · · , `im), respectively, as follows

EQ(q) = EQ(`i1 , · · · , `im) =
(
(k1, · · · , km) | wi1k1 = · · · = wimkm

)
,

and

I(q) = (i1, . . . , im) .

Below, we formally define the minimal and k-monotonous leakage functions,
where k is an integer parameter. The intuition behind our monotonous leakage
will be clear in Section 5.

Definition 4.1 (leakage functions). For a database DB =
(
(`i, Ci)

)
i∈[n], a

list of join queries Q and an integer k, we define the minimal leakage and the
k-monotonous leakage function, respectively, as follows:

(SP,DIM,DP,RP)← MinLeak(DB,Q) ,

(SP,DIM,DP,RP,MPk)← MonLeakk(DB,Q) ,

where the leakage profile includes:

– Search pattern. SP = I =
(
I(q)

)
q∈Q is the search pattern,

– Dimension. DIM = (|Ci|)i∈[n] is the database dimensions,

– Duplication pattern. DP =
(

EQ
(
I−1(i, i)

))
i∈[n]

is the duplication pat-

tern,
– Result pattern. RP =

(
EQ(I−1(x))

)
x∈I is the result pattern,

– Monotonicity pattern. MPk =
(
EQ(I−1(x′))

)
x′∈Ik

is the monotonicity

pattern, where Ik includes every subset of size k+ 1 of every indexed query;
that is, Ik = (y : y ⊆ x, |y| = k + 1, x ∈ I).

Remark 4.2 (Label-hiding v.s. label-leaking profile) Our leakage functions
do not reveal the column labels. One may also consider a label-leaking variants
of the above leakage functions where the label set L is also included in the leak-
age profile. Hiding labels, however, is not a big burden in practice since it can
be handled using standard techniques; e.g., see [18, Section 4.4]. Nevertheless,
as we will see in Section 7 (Proposition 7.5), the label-hiding property is crucial
for proving separation between adaptive simulation-based security and adaptive
indistinguishability-based security definitions, which was left open in [18].

Multi-Adjustable Join Scheme 9

4.3 Indistinguishability-based security notions

The indistinguishability-based security notion comes in two flavours, depending
on the adversary which may be adaptive or non-adaptive. The definitions can
be given for a general leakage function. But to keep our discussion simple, we
assume that it is the minimal leakage function.

Non-adaptive IND security. In this notion of security, the adversary first
receives the public parameters of an M-Adjoin scheme. It then chooses a pair
of challenge databases DB0,DB1, with the same column labels2 and a challenge
query listQ such that Leak(DB0,Q) = Leak(DB1,Q). Such an adversary is called
a valid adversary.

The non-adaptive indistinguishability-based notion of security requires that
such an adversary should not be able to distinguish between

(
EncodK(DB0),

TokenK(Q)
)

and
(
EncodK(DB1),TokenK(Q)

)
with a non-negligible advantage.

The formal definition follows.

Definition 4.3 (Non-adaptive IND security) An M-Adjoin join scheme such
as Π = (Gen,Encod,Token,Adjust,Eval) is called non-adaptively indistinguishable-
based secure with respect to the leakage function Leak (abbreviated Leak-naIND-
secure) against non-adaptive adversaries if for all PPT valid adversary A, there
exists a negligible function ε such that

AdvnaINDΠ,A (λ) = |Pr[ExpnaINDΠ,A (λ, 0) = 1]−

Pr[ExpnaINDΠ,A (λ, 1) = 1]| ≤ ε(λ),

where for each b ∈ {0, 1}, the experiment ExpnaINDΠ,A (λ, b) is defined as follows.

1. Setup phase: The challenger Chal samples (Param,K) ← Gen(1λ) and
sends the public parameters Param to the adversary A.

2. Challenge phase: The adversary A chooses two databases DB0, DB1, with
the same column labels, and a list of queries Q such that Leak(DB0,Q) =
Leak(DB1,Q). As a response, the adversary A obtains EncodK(DBb) and
TokenK(Q).

3. Output phase: The adversary A outputs a value σ ∈ {0, 1} which is defined
as the output of the experiment.

2 This requirement has not been explicitly stated in [18, Definition 4.2]. However,
without this requirement, the definition becomes useless since the aIND does not
imply the naIND security if the leakage function is label-hiding; see Remark 4.2. For
a label-leaking leakage function, this requirement is redundant, as the label set is
already included in the leakage profile.

10 Shahram Khazaei and Mojtaba Rafiee

Adaptive IND security. The adversary of the adaptive indistinguishability-
based notion of security, first receives the public parameters of the M-Adjoin
scheme. It can then adaptively issue a pair of words w0, w1 and a column label l,
and obtain an encoding EncodK(wb, l), for some fixed bit b ∈ {0, 1}. In this type
of query, the adversary gradually constructs two databases DB0,DB1 with the
same dimension and the same column label set. The adversary can adaptively
issue a list of column labels, and obtain a token for computing their join. Let
Q be a list of queries that the adversary has obtained their tokens at a given
point of time. Such an adversary is called valid if after having made each query
it holds that Leak(DB0,Q) = Leak(DB1,Q).

The adaptive indistinguishability-based notion of security asks that such an
adversary should not be able to distinguish between the game in which b = 0
and the game with b = 1, with a non-negligible advantage. The formal definition
is given below.

In order to be precise, we present the following definition, before giving the
formal security definition.

Definition 4.4 (Inserting into a database) Let DB =
(
(`i, Ci)

)
i∈[n] be a

database and (w, l) ∈ {0, 1}λ × {0, 1}λ be a word/label pair. By insertion of
(w, l) into DB we get a new database as follows. If l already exists in the column
label set, i.e., l = `i for some i ∈ [n], then w is appended to the end of Ci;
otherwise, a single-word column Cn+1 = (w) with label `n+1 = l, i.e., the pair
(l, (w)) is appended to the database.

Definition 4.5 (Adaptive IND security) An M-Adjoin scheme such as Π =
(Gen,Encod,Token,Adjust,Eval) is called adaptively indistinguishable-based se-
cure with respect to the leakage function Leak (abbreviated Leak-aIND-secure)
against adaptive adversaries if for all PPT valid adversary A, there exists a
negligible function ε such that

AdvaINDΠ,A (λ) = |Pr[ExpaINDΠ,A (λ, 0) = 1]−

Pr[ExpaINDΠ,A (λ, 1) = 1]| ≤ ε(λ),

where for each b ∈ {0, 1}, the experiment ExpaINDΠ,A (λ, b) is defined as follows.

1. Setup phase: The challenger Chal samples (Param,K) ← Gen(1λ) and
sends the public parameters Param to the adversary A. In addition, two
empty databases DB0,DB1 and an empty list Q for the queries are initialized.

2. Challenge phase: The adversary A may adaptively issue Encod′K(·, ·, ·) and
TokenK(·) queries, which are defined as follows:
– Encod′K(w0, , w1, l): The pairs (w0, l) and (w1, l) are inserted into the

database DB0 and DB1, respectively. Then, the challenger sends an encoded-
word EncodK(wb, l) to the adversary A.

– TokenK(q): The query q = (l1, · · · , lm) is inserted into the list Q, and
the challenger sends the adjustments tokens (at1, · · · , atm)← TokenK(q)
to the adversary A.

Multi-Adjustable Join Scheme 11

It is required that, after issuing each query, the equality Leak(DB0,Q) =
Leak(DB1,Q) holds.

3. Output phase: The adversary A outputs a value σ ∈ {0, 1} which is defined
as the output of the experiment.

4.4 Simulation-based security notions

The simulation-based security notion also has the adaptive and non-adaptive
variants. Again, for simplicity we assume that the leakage function is the minimal
one.

Non-adaptive SIM security. The non-adaptive simulation-based notion of
security considers an adversary, a simulator and two worlds called real and ideal.

In the real-world, the adversary interacts with the M-Adjoin scheme and
receives the public parameters of the M-Adjoin scheme at the beginning. Then,
it chooses a database DB and a listQ of queries and obtains an encoded database
and a list of join tokens for each query q ∈ Q.

In the ideal-world, the adversary, however, interacts with a simulator. It gets
the public parameters produced by the simulator and chooses a database DB and
a list Q of queries. It then obtains an encoded database and a list of join tokens
for each q ∈ Q, produced by the simulator using the leakage profile Leak(DB,Q),
without having access to the key.

The non-adaptive simulation-based notion of security requires that such
an adversary should not be able to distinguish whether he interacts with the
M-Adjoin scheme or with the simulator, unless with a negligible advantage. The
formal definition is given below.

Definition 4.6 (Non-adaptive SIM security) An M-Adjoin scheme such as
Π = (Gen,Encod,Token,Adjust,Eval) is said to be non-adaptively simulation-
based secure with respect to the leakage function Leak (abbreviated Leak-naSIM-
secure) against non-adaptive adversaries if for every PPT adversary A there
exist a PPT simulator S and a negligible function ε such that

|Pr[ExpReal,naSIMΠ,A (λ) = 1]− Pr[ExpIdeal,naSIMΠ,A,S (λ) = 1]| ≤ ε(λ),

where the experiments ExpReal,naSIMΠ,A (λ) and ExpIdeal,naSIMΠ,A,S (λ) are defined as follows.

Real world (ExpReal,naSIMΠ,A (λ)):

1. Setup phase: The challenger samples (Param,K)← Gen(1λ), and returns
the public parameters Param to the adversary A.

2. Challenge phase: The adversary A takes the security parameter λ, chooses
a database DB and a list of queries Q, and sends them to the challenger.

