
Verification of Authenticated Firmware Loaders
Sujit Kumar Muduli Pramod Subramanyan Sayak Ray

Indian Institute of Technology, Kanpur Intel Corporation, Hillsboro, OR
{smuduli, spramod}@cse.iitk.ac.in sayak.ray@intel.com

Abstract—An important primitive in ensuring security of
modern systems-on-chip designs are protocols for authenticated
firmware load. These loaders read a firmware binary image
from an untrusted input device, authenticate the image using
cryptography and load the image into memory for execution if
authentication succeeds. While these protocols are an essential
part of the hardware root of trust in almost all modern computing
devices, verification techniques for reasoning about end-to-end
security of these protocols do not exist.

In this paper, we take a step toward addressing this gap by
introducing a system model, adversary model and end-to-end
security property that enable reasoning about the security of
authenticated load protocols. We then present a decomposition
of the security property into two simpler hyperproperties. This
decomposition enables more scalable verification. Experiments
on a protocol model demonstrate viability of the methodology.

I. INTRODUCTION

Many system security guarantees in systems-on-chip (SoC)
designs rely on authenticated firmware loaders. These loaders
are programs that read in a binary image (aka an executable
file) from an input device and authenticate the image using
public key cryptography to ensure it is from a trusted source.
If authentication succeeds, the loader copies the image into
memory for execution. Authenticated firmware loaders are
used in many important security-critical scenarios in modern
SoCs. For instance, they are the most important component of
secure boot protocols [1, 14, 20, 23, 24, 37].

While secure boot protocols are almost ubiquitous in mod-
ern SoCs, we illustrate its importance using a concrete example
of the Sanctum enclave processor [12]. In Sanctum, a secure
bootloader loads a trusted security monitor into memory
when the system boots [24]. The security monitor ensures
isolations between different enclaves, as well as isolation
between enclaves and other software on the system. A mali-
cious security monitor renders the enclave platform’s software
isolation guarantees meaningless. Therefore, it is essential to
ensure that an untrusted security monitor is never loaded at
boot time. This is achieved by using an small immutable
loader, typically stored in ROM, that loads the actual security
monitor from an untrusted input device, typically flash storage.
This loader authenticates the security monitor using public key
cryptography and aborts if authentication fails.

A second important usage scenario for authenticated loaders
is trusted firmware updates to a system [13, 20, 40]. Consider
a scenario where trusted but possibly vulnerable firmware is
being executed on a system. The original equipment manufac-
turer (OEM) may wish to update this firmware by replacing
it with a version where certain security vulnerabilities are

fixed. Here too, it is essential to ensure that only authenti-
cated updates/patches are applied on the firmware. Otherwise,
attackers would just use the update feature to load malicious
firmware onto victims’ devices. In the worst case, this would
result in malicious firmware being permanently installed and
used on victim devices. But even if the worst case scenario is
prevented by secure boot, a vulnerable updater allows remote
attackers to cause permanent denial of service by installing an
unauthenticated bootloader.

The above examples demonstrate the security-critical nature
of authenticated firmware loaders. It would not be an exag-
geration to say that security guarantees of almost all modern
SoCs rest on the security of the authenticated firmware loaders
used by them. However, ensuring security of authenticated
loaders has many subtleties associated with it. As prior work
by Krstic et al. [23] has noted, and as we discuss in Section II
of this paper, loaders are vulnerable to a number of different
classes of bugs: race conditions, time-of-check to time-of-use
(TOCTOU) attacks, confused deputy attacks and control-flow
hijacking attacks. The chief difficultly in reasoning about secu-
rity is the presence of an active attacker executing concurrently
with the loader protocol. The attacker can manipulate shared
state in order to trick the protocol into validating a bad image.

As a result, formal verification of the security of authen-
ticated loaders is extremely important. Unfortunately, despite
their importance to system security, verification techniques for
end-to-end security verification of authenticated loaders do not
exist. There are two reasons for this. The first is a lack of
techniques for adversary modeling. As we are dealing with
an active adversary, it is important to formulate an adversary
model that captures the full range of attacker behavior.

The second is a security specification problem: it is unclear
what property or class of properties can ensure loader security.
On the one hand, trace properties are too weak to capture
security requirements of authenticated load as they cannot
reason about flow of information. On the other hand, secure
information flow properties like non-interference [19] and
observational determinism [26, 28, 39] are too strong as
they require that the loader must succeed despite adversary
interference. (We discuss the specification issue further in
Sections II-C and IV-B1.)

In this paper, we address both of the above challenges and
introduce a methodology for the verification of authenticated
loaders. Our solution is based on the formulation of an abstract
model of loader protocols and specification of correct behavior
in the absence of adversary. We then extend this model to
allow flexible modeling of adversary interference. We then

of blocks

hash (block 1)

. . .

hash (block N)

signature

im
age

header

block 1 base

block 1 size

block 1 data

. . .

block
1

block N base

block N size

block N data

block
N

(a) Image data structure.

start

(1) load image header

(2) verify header sign

for each block 0 ≤ i < N

(3) relocate block i

(4) verify block i hash

(5) success (6) abort
pass? fail?

fail?

(b) Authenticated load protocol.

In
te

rc
on

ne
ct

µP1

µP2

n/w

flash

AES

SHA256

RSA

MMU

RAMROM

trusteduntrusted
partially
trusted

(c) Example SoC for authenticated load.

Fig. 1: Overview of authenticated firmware load protocols used in contemporary SoC designs.

introduce a security property that captures correctness of
authenticated load. The property relates protocol behavior with
and without adversary actions. Intuitively, it states that every
execution where the protocol verifies an image in the presence
of adversarial behavior must correspond to an equivalent
execution in the model without the adversary. This security
property is a hyperproperty [10] with quantifier alternation and
is not subset-closed and so it is difficult to verify. We address
this verification challenge by introducing a decomposition of
the above property into two simpler 2-safety properties [35].
We show that satisfaction of the 2-safety properties implies
satisfaction of the loader security property.

