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Abstract. This paper presents the Lattice-based Ring Confidential
Transactions “Lattice RingCT v2.0” protocol. Unlike the previous Lat-
tice RingCT v1.0 (LRCT v1.0) protocol, the new protocol supports
Multiple-Input and Multiple-Output (MIMO) wallets in transactions,
and it is a fully functional protocol construction for cryptocurrency ap-
plications such as Hcash. Since the MIMO cryptocurrency setting in-
troduces new balance security requirements (and in particular, security
against out-of-range amount attacks), we give a refined balance security
model to capture such attacks, as well as a refined anonymity model to
capture amount privacy attacks. Our protocol extends a previously pro-
posed ring signature scheme in the LRCT v1.0 protocol, to support the
MIMO requirements while preserving the post-quantum security guar-
antees, and uses a lattice-based zero-knowledge range proof to achieve
security against out-of-range attacks. Preliminary parameter estimates
and signature sizes are proposed as a point of reference for future studies.

Keywords: Cryptocurrencies, Lattice-Based Cryptography, Post-Quantum
Cryptography, RingCT.

1 Introduction

In the current digital age, cryptocurrencies are applications that use virtual
assets and cryptographic mechanisms to conduct e-commerce operations such
as electronic payments or money transfers. Those payments can be carried out
among accounts or wallets, independently of a central party [12]. Cryptocur-
rencies lead to some advantages like lower transaction fees, theft resistance and
anonymous transactions. Bitcoin [27] is by far the most widely known and de-
centralised cryptocurrency to date, having its three underlying building blocks:
transactions, blockchain and consensus protocol. Contrary to the traditional
banking model, Bitcoin allows electronic financial operations in a decentralised
Peer-to-Peer (P2P) network. Although Bitcoin was intended to achieve the se-
curity properties of privacy and anonymity by using pseudonyms, some analyses
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[31, 18] show that these security properties can be compromised, therefore infor-
mation about the payers, payees and transactions can be revealed. Thus Bitcoin
is only a pseudo-anonymous cryptocurrency.

Nonetheless, since its creation, Bitcoin has revolutionised the field of digi-
tal currency and motivated the invention of new cryptocurrencies, also known
as alcoins. As an example, CryptoNote [35] was proposed to address the privacy
weaknesses of Bitcoin, as it also offers a framework that can be extended by other
cryptocurrencies such Bytecoin [8] and Monero [26]. CryptoNote uses traceable
ring signatures [17] as a fundamental component to achieve true anonymity, where
any member of the ring (or group) can create a signature, but it is infeasible by a
verifier to identify the real signer. This type of signature hides information about
the sender and receiver, and it also has a linking tag to prevent double spending
coins. Further enhancements to this framework have resulted in an extended pro-
tocol called Ring Confidential Transactions “RingCT” [28]. The RingCT protocol
uses three techniques: a new type of ring signature Linkable Ring Signatures
[20], a homomorphic commitment and a range proof, to preserve the privacy of
the sender and the receiver as well as the transaction amounts.

However, the security of this RingCT protocol relies on classical number-
theory assumptions, such as the hardness of discrete logarithms [15]. As a conse-
quence, this protocol will be vulnerable in the event of powerful quantum com-
puters [32]. This situation has motivated researchers in the area of post-quantum
cryptography to construct secure approaches against quantum attacks. Among
the alternatives, lattice-based cryptography has attracted attention due to its
distinguishing features and robust security guarantees [25, 10].

To the best of our knowledge, the first post-quantum RingCT scheme us-
ing Lattice-based cryptography was proposed in [1]. However, this proposal is
limited. Firstly, it only enables transfers from a single input wallet to a single
output wallet (SISO). In the RingCT model, signatures are one-time, then if one
needs to receive change after making a payment or transfer, a new output wallet
is required, so this points out the importance of supporting multiple input and
output wallets. Secondly, having more than one output wallet also introduces a
new security problem like the negative output amount (or out-of-range) attack
[7], where an adversary is capable of creating extra coins. This attack is ad-
dressed in the previous RingCT [28] by using a range proof technique; however,
this technique is not post-quantum secure.

1.1 Contributions

– We construct the Lattice-based Ring Confidential Transactions (LRCT) for
Multiple-Input and Multiple-Output wallets (MIMO). This construction is
a generalisation of the SISO.LRCT scheme in [1] where we changed its un-
derlying framework (L2RS signature) to be compatible. Our MIMO.LRCT
inherits the post-quantum security guarantees, like the hardness of lattice
mathematical assumptions as well as unconditional anonymity.

– We improve the MIMO.LRCT’s security model, in particular, the balance and
anonymity properties. We explicitly define a balance model that considers
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out-of-range attacks [7], and we prove the security of our protocol which
previous RingCT’s proposals [1, 34] did not address. User anonymity is only
addressed in [34], while we include the analysis of both user anonymity and
amount privacy.

– We show how to incorporate a lattice-based range proof into our MIMO.LRCT
protocol, which was a missing ingredient in former proposals [1, 34]. To begin
with, our protocol deals with the difficulties of the imperfection of lattice-
based zero-knowledge proofs, Section 5.1 discusses more on this. In partic-
ular, range proofs follow the approach based on 1-of-2 OR-proofs, but our
analysis shows that directly applying lattice-based OR-proofs from [13] does
not provide soundness for the range proof. This argument leads us to care-
fully select the challenge space as we describe in Lemma 3. Although these
challenges are smaller (in norm) than the ones used in the OR-proofs, they
are still larger than the challenges in [19]. In this framework, we achieve
lower soundness error than the previous lattice-based range proof [19]. We
also provide a thorough concrete analysis of the MIMO.LRCT protocol by
including this range proof analysis.

– We apply our concrete bounds to derive preliminary scheme parameters for
regular RingCT transactions that support 64-bit amounts along with fewer
Multiple Input and Output wallets. This analysis serves as a benchmark for
future practical implementations.

The organisation of this work is as follows. Section 1.2 presents CryptoNote and
RingCT protocols literature. After introducing the notation and concepts used
in our work in Section 2, we define the MIMO.LRCT as well as its security model
in Section 3. Section 4 involves the concrete construction of the homomorphic
commitment and the MIMO.L2RS signature schemes, then Section 5 illustrates
the construction of MIMO.LRCT. Section 6 and 7 point out the MIMO.LRCT’s
security and performance analyses, respectively.