3. Response phase: The challenger computes D̃B ← EncodK(DB) and AT ←
TokenK(Q), and returns them to the adversary A.

4. Output phase: The adversary A outputs a value σ ∈ {0, 1} which is defined
as the output of the experiment.

12 Shahram Khazaei and Mojtaba Rafiee

Ideal world (ExpIdeal,naSIMΠ,A,S (λ)):

1. Setup phase: The simulator S produces the public parameters Param∗,
which are given as input to the adversary A.

2. Challenge phase: The adversary A takes the security parameter λ, chooses
a database DB and a list of queries Q, and sends them to the challenger.

3. Response phase: The challenger computes the leakage profile L ← Leak(
DB,Q), and gives L as input to the simulator. The simulator S produces an

encoded database D̃B∗ and a list of tokens AT ∗, which are then given to the
adversary A.

4. Output phase: The adversary A outputs a value σ ∈ {0, 1} which is defined
as the output of the experiment.

Adaptive SIM security. The adaptive simulation-based notion of security
also considers an adversary, a simulator and the real and ideal worlds.

In the real-world, the adversary interacts with the M-Adjoin scheme and
receives the public parameters of the M-Adjoin scheme. It can then adaptively
issue a pair of word/label (w, l), and obtain an encoding EncodK(w, l). The
adversary can also adaptively issue a query, and obtain a token for computing
the join.

In the ideal-world, the adversary, however, interacts with the simulator. It ob-
tains the public parameters produced by the simulator. Then, the adversary can
adaptively issue a pair of word/label (w, l), and obtain an encoding EncodK(w, l),
produced by the simulator using the leakage profile L← Leak(DB,Q). It can also
adaptively issue a query, and obtain a token for computing the join, produced
by the simulator using the leakage profile L← Leak(DB,Q).

The adaptive simulation-based notion of security requires that such an ad-
versary should not be able to distinguish whether it interacts with the M-Adjoin
scheme or with the simulator, unless with a negligible advantage. The formal
definition follows.

Definition 4.7 (Adaptive SIM security) An M-Adjoin scheme such as Π =
(Gen,Encod,Token,Adjust,Eval) is said to be adaptively simulation-based secure
with respect to the leakage function Leak (abbreviated Leak-aSIM-secure) against
adaptive adversaries if for every PPT adversary A there exist a PPT simulator
S and a negligible function ε such that

|Pr[ExpReal,aSIMΠ,A (λ) = 1]− Pr[ExpIdeal,aSIMΠ,A,S (λ) = 1]| ≤ ε(λ),

where the experiments ExpReal,aSIMΠ,A (λ) and ExpIdeal,aSIMΠ,A,S (λ) are defined as follows.

Real world (ExpReal,aSIMΠ,A (λ)):

1. Setup phase: The challenger samples (Param,K)← Gen(1λ), and returns
the public parameters Param to the adversary A.

Multi-Adjustable Join Scheme 13

2. Challenge phase: The adversary A may adaptively issue EncodK(·, ·) and
TokenK(·) queries and receive back the output.

3. Output phase: The adversary A outputs a value σ ∈ {0, 1} which is defined
as the output of the experiment.

Ideal world (ExpIdeal,aSIMΠ,A,S (λ)):

1. Setup phase: The simulator S produces the public parameters Param∗,
which are given as input to the adversary A. An empty database DB and an
empty list Q of column labels are initialized.

2. Challenge phase: The adversary A may adaptively issue Encod(·, ·) and
Token(·) queries, which are defined as follows:

– Encod(w, l): The pair (w, l) is inserted into the database DB, and the
simulator S obtains the leakage profile L ← Leak(DB,Q). Finally, the
simulator S sends an encoded-word w̃∗ to the adversary A.

– Token(q): The query q = (l1, · · · , lm) is inserted into the list Q, and
the simulator S obtains the leakage profile L ← Leak(DB,Q). Finally,
the simulator S sends a list of adjustment tokens (at∗1, · · · , at∗m) to the
adversary A.

3. Output phase: The adversary A outputs a value σ ∈ {0, 1} which is defined
as the output of the experiment.

5 The M3Partition and M3Pk security notions

In this section, we introduce a new security notion for M-Adjoin schemes, called
M3Partition, which stands between the non-adaptive and adaptive securities
with respect to the minimal leakage (Definition 4.1). Additionally, we introduce
a family {M3Pk}k∈N of security notions such that M3Pk positions between the
non-adaptive and adaptive securities with respect to the k-monotonous leak-
age (Definition 4.1). Additionally, M3Pk lies between M3Pk−1 and M3Pk+1. Our
definition is a natural extension of the other definitions such that 3Partition

corresponds to M3P1 and one may imagine that M3Partition corresponds to
M3P∞.

5.1 Monotonous M-Adjoin schemes

Recall that the 3Partition-security notion only requires that for any three dis-
joint sets L ,M ,R, the ability to compute the joins in L ∪M and M ∪R does
not allow to compute the join between any column in L and any column in R.
However, this is not sufficient for capturing the minimal leakage function defined.
The reason is that the token generation algorithm may leak some undesirable
information to the adversary without violating the 3Partition (and more gener-
ally M3Pk) security. To see how this could happen, consider an M-Adjoin scheme
that has the following property.

14 Shahram Khazaei and Mojtaba Rafiee

Definition 5.1 (k-monotonicity property) Let k be an integer. We say that
an M-Adjoin scheme has the k-monotonicity property, or it is k-monotonous, if
the following holds: for every m ≥ k + 1, for every query q = (l1, · · · , lm), for
every valid token (at1, · · · , atm) for q, and for every subset A ⊆ [m] of size at
least k + 1, it holds that (ati)i∈A is a valid token for the query (li)i∈A.

Remark 5.2 (More general monotonicity property) The k-monotonicity
property corresponds to a threshold leakage which is reminiscent of the Shamir-
Blakely’s [27, 6] threshold access structure in secret sharing schemes. Similar to
Ito-Saito-Nishizeki’s [16] generalized notion of access structures, one can work
with more general monotonous properties. It is unclear to us if such a property
can be used in an interesting way in real applications.

The M-Adjoin schemes of [18] have the 1-monotonicity property with the
adjustment token size O(m). For every integer k, we propose a more flexible
and substantially more efficient k-monotonous scheme with adjustment token
size O(m) (the difference in the hidden constant factor is huge). It is easily seen
that a k-monotonous scheme makes it possible to compute the join of m > k+ 1
(resp. 2 ≤ m ≤ k + 1) columns, each of length n, in time O(dm−1k en

k) (resp.
O(nm−1)). The security of such schemes is captured by the M3Pk-security.

The k-monotonicity property allows an adversary to compute the join of an
unqueried list of size k + 1 if it has already queried a superset of the list of size
at least k + 2. This property induces some leakage which is not captured by
the minimal leakage but reflected in the k-monotonous leakage, introduced in
Section 4.2. For our convenience, we define a weaker version of the monotonicity
property.

Definition 5.3 (Weak k-monotonicity property) It is the same as the k-
monotonicity property except that the condition “for every subset A ⊆ [m]” is
replaced with “for some subset A ⊆ [m]”.

5.2 An illustrative example

Consider an M-Adjoin scheme with the weak k-monotonicity property. We will
argue that it cannot be naIND-secure (and more generally M3Pk+1-secure, see
Lemma 5.7) with respect to the k-monotonous leakage function (Definition 4.1).
Without loss of generality, assume that the weak k-monotonicity property holds
for the set A = {1, · · · , k + 1}.

The adversary constructs two databases DB0 and DB1, each containing k+1
single-word columns with labels `1, . . . , `k+1. Denote the column with label `i
in the database DBj with Cji , where i ∈ {1, . . . , k + 1} and j ∈ {0, 1}. The
adversary chooses k + 1 distinct words w1, . . . , wk+1 and constructs DB0 and
DB1 as in Table 1. That is, all the columns of the database DB0 are distinct and
hence the intersection of any subset of size k as well as the intersection of all of
them is empty. However, in DB1, the first k columns are identical but distinct
from the last one. Therefore, the intersection of the fist k columns is non-empty
but the intersection of all of them is empty.

Multi-Adjustable Join Scheme 15

Table 1. Adversary’s strategy

Database DB0 DB1

Column label `1 · · · `k `k+1 `1 · · · `k `k+1

Ci w1 · · · wk wk+1 w1 · · · w1 wk+1

The adversary chooses a single query q1 = (`1, . . . , `k+1) and sends it to
the challenger. Notice that the adversary is valid since MonLeakk(DB0,Q) =
MonLeakk(DB1,Q), where Q = {q}. The adversary has received an encoding
of DBb, where b ∈ {0, 1} is unknown to him, along with an adjustment to-
ken (at1, . . . , atk+2) for q1. By the monotonicity property, the adversary has a
valid token (at1, . . . , atk+1) for the unqueried query q2 = (`1, . . . , `k+1), using
which he can determine the value of b ∈ {0, 1} since MonLeakk(DB0,Q′) 6=
MonLeakk(DB1,Q′), where Q′ = {q1, q2}. Then, the adversary outputs σ = b.
Clearly, the advantage of the adversary is 1.

5.3 Informal definitions

Our previous discussions leads us towards a new security definition which we refer
to as the M3Partition-security. Its experiment considers an adversary similar to
the 3Partition experiment but with less constraints on the join tokens. Again,
the adversary adaptively defines three disjoint groups of columns, denoted by
L (left), M (middle) and R (right). It adaptively requests an encoded-word
of his selected word relative to any column and join tokens related to allowed
queries. Recall that in the 3Partition experiment a join query q = (l1, · · · , lm)
was allowed to be of any of the following two types:

T1) l1, · · · , lm ∈ L ∪ M or,
T2) l1, · · · , lm ∈M ∪ R.