A. Contributions
This paper makes the following contributions.
• We introduce a methodology and adversary model rea-

soning about the security of authenticated load protocols.
• We introduce a formal security guarantee that captures

security of authenticated load protocols.
• We introduce a decomposition of the security guarantee

into two simpler-to-verify 2-safety properties. We show
that satisfaction of these properties guarantees security of
authenticated load.

• We demonstrate proof of concept verification of the
security property on simple but illustrative models.

The rest of this paper is organized as follows. Section II
describes the class of authenticated load protocols and their
security vulnerabilities. Section III describes the adversary
model and security property. Section IV presents the de-
composition into 2-safety properties. Section V describes the
experimental evaluation. Section VI discusses related work and
finally section VII provides concluding remarks.

II. OVERVIEW OF PROTOCOLS AND VULNERABILITIES

In this section, we present an overview of authenticated
firmware load implementations and describe some of the
associated security requirements and potential vulnerabilities.

A. Authenticated Firmware Load Protocols

Figure 1b shows a simplified flowchart for one example
of an authenticated load protocol while Figure 1a shows the
image data structure the protocol operates on. The protocol we
describe is representative; in particular, it is based on imple-
mentations in commercial SoCs [23] as well as the secure boot
implementation in the open source Sanctum processor [24].

The image data structure depicted in Figure 1a has two
parts. The image header contains the number of blocks and
the hash of each block. This header is signed using a private
key, and this signature can be verified using the corresponding
trusted public key. Typically, this public key is stored in ROM
or loaded from fuses. The second part of the image is a
contiguous sequence of blocks. The blocks themselves are not
signed and their authenticity is verified by computing the hash
of the block contents and comparing these with the hashes
in the header. The benefit of this image organization is that
expensive public key cryptography need only be performed
over the header, which is much smaller than the rest of image.

The steps involved in the protocol are as follows.
1) The protocol loads a binary image from the untrusted

input device (e.g., flash storage, hard disk or network
interface) to the RAM.

2) It then checks the authenticity of the header of the
loaded image using cryptographic signatures. Often this
authenticity check is implemented using dedicated hard-
ware accelerators.

3) Note that the image stored on the I/O device is a contigu-
ous block of bytes. However, when placed into memory,
the different segments/blocks may not be adjacent to
each other. Therefore, steps 3 and 4 iterate over each
block of the image. Step 3 moves block i of the image
to its eventual location in the RAM.

4) Finally, step 4 computes cryptographic checksums over
the relocated block and compares this checksum with
the checksum stored in the header.

It is important to note that this is one (simplified) instantia-
tion of an authenticated load protocol. Many variants are used
in practice. For example, blocks may need to be decrypted
and/or decompressed before relocation. Some blocks may be
stored as binary diffs aka “patches” w.r.t to an existing binary,
rather than a contiguous block of data. The loader will need to
apply each patch rather than just copy a block of bytes. The
loader may be a multi-stage algorithm where the first stage
loads the second stage loader into memory and the second
stage loader fetches and authenticates the actual binary. These
variants all share a common set of security guarantees and are
vulnerable to similar attacks. In this paper, we study the class
of protocols and not a specific instance of the protocol. Our
theoretical results are not restricted to just the specific variant
shown in Figure 1b.

1) System and Threat Model: The protocol is typically
executed on a SoC which consists of both trusted and untrusted
components. In the simple SoC shown in Figure 1c, the pro-
tocol executes on a trusted microcontroller (µP1) and makes
use of two trusted crypto engines: SHA256 for computing
cryptograhic checksums and RSA for public key cryptography.
While the protocol is being executed on µP1, untrusted code is
running in parallel on µP2. This code can attempt to configure
and initiate operation of the other accelerators and modify
memory arbitrarily.

2) Protocol Security Requirements: A secure implementa-
tion of the protocol must ensure that despite arbitrary adversar-
ial actions from untrusted components, only images with valid
signatures and cryptographic checksums must be loaded. We
will make this informal definition precise in Section III-B2.

B. Potential Vulnerabilities in the Protocol

The protocol as shown in Figure 1b is deceptively simple. In
practice, there are many subtleties to its implementation and if
these are not handled correctly, invalid images may be loaded
and executed with disastrous results for system security. To
help understand some of these subtleties, we now describe
three categories of protocol vulnerabilities.

1

{load hdr}

2

{chk hdr auth}

3

{reloc blk 0}

4

{verif blk 0}

5

{abort}

?

{overwrite state}

6

{success?}

interrupt

Fig. 2: Example of protocol state hijacking.

1) Protocol State Hijacking: The protocol consists of a
sequence of checks, each of which must be carried out
faithfully to ensure its security. If the adversary is able to
modify system state in order to “trick” the loader into skipping
steps, this may allow invalid/insecure images to be loaded.

As a specific example, consider an implementation where
the loader uses a finite state machine (FSM), with state
variables stored on the firmware stack to step through the

various stages of image authentication. Further suppose the
adversary can cause interrupts to occur on the microcontroller
executing the protocol. The interrupt may have a buffer
overflow vulnerability which may be exploited to change the
state of the FSM. An example of this vulnerability is shown in
Figure 2, where the adversary prevents checking of the hash
of the block 0, by causing state 4 to be skipped.

2) Time of Check to Time of Use (TOCTOU) Vulnerabilities:
This classic attack refers to the scenario where the data
is changed between the time of validation and the time of
its use. In our example, an attacker may wait until header
authenticity is checked and then replace parts of the header
with a malicious payload. This is depicted in Figure 3.

loader start

attacker

Loader copies image
header to RAM and

authenticates it

attacker overwrites
block hashes in header

Authentication
continues with

bad header

success?

Invalid
executable

marked
as verified

Fig. 3: TOCTOU attacks on authenticated firmware load.

3) Confused Deputy Attacks: A commonly used technique
for preventing TOCTOU attacks is make the object being
checked immutable before the check. One way to accomplish
this is to marking regions of memory as read-only.

loader start

RSA

attacker

Loader copies
image header

to RAM

signature
validation

attacker updates header through
the trusted deputy (RSA)

Authentication
performed with

bad header

success?

Bad executable
marked

as verified

Fig. 4: TOCTOU attack mounted using a confused deputy.