1.2 Related Work

Evaluations [23, 29] of CryptoNote have discovered serious vulnerabilities which
impact the privacy of the involved parties in the transactions. Therefore, the
Ring Confidential Transactions RingCT [28] protocol was devised to address these
issues. The RingCT extends the CryptoNote scheme by using a new class of link-
able ring signature called Multi-layered Linkable Spontaneous Anonymous Group
Signature (MLSAG) [20]. This signature is spontaneous (or ad-hoc), which re-
moves the dependency of a trusted third party and group members are unaware
of belonging to a determined group, thereby enhancing the anonymity prop-
erty. It is also multilayered, meaning that it enables multiple input and output
wallets in transactions. The security of RingCT is ameliorated by introducing the
Confidential Transactions [24], which enables amounts to be hidden by using
the Pedersen Commitment [30] technique. This cryptographic primitive enables
a party to commit to a chosen secret value while keeping it hidden to other
parties, where this commitment can later be opened. Such a primitive offers
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homomorphic properties allowing parties to prove the account balance by com-
puting homomorphically input and output accounts to show that their result is
zero. RingCT added another verification mechanism for the committed output
amounts which was called range proof, guaranteeing that this amount lies in a
range of non-negative values and avoiding the creation of free money. Bullet-
proofs [7] is an efficient technique for this range preservation.

RingCT v2.0 [34] was later proposed. It provided sound security analysis of
the (RingCT) protocol as well as improved the size of the signature by using one-
way accumulators [5] along with signatures of knowledge “SoK” [9]. However, it
requires a trusted setup for its accumulator to achieve the signature constant size.
The first post-quantum RingCT protocol was proposed in [1], where the authors
named it Lattice RingCT v1.0. This construction uses lattice-based cryptography
to design a new Linkable Ring Signature, which is called Lattice-based Linkable
Ring Signature (L2RS). The L2RS follows the well known Fiat-Shamir [16] trans-
formation signature: Bimodal Lattice Signature Scheme (BLISS) [14], a practical
and secure lattice-based signature scheme. The L2RS offers computational se-
curity as per the hardness of lattice assumptions for unforgeability, linkability
and non-slanderability, it also achieves unconditional anonymity. However, the
proposed Lattice RingCT v1.0 showed no security definition or proofs, and trans-
actions were restricted to Single Input and Single Output wallets.

2 Preliminaries

The polynomial ring R = Z[x]/f(x), where f(x) = xn + 1 with n being a power
of 2. The ring Rq is then defined to be the quotient ring Rq = R/(qR) =
Zq[x]/f(x), where Zq denotes the set of all positive integers modulo q (a prime
number q = 1 mod 2n) in the interval [−q/2, q/2]. The challenge space Sn,κ, is
the set of all binary vectors of length n and weight κ. A hash function modeled
as Random Oracle Model (ROM), H1 with range Sn,κ ⊆ R2q. When we use
x ← D, it means that x is chosen uniformly from the distribution D. The
discrete Gaussian distribution over Zm with standard deviation σ ∈ R and center
at zero, is defined by Dm

σ (x) = ρσ(x)/ρσ(Zm), where ρσ is the m-dimensional
Gaussian function ρσ(x) = exp(−‖x‖2/(2σ2)). Vector transposition is denoted
by vT . The hardness assumption of this work is the Module-SIS (Short Integer
Solution) problem and is defined as follows.

Definition 1 (MSISKq,m,k,β problem). Let K be some uniform distribution

over the ring Rk×mq . Given a random matrix A ∈ Rk×mq sampled from K dis-
tribution, find a non-zero vector v ∈ Rm×1

q such that Av = 0 and ‖v‖2 ≤ β,
where ‖ · ‖2 denotes the Euclidean norm.

Lemma 1 (Rejection Sampling). (Based on [14], Lemma 2.1). Let V be an
arbitrary set, and h : V → R and f : Zm → R be probability distributions. If
gv : Zm → R is a family of probability distributions indexed by v ∈ V with the
property that there exists a M ∈ R such that ∀v ∈ V,∀v ∈ Zm,M · gv(z) ≥ f(z).
Then the output distributions of the following two algorithms are identical:
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1. v ← h, z← gv, output(z, v) with probability f(z)/(M · gv(z)).
2. v ← h, z← f, output(z, v) with probability 1/M .

Lemma 2. (Based on [6]) Let R = Z[X]/(Xn + 1) where n > 1 is a power of
2 and 0 < i, j < 2n − 1. Then all the coefficients of 2(Xi − Xj)−1 ∈ R are in
{−1, 0, 1}. This implies that ‖2(Xi −Xj)−1‖ ≤

√
n.

Lemma 3. For a, b ∈ Rq = Zq[X]/(Xn + 1) the following relations hold ‖a‖ ≤√
n‖a‖∞, ‖a · b‖ ≤

√
n‖a‖∞ · ‖b‖∞, ‖a · b‖∞ ≤ ‖a‖ · ‖b‖.

Lemma 4 (Leftover Hash Lemma (LHL)). (Based on [14], Lemma B.1).
Let H be a universal hash family of hash functions from X to Y. If h← H and
x ← X are chosen uniformly and independently, then the statistical distance

between (h,h(x)) and the uniform distribution on H× Y is at most
1

2

√
|Y |/|X|.

Remark 1. We use this lemma for a SIS family of hash function H(S) = A ·
S ∈ Rq,with S ∈ DomS, where each function is indexed by A ∈ R1×(m−1)

q

and DomS ⊆ R1×(m−1)
q consists of vectors of Rq elements with coefficients in

Γ , (−2γ , 2γ). This is a universal hash family if for all S 6= S′, we have

Pr
[
A · S = A · S′

]
=

1

|Rq|
.