Here we further allow the adversary to issue the following third type:

T3) l1, · · · , lm ∈ L ∪ M ∪ R and {l1, · · · , lm}∩ M 6= ∅.

The game then continues as in the 3Partition experiment.

M3Pk security. For every integer k, we define the M3Pk security by modifying
the third type of allowed queries as follows:

T3’) l1, · · · , lm ∈ L ∪ M ∪ R, {l1, · · · , lm}∩ M 6= ∅ and m ≤ k + 1.

That is, the query length must be at most k+1. Notice that when k = 1, the
allowed queries of third type are essentially those of the first and second types;
i.e., the experiment is exactly the 3Partition experiment. The 3Partition

experiment can be viewed as the limit of the M3Pk experiment when k goes to
infinity. Therefore, we use M3Partition and M3P∞ interchangeably.

16 Shahram Khazaei and Mojtaba Rafiee

5.4 Formal definition

Below, we provide a formal definition of the M3Partition (i.e., M3P∞) and M3Pk
security notions.

Definition 5.4 (M3Pk security, k ∈ N ∪ {∞}) Let k ∈ N∪{∞}. An M-Adjoin
scheme such as Π = (Gen,Encod,Token,Adjust,Eval) is M3Pk-secure if for all
PPT algorithms A, there exists a negligible function ε such that

|Pr[ExpM3PkΠ,A(λ, 0)]− Pr[ExpM3PkΠ,A(λ, 1)]| ≤ ε(λ),

where for each b ∈ {0, 1}, the experiment ExpM3PkΠ,A(λ, b) is defined as follows:

1. Setup phase: The challenger Chal samples (Param,K) ← Gen(1λ), and
initialize L = M = R = ∅. The public parameters Param are given as
input to the adversary A.

2. Pre-challenge query phase: The adversary A may adaptively issue Addlbl,
Encod and Token queries, which are defined as follows:

(a) Addlbl(l,X): adds the column label l to the group X, where X ∈ {L ,M ,R}.
The adversary A is not allowed to add a column label into more than one
set (i.e., the groups L ,M and R must always be pairwise disjoint).

(b) Encod(w, l): computes and returns an encoded-word w̃ ← EncodK(w, l)
to the adversary A, where l ∈ L ∪ M ∪ R.

(c) Token(l1, · · · , lm): computes and returns a list (at1, · · · , atm)← TokenK
(l1, · · · , lm) of adjustment tokens to the adversary A, where

– l1, · · · , lm ∈ L ∪ M ,
– or l1, · · · , lm ∈M ∪ R,
– or l1, · · · , lm ∈ L ∪ M ∪ R, {l1, · · · , lm}∩ M 6= ∅ and m ≤ k + 1.

3. Challenge phase: The adversary A chooses a pair of challenge words w∗0
and w∗1 subject to the constraint that A did not previously issue a query of
the form Encod(w, l) where w ∈ {w∗0 , w∗1} and l ∈M ∪R. As a response, the
adversary A obtains an encoded-word w̃∗ ← EncodK(w∗b , l) for every l ∈ R.

4. Post-challenge query phase: As in the pre-challenge query phase, with
the restriction that the adversary A is not allowed to issue a query of the
form EncodK(w, l), where w ∈ {w∗0 , w∗1} and l ∈M∪R. In addition, for each
Addlbl(l,R) query, the adversary A is also provided with w̃ ← EncodK(w∗b ,
l).

5. Output phase: The adversary A outputs a value σ ∈ {0, 1} which is defined
as the output of the experiment.

Definition 5.5 (M3Partition security) An M3P∞-secure M-Adjoin scheme is
simply called M3Partition-secure.

5.5 Security relations

The following corollary trivially follows by security definitions.

Multi-Adjustable Join Scheme 17

Corollary 5.6 (Trivial implications) Let k be an integer. Then,

(a) (M3Partition =⇒ M3Pk) Any M3Partition-secure M-Adjoin scheme is
M3Pk-secure, too.

(b) (M3Pk+1 =⇒ M3Pk) Any M3Pk+1-secure M-Adjoin scheme is M3Pk-secure,
too.

(c) (Limit cases) M3P1 ≡ 3Partition and M3P∞ ≡ M3Partition.

The following lemma is useful for a separation between M3Partition and
M3Pk and between M3Pk and M3Pk+1.

Lemma 5.7 (Weak k-monotonicity =⇒ ∼ M3Pk+1) An M-Adjoin scheme with
the k-monotonicity property is not M3Pk+1-secure.

Proof. Without loss of generality assume that the weak k-monotonicity property
holds for the set A = {1, · · · , k + 1}. In the pre-challenge phase, the adversary
chooses k + 2 distinct labels `1, . . . , `k+2 at random and issues the following
queries: Addlbl(`i,L), for every i ∈ [k], Addlbl(`k+1,R) and Addlbl(`k+2,M).
In the challenge phase, he chooses a pair of distinct challenge word (w∗0 , w

∗
1)

at random and receives an encoded-word w̃k+1 = EncodK(w∗b , `k+1), for some
randomly chosen b ∈ {0, 1}, which is unknown to him. In the post-challenge
phase, he issues the queries w̃i = EncodK(w∗0 , `i) for every i ∈ [k]. He also
requests the adjustment token (at1, . . . , atk+2) for the query (`1, . . . , `k+2). By
the k-monotonicity property, (at1, . . . , atk+1) is a valid adjustment token for the
query (`1, . . . , `k+1). The adversary can then determine if w∗0 = . . . = w∗0 = w∗b
by executing the adjustment algorithm and then the evaluation algorithm; that
is, he learns b and outputs it. Therefore, his advantage in the M3Partition

experiment is 1. ut

Proposition 5.8 (Separations) Let k be an integer. Then,

(a) (M3Pk 6=⇒ M3Pk+1) An M3Pk-secure M-Adjoin scheme is not necessarily
M3Pk+1-secure.

(b) (M3Pk 6=⇒ M3Partition) An M3Pk-secure M-Adjoin scheme is not neces-
sarily M3Partition-secure.

Proof. Let Π be an M3Pk-secure M-Adjoin scheme. We modify Π to get a scheme
Π̃ which is weakly k-monotonous but retains its M3Pk-security. By Lemma 5.7,
it is not M3Pk+1-secure, proving Part (a). Part (b) follows by Lemma 5.7.

The key generation algorithms of Π and Π̃ are the same. Let q = (l1, . . . , lm)

be a query that is given to the token generation algorithm of Π̃. A token
(at1, . . . , atm) for q is first computed using the token generation algorithm of
Π which will be the output of if m ≤ k + 1. Otherwise, a token (at′1, . . . , at

′
k+1)

is also generated for q′ = (`1, . . . , `k+1) using Π and the adjustment token of q

in Π̃ will be (
(at1, at

′
1), . . . , (atk+1, at

′
k+1), atk+2, · · · , atm

)
.

18 Shahram Khazaei and Mojtaba Rafiee

The other algorithms are modified accordingly. The weak k-monotonicity
property of Π̃ is clear.

It remains to prove that the modified scheme remains M3Pk-secure. To see
this, recall the constraints in the M3Pk experiment. The adversary is allowed to
issue a join query q = (`1, · · · , `m) of one of the following types:

T1) l1, · · · , lm ∈ L ∪ M or,
T2) l1, · · · , lm ∈M ∪ R.
T3) l1, · · · , lm ∈ L ∪ M ∪ R, {l1, · · · , lm}∩ M 6= ∅ and m ≤ k + 1.

Notice that our modification (i.e., including an adjustment token for the sub-
query q′ = (`1, . . . , `k+1) when m ≥ k + 2) does not provide anything new to
adversary since he was already allowed to issue such a query. ut

6 Positions of M3Partition and M3Pk

For the case of Adjoin, the relations between the 3Partition security and
simulation/indistinguishability-based security notions with respect to the mini-
mal leakage function have been studied in [18, Claims 4.3 and 4.5]. Their proofs
extend to the case of M-Adjoin in a straightforward way, giving rise to the fol-
lowing two propositions.

Proposition 6.1 (Position of M3Partition) The M3Partition security lies
between the adaptive and non-adaptive indistinguishability-based securities with
respect to the minimal leakage function. That is,

(a) (MinLeak-aIND =⇒ M3Partition) Any MinLeak-aIND-secure M-Adjoin
scheme is M3Partition-secure, too.

(b) (M3Partition =⇒ MinLeak-naIND) Any M3Partition-secure scheme is
MinLeak-naIND-secure, too.

Proposition 6.2 (Position of M3Pk) The M3Pk security lies between the adap-
tive and non-adaptive indistinguishability-based securities with respect to the k-
monotonous leakage function. That is,

(a) (MonLeakk-aIND =⇒ M3Pk) Any MonLeakk-aIND-secure M-Adjoin scheme
is M3Pk-secure, too.

(b) (M3Pk =⇒ MonLeakk-naIND) Any M3Pk-secure scheme is MonLeakk-naIND-
secure, too.

For the case of Adjoin in [18, Page 641, Section 1.4], it has been argued that
for databases with a logarithmic number of columns the 3Partition security
and aIND-security with minimal leakage are equivalent. The same argument also
applies here to show that, for the M-Adjoin schemes, the M3Partition (resp.
M3Pk) security is equivalent to the aIND-security with regards to the minimal
leakage (resp. k-monotonous minimal leakage). However, it remains open if this
is true for databases with a super-logarithmic number of columns.