However, marking regions of memory read-only has sub-
tleties associated with it in a system containing multiple
principals. Suppose the data is marked as read-only to the
attacker, but read-write to cryptographic engines. This may
seem reasonable because the cryptographic engines are trusted.
However, although the attacker cannot directly alter the image,

she may confuse trusted components into doing the modifi-
cations for her. For instance, the attacker might invoke the
engine with a command that results in its output overwriting
the header. This is an example of a confused deputy being
used to mount a TOCTOU attack and is depicted in Figure 4.

C. Challenges in Formal Specification of Protocol Security

As Section II-B demonstrates, protocols in this class have
a number of subtle security vulnerabilities which can only
be prevented by careful reasoning about adversarial actions.
Formal verification of the protocol can help address this
problem, but the property specification research challenge
needs to be addressed: it is not straightforward to come up
with a property specification that captures protocol security.

As a strawman example, consider a property which states
that authentication must succeed if and only if the initial
value of the image binary has a valid header and each block
in the initial image must have a valid hash. While this
seems to be a reasonable property, an implementation which
satisfies this property need not be secure. This is because
although the property ensures that the initial image is valid,
intermediate steps may replace the image with a malicious
payload. Therefore, an implementation satisfying the property
may be vulnerable to TOCTOU and confused deputy attacks.

We will also demonstrate in Sections III and IV-B1 that
security of the protocol is not captured by the secure informa-
tion flow properties, such as noninterference or observational
determinism. The problem is that noninterference is too strong
a requirement: it requires that regardless of what the adver-
sary’s actions are, the system must boot a valid image. This
needs enforcement of strict isolation between the adversary
and the trusted loader, which requires specialized hardware
support and is therefore more expensive in terms of hardware
and design cost. Instead, many practical implementations only
guarantee that if the image is marked as verified and loaded for
execution, then it must have been a valid image. This subtle but
important difference means that techniques for the verification
of secure information flow cannot be directly applied to the
authenticated loader verification problem.

III. SECURITY SPECIFICATION

In this section, we first present a model for authenticated
firmware load protocols. The model includes the protocol
but not the adversary. We then extend the model to include
adversary tampering, and then introduce an end-to-end security
property over the extended model that captures security of an
authenticated loader.

A. An Abstract Model of Authenticated Firmware Load

We will model the authenticated load protocol as a transition
system M = 〈Σ, init , tx 〉. The set of states of the transition
system is given by Σ. We use σ, σ1, σ2 etc. to refer to
individual states of the transition system, where σi ∈ Σ.
init is the set of initial states, while tx is the transition
relation. A trace of the system π is a sequence of states
π = 〈σ0, σ1, . . . , σi, . . . 〉 such that: σ0 ∈ init and for all

i ≥ 0, (σi, σi+1) ∈ tx . We use the notation πi to denote the
ith element of the trace π. In the above example, π3 = σ3.
The set of all traces of a system M is denoted by TR(M).

When the protocol begins execution, it reads the firmware
image from an input device (e.g., flash storage or network
device). Given a state of the transition system σ, we denote
image data stored on the input device in state σ by the term
img(σ). Note here that img(σ) refers to the entire block of
image data, including both headers and data blocks.

For example, for the protocol in Figure 1b, img(σ)
.
=

σ.inputDev [baseAddr : baseAddr + len]. Here inputDev is
an array that models the contents of the input device. We use
notation arr[start : end] to denote the slice of array between
the indices start and end . We are using the notation σ.var to
refer to the valuation of the state variable var in the state σ.

Viewed abstractly, the protocol has to perform a number of
checks to determine validity and authenticity of the image.
The precise number of checks to be performed may be a
function of the image data and we denote this by the term
#chks(σ). For the protocol in Figure 1b, the number of checks
to be performed is 1 + σ.header .numBlocks: one check for
the header and one for each block contained in the image.

Each of the checks is denoted by the predicate validi(σ)
where 1 ≤ i ≤ #chks(σ). Returning to the example protocol
in Figure 1b, valid1(σ) is true if the header signature is valid
in state σ, valid2(σ), . . . , validi(σ), . . . etc. are true if the
appropriate block’s hash is equal to the corresponding value
stored in the header.

valid(σ)
.
=

#chks(σ)∧
i=1

validi(σ) (1)

We will use the predicate valid(σ) to indicate that all the
checks are valid. valid is a predicate over system state σ rather
than just the image data img(σ). This is because the type and
number of checks to be performed may depend on system state
and not just the image data. For example, some patches may
load only on a system with a specific version of firmware.

Finally, when the protocol completes execution it marks
an image as verified and therefore eligible for execution, or
as an invalid image which case the protocol aborts. These
are denoted by the state predicates verif(σ) and aborted(σ)
respectively. If verification succeeds, the executable data in
memory ready for execution is denoted by the term exec(σ).

Security of Authenticated Load without Adversary: An
implementation of authenticated load without an adversary is
secure if whenever an image is verified, all of the required
validity checks on it pass. Given a trace of the transition
system M , π = 〈π0, π1, . . . 〉, the above informal definition
can be precisely stated as follows:

∀π ∈ TR(M).
(
∃i. verif(πi)

)
=⇒ valid(π0) (2)

Property 2 is a trace property and can be expressed in linear
temporal logic as ♦ verif =⇒ valid. This property can be

verified using standard model checking techniques although in
practice it turns out be to be somewhat challenging to verify
because of the need for modeling cryptography [3, 7, 16, 25].1

As we will see in the next subsection, it is the introduction of
adversarial behavior that makes the above property incomplete.

Implication vs. Bi-Implication: Property 2 uses an im-
plication rather than a bi-implication. We only require that
if the protocol declares an image as verified, the image data
be valid. In other words, this property only requires the
detection of invalid images; valid images may sometimes not
be authenticated. The loader cannot always guarantee that a
good image will be loaded even in the absence of adversarial
interference. For example, the loader may run out of memory
or be unable to access shared resources (e.g., cryptographic
accelerators) may be unavailable.

