
ShareLock: Mixing for Cryptocurrencies from

Multiparty ECDSA

Omer Shlomovits1 and István András Seres2

1KZen Research
2Eötvös Loránd University

May 26, 2019

Abstract

Many cryptocurrencies, such as Bitcoin and Ethereum, do not provide
any financial privacy to their users. These systems cannot be used as a
medium of exchange as long as they are transparent. Therefore the lack
of privacy is the largest hurdle for cryptocurrency mass adoption next to
scalability issues. Although many privacy-enhancing schemes had been
already proposed in the literature, most of them did not get traction due
to either their complexity or their adoption would rely on severe changes to
the base protocol. To close this gap, in this work we propose ShareLock, a
practical privacy-enhancing tool for cryptocurrencies which is deployable
on today’s cryptocurrency networks.

Cryptocurrency, Cryptographic protocol, Privacy, Anonymity, Threshold
Cryptography, Bitcoin, Ethereum, Distributed Key Generation

1 Introduction

Bitcoin [23] and other cryptocurrencies are pseudonymous. Users control their
funds with private keys, where their pseudonyms are their public keys. Sending
coins from a public key is possible by signing transactions with the correspond-
ing private key. If a linkage between a public key and a user’s unique identifier
(IP address, name, e-mail, social media account, website etc.) is revealed, fi-
nancial privacy is permanently lost. Since transactions with referenced public
keys are stored in an immutable, public ledger, called blockchain, even a single
transaction could reveal to a recipient, say a merchant, her customers wealth
and financial behaviour. Moreover, several techniques [19, 21, 1, 27] and for-
profit companies (e.g. Chainalysis1 and Coinalytics2) are known to provide
de-anonymization services of cryptocurrency users. The likely leakage of finan-
cial secrets in a transparent, permissionless setting (e.g. amount of salaries in
a company, payments to suppliers) is distressing. For this reason the lack of
financial privacy is prohibitive in many potential application scenarios.

1https://www.chainalysis.com
2https://coinalytics.co

1

To resolve privacy issues of crpytocurrencies a plethora of privacy-enhancing
techniques were proposed in the community. Centralized privacy solutions [31,
5, 15] defeat its purpose by depending on the goodwill of a trusted third party
for privacy and for the availability of funds. On the other hand decentralized
solutions [28, 3, 30, 19, 18, 6, 4] are usually computationally heavier then their
centralized counterparts, however they satisfy strong notions of security (see
Section 3).

Coin mixing is a common technique to achieve k-anonymity also known as
plausible deniability. In this specific context k-anonymity entails that an on-
chain identity (public key or a derived address) is indistinguishable from at
least k − 1 other on-chain identities. The concept of a coin mixer protocol is
that k people mix their equal amount of coins and later they redistribute those
coins among each other in a way that not even the participants themselves know
which original coins belong to their final recipients. If a mixing protocol uses a
trusted third party to redistribute coins among participants, then a corrupted
third party may just send back tainted coins, or even worse it might not send
back any coins at all. Sadly, as of writing almost exclusively centralized mixers
are implemented and used in practice on a large scale 3, with the exception of
the CoinJoin protocol (see in Section 1.1). Since these constructions do not
provide mixer availability (i.e. mixer party can go offline and steal funds from
participants), in the following we will solely focus on decentralized privacy-
enhancing protocols, where the mixer party is replaced by a smart contract or
by other crpytographic means.

1.1 Related work

In this section we shortly summarize the state of the art of privacy-enhancing
techniques for cryptocurrencies. Hereby we do not intend to cover privacy coins,
like Monero [25] and Zcash [29], since they already provide meaningful privacy
guarantees by default.

CoinJoin [17] was the first decentralized Bitcoin mixer proposed by Gregory
Maxwell. CoinJoin users create collaboratively a single Bitcoin transaction with
n inputs and n outputs in a way that the mapping between inputs and outputs
is concealed. However, the way it is implementeded and used in practice4 trusts
a central server for censorship resistance. A formal definitional framework of
CoinJoin can be found in [20].

CoinShuffle, a distributed version of CoinJoin was proposed by Ruffing et
al. [28]. Sadly it did not get traction among Bitcoin users due to its relatively
complex and computationally heavy off-chain protocol.

Möbius [19] was the first coin mixer protocol directly designed for Turing-
complete blockchains, like Ethereum. In the course of the Möbius protocol,
users deposit funds to a mixer contract and later they can withdraw their funds
by providing a linkable ring signature. The downside of Möbius is that the cost
of verifying on-chain a ring signature grows linearly in the size of the anonymity
set, thus disallowing large anonymity sets (cca. 50-100).

A similar proposal, called Miximus [3] applies zkSNARKs to prove ownership
of coins in the mixed set. The difficulty for Miximus to become accepted is the

3https://bestmixer.io
4https://wasabiwallet.io

2

unavoidable necessity in carrying out a community-wide trusted setup for the
proving and verifying key generation for the zkSNARK.

On the other hand MixEth [30] does not rely on a trusted setup, while both
deposit and withdraw transactions’ complexity is modest. Nonetheless since
MixEth uses Neff verifiable shuffles [24] to mix participants’ public keys, it
requires several shuffling rounds to achieve k-anonymity. Such a time-intensive
protocol might significantly reduce user experience.

MixerAlice Alice∗

1. Deposit tx

2. Funding tx

3. Withdraw tx

4. Send mixed coins

Figure 1: Privacy leakage in previous mixing protocols [19, 3, 30] for account-
based cryptocurrencies. Note that Alice can only withdraw her coins from the
mixer if her fresh address is funded in order to be able to issue the withdraw
transaction. This can only be done via an additional funding transaction which
links addresses of Alice and essentially nullifies the anonymity guarantees of the
mixer.

The most crucial disadvantage, see Figure 1, of these proposed protocols is
that they are not compatible with today’s account-based cryptocurrencies, like
Ethereum. Currently in Ethereum only the transaction sender can pay for the
incurring transaction fees. However, when mixer users would like to withdraw
their funds from the coin mixer contract, they should do that from a fresh,
unused public key to achieve privacy. Yet fresh addresses do not hold ether,
hence one cannot send transactions from such an address, because they cannot
pay the gas fee from an address like that (see Section 2.5). Therefore users need
to fund their fresh public keys, which essentially links also fresh addresses back
to them, thus losing k-anonymity. We note that there is a workaround to solve
this problem, however it is quite cumbersome and not well-established: users
might advertise their transactions off-chain and pay third parties to send their
transactions. Finding such parties is inconvenient and there is not a settled
framework for that yet.