Multi-Adjustable Join Scheme 19

Additionally proving/refuting equivalence between the 3Partition security
and naIND-security (with minimal leakage) was left unexpressed for the case
of Adjoin in [18]. The following proposition, which is proved using standard
techniques for separating non-adaptive and adaptive security notions, shows that
they are indeed inequivalent.

Proposition 6.3 (naIND 6=⇒ 3Partition) For any leakage function Leak,
the Leak-naIND-security of an M-Adjoin scheme does not necessarily imply its
3Partition security.

Proof. LetΠ = (Gen,Encod,Token,Adjust,Eval) be some naIND-secure M-Adjoin

scheme. We construct an M-Adjoin scheme Π̃ = (G̃en, Ẽncod, T̃oken, Ãdjust, Ẽval)
which is yet naIND-secure, with the same leakage function, however it is not
3Partition secure. The scheme Π̃ is as follows:

– G̃en(1λ): It runs (Param,K) ← Gen(1λ) and chooses a random word w∗ ∈
{0, 1}λ, and outputs (Param, K̃), where K̃ = (K,w∗) .

– ẼncodK̃(w, l): It computes an encoded-word w̃ as

w̃ = ẼncodK̃(w, l) =

{
(EncodK(w, l), w∗) w 6= w∗

w∗ w = w∗
.

It is easy to see that Π̃ is still naIND-secure without any change in the
leakage function, since the adversary’s advantage only increases by 1

2λ
due to

his ability to guess w∗. It is also easy to construct a 3Partition-attacker for Π̃
with advantage one, since the adversary learns w∗ after issuing the first query.
He will then use it as one of his challenge words. ut

7 Relations between leakage-based security notions

The reader may recall definitions of the minimal and k-monotonous leakage
function before continuing this section. The following “figurative” relation in
terms of the amount of leakage is trivial:

MinLeak ≤ MonLeakk+1 ≤ MonLeakk ,

which can be formally stated by the following corollary.

Corollary 7.1 (Leakage implications) Let X ∈ {aSIM, naSIM, aIND, naIND}
and k be an integer.

(a) (MinLeak =⇒ MonLeakk) If an M-Adjoin scheme is MinLeak-X-secure
scheme, it is MonLeakk-X-secure, too.

(b) (MonLeakk+1 =⇒ MonLeakk) If an M-Adjoin scheme is MonLeakk+1-X-
secure scheme, it is MonLeakk-X-secure, too.

20 Shahram Khazaei and Mojtaba Rafiee

The proof of the following proposition is similar to the proof of Proposi-
tion 5.8 and is left to the reader.

Proposition 7.2 (Leakage separation) Let X ∈ {aSIM, naSIM, aIND, naIND}
and k be an integer. Then,

(a) (MonLeakk+1 6=⇒ MonLeakk) A MonLeakk+1-X-secure scheme is not nec-
essarily MonLeakk-X-secure.

(b) (MonLeakk 6=⇒ MinLeak) A MonLeakk-X-secure scheme is not necessarily
MinLeak-X-secure.

The proofs of the following propositions are pretty much similar to the cor-
responding claims in [18] for the case of Adjoin schemes, and hence omitted
here.

Proposition 7.3 (aSIM =⇒ aIND [18, Claim 4.9]) For any leakage function
Leak, if an M-Adjoin scheme is Leak-aSIM-secure, then it is Leak-aIND-secure
too.

Proposition 7.4 (naIND ⇐⇒ naSIM [18, Claim 4.7]) For any leakage func-
tion Leak, an M-Adjoin scheme is Leak-naSIM-secure if and only if it is Leak-
naIND-secure.

The following proposition—which was left unanswered for the case of Adjoin
in [18]– separates the aIND and aSIM security definitions with respect to our
leakage functions of interest. The point that we take advantage of is that both of
our leakage functions are label-hiding ; that is the column label set of a database
remains hidden from the adversary in simulation-based definitions. It remains
open if the separation still holds for label-leaking leakage functions; that is, if we
include the the columns label set in the leakage profile.

Proposition 7.5 (aIND 6=⇒ aSIM) Let Leak be any of the leakage functions
defined in Definition 4.1 (i.e, MinLeak or MonLeakk). Then, the Leak-aIND se-
curity does not necessarily imply the Leak-aSIM security.

Proof. Let Π be some Leak-aIND-secure M-Adjoin scheme. We construct an
M-Adjoin scheme Π̃ which is still Leak-aIND-secure, but it is not Leak-aSIM-
secure. All algorithms of Π̃ are the same as Π except the encoding algorithm.

Denote these algorithms by Encod and Ẽncod, respectively. On a key K and a
word/label pair (w, l), the modified encoding algorithm outputs

ẼncodK(w, l) =
(
EncodK(w, l), l

)
.

That is, the label is revealed to the adversary. It is easy to see that Π̃ is still
Leak-aIND-secure, because the adversary already knows the labels as he chooses
them himself. Therefore, his advantage in attacking Π̃ is the same as that of
attacking Π.

Multi-Adjustable Join Scheme 21

However, the modified scheme is not Leak-aSIM-secure, because the leakage
profile does not contain any information about the label set. Therefore, the

simulator has no way to simulate the output of Ẽncod except to guess. But this
will be detected by an adversary who constructs the databases with random
labels. We conclude that there exists an attacker that can distinguish the real
and ideal worlds for every given simulator. ut

8 Summary of security implications and separations

Figures 1 and 2 summarizes the results of the previous sections for the minimal
and k-monotonous leakage functions respectively.

Adaptive SIM Adaptive IND

M3Partition M3Pk

Non-adaptive SIM Non-adaptive IND

Proposition 7.3

\

Proposition 7.5

P
ro

p
o
sitio

n
6
.1

(a
) Corollary 5.6 (a)

\?

P
ro

p
o
sitio

n
6
.1

(b
)

\

Proposition 5.8 (b)

Proposition 7.4

\

Proposition 6.3

Fig. 1. Relations between different security notions for minimal leakage.

9 Our M-Adjoin constructions

In this section, we present two M-Adjoin schemes. The first construction is
M3Partition secure (and hence, non-monotonous) but the second one is k-
monotonous where k ≥ 1 is an arbitrary parameter but it is M3Pk+1-secure

We use a bilinear group generator G that takes as input the security parame-
ter λ, and outputs a tuple (G1,G2,GT , g1, g2, q, e), where G1, G2, GT are cyclic

22 Shahram Khazaei and Mojtaba Rafiee

Adaptive SIM Adaptive IND

M3Partition M3Pk M3Pk−1

Non-adaptive SIM Non-adaptive IND

Proposition 7.3

P
ro

p
o
sitio

n
6
.2

(a
)

\

Proposition 7.5

Corollary 5.6 (a)

\

Proposition 5.8 (b)

\?

P
ro

p
o
sitio

n
6
.2

(b
)

Corollary 5.6 (b)

\

Proposition 5.8 (a)

Proposition 7.4

\

Proposition 6.3

Fig. 2. Relations between different security notions for k-monotonous leakage.

groups of prime order q, and g1, g2 are generators of G1 and G2, respectively.
The mapping e : G1 × G2 → GT is a non-degenerate efficiently computable
bilinear map. We also use a pseudo-random function F : {0, 1}λ×{0, 1}λ → Z∗q .

9.1 A non-monotonous scheme

Our main scheme is non-monotonous and indeed it is M3Partition-secure as-
suming the truth of a new computational hardness assumption, called MXDHV
(Assumption 9.2), which is a variant of the XDH assumption [2, 7, 14, 26]. The
algorithms of our main scheme Π = (Gen,Encod,Token,Adjust) are defined as
follows:

– Key generation: On input 1λ, run (G1,G2,GT , g1, g2, q, e) ← G(1λ) and
choose a label-key lk ∈ {0, 1}λ and a word-key wk ∈ {0, 1}λ uniformly at
random, and output Param = (G1,G2,GT , g1, g2, q, e) and K = (lk, wk).

– Encoding algorithm: On inputs Param = (G1,G2,GT , g1, g2, q, e), a key
K = (lk, wk), a word w ∈ {0, 1}λ and a column label l ∈ {0, 1}λ, output the
encoded-word as

w̃ := g
Flk(l)·Fwk(w)
1 .

– Token generation: On inputs Param = (G1,G2,GT , g1, g2, q, e), a key
K = (lk, wk), and a list of column labels (l1, · · · , lm) with m ≥ 2, choose

Multi-Adjustable Join Scheme 23

random values r1, · · · , rm ∈ Zq subject to r1 + · · · + rm = 0 and output a
list of adjustment tokens (at1, · · · , atm) as follows

ati = g
P

Flk(li)
·ri

2 ,

where P =
m∏
j=1

Flk(lj).

– Adjustment: On inputs Param = (G1,G2,GT , g1, g2, q, e), an encoded-
word w̃, and an adjustment token at, output the adjusted word as

aw = e(w̃, at) ∈ GT .
– Evaluation: On inputs Param = (G1,G2,GT , g1, g2, q, e) and a list of ad-

justed words (aw1, · · · , awm), output 1 if and only if
m∏
i=1

awi = e(g1, g2).

Correctness. For any integer m ≥ 2, any list of column labels (l1, · · · , lm) ∈
({0, 1}λ)m and any list of words (w1, · · · , wm) ∈ ({0, 1}λ)m, it holds that

awj = AdjustParam
(
EncodK(wj , lj), atj

)
= e(g

Flk(lj)·Fwk(wj)
1 , g

P
Flk(lj)

·rj
2) = e(g1, g2)Fwk(wj)·P ·rj ,

(9.1)

for every j ∈ [m], where (Param,K) is the output of Gen(1λ), (at1, · · · , atm)
is the output of TokenK(l1, · · · , lm), and r1, · · · , rm are random values from Zq
subject to r1 + · · · + rm = 0. Therefore, if w1 = · · · = wm then the following
equality always holds

m∏
i=1

awi = 1.