B. Abstract Model Including Adversarial Behavior

To extend the model presented in Section III-A to include
adversarial behavior, we augment the transition system def-
inition with a tamper relation over states. Specifically, our
transition systems is the now defined as the tuple Madv =
〈X, init , tx ◦tmpr〉. This system’s transition relation tx ◦tmpr
is the composition of the relations tx and tmpr Every step
of the system consists of a state update due to the tamper
relation and a state update due to the trusted transition relation
tx . The former corresponds to transitions initiated by the
trusted components in the system while the latter captures the
adversary’s ability to make untrusted updates to system state.
Note that an adversary’s state updates are visible to the trusted
component, so adversary actions may cause a chain reaction
in the trusted code causing so-called confused deputy attacks.

A trace of the augmented transition system Madv is defined
as a sequence of states π = 〈σ0, σ1, . . . 〉 such that:
• σ0 ∈ init is true,
• for all i ≥ 0, there exists σ′i such that (σi, σ

′
i) ∈ tmpr

and (σ′i, σi+1) ∈ tx .
The above definition says that system state starts in some
initial state and then evolves by the composition of the
tampering relation tmpr and the trusted transition relation tx .

The predicates validi(σ), valid(σ), and verif(σ) as well as
the terms img(σ),#chks(σ) and exec(σ) all have the same
definitions for Madv as they do for the transition system model
without the adversary M .

1) Defining the Tamper Relation: The tamper relation is the
most crucial component of the adversary model and captures
how an adversary can affect system state. For the example
protocol shown in Figure 1b, our definition of the tamper
relation states that untrusted modules (µP2, flash and network
devices) can make arbitrary reads and writes on the shared
interconnect. This definition simulates all functional attacks
carried out by an adversary involving these modules, under
the assumption that trusted modules do not interact with the
untrusted modules except via the shared interconnect.

1Our model uses the Dolev-Yao technique [17] and cryptography is modeled
using uninterpreted functions along with axioms that state properties like
collision resistance and pre-image resistance.

More interesting definitions of the tamper relation can
capture sophisticated attacks. To illustrate this, consider fault
injection attacks which refer to scenarios where the attacker
induces bit-flips in the SoC. These are typically carried out
by a physical adversary who launches an electromagnetic
pulse at the SoC [2, 27]. If carefully targeted, a crucial
bit may be flipped and security guarantees violated. These
attacks could be modelled by defining the tamper relation to
non-deterministically flip a bounded number of bits in each
trace. RowHammer, a software-based fault injection attack on
DRAM can also modelled in a similar way [22].

Of course, the specific choice of operations to be included
in the tamper relation depends on the SoC’s threat model.

2) Security of Authenticated Load with Adversary: The
protocol is secure in the presence of adversarial interference
if two conditions are satisfied. The first condition states that
when an image is verified, then it must be valid. This is the
same as Property 2 except it is defined over traces of Madv .

∀π ∈ TR(Madv).
(
∃i. verif(πi)

)
=⇒ valid(π0) (3)

The second condition requires that every execution that
results in the image being verified in Madv also have a
corresponding execution in M starting from the same input
image data. This corresponding execution in M should also
result in the image being verified, and the executable data
loaded into memory should be identical in Madv and M

(
∀π1 ∈ TR(Madv). ∃i. verif(πi1)

)
=⇒(

∃π2 ∈ TR(M). img(π0
1) = img(π0

2) =⇒
∃j. verif(πj2) ∧ exec(πi1) = exec(πj2)

)
(4)

Property 4 makes the above definition precise. What is the
intuition behind the property? First, there must be no way for
an adversary to trick the system into loading a bad image.
This is captured by verif(πi1) =⇒ verif(πj2). Second, the
executable loaded into memory upon validation should not be
influenced by the adversary, i.e. exec(πi1) = exec(πj2).

Unfortunately, Property 4 is challenging to verify due to two
reasons. The first problem is quantifier alternation, specifically
the existential quantification over traces of M . If implemented
naı̈vely this could devolve into explicit exhaustive search over
traces of M . This is why tools for symbolic model checking
of temporal hyperproperties, e.g. MCHyper [18], do not allow
existential quantification over traces. A reader may wonder
why we have the existential quantifier. Recall the discussion
in Section III-A regarding the use of implication rather than
bi-implication in Property 2. The same reasoning applies for
the use of existential quantification: a loader may not be able
to guarantee that a good image is loaded in all executions.

The second problem is hidden in the term exec(πi1) =
exec(πj2). Note that exec refers to a region of memory, so this
comparison of two memory ranges typically involves universal
quantification over memory addresses. This is also challenging
for symbolic model checking algorithms.

IV. DECOMPOSING THE SECURITY PROPERTY

In this section, we present a technique for more scalable ver-
ification of the authenticated load security property applicable
to certain common scenarios. We first present an overapprox-
imation of the transition system modeling the protocol and
adversary. This overapproximation ensures the tamper relation
is reflexive, which in turn allows overapproximation of the
existential quantifier in Property 4 by a universal quantifier.
We then decompose Property 4 into two 2-safety properties.
Finally, we show that if the 2-safety properties are satisfied,
then so is Property 4.

A. Overapproximating the Adversary Model

Let us define the transition system Madv+ = 〈Σ, init , tx+ ◦
tmpr+〉. Here, Σ and init . tx+ is the reflexive closure of the
relation tx : (σi, σj) ∈ tx+ if either σi = σj or (σi, σj) ∈ tx .
tmpr+ is defined similarly.

Proposition 1. M and Madv both refine Madv+.

Since Madv+ simulates both Madv and M , any k-safety
property proven over Madv+ holds on both M and Madv .
Further, note that M does not refine Madv due to the inclusion
of the tamper relation in the transitions of Madv .

B. Decomposition into 2-Safety

In the rest of this section, we present two 2-safety properties
over Madv+ that imply Property 4.

Given a trace π = 〈σ0, . . . , σi, σi+1, . . . 〉 of Madv+, we
define the predicate tmprNOP(σi) to be true either when
(σi, σi+1) ∈ tx or σi = σi+1. In other words, if a trace
satisfies ∀i. tmprNOP(πi) (or equivalently � tmprNOP), that
means all adversary operations in the trace are “no-ops.”