This is a universal hash family if there exists 1 ≤ i ≤ m− 1 such that si − s′i is
invertible in Rq with si, s

′
i ∈ Γn. This can be guaranteed by appropriate choice

of q, e.g. as shown in ([22], Corollary 1.2), it is sufficient to use q such that
f(x) = xn + 1 factors into k irreducible factors modulo q and 2γ < 1√

k
· q1/k. We

assume that Rq is chosen to satisfy this condition.

2.1 Homomorphic Commitment Definition

This is a cryptographic technique that is used to provide confidential trans-
actions, in particular cryptocurrencies [28]. This primitive allows one party to
commit to a chosen value while keeping it secret to other parties, then this com-
mitted value can be revealed later. The definition of such technique, which is
based on [3], has three algorithms: (KeyGen, Com, Open), such that:

– Pub-Params ← KeyGen(1λ): A PPT algorithm that produces a public com-
mitment parameter Pub-Params after receiving the security parameter (λ).

– c ← Com: A PPT algorithm that receives the Pub-Params, the randomness
r and the message m. This algorithm generates the commitment c.

– m′ ← Open: A PPT algorithm that receives the commitment c along with
the randomness r, and it outputs m′. A valid commitment c is opened if
(m′ = m).

The security properties of this non-interactive homomorphic commitment
scheme are defined as:
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Definition 2 (Hiding). This property ensures that the commitment Com(m, r)
does not leak information on m, that is, for any PPT adversary A, it holds that:∣∣∣∣Pr

[
A(cb) = b :

Pub-Params← KeyGen(1λ); r← RandGen(Pub-Params);
(m,m′)← A(Pub-Params); b← {0, 1}; cb ← Com(r,mb)

]
− 1

2

∣∣∣∣ ,
is negl(λ).

Definition 3 (β−Binding). This property ensures that the commitment
Com(m, r) can only be opened in one way, that is, for any PPT adversary A, it
holds that:

Pr

 r 6= r′ ∧
m 6= m′ ∧
Com(m, r) = Com(m′, r′)

:
Pub-Params← KeyGen(1λ);
r← RandGen(Pub-Params);
(m, r,m′, r′)← A(r)

 ≤ negl(λ),

where ‖r‖, ‖r′‖ ≤ β.

2.2 Fiat-Shamir Non-Interactive Zero-Knowledge Proofs in the
Random Oracle Model

Zero-knowledge proof of knowledge (ZKPoK) is a two party protocol between
the prover and the verifier, which allows the prover to convince the verifier that
he knows some information, without revealing anything about the secret apart
from what the claim itself already reveals [6].

Definition 4. Let be L ⊆ {0, 1}∗ the language that has witness relationship
R ⊆ {0, 1}∗ × {0, 1}∗ if x ∈ L ↔ ∃(x,w) ∈ R. We call w a witness for x ∈ L.
Let (P,V) be a two-party protocol where P (prover) and V (verifier) are PPT
algorithms, and L,L′ be languages with witness relations R,R′ with R ⊂ R′.
Then (P,V) has a proof σ with completeness error α, public input x and private
input w, if the following conditions are satisfied:

– The protocol uses a hash function H modeled as a random oracle which is
called by both P and V. This protocol has the following form: on input (x,w),
P outputs a proof σ that is sent to V. On input x, the verifier V accepts or
rejects σ.

– Completeness: whenever (x,w) ∈ R, the honest verifier accepts the proof σ
with probability at least 1− α.

– Soundness: given a dishonest prover A with input x, it outputs a valid proof
σ with non-negligible probability, then there there exists a PPT algorithm E
(the knowledge extractor) that extracts a witness w′ satisfying (x,w′) ∈ R′.

– Special honest-verifier zero-knowledgeness (HVZK): there exists two PPT algo-
rithms S (the simulator) and SH (random oracle simulator) that take x ∈ L,
and output the proofs σsim = S(x) and SH(x, ·) such that is computationally
indistinguishable from σ = P(x,w) and H(·) generated by a real protocol.
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3 Ring Confidential Transaction Protocol (RCT)

The RCT protocol is defined based on the former RingCT 2.0 protocol in [34].

Definition 5 (Account or wallet). A wallet has a public component “act”
and a private component “ask”. The act is composed of the user’s pk (or a valid
address) and the coin cn, while the ask is formed of the user’s sk along with the
coin-key ck.

The RCT protocol has five PPT algorithms (RCT.Setup, RCT.KeyGen, RCT.Mint,
RCT.Spend, RCT.Verify) as well as the correctness (RCT.Correctness). The RCT’s
algorithms are defined as follows:

– RCT.Setup: this PPT algorithm takes the security parameter λ and outputs
the public parameters Pub-Params.

– RCT.KeyGen: this PPT algorithm uses the Pub-Params to produce a pair of
keys, the public-key pk and the private-key sk.

– RCT.Mint: a PPT algorithm generating new coins by receiving Pub-Params
and the amount $. This algorithm outputs a coin cn and a coin-key ck.

– RCT.Spend: a PPT algorithm that receives the Pub-Params, a set of input
wallets {IWi}i∈[w] with w being the size of the ring, a user π’s input wallets
IWπ along with its set of secret keys Kπ, a set of output addresses OA,
some transaction string µ ∈ {0, 1}∗, the output amount $ and the set of
output wallets OW . Then, this algorithm outputs: the transaction TX =
(µ, IW,OW ), the signature sig and a set of transaction/serial numbers TN ,
which is used to prevent the double spending coins.

– RCT.Verify: a deterministic PPT algorithm that takes as input the Pub-
Params, the signature sig, the TX, and the TN and verifies if the transaction
was legitimately generated and outputs either: Accept or Reject.

Transaction Correctness requirements: RCT.Correctness ensures that an
honest user (payer) is able to spend or transfer any of his accounts (wallets)
into a group of destination accounts (payee), where this transaction is accepted
with overwhelming probability by a verifier. Thus the correctness of RCT is
guaranteed if for all PPT adversaries A, it holds that:

Pr


LRCT.Verify

(
TX, sig, TN

)
= 1:

Pub-Params←LRCT.Setup(1λ)
(µ, IW,OA)←A(Pub-Params, IWπ,Kπ),
with (IWπ,Kπ) as in Table 1
(pk, sk)←LRCT.KeyGen(Pub-Params)
(cn, ck)←LRCT.Mint(Pub-Params, $)
(TX, sig, TN)←LRCT.Spend(µ,
Pub-Params, IWπ,Kπ, IW,OA, $(out)).