Moreover, if wi 6= wj for some distinct i, j ∈ [m], then with an overwhelming
probability Fwk(wi) 6= Fwk(wj), since F is a pseudo-random function. It is easy

to show that AdvCorM-Adjoin(λ), that is the probability that
m∏
i=1

awi = 1, is at most

2
q + ε(λ), where ε(λ) is some negligible function.

9.2 A k-monotonous scheme

For every integer k, we present a modified version of our non-monotonous scheme
which is M3Pk-secure assuming the truth of MXDHV assumption (Assump-
tion 9.2). All the algorithms are exactly the same as that of the non-monotonous
scheme, except the token generation and evaluation algorithms. Let us give an
intuition of the required modifications.

The token generation algorithm of the main scheme chooses m random values
r1, · · · , rm ∈ Zq subject to r1 + · · ·+rm = 0. One can view it as a simple (m,m)-
threshold secret sharing of the value 0 ∈ Zq. By using an (m, k + 1)-threshold
scheme we will get what we want.

24 Shahram Khazaei and Mojtaba Rafiee

Here are the modified algorithms:

– Token generation: On inputs Param = (G1,G2,GT , g1, g2, q, e), a key
K = (lk, wk), and a list of column labels (l1, · · · , lm) with m ≥ 2, do as
follows. If m ≥ k + 1, then share the value 0 ∈ Zq using a linear (m, k + 1)-
threshold scheme (such as Shamir’s) to get the shares r1, · · · , rm ∈ Zq. If 2 ≤
m ≤ k, then share the value 0 ∈ Zq using a linear (m,m)-threshold scheme
to get the shares. Then, output a list of adjustment tokens (at1, · · · , atm) as
before.

– Evaluation: On inputs Param = (G1,G2,GT , g1, g2, q, e) and a list of ad-
justed words (aw1, · · · , awm) do as follows. If m ≥ k + 1, then output 1

if and only if
k+1∏
i=1

aw
αi+j
i+j = 1, for every j = 0, k, 2k, 3k, . . . , dm−1k ek, where

(αi1 , . . . , αik+1
) ∈ Zk+1

q are the (fixed) coefficients that makes it possible to
compute the secret (i.e., 0) from the shares (ri1 , . . . , rik+1

). If 2 ≤ m ≤ k,

then output 1 if and only if
m∏
i=1

awαii = 1.

Correctness. The proof is similar to the correctness of the non-monotonous
scheme. As we saw above in Equation (9.1), for any integer m ≥ 2, any list of
column labels (l1, · · · , lm) ∈ ({0, 1}λ)m and any list of words (w1, · · · , wm) ∈
({0, 1}λ)m, it holds that

awj = e(g1, g2)Fwk(wj)·P ·rj ,

where here r1, · · · , rm ∈ Zq are the shares generated by the threshold secret
sharing scheme that correspond to the secret value 0.

When m ≥ k+ 1 and a (m, k+ 1)-threshold scheme is used, for every subset
A = {i1, . . . , ik+1} ⊂ {1 . . . ,m}, we have αi1ri1 + . . .+αik+1

rik+1
= 0. Therefore,

if w1 = · · · = wm then we have:

k+1∏
i=1

aw
αi+j
i+j = 1, j = 0, k, 2k, 3k, . . . , dm− 1

k
ek .

Moreover, if w1, . . . , wm are not all the same, then there exists some j ∈{
0, k, 2k, 3k, . . . , dm−1k ek

}
and i, i′ ∈ {1, . . . , k + 1} such that wj+i 6= wj+i′ .

Consequently, with an overwhelming probability Fwk(wj+i) 6= Fwk(wj+i′), since
F is a pseudo-random function. It is easy to show that the probability that
k+1∏
i=1

aw
αi+j
i+j = 1, is at most 2

q + ε(λ), where ε(λ) is some negligible function.

Therefore, AdvCorM-Adjoin(λ) ≤ 2
q + ε(λ) is negligible.

The case where 2 ≤ m ≤ k and a (m,m)-threshold scheme is used is similar.

Multi-Adjustable Join Scheme 25

9.3 Security analysis

The M3Partition-security of our non-monotonous scheme rand the M3Pk-security
of our k-monotonous scheme both rely on a new computational hardness as-
sumption, that we call the mixed external Diffie-Hellman variant (MXDHV)
assumption. It is a variant of the XDH assumption which for completeness, we
quote here.

Assumption 9.1 (External Diffie-Hellman (XDH) assumption) We say
that the XDH problem is hard relative to the bilinear map generator G, if for all
PPT adversaries A there exists a negligible function ε such that

|Pr[Param← G(1λ); a,m← Z∗q : A(Param, ga1 , g
m
1 , g

a·m
1 ,)]−

Pr[Param← G(1λ); a,m, r ← Z∗q : A(Param, ga1 , g
m
1 , g

r
1)]| ≤ ε(λ).

The external Diffie-Hellman (XDH) assumption, formalized in [2, 7, 14, 26],
is a computational hardness assumption which underlies the security of several
pairing-based cryptosystems such as [1, 8]. Our variant of the XDH assumption
is as follows.

Assumption 9.2 (Mixed External Diffie-Hellman Variant (MXDHV))
We say that the MXDHV problem is hard relative to the bilinear map generator
G, if for all PPT adversaries A there exists a negligible function ε such that

|Pr[Param← G(1λ); a, c,m0, r
′, r′′ ← Z∗q :

A(Param, ga1 , g
c
1, g

am0
1 , gcm0

1 , gr
′

2 , g
r′′

2 , gar
′

2 , gcr
′′

2 , gacr
′

2 , gacr
′′

2)]−
Pr[Param← G(1λ); a, c,m0, r, r

′, r′′ ← Z∗q :

A(Param, ga1 , g
c
1, g

am0
1 , gr1, g

r′

2 , g
r′′

2 , gar
′

2 , gcr
′′

2 , gacr
′

2 , gacr
′′

2)]| ≤ ε(λ).

This assumption may seem stronger than the XDH assumption since the
adversary is given extra information about a and c in the form of gar

′

2 , gcr
′′

2 ,
gacr

′

2 , gacr
′′

2 , where r′ and r′′ are independently and uniformly randoms from Z∗q .
We believe that MXDHV assumption is a meaningful extension that can be
used to achieve higher performance pairing-based cryptosystems. Similar non-
standard assumptions have been proposed for pairing-based constructions (e.g.,
[3, 20, 25]).

The proof of the following lemma is an easy exercise.

Lemma 9.3 Suppose the MXDHV assumption holds for the bilinear map gen-
erator G. Then, for all PPT adversaries A, there exists a negligible function ε
such that

|Pr[Param← G(1λ); a, c,m0,m1, r
′, r′′ ← Z∗q :

A(Param, ga1 , g
c
1, g

am0
1 , gam1

1 , gcm0
1 , gr

′

2 , g
r′′

2 , gar
′

2 , gcr
′′

2 , gacr
′

2 , gacr
′′

2)]−
Pr[Param← G(1λ); a, c,m0,m1, r, r

′, r′′ ← Z∗q :

A(Param, ga1 , g
c
1, g

am0
1 , gam1

1 , gcm1
1 , gr

′

2 , g
r′′

2 , gar
′

2 , gcr
′′

2 , gacr
′

2 , gacr
′′

2)]| ≤ ε(λ).

26 Shahram Khazaei and Mojtaba Rafiee

Theorem 9.4. Suppose that F is a pseudo-random function and the MXDHV
assumption holds relative to G. Then,

– The proposed non-monotonous construction of Section 9.1 is M3Partition-
secure.

– The proposed k-monotonous construction of Section 9.2 is M3Pk-secure.

Proof. The proof of both claims are quite similar and the differences will be
made clear in the course of our argument.

For proving the first claim, let Π denote the non-monotonous M-Adjoin con-
struction of Section 9.1 and let ExpΠ,A(λ, b) denote the experiment ExpM3P∞Π,A (λ, b)
where A is an adversary, λ is the security parameter and b ∈ {0, 1}.

For the second claim, Π denotes the k-monotonous scheme of Section 9.2
and ExpΠ,A(λ, b) stands for the experiment ExpM3PkΠ,A(λ, b).

We need to show that ExpΠ,A(λ, 0) ≈c ExpΠ,A(λ, 1), for every PPT adversary
A. Let Exp$F,A(λ, b) denote the experiment obtained from ExpΠ,A(λ, b) by replac-
ing the pseudo-random functions Flk and Fwk with truly random functions f and
h, respectively. By the pseudo-randomness property of F , it holds that the advan-
tage of the adversary in distinguishing between the experiments ExpΠ,A(λ, b) and
Exp$F,A(λ, b) is negligible, for b = 0, 1. Therefore, to prove the M3Partition secu-
rity of the Π scheme, it is sufficient to show that Exp$F,A(λ, 0) ≈c Exp$F,A(λ, 1).