1) The No Hijacking Property: This property states that
for every image and every execution which results in the
image being verified with adversary interference, an execution
without adversary interference must also result in the image
being verified. This is specified as follows.

∀π1 ∈ TR(Madv+).

∀π2 ∈ TR(Madv+).

img(π0
1) = img(π0

2) =⇒
resourceAvail(π2) =⇒(
∀i. tmprNOP(πi2)

)
=⇒(

∀i. verif(πi1) =⇒ verif(πi2)
)

(5)

In the above, resourceAvail is a trace property that guar-
antees resources are available for validation to succeed; thus
ensuring there are no failures unrelated to adversarial actions
in π2. The property ensures that adversary operations can never
turn a “bad” initial image into one that is eventually executed.
This property is violated when protocol state hijacking occurs.
Note that unlike Property 4, this is a 2-safety property [10, 35]
and as a result, it is relatively easier to verify.

Noninterference vs. No Hijacking: To understand why
the property uses verif(πi1) =⇒ verif(πi2) rather than
verif(πi1) ⇐⇒ verif(πi2) which would be similar to noninter-
ference [19], consider the protocol shown in Figure 5a. This
protocol deals with one block of data and authenticates the
block by validating the block signature using a trusted public
key (step 3). In order to prevent TOCTOU attacks, it marks
the region of memory containing the block as read only before
signature validation (step 2). This ensures that the signature
is computed over the block of data that will be executed,
so if signature validation succeeds, then there must not have
been any adversary interference. Note that the memory region
containing the image is world-writable when it is being loaded
from memory.

Figure 5b shows two executions of the protocol. In (i), the
adversary is able to overwrite the image as it is being loaded
into memory, before the region is set to be read-only. However,
this causes authentication to fail and the loader aborts. In (ii),
there is no adversary interference so authentication succeeds.
This pair of traces satisfies Property 5. However, if the property
had used verif(πi1) ⇐⇒ verif(πi2), then the depicted pair of
traces would violate this strawman property and this violation
occurs even though the protocol is secure.

This example demonstrates why noninterference is too
strong for security verification of authenticated loaders. From
an implementation perspective, satisfying noninterference re-
quires designing an MMU that allows fine-grained page per-
missions such that a page can be written to by the loader
and it deputies but not by the attacker nor by attacker-invoked
deputies. (Note some deputies may be invoked by both attacker
and the loader.) In contrast, Property 5 only requires that page
permissions not be modifiable by the attacker. The latter is
much easier to implement and requires less hardware support.

2) The No TOCTOU Attack Property: This property states
that for every pair of traces which start with identical images
stored in flash and eventually verify this image, the executables
loaded into memory must be identical for both traces.

∀π1 ∈ TR(Madv+).

∀π2 ∈ TR(Madv+).

img(π0
1) = img(π0

2) =⇒(
∀i. verif(πi1) ∧ verif(πi2) =⇒ exec(πi1) = exec(πi2)

)
(6)

Property 6 is violated by TOCTOU bugs and confused
deputy attacks which exploit TOCTOU bugs. Satisfaction
of this property ensures that the loaded images cannot be
tampered with by an adversary. This is also a 2-safety property.

C. Verification of Authenticated Firmware Load

The 2-safety properties of no hijacking and no TOCTOU
attacks are important because if they are satisfied for the
extended transition system Madv+, then we know that M and
Madv satisfy Property 4.

start

(1) read image to mem

(2) set mem region readonly

(3) verify signature of mem region

(4) success (5) abort

pass? fail?

(a) Single-block authenticated load protocol.

loader

attacker

(1) read to mem (2) set readonly (3) verify sign (5) abort

overwrite img

(i) attacker interference leads to abort

loader

attacker

(1) read to mem (2) set readonly (3) verify sign (4) success

(ii) load succeeds in absence of attacker

(b) Execution traces for the protocol in (a).

Fig. 5: Illustrating Property 5.

Lemma 2. If the transition system Madv+ satisfies the no
hijacking (Property 5) and the no TOCTOU attack (Property 6)
properties then Madv and M satisfy Property 4.

Proof Sketch: The proof is by contraction. Suppose it is pos-
sible to satisfy Properties 5 and 6 while violating Property 4.
Then there must be a counterexample trace π1 of Madv in
Property 4. This trace could be one of two types.

In the first case, there exists no trace π2 ∈ TR(M) which
starts with the same image data as π1 and results in successful
validation. This means there exists a trace π′2 ∈ TR(M) which
starts with the same image data as π1 but fails validation. Then
π1 and π′2 are a counterexample to Property 5. Contradiction!

In the second case, there does exist a trace π2 ∈ TR(M)
which successfully validates the image. However, this trace
does not have the same executable data in memory. In this case
too, the trace π2 can be padded with an appropriate number
of “no-ops” to construct the trace π′2 such that π1 and π′2 are
counterexamples to Property 6. This is also a contradiction.

Verification Methodology: Lemma 2 points to a methodol-
ogy for the verification of authenticated firmware load.

1) Construct the extended transition system Madv+.
2) Verify Properties 3, 5 and 6 on Madv+.
3) If they are satisfied, then the protocol is also secure.
Our methodology has reduced the verification problem to

that of verifying two 2-safety properties and a safety property.
Unlike Property 4, these properties are all subset-closed and
hence preserved by refinement [10]. This means well-studied
notions of abstraction and refinement [6] can be applied for
scalable verification of the security property.

V. EVALUATION

In this section, we describe our evaluation of the method-
ology presented in this paper.

A. Methodology

We implemented a model of the protocol shown in Figure 5
with only one data block in the UCLID5 modeling and verifica-
tion framework [31, 36]. The model contains the protocol state
machine, a input device and the shared memory. Cryptography

was modelled using uninterpreted functions along with Dolev-
Yao axioms [17]. The adversary was abstracted to a single
writer that makes an unbounded number of unconstrained
writes to the shared memory. As the memory is protected by a
memory management unit (MMU), some of these writes may
be blocked if target address is marked as not writeable.