A recently proposed technique called Zether [6] circumvents these problems.
Zether does not rely on active participation of other users, unlike coin mixers.
Furthermore it provides not only anonymity but also confidentiality, i.e. also
transaction amounts are hidden. Zether is deployable on today’s Ethereum,
however it is a prohibitively costly privacy solution, because one Zether transac-
tion barely fits into an Ethereum block: one Zether transaction burns 7,188,000
gas.

3

Our contribution: in this work we propose a threshold ECDSA-based
privacy-enhancing solution for cryptocurrencies. It does not rely on trusted
third parties, nor trusted setups and only uses minimal blockchain resources. To
show the practicality of our approach we present ShareLock, the first lightweight,
already deployable, Ethereum-friendly coin mixer, which allows anyone to mix
ether or any ERC-20 tokens. We hope that placing the source code in the hands
of the community, will serve as the first step on the long, ragged road towards
financial privacy on cryptocurrency networks.

Organization. The rest of the paper is organized as follows. In Section 2 we
provide some background on (multiparty) ECDSA, Bitcoin and Ethereum. We
define the desired security notions in Section 3, while we describe our protocol
in Section 4 enclosed with formal proofs of security. We present our implemen-
tation and measure performance in Section 5.

2 Background

2.1 Notations

Let G be an Elliptic Curve group of order q with generator G where the CDH
assumption is assumed to be hard. We will use addition as the group operation,
upper-case characters for group elements, and lower-case characters for scalars
in Zq. This is consistent with elliptic curve notation.

2.2 Blockchain Model

By our ideal functionality definition stated next in Section 3.1, a mixer must
interact with a blockchain. For our security proof to make sense we thus must
use a blockchain model running a blockchain protocol. In a blockchain protocol,
the goal of all parties is to maintain a global ordered set of records that are
referred to as blocks. New blocks can only be added using a special mining
procedure that simulates a puzzle-solving race between participants and can be
run by any party (called miner) executing the blockchain protocol. Presently,
two broad categories of puzzles are used: Proof-of-Work (PoW) and Proof-of-
Stake (PoS).

An abstract blockchain protocol consists of three polynomial-time algorithms
(UpdateState, GetRecords, Broadcast) [14] with UpdateState used to maintain
a local state. GetRecords outputs from a state the longest ordered sequence of
valid blocks contained in the state, where each block in the chain itself contains
an unordered sequence of records. Broadcast is used to propagate a message
to all nodes running the protocol. As in [26], the blockchain protocol is also
parameterized by a validity predicate that captures semantics of any particular
blockchain application.

Badertscher et al. [2] introduced an elegant model for blockchain as a global
ledger functionality Gledger where they even show how an abstracted Bitcoin
protocol can be implemented. Another type of model is using a local ledger
functionality [14].

In our interaction with the blockchain we require only standard read/write
interaction. We aim for the protocol to work with many different types of

4

blockchain implementations and therefore any simple and abstracted model will
work.

2.3 The ECDSA Signing Algorithm

We focus first on applying ShareLock to Ethereum blockchain, where the signing
algorithm used is ECDSA. Applying ShareLock to other blockchains and signing
protocols is possible, see Section 4.3. The protocol works as follows: The private
key is a random value x← Zq and the public key is Q = x ·G. ECDSA signing
on a message m ∈ {0, 1}∗ is defined as follows:

1. Compute Hq(m): the |q| leftmost bits of SHA256(m), where |q| is the
bitlength of q.

2. Choose a random k ∈ Z∗q

3. Compute R← k ·G. Let R = (Rx, Ry).

4. Compute r = Rxmod q and s← k−1 · (Hq(m) + r · x)mod q

5. Output (r, s)

The signing verification algorithm verify(Q,m, (r, s)) takes as input the public
key, the message and the signature and returns true if the signature is valid.
ECDSA signature has a known malleability: For every valid signature σ = (r, s)
the signature σ′ = (r,−s) is also a valid signature. In our protocol we will require
unique signatures. We can achieve it by either mandating that min{s, q − s}
is always output and verify rejects if s > q

2 or we can output an extra bit v to
determine which is the correct signature.

Security: ECDSA holds the property of being existentially unforgeable against
chosen message attacks (EU-CMA) as introduced in [13]. Simply put, EU-CMA
means that no probabilistic polynomial time adversary can produce a signature
on a message he did not see before, even given a signing oracle that can produce
signatures on adaptively chosen messages, except with negligible probability in
the security parameter.

2.4 Multi-Party ECDSA

Multi-Party ECDSA is a threshold signature scheme. A (t, n)- threshold sig-
nature scheme enables distributing the signing among a group of n parties,
P1, . . . , Pn such that any group of at least t + 1 of these parties can jointly
generate a signature, whereas groups of size t or fewer cannot. In our protocol
we will use threshold signature with t = n− 1 such that n− 1 malicious parties
will not learn the signing key or be able to sign. In our protocol we require
one multi-party ECDSA signature which we define here using ideal functional-
ity Fecdsa. The functionality is defined with two functions: key generation
and signing, both require the cooperation of n parties. The verification of a
multi-party ECDSA remains identical to that of ECDSA defined in Section 2.3.

The key generation is modeling a distributed key generation protocol (DKG)
where the n parties jointly generate a pair of public/private keys. The keypair

5

produced by the DKG is generated with the same distribution as the single
party ECDSA.

The signing is modeling a distributed signing protocol. If all n parties that
run the previous DKG are honest the output of the protocol will be a valid
signature on a public message m.

To reason about security we use the ideal functionality below, taken from
[16]. The key generation is called once, and then any arbitrary number of
signing operations can be carried out with the generated key. The functionality
is defined in Figure 2.1.

FUNCTIONALITY 2.1 (The ECDSA Functionality Fecdsa)
Functionality Fecdsa works with parties P1, . . . , Pn, as follows:

• Upon receiving KeyGen(G, G, q) from all parties P1, . . . , Pn:

1. Generate a key pair (ak, ask) by choosing a random ask ← Z∗
q and

computing ak = ask ·G. Then, store (G, G, ak, ask).