=1.

3.1 Oracles for adversaries

We now list all the adversarial oracles used in RCT, and we define them as:
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– AddGen(i): on input a query number i, this oracle picks randomness τi, runs
algorithm

(
pki, ski

)
← RCT.KeyGen(Pub-Params, τi), and returns the public-

key or one-time address pki.
– ActGen(i, $i): on input a query number i and an amount $i, it runs

(cni, cki) ← RCT.Mint
(
Pub-Params, $i

)
. Then, ActGen adds i and the ac-

count acti =
(
pki, cni

)
to empty lists I and IW , respectively. ActGen out-

puts (acti, cki) for the one-time address pki, where these addresses are added
to a list PK. The associated secret key with account acti is defined as aski ,
(ski, cki). With this aski, the challenger calls MIMO.L2RS.SigGen(ski, · , · , · )
to determine the transaction number TNi of acti and adds it to a list T N .

– O-Spend(µ, IW, IWπ, OA, $(out),Pub-Params): on input the
transaction string µ, input accounts (wallets) IW contain-
ing IWπ and output addresses OA, it runs (TX, sig, TN) ←
RCT.Spend(µ,Kπ, IW, IWπ, OA, $(out),Pub-Params) and adds the out-
puts to T , where IWπ ∈ IW . We assume that at least one account/address
in IWπ has not been corrupted. We define the set of transaction numbers
in the RCT.Spend queries as T N ∗.

– Corrupt(i): on input query number i ∈ I, uses account key aski to determine
the transaction/serial number TNi of account acti with address pki, then
adds TNi and (TNi, $i) to lists C and B respectively and finally returns τi.

3.2 Threat Model

The protocol RCT is modeled in terms of balance, anonymity and non-
slanderability for security analysis purposes, which are defined as follows.

Definition 6 (Balance). This property requires that any adversary cannot
spend any account without her control and cannot spend her own accounts with
a larger output amount. This security property is guaranteed if for all PPT ad-
versaries A, it holds that:

Pr

[
A wins :

Pub-Params← LRCT.Setup(1λ);

({IW (k)
i }i∈[w],k∈[Nin], T )← AAddGen,ActGen,O-Spend,Corrupt(Pub-Params)

]
,

is negl(λ), where adversaries’ oracles are defined in Section 3.1. We have

that IW
(k)
i = {pk

(k)
(in),i, cn

(k)
(in),i}i∈[w],k∈[Nin] and T = (TX, sig, TN). These

spends can be transferred to the challenger with the account address pk(out) =

{pk
(j)
(out)}j∈[Nout], where we assume not all of them are corrupted, and at least

one of them is honest. This pk(out) has been created by the AddGen oracle, so
the challenger knows all balances of the spent accounts and output accounts in-
volved in the adversarial spends T . This means that TX = (µ, IW,OW ) with

OW = {OW (j)}j∈[Nout] = {pk
(j)
(out), cn

(j)
(out)}j∈[Nout] being the output wallet cor-

responding to output account pk(out). The adversary A wins this experiment if
her outputs satisfy the following conditions:
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1. RCT.Verify(TX, sig, TN) = 1.

2.
∑
k∈E(in)

$
(k)
(in),π <

∑
j∈G(out)

$
(j)
(out), where we let π ∈

[w] s.t. π′s row {pk
(1)
(in),π, . . . , pk

(Nin)
(in),π} are the ones that have

{TN (1)
π , . . . , TN

(Nin)
π } which are found in ActGen, E(in) are the cor-

rupted inputs, and G(out) are the not corrupted outputs in T . For each

TN (k) let $
(k)
(in) be the amount queried to ActGen at the index query i such

TN ⊆ T N . $
(k)
(in) is also defined as equal to zero if IW

(k)
i is equal to some

input wallet IW queried to O-Spend, using same TN , which means that

IW
(k)
i has been spent.

3. TN cannot be the output of previous queries to the O-Spend(·) (i.e. TN ∩
T N ∗ = ∅).

4. pkπ is queried to O-Spend oracle only once.

5. PK ⊆ PK, where PK , {pk
(k)
(in),i}i∈[w],k∈[Nin].

Our extended anonymity property captures two types of attacks (compared to
one type in [34]) that depend on the adversary’s choices for users π0, π1 ∈ [w] and
output amounts $(out),0, $(out),1. It starts with the user anonymity attack where
the adversary selects π0 6= π1 with $(out),0 = $(out),1, while in the amount privacy
attack this adversary chooses π0 = π1 with $(out),0 6= $(out),1. We formally define
this property as:

Definition 7 (Anonymity). This property requires that two proofs of knowl-
edge with the same transaction string µ, input accounts IW , output ad-
dresses OA, distinct both output amounts ($(out),0, $(out),1) and spent accounts
IWπ0 , IWπ1 ∈ IW are indistinguishable, meaning that the spender’s accounts
and amounts are successfully hidden among all the honestly generated accounts.
The protocol RCT is called anonymous if for all PPT adversaries A = (A1,A2),
it holds that:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b′ = b :

Pub-Params← Setup(1λ);
(µ, IWπ0 , IWπ1 , IW,OA, $(out),0, $(out),1)←
AAddGen,ActGen,O-Spend,Corrupt

1 (Pub-Params);
b← {0, 1},
(TX∗, sig∗b , TN

∗)←
LRCT.Spend(µ,Kπb , IWπb , IW,OA, $(out),b,Pub-Params);

b′ ← AO-Spend,Corrupt
2 (Pub-Params, (TX∗, sig∗b , TN

∗))


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

is negl(λ), where adversaries’ oracles are defined in Section 3.1. In addition, the
following restrictions should be satisfied:

1. For all b ∈ {0, 1}, any account in IWπi has not been corrupted.

2. Any query in the form of (·, IWπ, ·, ·), such that IWπ ∩ IWπi 6= ∅ has not
been issued to O-Spend oracle.
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Definition 8 (Non-Slanderability). This property requires that a malicious
user cannot slander any honest user after observing an honestly generated spend-
ing. That is, it is infeasible for any malicious user to produce a valid spending
that shares at least one transaction/serial number with a previously generated
honest spending. The protocol RCT is non-slanderable if for all PPT adversaries
A, it holds that:

Pr

A wins :
Pub-Params← LRCT.Setup(1λ);(
(TX, sig, TN),

(TX∗, sig∗, TN∗)
)
← AAddGen,ActGen,O-Spend,Corrupt(Pub-Params)

 ,
is negl(λ), where adversaries’ oracles are defined in Section 3.1, and
(TX, sig, TN) is one output of the oracle O-Spend for some (µ, IWπ, IW,OA).
We say A succeeds if the output satisfies:

1. RCT.Verify(TX∗, sig∗, TN∗) = 1,
2. (TX∗, sig∗, TN∗) /∈ T , and
3. TN ∩ C = ∅ but TN ∩ TN∗ 6= ∅.

4 Building Blocks Construction

In this section, we summarize the underlying lattice-based primitives that are
used in the construction of MIMO.LRCT. This includes a lattice-based homo-
morphic commitment scheme and a MIMO version of L2RS signatures, specified
in Appendix C.

4.1 Lattice-based Commitment Construction

The MIMO.LRCT protocol requires a non-interactive homomorphic commitment
(Com) as an essential primitive. We construct the three algorithms: (KeyGen,
Com, Open), using the MIMO.L2RS scheme (Appendix C):

– A ← KeyGen(1λ): A PPT algorithm that produces a public commitment

parameter A ∈ R2×(m−1)
q after receiving the security parameter (λ). In doing

so, we call the MIMO.L2RS.Setup (Appendix C) to generate A ∈ R2×(m−1)
q .

– c ← ComA(m, sk): A PPT algorithm that receives the public parameter
A (from KeyGen), the randomness sk and the message formed as m =
(0,m)T ∈ R1×2

q . This algorithm generates the commitment c ∈ R2
q. The ran-

domness sk ∈ Domsk ⊆ R(m−1)×1
q with every component chosen uniformly

and independently with coefficients in (−2γ , 2γ), is produced by calling the
MIMO.L2RS.KeyGen (Algorithm 1) and the message m ∈ Domm = Rq, then
the commitment c = ComA(m, sk) = A · sk + m ∈ R2

q.
– m′ ← OpenA(c, sk): A PPT algorithm receiving commitment c and random-

ness sk, and it outputs m′. A valid c is opened if (m′ = m). This algorithm
computes m′ = (0,m′)T = OpenA(c, sk) = c−A · sk.
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Remark 2. Domm is full and not a small subset Rq, whereas Domsk is only a
small domain versus q. These adjustments help us to obtain better parameters
than SISO.LRCT and security against out-of-range attacks.

This homomorphic commitment scheme performs the following operations:

ComA(m, sk) ± ComA(m′, sk′) , ComA(m, sk)± ComA(m′, sk′) mod q

, ComA(m±m′, sk± sk′) mod q. (1)

Theorem 1 (Hiding). If 1
2

√
q2n

2(γ+1)·(m−1)·n is negligible in security parameter

λ, then the above Com is information theoretically hiding.

Proof. Suppose that a PPT adversary A is given two messages (m,m′), the

public parameter A ∈ R2×(m−1)
q and the randomness sk. A bit b is chosen

uniformly at random from b = {0, 1}, and the commitment is generated as
cb ← ComA(mb, sk) = A · sk + mb. This adversary A outputs a guess b′ ∈
{0, 1}, where A succeeds in breaking the hiding property when (b = b′). We now
analyze the generated commitment cb with a uniformly random element from
R2
q. We know that sk is chosen small with coefficients in (−2γ , 2γ). By applying

the Leftover Hash Lemma (Lemma 4), we argue that the statistical distance
between the distribution of c and the uniform distribution on R2

q is at most(
1
2 ·
√

q2n

2(γ+1)·(m−1)·n

)
, which is negligible in (λ). ut

Theorem 2 (β−Binding). The described Commitment Scheme is computa-
tionally β−binding if the MSISKq,m,k,2β problem is hard.

Proof. Suppose that an adversary A generates (c, sk, sk′) such that m =
OpenA(c, sk) and m′ = OpenA(c, sk′) with m = (0,m)T ∈ R1×2

q and m′ =

(0,m′)T ∈ R1×2
q being valid messages and m 6= m′. Using the Open algorithm,

we have A · (sk − sk′) = (m − m′) = (0,m − m′)T 6= 0, where we find a small

non-zero vector v =
(
sk− sk′

)T
with respect to the first row A1 of the public

commitment parameter A, such that A1 · v = 0 mod q, with ‖v‖ ≤ 2β. There-
fore, this vector v gives a solution to the MSISKq,m,k,2β problem. ut

4.2 Multiple-Input Multiple-Output Wallets L2RS (MIMO.L2RS)

We adapt all the notations from [1] into our MIMO.L2RS. The MIMO.L2RS signs
a signature for multiple wallets, which means that it signs Nin L2RS signatures in
parallel. This MIMO.L2RS is an extension of the single-input and single-output
proposal from [1]. In such extension, we needed to modify the Lattice-based
Linkable Ring Signature (L2RS) to be capable of signing multiple wallets. Pre-
cisely, we adjusted the key generation, the signature generation and the verifi-
cation algorithms to sign the total number of input wallets that a user wants to
transfer to some output wallets. We call these algorithms: MIMO.L2RS.KeyGen,
MIMO.L2RS.SigGen and MIMO.L2RS.SigVer, and we describe them in Algorithms
1 2 and 3, respectively.
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Algorithm 1 MIMO.L2RS.KeyGen - Key-pair Generation (a,S)

Input: Pub-Param: A ∈ R2×(m−1)
q .

Output: (a,S), being the public-key and the private-key, respectively.
1: procedure MIMO.L2RS.KeyGen(A)

2: Let ST = (s1, . . . , sm−1) ∈ R1×(m−1)
q , where si ← (−2γ , 2γ)n, for 1 ≤ i ≤ m− 1

3: Compute a = (a1, a2)T = A · S mod q ∈ R2
q .

4: return (a,S).