Since Properties 5 and 6 are 2-safety properties, we used
the standard technique of self-composition [4]. Proofs were
done using induction, and several strengthening invariants had
to stated in order to prove the properties of interest.

Models will be made publicly available at the time of
publication. Experiments were run on an Intel Core i7 5500U
CPU operating at 2.4 GHz with 16 GB of RAM.

B. Results

TABLE I: Verification Results.

Bit width Property 5 Property 6 Property 3
Result Time Result Time Result Time

4 2.8s 3.2s 4.8s
6 3.5s 3.9s undef 10.0s
8 4.4s 5.2s undef 28.3s

10 4.1s 8.1s undef 5.5s
12 5.0s 13.0s undef 34.7s
16 4.6s 14.9s undef 75.0s
24 6.4s 13.7s undef 6.0s
32 7.6s 16.4s undef 68.8s

Verification results are shown in Table I. The address and
data widths for the memory and I/O devices used in our model
of the protocol are parameterizable. We show results for these
widths ranging from 4 to 32 bits. The location and size of the
image are unconstrained. We see that properties 5 and 6 are
verified in all cases. Property 3, which is a standard safety
property, turns out to be surprisingly difficult for UCLID5.

As mentioned earlier, the proofs were done via induction
and required strengthening invariants. We had to add 23
strengthening invariants for properties 5 and 6. The strength-
ening invariants for these properties were quite similar. Of
these, 19 of the 23 invariants were relational. Among the 19,

four involved universal quantification over addresses. We used
quantifier patterns to assist the prover with these invariants.

Property 3 required 14 strengthening invariants. The one
invariant which could not be proven for bit-widths greater
than four, was the invariant stating that digest value =
mem region hash(mem, base addr, index). Since this is a
well-studied standard software model checking problem, we
believe it is likely that a stronger model checking engine would
have been able to prove this property for larger bit-widths.

C. Discussion of Results

The verification results shown in this paper are by no means
a complete verification of an authenticated loader. However,
they are an necessary and important first step towards pro-
ducing a secure authenticated loader. Given the importance
of authenticated loaders to SoC security, we believe it is
important to produce a fully-verified implementation of such
a loader. However, prior to this work it was unclear what
proof obligations would need to be discharged for a fully-
verified implementation. Our paper solves this problem by
the introduction of Properties 5 and 6. Each of these can be
verified on an abstract model of the loader protocol and a
refinement proof can then show that the protocol’s security
guarantees also hold for the implementation.

Our work also points towards a new and important class
of 2-safety properties that are not secure information flow.
It opens up new avenues of research into the verification of
this new class of properties, and provides challenging new
benchmarks for verification tools.

VI. RELATED WORK

1) Secure Boot/Authenticated Load Verification: The most
closely related effort to ours is Krstic et al. [23] who verify
models of authenticated loaders.. They develop a system model
and security property that captures TOCTOU attacks. Their
work also provides a wonderful exposition of the subtleties
involved in the design of authenticated load protocols.

Huang et al. [21] also perform verification of the secure boot
implementation in a commercial SoC design. Their innova-
tions include use of the instruction-level abstraction (ILA) for
co-verification of hardware and firmware [33] and techniques
for analyzing parallel firmware. However, their verification
is limited to certain access control properties of the secure
boot implementation. These properties are necessary for loader
security but are not sufficient to ensure loader security.

Cook et al. [11] verify memory safety of the boot code
running in Amazon data centers. While this boot loader code
is in fact the code that implements secure boot, they do not
verify the integrity of secure boot but instead prove the absence
of memory safety errors in the boot code. As with other related
efforts, memory safety is a necessary condition for security of
boot but by no means is it sufficient.

The main difference between our work and each of the
above efforts is that our paper develops an end-to-end secu-
rity property that implies security of the loader, rather than
necessary (but insufficient) properties for loader security.

2) Noninterference and Hyperproperties: Seminal work in
verification of secure information flow was done by Goguen,
Meseguer who introduced noninteference [19] and Rushby
who introduced separability [29]. Both of these, as well
as observational determinism [26, 28, 39] are instances of
hyperproperties [10].

Noninterference on a multi-user system is defined as the
commands of one group of users having no effect on what
other groups of users can see. Separability is also a similar
notion of isolation between mutually distrustful programs on
a system. Observational determinism, when used to prove
integrity, means that a trusted component’s outputs must be
equal if trusted inputs are equal. While these are all important
classes of information flow security properties, they are too
strict to capture the requirements of the authenticated boot
protocol. In particular, we want adversary interference to
be detected, but not necessarily prevented. These properties
cannot express this requirement.

The class of k-safety properties was introduced by Terauchi
and Aiken [35] while the technique of self-composition for the
verification of k-safety was introduced by Barthe et al. [4].
More sophisticated approaches to self-composition have been
proposed [32, 38].

3) SoC and Firmware Verification: A number of efforts
have have studied techniques for firmware verification and
many of these have focused on security properties of firmware.
For example, S2E [9] allows symbolic execution of system
software. It was used by Bazhaniuk et al. [5] use the S2E
infrastructure to verify security properties of system manage-
ment mode software in x86 systems. FIE [15] introduces novel
optimizations for scalable symbolic execution of firmware in
TI MSP430 microcontrollers. Schmidt el al. [30] introduced
the notion of a program netlist and used this for co-verification
of firmware and hardware. Chen et al. [8] introduce CRETE,
which also enables concolic testing of firmware. These efforts
focus on checking safety properties of firmware and are not
applicable to our scenario where we are verifying k-safety
properties. Subramanyan et al. [34] use symbolic simulation
of product programs to check information flow assertions.
These assertions encode observational determinism which is
not expressive enough to capture our properties of interest.

VII. CONCLUSION

This paper introduced a methodology for verification of end-
to-end security of authenticated firmware loaders. Authenti-
cated loaders are an important class of programs which are part
of the hardware root of trust in almost all modern systems-on-
chip (SoC) devices. Our methodology introduced a system and
adversary model along with an end-to-end security property
that captures security of this class of programs. We presented
a decomposition of the security property into two simpler 2-
safety properties that in combination with a novel abstraction
enabled more scalable verification of the end-to-end security
property. Experiments demonstrated the initial feasibility of
our approach. Our work paves the way for the construction of
a fully-verified authenticated bootloader.