2. Send ak to all P1, . . . , Pn.

3. Ignore future calls to KeyGen.

• Upon receiving Sign(sid,m) from all P1, . . . , Pn, if KeyGen was already
called and sid has not been previously used, compute ECDSA signature
on m in the following way:

1. Choose a random k ∈ Z∗
q and set R← k ·G and r = Rxmod q.

2. Compute: s = k−1(Hq(m) + r · ask).

Send (r, s) to all P1, . . . , Pn.

2.5 Bitcoin and Ethereum: UTXO and account-based trans-
action models

Cryptocurrencies either have an unspent transaction output (UTXO)-based or
an account-based transaction model, where Bitcoin and Ethereum are the two
leading examples of these classes respectively. Therefore in the following we use
these two cryptocurrencies as our role models.

In a UTXO model coins are represented as references to previously unspent
transaction outputs. All of the unspent transactions are kept in each fully-
synchronized node, hence the name of this model: UTXO. A Bitcoin transaction
contains, possibly several, inputs, references to UTXOs, and possibly several
outputs, freshly created UTXOs. In each transaction all the inputs should
reference valid UTXOs and should be signed by their legitimate owner and
additionally the sum of the inputs should be greater or equal than the sum of
the outputs. A user’s balance is the sum of all the UTXOs which belong to
her. The flow of ownership throughout UTXOs can be modeled as a path in a
directed acyclic graph (DAG), where nodes are the UTXOs and edges are the
transactions redeeming and creating new UTXOs.

In some cases a UTXO transaction model might be tedious. When a user
purchases a good or service whose price is greater than the value of her individ-
ual UTXOs, she needs to merge multiple UTXOs as the inputs in the buying
transaction in order to perform the purchase. Since in the Bitcoin commu-
nity address/public key reuse is discouraged, users have some low level privacy.

6

However due to the public nature of the transaction ledger, this is still quite min-
imal due to several deanonymization techniques and transaction graph analysis
tools [27, 10].

On the other hand, from a privacy point of view the situation is even worse
for account-based cryptocurrencies, such as Ethereum. In an account-based
model the system keeps track of all the account’s balances in a global state. The
balance of an account is checked to make sure it is larger than or equal to the
spending transaction amount. Therefore in these systems users are incentivised
not to spread their wealth between several accounts, rather hoard it in a single,
monolithic account. This behaviour makes deanonymization even easier than
that of for UTXO-based currencies.

In Ethereum there are two types of accounts: externally owned accounts
(EOA) and contract accounts. EOAs are controlled by an asymmetric crypto-
graphic keypair, while contracts are controlled by their code. The native cur-
rency of Ethereum is called ether and denominated in wei: 1ether = 1018wei.
The Ethereum blockchain keeps track of the state of every account. The global
state can be changed by initiating a transaction from an EOA. Each transaction
contains the following data: sender address, destination address, a signature σ,
the transferred amount in wei, a nonce to deter replay attacks, an optional
data field which serves as the input arguments to a contract, a GasLimit and
a GasPrice value. The nonce is incremented after every sent transaction. The
signature σ signs the transaction data and the nonce, while is verified against
the sender’s public key.

A transaction either transfers wei from one account to another or triggers the
execution of a contract’s code. Contracts can send messages to other contracts,
mimicking function calls. Every transaction and code execution is replicated
on all nodes in the network. Every executed operation has a specified cost
expressed in terms of gas units. For instance, storing 256 bits of data on the
blockchain costs 20,000 units of gas while changing it costs 5,000 and reading
it costs 200. The sender pays for all contract operations that the transaction
calls. Transaction senders can define GasLimit, the overall gas consumption she
is allowing the transaction to consume and GasPrice, namely how many wei she
is willing to pay for one unit of gas. Therefore the overall cost of a transaction
measured in wei is the amount of gasPrice multiplied by the amount of gas
burnt by the transaction. If a transaction does not use all the gas provided to
it, then excess fees are refunded to the account that issued the transaction. If
the gas limit falls short of the gas needed to process the transaction, the miner
will collect the fee but not change the blockchain’s state. Transaction fees or
gas costs are collected by the miners. Naturally, miners are incentivised to pick
transactions with higher GasPrice first.

The size of Ethereum blocks is measured by the sum of gas consumed by
all transactions in that block. This value is capped and is called the block gas
limit. Currently the block gas limit is around 8 million gas5. For that reason
every Ethereum user is incentivised in achieving their desired goals by using as
little gas as possible.

Ethereum contracts can be read and executed by a Turing-complete exe-
cution environment, called the Ethereum virtual machine (EVM). The most
popular language to develop contract code is Solidity. Contracts’ code writ-

5https://etherscan.io/chart/gaslimit

7

ten in Solidity are compiled to EVM bytecode later executed by the EVM and
stored on the Ethereum blockchain. The EVM has access to a global persistent
storage system and each contract account has separate storage available to it.

For more details the reader is referred to the Bitcoin [23] and the Ethereum [32]
whitepapers.

3 Security Definition

This section defines and motivates the ideal mixing functionality Fmix. After
defining Fmix we will demonstrate how it intuitively achieves the security goals
of a mixer. In section 4 we provide a secure implementation for Fmix that can
work on Ethereum [32] and afterwards an implementations that can work on
Bitcoin [23].

3.1 The Fmix Ideal Functionality

We define Fmix using three functions: setup, clean and abort. Setup is called
once. It is assumed that a blockchain payment system is present in the back-
ground, modeled as described in Section 2.2 allowing transfer of coins between
addresses (deterministic representations of public keys). We treat the blockchain
calls in our model in an intuitive way without being explicit about the syntax,
considering the blockchain a trusted setup. The functionality is defined in Func-
tionality 3.1.

The basic idea behind Fmix is simple: parties P1, . . . , Pn play both senders
and recipients. Each party deposits a predefined amount amt using blockchain
transactions to an address associated with Fmix. The depositing is not done
in the functionality, but we assume it is done outside of it. Once the deposit
amount passed a fixed threshold, Fmix will send amount amt to n freshly
generated random addresses. Fmix will sample a fully random permutation,
apply it on the output addresses and will output to each party Pi a private key
for the permuted new address to allow the party to spend from this address on
the blockchain.