By hybrid lemma and under the MXDHV assumption (see Lemma 9.3), it
holds that

Xλ , (Param, ga1 , g
c
1, g

am0
1 , gam1

1 , gcm0
1 , gr

′
2 , g

r′′
2 , gar

′
2 , gcr

′′
2 , gacr

′
2 , gacr

′′
2)

≈c (Param, ga1 , g
c
1, g

am0
1 , gam1

1 , gr1 , g
r′
2 , g

r′′
2 , gar

′
2 , gcr

′′
2 , gacr

′
2 , gacr

′′
2)

≈c (Param, ga1 , g
c
1, g

am0
1 , gam1

1 , gcm1
1 , gr

′
2 , g

r′′
2 , gar

′
2 , gcr

′′
2 , gacr

′
2 , gacr

′′
2) , Yλ,

where Param = (G1,G2,GT , g1, g2, q, e) is the output of G(1λ) and a, c,m0,m1,
r, r′, r′′ are independently and uniformly chosen from Z∗q . For simplicity, we sup-
pose that during the pre-challenge query phase, the adversary A does not issue
a query of the form EncodK(w∗0 , l) or EncodK(w∗1 , l), from any column label l,
where w∗0 and w∗1 are the challenge words. Similar to [18], we handle this ex-
ception at the end of the proof. We claim that there exists a polynomial-time
challenger Chal, with oracle access to A, such that it holds that ChalA(Xλ) ≡
Exp$F,A(λ, 0) and ChalA(Yλ) ≡ Exp$F,A(λ, 1). Given a sample (Param, ga1 , g

c
1,

gam0
1 , gam1

1 , gs1, g
r′

2 , g
r′′

2 , gar
′

2 , gcr
′′

2 , gacr
′

2 , gacr
′′

2) as an input, where s = cm0 or
s = cm1, and A as an oracle, the challenger Chal manages to simulate the
random functions f and h as follows:

f(l) =

a · fl l ∈ L
fl l ∈M
c · fl l ∈ R

, (9.2)

and

Multi-Adjustable Join Scheme 27

h(w) =

m0 w = w∗0
m1 w = w∗1
hw w 6= w∗0 , w

∗
1

, (9.3)

where fl and hw are randomly chosen elements of Z∗q , and w∗0 and w∗1 are the
challenge words.

In Appendix A, we describe the challenger in details.

Since we assumed that the adversary A does not query w∗0 or w∗1 in the pre-
challenge query phase, we suppose that hw0 = m0 and hw1 = m1. Therefore, in
the case that the challenger is given a sample of Xλ of the form (Param, ga1 ,
gc1, g

am0
1 , gam1

1 , gcm0
1 , gr

′

2 , g
r′′

2 , gar
′

2 , gcr
′′

2 , gacr
′

2 , gacr
′′

2) as an input, the challenger
responds the challenge with encoded-word of w∗0 , so we get the experiment
Exp$F,A(λ, 0). Similarly, in the case the challenger is given as input a sample of

Yλ of the form (Param, ga1 , g
c
1, g

am0
1 , gam1

1 , gcm1
1 , gr

′

2 , g
r′′

2 , gar
′

2 , gcr
′′

2 , gacr
′

2 , gacr
′′

2),
we get the experiment Exp$F,A(λ, 1).

We now consider the general case where the adversary A may query w∗0
and w∗1 in the pre-challenge phase. This is done the same way as in [18]. In
this case, the challenger does not know when A queried on w∗0 and w∗1 . If the
challenger knew when A queried on w0 and w1, then he could have responded
in the same way as in the post-challenge query phase. But if he does not know,
the challenger guesses when it is queried with w∗0 or w∗1 . Formally, let p(λ) be
a bound on the number of queries that adversary A performs. Also, let the
challenger chooses t0, t1 ← {0, · · · , p(λ)} in the setup phase. During the pre-
challenge phase, if the challenger is queried for an encoding EncodK(w, l) of a
word w that is the t0-th or t1-th distinct word so far, then he acts as if it was
queried on w∗0 or w∗1 , respectively, and returns the encoded-word (gam0

1)fl or
(gam1

1)fl to the adversary A, respectively. Then, in the challenge phase, if it
turns out that the guess was wrong, or if the challenger was queried on less than
max{t0, t1} distinct words, then the challenger aborts and outputs 0. Since the
view of adversary A is independent of the sampling of t0 and t1, it holds that the
guess of the challenger succeeds with probability of exactly 1

(p(λ)+1)2 , i.e., the

success probability is independent of the behavior of A. Consequently, it holds
that

|Pr[Exp$F,A(λ, 0) = 1]− Pr[Exp$F,A(λ, 1) = 1]| (9.4)

= (p(λ) + 1)2 · |Pr[ChalA(Xλ) = 1]− Pr[ChalA(Yλ) = 1]| . (9.5)

For any PPT adversary A, the bound p(λ) on its number of queries is poly-
nomial in the security parameter λ. The MXDHV assumption then implies that
the expression in Equation (9.5) is negligible, and therefore also the expression
in Equation (9.4) is negligible as well, completing the proof of the theorem. ut

28 Shahram Khazaei and Mojtaba Rafiee

10 Performance analysis

There are two naive solutions for private multiple-join queries, trivial-client and
trivial-server, which are described as follows.

Trivial-client. In this setting, the client does not outsource his database to the
server, and stores and computes every thing locally. That is, the algorithms in
the plain scenario are used to get the result.

Trivial-server. In this setting, the client encrypts each column separately us-
ing a usual CPA-secure symmetric-key encryption scheme and outsources the
encrypted database to the server. When he later privately issues join queries for
some subset of columns, he fetches back the corresponding encrypted columns,
decrypts them and employs the algorithms in the plain scenario to locally com-
pute the result.

Table 2 compares the time and space complexities of our scheme with the
naive solutions in terms of the following parameters:

– t, the total number of the columns in the database,
– n, the maximum length of each column in the database,
– m, the number of columns in a join query,
– s, the size of the result set.

In addition, Table 2 also compares leakage profile of the different schemes in
terms of the defined leakages in Definition 4.1.

Table 2. Time and space complexity of different approaches for the private set oper-
ations

Construction
Storage Communication Computation Leakage

Client Server Client Server Client Server SP DIM DP RP MPk

Trivial-client O(tn) 0 0 0 O(m · n) 0 5 5 5 5 5

Trivial-server O(1) O(tn) O(m) O(m · n) O(m · n) O(m · n) 3 3 5 5 5

non-monotonous scheme O(1) O(tn) O(m) O(s) O(s) O(nm−1) 3 3 3 3 5

k-monotonous scheme O(1) O(tn) O(m) O(s) O(s) O
(
(m− 1) · nk/k

)
3 3 3 3 3

In the following, we provide detailed efficiency comparisons between the two
M-Adjoin schemes of [18] and our proposed constructions: the non-monotonous
scheme of Section 9.1 and the k-monotonous scheme of Section 9.2.

Table 3 compares all schemes in terms of the underlying hardness assumption,
the computational complexity (join time of m columns of length n), storage
complexity (encoded word size and token size both in terms of group elements),
and the achieved security level.

When it comes to concrete performance comparison, our schemes are sub-
stantially more efficient both in computation and storage than the previous ones.
The reason for the decrease of overheads is the difference in the employed hard-
ness assumptions. The assumptions in [18] are based on symmetric bilinear maps

Multi-Adjustable Join Scheme 29

Table 3. Asymptotic comparison.

Construction Ref. Assumption Join time
Encoded word size
(group elements)

Token size
(group elements)

Security

M-Adjoin construction
I

[18]
Decision Linear

[7]
(m− 1)n 4 4m

M3P1
(3Partition)

M-Adjoin construction
II

[18]
matix-DDH

[12]
(m− 1)n 2 2m

M3P1
(3Partition)

Our k-monotonous
scheme

[Section 9.2]
MXDHV

[Section 9.3]
(m− 1)nk/k 1 m M3Pk

Our non-monotonous
scheme

[Section 9.1]
MXDHV

[Section 9.3]
nm−1 1 m

M3P∞
(M3Partition)

whereas our assumption is based on asymmetric bilinear maps. For achieving the
same security level, the symmetric bilinear maps require much longer group size
than the asymmetric ones [5, 11]. In particular, type-A curves are commonly used
for the symmetric pairing settings and type-F curves (also known as BN-curves)
are commonly used for constructions under the asymmetric setting. We refer the
reader to Appendix B for comparison of group sizes for different security levels.

We have implemented the M-Adjoin scheme of [18] and our non-monotonous
M-Adjoin scheme in Java on an Ubuntu 17.04 desktop PC with an Intel Processor
2.9 GHz. We have used the JPBC library [10] for our implementation. Table 4
concretely compares constructions for 128-bit security level.

Table 4. Concrete comparison on a typical processor

Construction Ref.
Pairing

type
Gen
(ms)

Encod
(ms)

Token
(ms)

Adjust
(ms)

Encoded-word size
(byte)

Token size
(byte)

M-Adjoin construction
II

[18] A-curve 32612 1058 1798 1180 768 768

Our non-monotonous
scheme

[Section 9.1] F-curve 19052 35 179 1028 64 128

11 Conclusions and future works

In this paper, we first introduced the syntax and security notion of the multi-
adjustable join scheme as a symmetric-key primitive that enables a user to se-
curely outsource his database and to privately issue his join queries on it. We
also proposed the M3Partition and M3Pk security notions and studied their
hierarchical relations. Additionally, we proposed a main scheme that achieves
M3Partition security but requires O(nm−1) time for joining m columns, each of
length n. It remains open if there is a way to get round of this exponential time
complexity. On the other hand, our modified scheme, which is only M3Pk-secure,
with join time O

(
(m− k)nk/k

)
, is quite efficient and might merit to be used in

real applications, especially for k = 1. But the paid price is a larger leakage.
The future contributions can be considered in several areas such as provid-

ing an efficient M-Adjoin construction that satisfies security against adaptive

30 Shahram Khazaei and Mojtaba Rafiee

adversaries, extending the M-Adjoin schemes to the multi-user models, support-
ing dynamic storage mechanism, extending the M-Adjoin schemes to the case in
which the server is malicious.