Algorithm 2 MIMO.L2RS.SigGen - MIMO Signature Generation σL′(µ)

Input: {S(k)

(in),π
}k∈[Nin+1], µ, L′ as in (5), and Pub-Params.

Output: σL′ (µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
1: procedure MIMO.L2RS.SigGen(S

(k)

(in),π
, µ, L′,Pub-Params)

2: for (1 ≤ k ≤ Nin + 1) do

3: Set H
(k)
2q =

(
2 ·H,−2 · h(k) + q

)
∈ R2×m

2q , where h(k) = H · S(k)

(in),π
∈ R2

q .

4: Call MIMO.L2RS.Lift(A, a
(k)

(in),π
) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

(in),π
+ q) ∈ R2×m

2q .

5: Let u(k) = (u1, . . . , um)T , where ui ← Dnσ , for 1 ≤ i ≤ m.

6: Compute cπ+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π · u(k)

}
k∈[Nin+1]

,
{
H

(k)
2q ·

u(k)
}
k∈[Nin+1]

)
.

7: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
8: for (1 ≤ k ≤ Nin + 1) do

9: Call MIMO.L2RS.Lift(A, a
(k)

(in),i
) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

(in),i
+ q) ∈ R2×m

2q .

10: Let t
(k)
i = (ti,1, . . . , ti,m)T , where ti,j ← Dnσ , for 1 ≤ j ≤ m.

11: Compute ci+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i · t

(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q ·

t
(k)
i + q · ci

}
k∈[Nin+1]

)
.

12: for (1 ≤ k ≤ Nin + 1) do

13: Choose b(k) ← {0, 1}.
14: Let t(k)π ← u(k) + S

(k)
2q,π · cπ · (−1)b

(k)
, where S

(k)
2q,π = [(S(k)

π )T , 1]T .

15: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π · cπ‖
2

2σ2

)
cosh

( 〈t(k)π ,S
(k)
2q,π · cπ〉
σ2

))−1

other-

wise Restart.

16: return σL′ (µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
.

Algorithm 3 MIMO.L2RS.SigVer - MIMO Signature Verification
Input: σL′ (µ) as in (8), L′ as in (5), µ, and Pub-Params.
Output: Accept or Reject
1: procedure MIMO.L2RS.SigVer(σL′ (µ), L′, Pub-Params)
2: for (1 ≤ k ≤ Nin + 1) do

3: if H
(k)
2q =

(
2 ·H,−2 · h(k) + q

)
∈ R2×m

2q then Continue

4: for (i = 1, . . . , w) do
5: for (1 ≤ k ≤ Nin + 1) do

6: Call MIMO.L2RS.Lift(A, a
(k)

(in),i
) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

i + q) ∈ R2×m
2q .

7: if ci+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i · t

(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i +

q · ci
}
k∈[Nin+1]

)
then Continue

8: else if ‖t(k)i ‖2 ≤ βv (the acceptance bound based on [14]) then Continue

9: else if ‖t(k)i ‖∞ < q/4 then Continue

10: if c1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,w · t

(k)
i + q · cw

}
k∈[Nin+1]

,
{
h

(k)
2q · t

(k)
w + q ·

cw
}
k∈[Nin+1]

)
then Accept

11: else Reject

12: return Accept or Reject
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4.3 MIMO.L2RS security properties

The security properties of the MIMO.L2RS are inherited from the L2RS’ security
analysis. By appropriately modifying these analysis, we can obtain the same re-
sults for unforgeability, anonymity, linkability and non-slanderability, which are
shown in Theorems (2, 3, 4, 5 from [1]), respectively. The following proposition
summarises these inherited properties:

Proposition 1. If MSISKq,m,k,β problem (with β = 2βv) is hard and√
q4n

2(γ+1)·(m−1)·n is negligible in n, then the MIMO.L2RS achieves one-time un-

forgeability, anonymity, linkability and non-slanderability as in Definitions (3,
4, 5, 6 from [1]).

We also use the MIMO.L2RS signature scheme as a Proof of Knowledge (PoK )
to accomplish, in part, the MIMO.LRCT’s balance property. This proof is for-
malised, namely as:

Proposition 2. The MIMO.L2RS.SigGen and MIMO.L2RS.SigVer which are de-
scribed in Algorithms 2 and 3, respectively, are a Fiat-Shamir Non-Interactive
Proof of Knowledge in the Random Oracle Model (Section 2.2) for the relations
RPoK and R′PoK that we represent as:

RPoK ,

{
{a(k)

(in),i, cn
(k)
(in),i, cn

(j)
(out), µ}; {S

(k)
(in),i, ck

(k)
(in),i, ck

(j)
(out), $in, $out} :

∃i ∈ [w] s.t. a
(Nin+1)
(in),i = ComA(0,S

(Nin+1)
(in),i ); ‖S(Nin+1)

(in),i ‖ ≤ βwit

}

R′PoK ,


{a(k)

(in),i, cn
(k)
(in),i, cn

(j)
(out), µ

′}; {S(k)
(in),i, ck

(k)
(in),i, ck

(j)
(out), $in, $out} :

∃z ∈ [w] s.t. v
(Nin+1)
z = (v

(Nin+1)
z,(1) ,v

(Nin+1)
z,(2) )T ;

a
(Nin+1)
(in),z · vNin+1

z,(2) = ComA(0,v
(Nin+1)
z,(1) );

∥∥v(Nin+1)
z

∥∥ ≤ β′wit


where βwit = 3·2γ is said to be the honest prover’s witness norm and β′wit = 2·βv
being the extracted malicious prover’s witness norm. βv is the acceptance bound

of t from Algorithm 3 and a
(Nin+1)
(in),i is defined in (6).