8

FUNCTIONALITY 3.1 (The Mixing Functionality Fmix)
Functionality Fmix is parameterized with linear function f() and works with
parties P = {P1, . . . , Pn} as follows:

• Upon receiving Setup(amt, t, sid) from some party U ∈ P , check that sid
has not been previously used, and t has not passed, if not do:

1. Save amt, t

2. Sample random permutation π on 1, . . . , n

3. Generate a keypair and corresponding address B. Send B to all par-
ties.

4. Generate n keypairs kpi|ni=1 where kpi = {aski, aki} and correspond-
ing addresses: out1, . . . , outn

5. Send kpπ(i) to Pi

6. Send m = ak1| . . . |akn to adversary S

• Upon receiving Clean(sid) from some party U ∈ P , If B.balance ≥ n · amt
and t has not passed:

1. Send amount amt from B to each address outπ(1), . . . , outπ(n)

2. Compute ask = f(ask1, . . . , askn), m = ak1| . . . |akn and send σ to
adversary S, where σ is ECDSA signature on message m with private
key ask

• Upon receiving abort(sid) from some party U ∈ P , if Clean(sid) was never
called before, check if a transaction exists transferring at least amt from U
to B. If true: send amount amt to U

For reasons of simplification and to focus on the security goals of mixing
(see Section 3.2) we let all reading from or writing to the blockchain always
succeed, return results immediately and without additional costs. To make the
security more complete and representing real life, once a specific blockchain is
specified, it is recommended to define the Validation predicate [26], as well
as specific models for transaction costs, accounts or UTXOs. We leave this
improved modeling for future work.

We will use in our proof a weaker version of the functionality Fmix, which
we will mark F ′mix that allows the adversary to bias the permutation π by
choosing the indices of the malicious parties. This also gives a better account
of the achieved Anonymity (described in 3.2) in the presence of static malicious
parties, making the anonymity set dependent only on the honest parties.

In our design of Fmix we made two decisions that while not affecting the
security goals (3.2), do have consequences on how the mixer operates. These
choices were driven by our secure implementation. First, Fmix is generating
random fresh addresses for the recipients, while one could have expect that each
sender si will be able to choose the address she wants to mix into ri. This is
motivated by use case such as paying to a merchant with a fresh address. In
our model this is still possible: The sender si will first mix and receive clean
coins, than she will send the clean coins to the merchant. Second, Fmix is
sending funds to all outputs at the same time unlike all previous mixer proposals,
where participants need to withdraw their mixed coins by themselves. Since the
deposit/withdraw pattern is leaking privacy, see Section 1.1, we deliberately

9

decided to let the mixer sending out mixed coins in order to retain k-anonymity.
Finally, we add some leakage to S in the ideal functionality to make the

security proof go through. Fmix is sending all public keys to Adversary S as
part of setup and a digital signature σ signed by a joint function f of all private
keys. Output public keys are not a secret in a mixer but only their mapping
to input public keys: we allow the adversary to learn them. Leaking all secret
keys ask1, . . . , askn will reveal the mapping and therefore we cannot do it, but a
signature will not reveal any private key, otherwise the signature scheme is not
EU-CMA. Therefore, we allow the adversary to learn a multi-party signature.

3.2 Security Goals

Previous works [19, 30] have used game based definitions to define three security
goals of mixing: Anonymity, Availability and Theft prevention. In this section
we informally define these notions and also argue that the ideal functionality
Fmix achieves these goals:

Anonymity We would like to ensure that sender and recipient addresses are
anonymous; i.e., that for a given sender, it is not possible to distinguish between
their recipient and any other recipient using the mixer. We consider this goal
with respect to three types of attackers: (a) an eavesdropper who is acting as
neither the sender nor the recipient; (b) a malicious sender (or set of senders);
(c) a malicious recipient (or set of recipients);

1. Anonymity against outsiders: an outsider sees n incoming transac-
tions and n outgoing transactions . Generating fresh addresses for recip-
ients is done off-chain which ”breaks” the links between transactions on
the blockchain.

2. Anonymity against senders: Senders are sending money into a sin-
gle address and then a set of n recipients are getting the pool of funds
redistributed to fresh new addresses. Fmix generates random fresh keys
to every party independent of senders addresses and outputs a random
permutation of the keys to known parties that interacts with it. In that
sense we get n anonymity set, assuming n > 2.

3. Anonymity against recipients: a recipient will know only his local
public key. For malicious recipient the anonymity set will be n − t for t
malicious recipients.

Theft prevention Theft prevention means that the scheme does not allow
coins to be either withdrawn twice or withdrawn by anyone other than the
intended recipients. The ideal functionality is sending exactly the same amount
to all parties in an equal manner. Each party receives a single private key to an
address with the same amount she deposited.

Availability Availability means that no one can prevent the sender from using
the mixer; and once the money was sent to the mixer, no one can prevent the
honest recipient from withdrawing it. The only problematic state in Fmix is if

10

some party is gone while others already sent funds on the blockchain. For this
case, the abort function can be used: Fmix will send amount amt back to the
sender. Assuming asynchronous network it is not clear if a party transaction
was delayed or never sent. Parties that already finished depositing can wait for
the other parties to join, send abort to reclaim the input funds or send enough
coins to B to trigger a Clean.

3.3 Security Model

We prove security according to the standard simulation paradigm with the
real/ideal model [7, 12], in the presence of malicious adversaries and static
corruptions. We assume all parties can access the blockchain, post transactions
with immediate finality and zero cost. We conjecture that global functionality
Gledger [2] can be used for modelling interaction with the blockchain without
changing the security of the model. We leave the incorporation of Gledger to
future work.
We prove the security of our protocol in hybrid model with ideal functionality
Fe-ecdsa, defined next in Section 4.1. The soundness of this model is justified
in [7] (for stand-alone security) and in [8] (for security under composition).
Specifically, as long as subprotocol that securely compute the functionality is
used (under the definition of [7] or [8] respectively). It is guaranteed that
the output of the honest and corrupted parties when using real subprotocol
is indistinguishable to when calling a trusted party that computes the ideal
functionality.