References

1. Ateniese, G., Camenisch, J., De Medeiros, B.: Untraceable rfid tags via insubvert-
ible encryption. In: Proceedings of the 12th ACM conference on Computer and
communications security. pp. 92–101. ACM (2005)

2. Ballard, L., Green, M., De Medeiros, B., Monrose, F.: Correlation-resistant storage
via keyword-searchable encryption. IACR Cryptology ePrint Archive 2005, 417
(2005)

3. Ballard, L., Kamara, S., Monrose, F.: Achieving efficient conjunctive keyword
searches over encrypted data. In: International Conference on Information and
Communications Security. pp. 414–426. Springer (2005)

4. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. Journal
of Cryptology pp. 1–39 (2017)

5. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key
management part 1: General (revision 3). NIST special publication 800(57), 1–147
(2012)

6. Blakley, G.R.: Safeguarding cryptographic keys. Proc. of the National Computer
Conference1979 48, 313–317 (1979)

7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Annual Interna-
tional Cryptology Conference. pp. 41–55. Springer (2004)

8. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques. pp. 302–321. Springer (2005)

9. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairingsthe role of ψ revisited. Discrete Applied Mathematics 159(13), 1311–1322
(2011)

10. De Caro, A., Iovino, V.: jpbc: Java pairing based cryptography. In: Proceedings of
the 16th IEEE Symposium on Computers and Communications, ISCC 2011. pp.
850–855. Kerkyra, Corfu, Greece, June 28 - July 1 (2011)

11. ECRYPT, I.: Yearly report on algorithms and key lengths (2010) (2011)
12. Escala, A., Herold, G., Kiltz, E., Rafols, C., Villar, J.: An algebraic framework for

diffie–hellman assumptions. Journal of cryptology 30(1), 242–288 (2017)
13. Furukawa, J., Isshiki, T.: Controlled joining on encrypted relational database.

In: International Conference on Pairing-Based Cryptography. pp. 46–64. Springer
(2012)

14. Galbraith, S.D., Rotger, V.: Easy decision diffie-hellman groups. LMS Journal of
Computation and Mathematics 7, 201–218 (2004)

15. Hang, I., Kerschbaum, F., Haerterich, M., Kohler, M., Schaad, A., Schroepfer, A.,
Tighzert, W.: Access control for encrypted query processing (Jan 17 2017), uS
Patent 9,547,720

16. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access
structure. Electronics and Communications in Japan (Part III: Fundamental Elec-
tronic Science) 72(9), 56–64 (1989)

17. Kamara, S., Moataz, T.: Sql on structurally-encrypted databases. In: International
Conference on the Theory and Application of Cryptology and Information Security.
pp. 149–180. Springer (2018)

Multi-Adjustable Join Scheme 31

18. Mironov, I., Segev, G., Shahaf, I.: Strengthening the security of encrypted
databases: non-transitive joins. In: Theory of Cryptography Conference. pp. 631–
661. Springer (2017)

19. Naveed, M.: The fallacy of composition of oblivious ram and searchable encryption.
IACR Cryptology ePrint Archive 2015, 668 (2015)

20. Popa, R.A., Zeldovich, N.: Multi-key searchable encryption. IACR Cryptology
ePrint Archive 2013, 508 (2013)

21. Popa, R.A.: Building practical systems that compute on encrypted data. Ph.D.
thesis, Massachusetts Institute of Technology, Department of Electrical Engineer-
ing (2014)

22. Popa, R.A., Redfield, C., Zeldovich, N., Balakrishnan, H.: Cryptdb: protecting
confidentiality with encrypted query processing. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles. pp. 85–100. ACM (2011)

23. Popa, R.A., Redfield, C., Zeldovich, N., Balakrishnan, H.: Cryptdb: processing
queries on an encrypted database. Communications of the ACM 55(9), 103–111
(2012)

24. Popa, R.A., Zeldovich, N.: Cryptographic treatment of cryptdb’s adjustable join
(2012)

25. Ryu, E.K., Takagi, T.: Efficient conjunctive keyword-searchable encryption. In:
null. pp. 409–414. IEEE (2007)

26. Scott, M.: Authenticated id-based key exchange and remote log-in with simple
token and pin number. IACR Cryptology ePrint Archive 2002, 164 (2002)

27. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979),
http://doi.acm.org/10.1145/359168.359176

A The challenger of the proof of Theorem 9.4

In this section, we describe the challenger mentioned in the proof of Theorem 9.4
in details. We first describe the challenger for proving claim I (i.e., M3Partition-
security of our non-autonomous schemes). At the end we will discuss the case of
claim II.

1. Setup phase: The challenger provides adversary A with public parameters
Param.

2. Pre-challenge query phase: In the following, we determine how the chal-
lenger handles the adversary’s queries:

(a) Addlbl(l,X): The challenger adds the column label l to the group X,
where X ∈ {L ,M ,R}. In addition, the challenger chooses fl ← Z∗q ,
unless it has already been sampled. The value fl is used by the chal-
lenger only for his own future use in the computation of the adjustment
encoded-words and the adjustment tokens. As it was mentioned above,
the idea is to simulate f(l) in Exp$F,A as in Equation (9.2).

(b) EncodK(w, l): For the word w, the challenger chooses hw ← Z∗q , unless
it has already been sampled. Then the challenger computes w̃ as follows

w̃ =

 (ga1)fl·hw l ∈ L
(g1)fl·hw l ∈M
(gc1)fl·hw l ∈ R

.

32 Shahram Khazaei and Mojtaba Rafiee

It then returns w̃ to the adversary A. Indeed, the challenger computes
w̃ such that f(l) and h(w) in Exp$F,A correspond to Equations (9.2) and
(9.3).

(c) TokenK(l1, · · · , lm): The challenger chooses random values r1, · · · , rm ∈
Zq such that r1+ · · ·+rm = 0. For each j ∈ [m], the challenger computes
atj as

atj = (Xj)

m∏
i=1

fli

flj
·rj
, (A.1)

where Xj ∈ {gr
′

2 , g
r′′

2 , gar
′

2 , gcr
′′

2 , gacr
′

2 , gacr
′′

2 }. In the following, we explain
how X1, · · · , Xm are chosen in each case:

– Case 1: l1, · · · , lm all belong to L , M , or R: In this case, we let
Xj = gr

′′

2 for every j ∈ [m]. To see why this works, consider the case
where l1, · · · , lm ∈ L . The other cases are similar. We have

atj = (Xj)

m∏
i=1

fli

flj
rj

= (gr
′′

2)

m∏
i=1

afli

aflj
a−(m−1)rj

= g

m∏
i=1

f(li)

f(lj)
zj

2 .

As it can be seen, the actual randomness used in computation of atj
is zj = a−(m−1)r′′rj .

– Case 2: l1, · · · , lm ∈ L ∪ M and the intersection of {l1, · · · , lm}
with both L and M is non-empty. In this case, we let

Xj =

{
gr
′

2 lj ∈ L

gar
′

2 lj ∈M
.

We have

atj = (Xj)

m∏
i=1

fli

flj
rj

=


(gr
′

2)

(
∏

li∈L
afli

)(
∏

li∈M
fli

)

aflj
a−(n1−1)rj

lj ∈ L

(gar
′

2)

(
∏

li∈L
afli

)(
∏

li∈M
fli

)

flj
a−n1rj

lj ∈M

= g

m∏
i=1

f(li)

f(lj)
zj

2

where n1 is the number of the labels in the list (l1. · · · , lm) that
appear in L , and zj = a−(n1−1)r′rj for every j ∈ [m].

Multi-Adjustable Join Scheme 33

– Case 3: l1, · · · , lm ∈ M ∪ R and the intersection of {l1, · · · , lm}
with both M and R is non-empty. In this case, we let

Xj =

{
gcr
′′

2 lj ∈M

gr
′′

2 lj ∈ R
.

This choice can be justified similar to case 2.
– Case 4: l1, · · · , lm ∈ L ∪M ∪R and the intersection of {l1, · · · , lm}

with each of L ,M and R is non-empty. Since {l1, · · · , lm} ∩ M 6=
∅, let p be the smallest integer such that lp ∈ {l1, · · · , lm} ∩ M .
We compute atj for j ∈ [m]\{p} as in Equation (A.1) but atp is
computed differently. For j ∈ [m]\{p}, we let

Xj =


gcr
′′

2 lj ∈ L

gacr
′

2 lj ∈M , lj 6= lp
gar
′

2 lj ∈ R

.

We compute atp as follows

atp =
∏
lk∈L

(g−acr
′′

2)

m∏
i=1

fli

flp
·rk ×

∏
lk 6=lp∈M

(g−acr
′

2)

m∏
i=1

fli

flp
·rk

×
∏
lk∈R

(g−acr
′

2)

m∏
i=1

fli

flp
·rk
.