Proof.
Completeness: Since MIMO.L2RS runs parallel L2RS signatures, we said that
the MIMO.L2RS’s correctness (Appendix D.3) allows to achieve completeness in
the MIMO.L2RS signature scheme.
Soundness: We show that for all PPT adversaries A of MIMO.L2RS, there
is a PPT algorithm Ext, which extracts a valid witness of MIMO.L2RS.
We perform a first run (ci, . . . , cw) ← Sn,κ where we assume that ci =

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i−1 · t

(k)
i−1 + q · ci−1

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i−1 +

q · ci−1

}
k∈[Nin+1]

)
was a response to a random oracle H1 (collision resis-

tance) query made by A. When A rewinds (second run) by responding with

ci 6= c′i, we obtain another proof (t
′(k)
1 , . . . , t

′(k)
w ) and the corresponding hash
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values (c′i, . . . , c
′
w). Then, we verify around the ring signature loop (going back-

wards) to find a collision in the input of H1, so for k = Nin + 1, such that

A
(Nin+1)
2q,i−1 · t(Nin+1)

i−1 + q · ci−1 = A
(Nin+1)
2q,i−1 · t′(Nin+1)

i−1 + q · c′i−1 mod 2q. In each
stage, we analyze two cases. If ci−1 6= c′i−1 (case 1), then we use this collision to
extract a witness; otherwise, if ci−1 = c′i−1 (case 2) then we move backwards (-1)
until the first case holds. Once this condition is met, we set the index z = i− x
where x is the number that decreases if case 2 holds. Subsequently, the following

equality is built based on this collision, we said that A
(Nin+1)
2q,z ·t(Nin+1)

z +q ·cz =

A
(Nin+1)
2q,z · t′(Nin+1)

z + q · c′z mod 2q with cz+1 = c′z+1. We reorganise this

equality as A
(Nin+1)
2q,z · (t

(Nin+1)
z − t

′(Nin+1)
z ) = q · (cz − c′z) mod 2q, when

this is reduced modq, we have A
(Nin+1)
2q,z · (t

(Nin+1)
z − t

′(Nin+1)
z ) = 0 mod q.

Since cz − c′z 6= 0 mod 2, so we have t
(Nin+1)
z − t

′(Nin+1)
z 6= 0 mod 2q where

‖t(Nin+1)
z −t

′(Nin+1)
z ‖∞ < q/2. By reducing mod q, we find a small non-zero vec-

tor v
(Nin+1)
z , t

(Nin+1)
z − t

′(Nin+1)
z 6= 0 mod q with ‖v(Nin+1)

z ‖ ≤ 2 · βwit. This

v
(Nin+1)
z will compute A

(Nin+1)
2q,z · v(Nin+1)

z = 0 mod q. Since A
(Nin+1)
2q,z mod q =

2 · (A,−a) mod q, we have 2 · (A,−a
(Nin+1)
(in),z ) · v(Nin+1)

z = 0 mod q, this im-

plies that (A,−a
(Nin+1)
(in),z ) ·v(Nin+1)

z = 0 mod q, since q is odd. Then, we consider

v
(Nin+1)
z = (v

(Nin+1)
z,(1) ,v

(Nin+1)
z,(2) )T where a

(Nin+1)
(in),z ·v(Nin+1)

z,(2) = A ·v(Nin+1)
z,(1) mod q.

Finally, we extract the witness as a
(Nin+1)
(in),z · v(Nin+1)

z,(2) = ComA

(
0,v

(Nin+1)
z,(1)

)
with

(v
(Nin+1)
z,(1) ,v

(Nin+1)
z,(2) )T 6= 0 mod q.

HVZK: This property is guaranteed by the MIMO.L2RS’s anonymity (in Theo-
rem 10) as well as the hiding property of the homomorphic commitment scheme
which was proved in Theorem 1. ut

5 MIMO Lattice-based RingCT Construction

In this section, we construct the MIMO Lattice-based RingCT (MIMO.LRCT)
protocol (Table 1 shows the MIMO.LRCT’s notations), where one is allowed
to have multiple (IW ) and to spend them into multiple (OW ). Furthermore,
two sub-protocols are needed to support the MIMO.LRCT’s threat model,
which are: MIMO.L2RS security properties (subsection 4.3) and range preser-
vation (subsection 5.1). The MIMO scheme works using a set of algorithms
MIMO.LRCT = (MIMO.LRCT.Setup, MIMO.LRCT.KeyGen, MIMO.LRCT.Mint,
MIMO.LRCT.Spend, MIMO.LRCT.Verify) and they are listed as:

1. (Pub-Params)← MIMO.LRCT.Setup(λ): On input the security parameter λ,
this algorithm calls MIMO.L2RS.Setup (Appendix C) and outputs the public

parameters A ∈ R2×(m−1)
q and H ∈ R2×(m−1)

q .
2. (a,S) ← MIMO.LRCT.KeyGen(A): Given the public parameter A ∈
R2×(m−1)
q , it runs MIMO.L2RS.KeyGen (Algorithm 1) and outputs a pair

3 In this work, we consider that all users have a fixed number of input wallets Nin.
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Table 1: Notation of the Lattice RingCT v2.0

Notation Description

act Account or Wallet “Public part” =
(
pk, cn

)
∈ R2

q ×R2
q.

ask Account or Wallet “Private part” =
(
sk, ck

)
∈ R2

q ×R2
q.

Sn,κ Binary vectors of length n of weight κ.

$ Amount ∈ Sn,κ.

$(in) Group of input amounts $
(k)

(in) for k ∈ [Nin].

$(out) Group of output amounts $
(j)

(out) for j ∈ [Nout].

`$ The bit-length of $.

w Number of users in the ring.

Nin Number of input wallets of a user3.

IWi Input wallet of the i-th user acti =
{
pk

(k)

(in),i, cn
(k)

(in),i

}
k∈[Nin]

.

IW Set of input wallet = {IWi}i∈[w].

IWπ Input wallet of user π =
{
pk

(k)

(in),π, cn
(k)

(in),π

}
k∈[Nin]

.

Kπ User π’s private-keys = askπ =
{
sk

(k)

(in),π, ck
(k)

(in),π

}
k∈[Nin]

.

Nout Number of output wallets.

OW Set of output wallet = {OW (j)}j∈[Nout] = {pk(j)(out), cn
(j)

(out)}j∈[Nout].
OA Set of output addresses =

{
pk

(j)

(out)

}
j∈[Nout]

.

TX Transaction = (µ, IW,OW ).