REFERENCES

[1] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A Secure and
Reliable Bootstrap Architecture. In Proceedings of the 1997
IEEE Symposium on Security and Privacy, SP ’97, pages 65–,
Washington, DC, USA, 1997.

[2] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tun-
stall, and Claire Whelan. The sorcerer’s apprentice guide to
fault attacks. Proceedings of the IEEE, 94(2):370–382, 2006.

[3] M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M.
Leino. Boogie: A Modular Reusable Verifier for Object-
Oriented Programs. In FMCO ’05, LNCS 4111, pages 364–387,
2005.

[4] G. Barthe, P. R. D’Argenio, and T. Rezk. Secure informa-
tion flow by self-composition. In Proceedings of the 17th
IEEE Computer Security Foundations Workshop, pages 100–
114. IEEE, 2004.

[5] O. Bazhaniuk, J. Loucaides, L. Rosenbaum, M. R. Tuttle, and
V. Zimmer. Symbolic Execution for BIOS Security. In Proceed-
ings of the 9th USENIX Conference on Offensive Technologies,
2015.

[6] Michael C. Browne, Edmund M. Clarke, and Orna Grumberg.
Characterizing Finite Kripke Structures in Propositional Tem-
poral Logic. Theoretical Computer Science, 59:115–131, 1988.
doi: 10.1016/0304-3975(88)90098-9.

[7] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti,
A. Micheli, S. Mover, M. Roveri, and S. Tonetta. The NUXMV
Symbolic Model Checker. In Proceedings of the International
Conference on Computer Aided Verification, pages 334–342.
Springer, 2014.

[8] Bo Chen, Christopher Havlicek, Zhenkun Yang, Kai Cong,
Raghudeep Kannavara, and Fei Xie. CRETE: A Versatile
Binary-Level Concolic Testing Framework. In Alessandra
Russo and Andy Schürr, editors, Fundamental Approaches to
Software Engineering, pages 281–298, Cham, 2018. Springer
International Publishing.

[9] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A Platform
for In-vivo Multi-path Analysis of Software Systems. In Pro-
ceedings of the 16th International Conference on Architectural
Support for Programming Languages and Operating Systems.
ACM, 2011.

[10] Michael R. Clarkson and Fred B. Schneider. Hyperproperties.
Journal of Computer Security, 18(6):1157–1210, September
2010. ISSN 0926-227X. URL http://dl.acm.org/citation.cfm?
id=1891823.1891830.

[11] Byron Cook, Kareem Khazem, Daniel Kroening, Serdar Tasiran,
Michael Tautschnig, and Mark R Tuttle. Model checking boot
code from aws data centers. In International Conference on
Computer Aided Verification, pages 467–486. Springer, 2018.

[12] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal
Hardware Extensions for Strong Software Isolation. In Proceed-
ings of the 25th USENIX Security Symposium, pages 857–874.
USENIX Association, August 2016.

[13] Andrew Cottrell, Jithendra Bethur, Timothy Markey, M Srikant,
and Lakshmanan Srinivasan. Secure firmware update, June 29
2006. US Patent App. 11/026,813.

[14] Ang Cui, Michael Costello, and Salvatore J. Stolfo. When
Firmware Modifications Attack: A Case Study of Embedded
Exploitation. In 20th Annual Network and Distributed System
Security Symposium, NDSS 2013, San Diego, California, USA,
February 24-27, 2013, 2013.

[15] D. Davidson, B. Moench, S. Jha, and T. Ristenpart. FIE on
Firmware: Finding Vulnerabilities in Embedded Systems Using
Symbolic Execution. In Proceedings of the 22nd USENIX
Security Symposium. USENIX Association, 2013.

[16] R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural
language for checking object-oriented programs. Technical

Report MSR-TR-2005-70, Microsoft Research, 2005.
[17] D. Dolev and A. C. Yao. On the security of public key protocols.

In Proceedings of the 22Nd Annual Symposium on Foundations
of Computer Science, SFCS ’81, pages 350–357, Washington,
DC, USA, 1981. IEEE Computer Society. doi: 10.1109/SFCS.
1981.32.

[18] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algo-
rithms for model checking hyperltl and hyperctl ˆ*. In Computer
Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I,
pages 30–48, 2015. doi: 10.1007/978-3-319-21690-4 3. URL
https://doi.org/10.1007/978-3-319-21690-4 3.

[19] Joseph A. Goguen and José Meseguer. Security Policies and
Security Models. In 1982 IEEE Symposium on Security and
Privacy, Oakland, CA, USA, April 26-28, 1982, pages 11–20,
1982. doi: 10.1109/SP.1982.10014. URL http://dx.doi.org/10.
1109/SP.1982.10014.

[20] James Hendricks and Leendert van Doorn. Secure Bootstrap
is Not Enough: Shoring Up the Trusted Computing Base. In
Proceedings of the 11th Workshop on ACM SIGOPS European
Workshop, EW 11, New York, NY, USA, 2004. ACM. doi:
10.1145/1133572.1133600. URL http://doi.acm.org/10.1145/
1133572.1133600.

[21] Bo-Yuan Huang, Sayak Ray, Aarti Gupta, Jason M. Fung,
and Sharad Malik. Formal security verification of concurrent
firmware in socs using instruction-level abstraction for hard-
ware. In Proceedings of the 55th Annual Design Automation
Conference, DAC 2018, San Francisco, CA, USA, June 24-29,
2018, pages 91:1–91:6, 2018. doi: 10.1145/3195970.3196055.

[22] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye
Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur
Mutlu. Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors. In
Proceeding of the 41st Annual International Symposium on
Computer Architecuture, ISCA ’14, pages 361–372, Piscataway,
NJ, USA, 2014. IEEE Press. ISBN 978-1-4799-4394-4.