(A.2)

The reason for the choices Xj , j ∈ [m]\{p}, and atp is justified next.
Notice that for j ∈ [m]\{p}, we have

atj = (Xj)

m∏
i=1

fli

flj
rj

=



(gcr
′′

2)

(
∏

li∈L
afli

)(
∏

li∈M
fli

)(
∏

li∈R
cfli

)

aflj
a−(n1−1)c−n3rj

lj ∈ L

(gacr
′

2)

(
∏

li∈L
afli

)(
∏

li∈M
fli

)(
∏

li∈R
cfli

)

flj
a−n1c−n3rj

lj ∈M , lj 6= lp

(gar
′

2)

(
∏

li∈L
afli

)(
∏

li∈M
fli

)(
∏

li∈R
cfli

)

cflj
a−n1c−(n3−1)rj

lj ∈ R

,

= g

m∏
i=1

f(li)

f(lj)
zj

2 ,

34 Shahram Khazaei and Mojtaba Rafiee

where n1, n3 are the number of the labels in the list (l1. · · · , lm) that
appear in L and R, respectively. Therefore, the actual randomness
used in computing atj is as follows

zj =

 (a(n1−1)c(n3−1)r′′rj) lj ∈ L

(a(n1−1)c(n3−1)r′rj) lj ∈M ∪ R, lj 6= lp

. (A.3)

It remains to show that

atp = g

(
∏

li∈L
afli

)(
∏

li∈M
fli

)(
∏

li∈R
cfli

)

flp
zp

2 ,

for some zp where zp = −
∑

j∈[m]\{p}
zj . We can rewrite Equation (A.2)

as:

atp =
∏
lk∈L

(g−acr
′′

2)

(
∏

li∈L
afli

)(
∏

lp 6=li∈M
fli

)(
∏

li∈R
cfli

)

flp
a−(n1−1)c−(n3−1)rj

×
∏

lk 6=lp∈M

(g−acr
′

2)

(
∏

li∈L
afli

)(
∏

lp 6=li∈M
fli

)(
∏

li∈R
cfli

)

flp
a−(n1−1)c−(n3−1)rj

×
∏
lk∈R

(g−acr
′

2)

(
∏

li∈L
afli

)(
∏

lp 6=li∈M
fli

)(
∏

li∈R
cfli

)

flp
a−(n1−1)c−(n3−1)rj

=
∏
lk∈L

g
−

m∏
i=1

f(li)

f(lp)
zk

2 ×
∏

lp 6=lk∈M

g
−

m∏
i=1

f(li)

f(lp)
zk

2 ×
∏
lk∈R

g
−

m∏
i=1

f(li)

f(lp)
zk

2

= g
−

m∏
i=1

f(li)

f(lp)
(−

∑
j∈[m]\{p}

zj)

2 .

The claim then follows.
3. Challenge phase: The adversary A chooses a pair of challenge words w∗0 ,
w∗1 . Then, the challenger returns an encoded-word w̃ = (gs1)fl , for every
l ∈ R, to the adversary A.

4. Post-challenge query phase: The challenger Chal responds as in the pre-
challenge phase, but by definition of the M3Partition security, it must also
handle:

– Encod(w, l): In case that l ∈ L and w = w∗0 or w = w∗1 , the challenger
returns the encoded-word (gam0

1)fl or (gam1
1)fl to the adversary A, re-

spectively.
– Addlbl(l,X): In case that X = R, the challenger provides the adversary
A with (gs1)fl .

Multi-Adjustable Join Scheme 35

5. Output phase: The challenger outputs the value σ ∈ {0, 1} that adversary
A outputs.

Description of the challenger for proving claim II. The challenger is exactly
the same as before, except that the way a TokenK(l1, · · · , lm) query is answered
is modified as follows.

Notice that by definition of the M3Pk-security, we only need to answer queries
when 2 ≤ m ≤ k + 1. If 2 ≤ m ≤ k, we do as before, assuming the simple
(m,m)-threshold scheme of the non-monotonous case is used. If not, some mi-
nor modifications are required, which we ignore to discuss since it is similar to
the case where m = k + 1 and will be described next. The challenger chooses
r1, · · · , rm ∈ Zq by sharing 0 ∈ Zq using the (m,m − 1)-threshold scheme and
computes atj as before, i.e., using Equation (A.1). Recall that we had cases
for explaining how to choose X1, · · · , Xm. Cases 1-3 are as before. The reason
that it works is that z1, . . . , zm are also random shares of the value 0 using the
(m,m − 1)-threshold scheme. Case 4 is the more complicated one. Again, let p
be the smallest integer such that lp ∈ {l1, · · · , lm} ∩ M . For each j ∈ [m]\{p},
choose rj at compute atj as before. That is:

atj = (Xj)

m∏
i=1

fli

flj
rj

= g

m∏
i=1

f(li)

f(lj)
zj

2

Where zj , j ∈ [m]\{p}, is as in Equation (A.3). We need to compute atp such
that

atp = g

m∏
i=1

f(li)

f(lj)
zp

2

and z1, . . . , zm are random shares of the value 0 using the (m,m−1)-threshold
scheme. It is easy to verify that it is sufficient to compute atp as follows:

atp =
∏
lk∈L

(gγkacr
′′

2)

m∏
i=1

fli

flp
·rk ×

∏
lk 6=lp∈M

(gγkacr
′

2)

m∏
i=1

fli

flp
·rk

×
∏
lk∈R

(gγkacr
′

2)

m∏
i=1

fli

flp
·rk
.

(A.4)

where γk = −α−1p αk, where α1, . . . , αm are the constants for reconstructing
the secret from the shares.

The above explanation completes the description of the challenger for prov-
ing both claim I and II. Since we assumed that the adversary A does not query
w∗0 or w∗1 in the pre-challenge query phase, we suppose that hw0

= m0 and
hw1

= m1. Therefore, in the case that the challenger is given a sample of Xλ of

36 Shahram Khazaei and Mojtaba Rafiee

the form (Param, ga1 , g
c
1, g

am0
1 , gam1

1 , gcm0
1 , gr

′

2 , g
r′′

2 , gar
′

2 , gcr
′′

2 , gacr
′

2 , gacr
′′

2) as in-
put, the challenger responds the challenge with encoded-word of w∗0 , so we get the
experiment Exp$F,A(λ, 0). Similarly, in the case the challenger is given a sample

of Yλ of the form (Param, ga1 , g
c
1, g

am0
1 , gam1

1 , gcm1
1 , gr

′

2 , g
r′′

2 , gar
′

2 , gcr
′′

2 , gacr
′

2 , gacr
′′

2)
as input, we get the experiment Exp$F,A(λ, 1).

We now consider the general case where the adversary A may query w∗0
and w∗1 in the pre-challenge phase. This is done the same way as in [18]. In
this case, the challenger does not know when A queried on w∗0 and w∗1 . If the
challenger knew when A queried on w0 and w1, then he could have responded
in the same way as in the post-challenge query phase. But if he does not know,
the challenger guesses when it is queried with w∗0 or w∗1 . Formally, let p(λ) be
a bound on the number of queries that adversary A performs. Also, let the
challenger chooses t0, t1 ← {0, · · · , p(λ)} in the setup phase. During the pre-
challenge phase, if the challenger is queried for an encoding EncodK(w, l) of a
word w that is the t0-th or t1-th distinct word so far, then he acts as if it was
queried on w∗0 or w∗1 , respectively, and returns the encoded-word (gam0

1)fl or
(gam1

1)fl to the adversary A, respectively. Then, in the challenge phase, if it
turns out that the guess was wrong, or if the challenger was queried on less than
max{t0, t1} distinct words, then the challenger aborts and outputs 0. Since the
view of adversary A is independent of the sampling of t0 and t1, it holds that the
guess of the challenger succeeds with probability of exactly 1

(p(λ)+1)2 , i.e., the

success probability is independent of the behavior of A. Consequently, it holds
that

|Pr[Exp$F,A(λ, 0) = 1]− Pr[Exp$F,A(λ, 1) = 1]| (A.5)

= (p(λ) + 1)2 · |Pr[ChalA(Xλ) = 1]− Pr[ChalA(Yλ) = 1]| . (A.6)

For any PPT adversary A, the bound p(λ) on its number of queries is poly-
nomial in the security parameter λ. The MXDHV assumption then implies that
the expression in Equation (A.6) is negligible, and therefore also the expression
in Equation (A.5) is negligible as well, completing the proof of the theorem. ut

B Pairing types and security levels

An appropriate pairing for cryptographic applications requires that the discrete
logarithm problem be sufficiently difficult on the groups defined by the bilin-
ear map generator G. Three kinds of pairings are generally recognized in the
cryptographic literature:

– Type-1: G1 = G2,
– Type-2: G1 6= G2 and there is an efficiently computable isomorphism from

G2 to G1,
– Type-3: G1 6= G2 and there are no efficiently computable isomorphisms

between G2 and G1.

Multi-Adjustable Join Scheme 37

The Type-3 pairing, among the different types of pairings, provides the most
compact parameter sizes and the most efficient algorithms [9]. In contrast, since
the Type-1 pairings are usually defined over low characteristics fields, there is a
series of attacks on them, making them unusable [4].

We say that a pairing is symmetric if G1 = G2, else it is asymmetric. Type-
A curves are commonly used for the symmetric pairing settings. Type-F curves
(also known as BN-curves) are commonly used for constructions under the asym-
metric setting. In Table 5, we present key and group sizes for pairing-based
schemes based on different security levels, in accordance to the standards pro-
vided in [5, 11].

Table 5. Key and group sizes

Security level Protection period AES key
Type A-curve Type F-curve

G1 = G2 GT Zq G1 G2 GT Zq
80-bit Legacy 128 1024 1024 160 320 640 1920 160

112-bit 2011–2030 128 2048 2048 224 448 896 2688 224

128-bit 2030–2040 128 3072 3072 256 512 1024 3072 256

192-bit >2030 192 7696 7096 384 1280 2560 7680 640

256-bit >2030 256 15360 15360 512 2560 5120 15360 1280