We remark that if Fe-ecdsa is UC-secure [8] and global functionality Gledger
is used, than our protocol can also be proven secure in this framework.

Communication model Our protocol in the hybrid model can work with
asynchronous network but for existing implementations of the hybrid functional-
ity [16, 11] a synchronous network is assumed with point to point and broadcast
channels. In addition we require the channels to be anonymous.

4 Mixer Protocol

4.1 Extended Fecdsa
In our mixing protocol we will work in the hybrid model with Fe-ecdsa. This
is a natural extended version of Fecdsa :

11

FUNCTIONALITY 4.1 (Extended ECDSA Functionality Fe-ecdsa)

Functionality Fe-ecdsa works with parties P1, . . . , Pn and some linear func-
tion f as follows:

• Upon receiving KeyGen(G, G, q) from all parties P1, . . . , Pn:

1. For i ∈ {1 . . . n} generate a key pair (aki, aski) by choosing a random
aski ← Z∗

q and computing aki = aski ·G.

2. For i ∈ {1 . . . n} send to Pi: (aski, ak1, . . . , akn, f)

3. Store (G, G, ask = f(ask1, . . . , askn), ak = ask ·G.

4. Ignore future calls to KeyGen.

• Upon receiving Sign(sid,m) from all P1, . . . , Pn, if KeyGen was already
called and sid has not been previously used, compute a signature on m
in the following way:

1. Choose a random k ∈ Z∗
q and set R = k ·G and r = Rxmod q.

2. Compute: s = k−1(H(m) + r · ask).

Send (r, s) to all P1, . . . , Pn.

The change from Fecdsa is that while in the original KeyGen each party
got the shared public key ak, in Fe-ecdsa each party i gets a secret share aski
and a list of all local public keys ak1, . . . , akn. The modified functionality is
using some linear function f for its secret sharing: The secret shares might be
additive, multiplicative or any type of linear relation. In practice, all multi-
party ECDSA protocols existing today that securely implement Fecdsa [16,
11, 9] are using an additive secret sharing scheme f = Σ, and providing the
secret share and local public keys for the parties as specified in Fe-ecdsa. For
protocols implementing Fecdsa but not Fe-ecdsa, which could theoretically
be possible without effecting the signature scheme security, we claim that the
changes needed for Fe-ecdsa can be added for the same security model as an
addition for the keygen protocol. Since, as mentioned, there are protocols that
already implement Fe-ecdsa with proven security, we will use one of them for
implementing the mixing protocol.

4.2 ShareLock: a Mixer Protocol

In this section we present our mixing protocol and prove that it securely im-
plements Fmix. The protocol is written for account-based cryptocurrencies
that supports a smart contract scripting language which is Turing complete, i.e.
Ethereum.

A few remarks on the construction:

• We assume Anonymous-channels (AC) [22] for the communication be-
tween parties P1, , Pn. Otherwise the parties participating in the protocol
can trivially connect Pi and Pj and break anonymity. We discuss in Sec-
tion 5, how under certain limitations we can avoid implementing AC.

• In choosing off-chain index j we assumed no two parties have chosen the
same index, This can be done in practice, see 5.2 for more details.

12

• In step 4 we ask all parties to send the signature to the contract. In
practice it can be done by anyone who is incentivised to pay for this
transaction. In our implementation it is done by an Activator party, not
necessarily part of the n parties, see Section 5. In the protocol we do
not assume the existence of such party, we use n − 1 redundancy of this
message to guarantee its delivery. In practice C will reject all messages
after the first valid signature.

• The smart contract role can be played by any trustless third party.

• Since there is no dependency between step 2 (funding the contract) and
step 3 (generating a signature) they in fact can happen in parallel. Step
2 can happen outside of the protocol, as done in the Fmix, we wrote it
down as part of the protocol for completness.

PROTOCOL 4.2 (ShareLock: Securely Computing Fmix)
Auxiliary input: Each party has the description G, G, q of a group, and the
number of parties n.
Initialize: Setup a smart contract C with address B, parameterized with
amount amt and timeout t.

• Each party Pi works as follows:

1. Pi chooses random index j ∈ {1, .., n} and plays role as Pj
in Fe-ecdsa key generation: Pj sends (KeyGen,G, G, q) to
Fe-ecdsa and receives back (askj , ak1, . . . , akn, f). Pi computes
ak = f(ak1, . . . , akn).

2. Pi sends amount amt to address B with data ak. C registers
{ini, Pi} where ini is Pi sending address.

3. Pi plays Pj in Fe-ecdsa signing: Pj sends (Sign,m, sid) to
Fe-ecdsa where m = ak1| . . . |akn and receives back σ = (r, s).

4. Pi sends (ak,m, σ) to C

• C runs Verify(ak,m, σ), if true, timeout t has not passed and
B.balance ≥ n · amt: C parse m and sends amt to each address aki
in m

• If t has passed C sends back to each registered Pi its funds back to its
sending address ini and self-destructs.

Theorem 4.3 Protocol 4.2 securely implements Fmix in the Fe-ecdsa-hybrid
model in the presence of t ≤ n− 2 malicious parties.

Proof: let A be an adversary. We construct a simulator S who invokes A
internally and simulates an execution of the real protocol, while interacting with
Fmix in the ideal model.
We restrict the adversary to have at least two honest parties for every mix. This
can be intuitively motivated since there is no use for mixing with zero or one
honest parties: if all parties are malicious there is no anonymity trivially and if
only one party is honest, A can break its anonymity by elimination.

One can see that our protocol above will not work for n−1 malicious parties:
in step 1 the adversary can always wait until the honest party joined the proto-
col and then afterwards join itself, thus always getting index n and skewing the

13

random distribution. In general, since our protocol is not using cryptograph-
ically secure coin flip protocol, the distribution will never be random. This
is acceptable in the weaker form of Fmix, namely F ′mix, where all malicious
parties can bias the permutation and choose their index. Adding a secure coin-
flip protocol between the parties may be used to generate a public randomness
and thus work with the stronger Fmix. We decided to work instead with F ′mix
since the security goals (3.2) are unaffected and we save added complexity from
ShareLock protocol 4.2.