[23] S. Krstic, J. Yang, D. W. Palmer, R. B. Osborne, and E. Talmor.
Security of SoC firmware load protocols. In Proceedings of the
IEEE International Symposium on Hardware-Oriented Security
and Trust, pages 70–75, 2014.

[24] Ilia A. Lebedev, Kyle Hogan, and Srinivas Devadas. Invited
Paper: Secure Boot and Remote Attestation in the Sanctum
Processor. In 31st IEEE Computer Security Foundations Sym-
posium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018,
pages 46–60, 2018. doi: 10.1109/CSF.2018.00011.

[25] K Rustan M Leino. Dafny: An automatic program verifier for
functional correctness. In International Conference on Logic
for Programming Artificial Intelligence and Reasoning, pages
348–370. Springer, 2010.

[26] John Mclean. Proving Noninterference and Functional Correct-
ness Using Traces. Journal of Computer Security, 1:37–58,
1992.

[27] Andrea Pellegrini, Valeria Bertacco, and Todd Austin. Fault-
based attack of rsa authentication. In Proceedings of the
Conference on Design, Automation and Test in Europe, DATE
’10, pages 855–860, 3001 Leuven, Belgium, Belgium, 2010.
European Design and Automation Association. ISBN 978-3-
9810801-6-2.

[28] A. W. Roscoe. CSP and determinism in security modelling.
In Proceedings of the 1995 IEEE Symposium on Security and
Privacy, Oakland, California, USA, May 8-10, 1995, pages 114–
127, 1995. doi: 10.1109/SECPRI.1995.398927. URL http://dx.
doi.org/10.1109/SECPRI.1995.398927.

[29] John M. Rushby. Proof of separability: A verification tech-
nique for a class of a security kernels. In International
Symposium on Programming, 5th Colloquium, Torino, Italy,
April 6-8, 1982, Proceedings, pages 352–367, 1982. doi:

http://dl.acm.org/citation.cfm?id=1891823.1891830
http://dl.acm.org/citation.cfm?id=1891823.1891830
https://doi.org/10.1007/978-3-319-21690-4_3
http://dx.doi.org/10.1109/SP.1982.10014
http://dx.doi.org/10.1109/SP.1982.10014
http://doi.acm.org/10.1145/1133572.1133600
http://doi.acm.org/10.1145/1133572.1133600
http://dx.doi.org/10.1109/SECPRI.1995.398927
http://dx.doi.org/10.1109/SECPRI.1995.398927

10.1007/3-540-11494-7 23. URL http://dx.doi.org/10.1007/
3-540-11494-7 23.

[30] B. Schmidt, C. Villarraga, T. Fehmel, J. Bormann, M. Wedler,
M. Nguyen, D. Stoffel, and W. Kunz. A New Formal Veri-
fication Approach for Hardware-dependent Embedded System
Software. IPSJ Transactions on System LSI Design Methodol-
ogy, 6:135–145, 2013.

[31] Sanjit A. Seshia and Pramod Subramanyan. UCLID5: Integrating
modeling, verification, synthesis and learning. In Proceedings of
the 16th ACM-IEEE International Conference on Formal Meth-
ods and Models for System Design (MEMOCODE), October
2018.

[32] Marcelo Sousa and Isil Dillig. Cartesian Hoare Logic for
verifying k-safety properties. In Proc. of the 37th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’16, pages 57–69, 2016. ISBN 978-1-
4503-4261-2.

[33] P. Subramanyan, Y. Vizel, S. Ray, and S. Malik. Template-
based Synthesis of Instruction-Level Abstractions for SoC Ver-
ification. In Proceedings of Formal Methods in Computer-Aided
Design. IEEE, 2015.

[34] P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. Fung.

Verifying Information Flow Properties of Firmware using Sym-
bolic Execution. In Proceedings of Conference on Design
Automation and Test in Europe, 2016.

[35] T. Terauchi and A. Aiken. Secure information flow as a safety
problem. In Proceedings of the International Static Analysis
Symposium, pages 352–367. Springer, 2005.

[36] UCLID5 Verification and Synthesis System. Available at http:
//github.com/uclid-org/uclid/, 2019.

[37] Richard Wilkins and Brian Richardson. UEFI Secure Boot in
Modern Computer Security Solutions. In UEFI Forum, 2013.

[38] Weikun Yang, Pramod Subramanyan, Yakir Vizel, Aarti Gupta,
and Sharad Malik. Lazy Self-Composition for Security Ver-
ification. In Computer Aided Verification - 30th International
Conference, CAV 2018, Oxford, UK, July 14-17, 2018, Proceed-
ings, 2018.

[39] Steve Zdancewic and Andrew C Myers. Observational deter-
minism for concurrent program security. In Proceedings of the
16th IEEE Computer Security Foundations Workshop, pages 29–
43. IEEE, 2003.

[40] Vincent Zimmer and Michael Rothman. Method for performing
a trusted firmware/BIOS update, January 27 2005. US Patent
App. 10/607,367.

http://dx.doi.org/10.1007/3-540-11494-7_23
http://dx.doi.org/10.1007/3-540-11494-7_23
http://github.com/uclid-org/uclid/
http://github.com/uclid-org/uclid/

	Introduction
	Contributions

	Overview of Protocols and Vulnerabilities
	Authenticated Firmware Load Protocols
	System and Threat Model
	Protocol Security Requirements

	Potential Vulnerabilities in the Protocol
	Protocol State Hijacking
	Time of Check to Time of Use (TOCTOU) Vulnerabilities
	Confused Deputy Attacks

	Challenges in Formal Specification of Protocol Security

	Security Specification
	An Abstract Model of Authenticated Firmware Load
	Abstract Model Including Adversarial Behavior
	Defining the Tamper Relation
	Security of Authenticated Load with Adversary

	Decomposing the Security Property
	Overapproximating the Adversary Model
	Decomposition into 2-Safety
	The No Hijacking Property
	The No TOCTOU Attack Property

	Verification of Authenticated Firmware Load

	Evaluation
	Methodology
	Results
	Discussion of Results

	Related Work
	Secure Boot/Authenticated Load Verification
	Noninterference and Hyperproperties
	SoC and Firmware Verification

	Conclusion