The intuition behind the proof is simple: because n out of n signature is
needed to activate the mixer, the simulator can generate such a signature with-
out knowing the private keys of the honest parties by simply getting the signa-
ture from the ideal functionality.

Most of the complexity of the proof is hidden inside the complexity of prov-
ing a secure protocol for Fe-ecdsa (see [16] for such a proof).
Let I ⊆ [n] be the set of corrupted parties and J = [n]nI denote the set of
honest parties. We denote corrupted parties by PI and honest parties by PJ .
We construct a simulator S as follows:

Simulator S:

1. S sends Setup(amt, t, sid) to Fmix and receives address B, keypairs {aski, aki}
for every i ∈ I and message: m = ak1| . . . |akn

2. S simulates smart contract C with address B and timeout t. S publishes
C to PI .

3. S simulates Fe-ecdsa key generation:

(a) Parses m and defines a public key ak = f(ak1, , akn)

(b) Each party Ui ∈ PI receives aski, ak1, . . . , akn, f .

4. S registers any Ui ∈ PI that sends at least amt coins to B.

5. S monitors the blockchain and waits until one of two options occur:

(a) B.balance ≥ n · amt and time < t:
S simulates Fe-ecdsa sign: S receives (Sign,m, sid) from PI and
checks that all messages are equal to ak1| . . . |akn. If for some party
U ∈ PI the message is different, S sends abort(sid) to Fmix on
behalf of U and outputs whatever A outputs. Otherwise, S will send
Clean(sid) to Fmix and receive back σ which it will forward to PI .

(b) time > t:
S sends abort(sid) to Fmix on behalf of all registered Ui ∈ PI that
sent funds to B.

From the standpoint of A the simulated and real executions are identical: Step
3 in the simulation is parallel to Step 1 in protocol 4.2 simulating Fe-ecdsa
key generation, Step 5(a) in the simulation is parallel to step 3 in protocol
4.2 simulating Fe-ecdsa signing. Interaction with the blockchain is equivalent
in the simulation step 4 and protocol 4.2 step 2. Step 4 in protocol 4.2 is
unnecessary in the simulation that can get this information from the signature
internally, therefore S just ignores messages of type (ak,m, σ). S simulates

14

timeout t using the blockchain to measure timings; no additional clock is needed.
In both real and ideal runs abort is triggered only by expiration of timeout t,
resulting in amt coins return to all sending parties that sent funds already to
the contract. Therefore the simulation is perfect.

Simulating Blockchain S simulates an entire blockchain to A. Using a
global ledger functionality will not work for this protocol because it requires S
to own enough actual coins. We leave how to make the protocol secure with
global Gledger for future work.

The need for ≥ n − 1 signers Our security assumes at least two honest
parties, using at least n−1 signers ensure that at least one party will be honest.
Without honest party, Adversary A could have signed a wrong message m′.
Signing the wrong message is impossible in the simulator and thus an adversary
can find difference between ideal and real runs and break security. In more
details: with t ≤ n − 1 malicious parties we are guaranteed that at least one
honest party Pj will participate in the real protocol. The honest party will send
Fe-ecdsa the correct message at step 3 of the real protocol which makes sure
it is impossible for all parties to request a signature for incorrect message m′

since Fe-ecdsa will fail not receiving the same message from all parties. For
S that simulates Fe-ecdsa it is not a problem because S receives the correct
message and signature from Fmix.

4.3 Adapting to Bitcoin

One of the benefits of our protocol is that it has minimal requirements from the
blockchain. Concretely we present protocol 4.4 which demonstrates how the
protocol can be adapted to Bitcoin blockchain with only minor modifications.

PROTOCOL 4.4 (Bitcoin ShareLock)

Auxiliary input: Each party has the description G, G, q of a group, and the
number of parties n.

• The parties decide on amount amt and timelock t

• Each party Pi works as follows:

1. Pi chooses random index j ∈ {1, .., n} and plays role as Pj
in Fe-ecdsa key generation: Pj sends (KeyGen,G, G, q) to
Fe-ecdsa and receives back (askj , ak1, . . . , akn, f). Pi computes
ak = f(ak1, . . . , akn).

2. Pi constructs and publishes a transaction with inputs value of at
least amt, and that can be spent by either:

(a) pubkey ak

(b) Pi’s pubkey after timelock t expires.

3. Pi plays Pj in Fe-ecdsa signing: Pj sends (Sign,m, sid) to
Fe-ecdsa where m is a mix transaction with all the UTXOs from
step (2) as inputs and n outputs: sending amt coins to each ad-
dress ak1, . . . , akn.

4. Pi publishes the mix transaction to the blockchain.

15

The protocol do not specify how the parties should decide on amt, t. In
practice it can be done by a third party.

Theorem 4.5 Protocol 4.4 securely implements Fmix in the Fm-ecdsa-hybrid
model in the presence of t ≤ n− 2 malicious parties.

Proof sketch: Use same Simulator S from Section 4.2.

The ShareLock protocol for Bitcoin converges nicely to a designated single
mix transaction with multiple inputs and multiple outputs. Abort is enabled by
allowing the sending party to also spend its input transaction. Timelock is used
but we remark that as opposed to a protocol that is based on smart contract
here the timelock is a feature and the protocol will work without it. We want
to highlight the difference between Sharelock and multisig transaction which
will help clarify why the former achieves the mixing security goals and why the
latter was never used for that purpose.

A multisig is a Bitcoin Script6 defining a specific access structure to sign a
transaction in a non-interactive way (one message per party). This is a software
emulation of cryptographic multi-signature.

ShareLock on the other hand, is first using a DKG protocol to reach a
consensus among n receiving parties about what should be the set of outputs of a
mixing transaction. Then it is using a second protocol to enforce this agreement
between n senders. Multisig is parallel to the second protocol. Adding the off-
chain DKG, with separation of the logical indices in the DKG and the sending
parties IDs in the second protocol gives us the result we need.

Adapting to other crypto-currencies: We exemplified in this section
a protocol for account-based blockchains (4.2) and UTXO-based blockchains
(4.4). Together they cover most existing blockchain architectures. In this work
we focused on Fecdsa and extended version of it Fe-ecdsa. Other blockchains
might use a different signing scheme than ECDSA. For other than ECDSA
schemes, ShareLock will need a multi-party protocol implementation that can
be extended as we did here and proven secure. Our protocol is abstracting
the elliptic curve used by the blockchain which makes it easily replaceable for
blockchains that rely on different types of elliptic curves.

5 Implementation

In order to show the practicality of our protocol, we implemented it and hereby
release our developed tool, called ShareLock and its source code to the cryp-
tocurrency community7.

5.1 Performance analysis

We developed ShareLock in Rust and Solidity languages. We implemented the
threshold ECDSA protocol by Gennaro et al. [11] for the off-chain distributed
key generation and threshold ECDSA in Rust, while our Ethereum mixer con-
tract is developed in Solidity language.

6https://en.bitcoin.it/wiki/Script
7https://github.com/KZen-networks/ShareLock

16

Mixer

Activator
S

en
d

p
ay

ou
t

P2

P1

...

PN

P∗2

P∗1

...

P∗N

Deposit tx

Deposit tx

Deposit tx

Mixed coins

Mixed coins

Mixed coins

Figure 2: This work’s approach to achieve plausible deniability, also known as
k-anonymity for account-based cryptocurrencies. Contracts (EOAs and smart
contracts) are denoted as nodes, on-chain transactions are depicted as edges.
Participants deposit to a mixer contract. Afterwards off-chain they threshold
sign a payOut transaction which later can be issued by anyone to ”poke” the
mixer contract in order to make the mixer contract sending mixed coins out to
participants’ fresh keys.

The implemented workflow of our mixing protocol works as follows (for vi-
sual depiction see Figure 2): users deposit equal amount of funds to the mixer
contract. Participants threshold sign a message authorizing the mixer contract
to send out mixed coins to their fresh addresses. To make this happen someone
needs to ”poke” the contract. We call this party an Activator. The Activator
can be any of the participants or a non-trusted third party. In the near fu-
ture we expect to see in production-ready adaptations of ShareLock that the
role of the activator will be taken by wallet companies who are providing such
privacy-enhancing services to their customers and wallet users. Mixer partici-
pants will pay some negligible fees for the activator to incentivize her in sending
the threshold ECDSA signed transaction. In the last step of the protocol, the
”poked” mixer contract autonomously sends out mixed coins to participants’
fresh addresses if the threshold signed transaction is verified against the DKG
public key.

We expect to see that the computational time complexity of the off-chain
part of our protocol remains reasonably lightweight and costs will be dominated
by network latency. Gennaro et al. [11] presents promising performance results
for their threshold ECDSA protocol. For realistic settings, like 20 parties, it
takes less than 0.5 second to sign a message.

5.2 Off-chain/On-chain Separation

ShareLock Protocol 4.2 can be divided into two processes: off-chain between
parties Pj |nj=1 which includes steps 1 and 3 and on-chain between parties Pi|ni=1

which includes the rest of the protocol.

17

The parties Pi|ni=1 play the role of the senders in our scheme and Pj |nj=1 play
the role of the recipients. It is therefore required that it will be impossible to
connect between a specific sender to specific recipient. The Pi’s are identified
by their on-chain IDs which are the input addresses in1, . . . , inn that fund the
mixing contract. The recipients on-chain IDs are the output addresses that
receive funds from the mixing contract: ak1, . . . , akn. If there is a way to form
a link ini → Pi → Pj → akj it will break the anonymity property. To facilitate
a decoupling the protocol only specifies that the logical indices for the DKG
are needed to be chosen randomly. While the protocol is not specific on how to
decouple Pi from Pj we claim that in practice it is a reachable goal.

One idea, which we use in our implementation, is using the network layer of
the protocol. We simply set the indices of the parties running key generation
(which will stay the same for signing) based on the order of the parties joining the
protocol. Because of the asynchronous nature of real world networks we expect
some random distribution of arrival time, even assuming all parties transmitted
the first message at the same time. Adding some random delay to first message
will therefore result in random joining time to the key generation protocol. The
problem that remains is how to translate this randomness to unique indices
1, .., n since each party in the protocol will have a different view of arrival times
of messages from other parties. To do that we suggest to run the DKG using a
relay server RS. The first stage of the protocol will be a registration step where
RS will be the reference point to decide a unique indices based on time of arrival
of a registration message from each party. RS will publish this indexing between
the participating parties. We note that to avoid a single point of failure the
relay server might be implemented using a group of servers running consensus
protocol between them.

Limitations of privacy-enhancing solutions In our solution it is possible
to achieve full separation between input index and output index of a party.
Define Pi,j = {Pi,Pj} as party index and use party Pi for on-chain purposes
and party Pj for off-chain purposes. For example a user can run a full node Pi

on one machine and run a threshold computation as Pj from another machine.
Still, a powerful attacker might correlate IP addresses or Tor endpoints. This
de-anonymization attack vector is inherent to all cryptocurrencies and privacy-
enhancing solutions. No cryptographic tool (zero-knowledge, ring or threshold
signatures) could defeat an attacker who is well embedded and infiltrated the
network layer with her own nodes to log user activity.

18

Table 1: Number of on-chain transactions and off-chain messages per a single
participant required to run a certain coin mixer protocol. In ShareLock each
party deposits into the mixer contract and afterwards one of the participants
need to issue a single ”poke” transaction (hence the 1/n term), which sends out
the mixed funds for all the mixer participants. Note that in case of Miximus if
one wants to avoid the trusted setup for the zkSNARK, then they need to per-
form a secure multi-party computation protocol to trust-minimize the proving
key generation.

#Off-chain messages #Transactions

Centralized

Mixcoin [5] 2 2
Blindcoin [31] 4 2
TumbleBit [15] 12 4

Decentralized

Coinjoin [18] O(n2) 1
Coinshuffle [28] O(n) 1
XIM [4] 0 7
Möbius [19] 2 2
Miximus [3] 1+MPC 2
MixEth [30] 1 3
MixEthChannel [30] O(n) 2
ShareLock O(n) 1+1/n

Table 2: Proof-of-concept implementation gas cost results. In MixEth, in addi-
tion to deposit and withdrawal transactions, one also needs to perform shuffle
transactions, therefore the total gas consumption is more than the sum of de-
posit and withdrawal transactions’ gas cost. The number of participants and
the number of malicious shuffles are denoted as n and k respectively.

Deposit Withdraw Total

Möbius [19] 76,123 335,714*n 76,123+335,714*n
Miximus [3] 732,815 1,903,305 2,636,120
MixEth [30] 99,254 113,265 578,735+10,000*n+227,563*k
ShareLock 104,306 31,000 135,306

6 Acknowledgements

We would like to thank Claudio Orlandi, Adam Ficsor and Harry Roberts for
insightful discussions.

References

[1] Elli Androulaki, Ghassan O Karame, Marc Roeschlin, Tobias Scherer, and
Srdjan Capkun. Evaluating user privacy in bitcoin. In International Confer-

19

ence on Financial Cryptography and Data Security, pages 34–51. Springer,
2013.

[2] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas.
Bitcoin as a transaction ledger: A composable treatment. In Annual Inter-
national Cryptology Conference, pages 324–356. Springer, 2017.

[3] barryWhiteHat. Miximus. https://github.com/barryWhiteHat/

miximus, 2018.

[4] George Bissias, A Pinar Ozisik, Brian N Levine, and Marc Liberatore.
Sybil-resistant mixing for bitcoin. In Proceedings of the 13th Workshop on
Privacy in the Electronic Society, pages 149–158. ACM, 2014.

[5] Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark,
Joshua A Kroll, and Edward W Felten. Mixcoin: Anonymity for bitcoin
with accountable mixes. In International Conference on Financial Cryp-
tography and Data Security, pages 486–504. Springer, 2014.

[6] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh.
Zether: Towards privacy in a smart contract world.

[7] Ran Canetti. Security and composition of multiparty cryptographic proto-
cols. Journal of CRYPTOLOGY, 13(1):143–202, 2000.

[8] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In Proceedings 2001 IEEE International Conference
on Cluster Computing, pages 136–145. IEEE, 2001.

[9] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold
ecdsa from ecdsa assumptions: The multiparty case. In Threshold ECDSA
from ECDSA Assumptions: The Multiparty Case, page 0. IEEE.

[10] Michael Fleder, Michael S Kester, and Sudeep Pillai. Bitcoin transaction
graph analysis. arXiv preprint arXiv:1502.01657, 2015.

[11] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ecdsa
with fast trustless setup. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages 1179–1194. ACM,
2018.

[12] Oded Goldreich. Foundations of cryptography: volume 2, basic applications.
Cambridge university press, 2009.

[13] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281–308, 1988.

[14] Rishab Goyal and Vipul Goyal. Overcoming cryptographic impossibility
results using blockchains. In Theory of Cryptography Conference, pages
529–561. Springer, 2017.

[15] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and
Sharon Goldberg. Tumblebit: An untrusted bitcoin-compatible anonymous
payment hub. In Network and Distributed System Security Symposium,
2017.

20

https://github.com/barryWhiteHat/miximus
https://github.com/barryWhiteHat/miximus

[16] Yehuda Lindell and Ariel Nof. Fast secure multiparty ecdsa with practi-
cal distributed key generation and applications to cryptocurrency custody.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1837–1854. ACM, 2018.

[17] Gregory Maxwell. Coinjoin: Bitcoin privacy for the real world, 2013. URl:
https://bitcointalk. org/index. php.

[18] Gregory Maxwell. Coinjoin: Bitcoin privacy for the real world. In Post on
Bitcoin forum, 2013.

[19] Sarah Meiklejohn and Rebekah Mercer. Möbius: Trustless tumbling
for transaction privacy. Proceedings on Privacy Enhancing Technologies,
2018(2):105–121, 2018.

[20] Sarah Meiklejohn and Claudio Orlandi. Privacy-enhancing overlays in bit-
coin. In International Conference on Financial Cryptography and Data
Security, pages 127–141. Springer, 2015.

[21] Malte Möser, Rainer Böhme, and Dominic Breuker. An inquiry into money
laundering tools in the bitcoin ecosystem. In 2013 APWG eCrime Re-
searchers Summit, pages 1–14. Ieee, 2013.

[22] Waka Nagao, Yoshifumi Manabe, and Tatsuaki Okamoto. Relationship of
three cryptographic channels in the uc framework. In International Con-
ference on Provable Security, pages 268–282. Springer, 2008.

[23] Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system.
2008.

[24] C Andrew Neff. A verifiable secret shuffle and its application to e-voting. In
Proceedings of the 8th ACM conference on Computer and Communications
Security, pages 116–125. ACM, 2001.

[25] Shen Noether. Ring signature confidential transactions for monero. IACR
Cryptology ePrint Archive, 2015:1098, 2015.

[26] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain
protocol in asynchronous networks. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 643–
673. Springer, 2017.

[27] Dorit Ron and Adi Shamir. Quantitative analysis of the full bitcoin trans-
action graph. In International Conference on Financial Cryptography and
Data Security, pages 6–24. Springer, 2013.

[28] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. Coinshuffle: Prac-
tical decentralized coin mixing for bitcoin. In European Symposium on
Research in Computer Security, pages 345–364. Springer, 2014.

[29] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anony-
mous payments from bitcoin. In 2014 IEEE Symposium on Security and
Privacy, pages 459–474. IEEE, 2014.

21

[30] István András Seres, Dániel A Nagy, Chris Buckland, and Péter Burcsi.
Mixeth: efficient, trustless coin mixing service for ethereum.

[31] Luke Valenta and Brendan Rowan. Blindcoin: Blinded, accountable mixes
for bitcoin. In International Conference on Financial Cryptography and
Data Security, pages 112–126. Springer, 2015.

[32] Gavin Wood et al. Ethereum: A secure decentralised generalised transac-
tion ledger. Ethereum project yellow paper, 151:1–32, 2014.

22

	Introduction
	Related work

	Background
	Notations
	Blockchain Model
	The ECDSA Signing Algorithm
	Multi-Party ECDSA
	Bitcoin and Ethereum: UTXO and account-based transaction models

	Security Definition
	The Fmix Ideal Functionality
	Security Goals
	Security Model

	Mixer Protocol
	Extended Fecdsa
	ShareLock: a Mixer Protocol
	Adapting to Bitcoin

	Implementation
	Performance analysis
	Off-chain/On-chain Separation

	Acknowledgements