TN Set of serial/transaction numbers (linking tag).

of keys, the public-key or one-time address pk as a ∈ R2
q and the private-

key sk as S ∈ R(m−1)×1
q . A homomorphic commitment is generated as

a = ComA(0,S) = A · S + 0 mod q ∈ R2
q.

3. (cn, ck)← MIMO.LRCT.Mint(A, $): It receives the public parameter A and
input amount $ ∈ [0, 2`$ − 1]. It computes a coin cn, by choosing a coin-key
ck ∈ DomS, where every component of ck is chosen uniformly and inde-
pendently, then compute cn (as below) and this algorithm returns (cn, ck):

cn , ComA($, ck) = A · ck + $ mod q ∈ R2
q with $ = (0, $)T ∈ R1×2

q . (2)

4. (TX, sig, TN)← MIMO.LRCT.Spend(µ, IW, IWπ,Kπ, OA, $
(j)
(out),Pub-Params):

This algorithm spends/transfers amounts from the user π’s input wallets
to some output wallets. We denote the user π who successfully created its
input wallets IWπ, based on determine amounts $(in). Note that notation of
these parameters are defined in Table 1, and this spend algorithm is briefly
described in Algorithm 4. Then, π selects the recipients’ valid public keys
or output addresses OA where π wants to spend his/her amount. To do so
π performs the following steps:

(a) π receives {$(j)
(out)}j∈[Nout], with $

(j)
(out) ∈ [0, . . . , 2`$ − 1], for j ∈ [Nout],

such balance satisfies, we call this condition amount preservation. This
checks that input amounts are equal to output amounts, by checking if
the following equality holds:
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Nin∑
k=1

$
(k)
(in),π =

Nout∑
j=1

$
(j)
(out). (3)

π then runs MIMO.LRCT.Mint(A, $
(j)
(out)) for j ∈ [Nout] and obtain

(cn
(j)
(out), ck

(j)
(out))j∈[Nout], which define the output wallets as

OW = {OW (j)}j∈[Nout] = {a(j)
(out), cn

(j)
(out)}j∈[Nout]. (4)

Then, the output coin-keys and amounts {ck(j)
(out), $

(j)
(out)}j∈[Nout] are se-

curely sent to users with valid OAj = {a(j)
(out)}j∈[Nout].

(b) User π selects (w − 1) input wallets from the blockchain which he/she

uses to anonymously transfer her/his input wallets {IW (k)
π }k∈[Nin].

Then, a preliminary ring signature list is built as IW = {IWi}i∈[w] =

{a(k)
(in),i, cn

(k)
(in),i}i∈[w],k∈[Nin].

(c) π adds a record to IWi in order to homomorphically compute and ver-
ify the amount preservation; this uses the homomorphic commitment
scheme (defined in Section 4). The result of this computation is a com-
mitment to zero, where the user π is only able to obtain since he/she
knows both IWπ and OW . This new record is placed in the position
(Nin + 1) and then a list L′ is defined as:

L′ =
{

a
(k)
(in),i

}
i∈[w],k∈[Nin+1]

, (5)

with a
(Nin+1)
(in),i , ComA

(∑Nin
k=1 $

(k)
(in),i −

∑Nout
j=1 $

(j)
(out),S

(Nin+1)
(in),i

)
, where

S
(Nin+1)
(in),i ,

∑Nin
k=1 S

(k)
(in),i + ck

(k)
(in),i −

∑Nout
j=1 ck

(j)
(out) ∈ R

(m−1)×1
q . This

implies that

a
(Nin+1)
(in),i =

Nin∑
k=1

a
(k)
(in),i + cn

(k)
(in),i −

Nout∑
j=1

cn
(j)
(out). (6)

Note that if the amount preservation conditions (3) and (7) (for every

k ∈ [Nin]) are achieved, then a
(Nin+1)
(in),i = ComA(0,S

(Nin+1)
(in),i ).

a
(k)
(in),i = ComA(0,S

(k)
(in),i) = A · S(k)

(in),i + 0 mod q ∈ R2
q. (7)

(d) To sign the transaction, we use the π’s private-keys: {S(k)
(in),π}k∈[Nin+1],

the list L′ and a transaction string µ ∈ {0, 1}∗. Then, we run
MIMO.L2RS.SigGen (Algorithm 2) which outputs:

σL′(µ) =
(
c1, {t(k)

1 , . . . , t(k)
w }k∈[Nin+1], {h(k)}k∈[Nin]

)
. (8)

(e) Decompose $
(j)
(out) into its binary representation, i.e. $

(j)
(out) =

(b
(j)
0 , . . . , b

(j)
l$

) and run MIMO.LRCT.Mint(A, b
(j)
i ) for each i ∈ [0, l$] to

obtain ck
(j)
(out),i and cn

(j)
(out),i.
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(f) We show that the output amount lies in a non-zero range value, by

running a range proof (see Section 5.1). This proof outputs: σ
(j)
range =

Prange
(
cn

(j)
(out), {b

(j)
(out),i, ck

(j)
(out),i}

`$−1
i=0 , $

(j)
(out), ck

(j)
(out),

)
, with σ

(j)
range =(

{σ(j)
OR, cn

(j)
(out),i, σ

(j)
PoK∗}j∈[Nout],i∈[0,l$−1]

)
.

(g) We set the transaction TX as (µ, IW,OW ) and TN = {h(k)}k∈[Nin].

This algorithm outputs TX, TN , sigπ = (σL′(µ), {σ(j)
range}j∈[Nout]).

5. (Accept/Reject) ← MIMO.LRCT.Verify(TX, sigπ, TN): This algorithm calls
MIMO.L2RS.SigVer(sigπ,1, L

′,Pub-Params) (Algorithm 3) with sigπ,1 =

σL′(µ), and on input sigπ,2 = {σ(j)
range}j∈[Nout], it runs Vrange (Section 5.1).

This MIMO.LRCT.Verify outputs Accept if both MIMO.L2RS.SigVer and
Vrange output Accept, else it outputs Reject.

Algorithm 4 MIMO.LRCT.Spend

Input: (µ, IW, IWπ, Kπ, OA, $
(j)

(out)
,Pub-Params), being the message, the input wallets, π’s input

wallet, π’s private keys, the output addresses, the output amount and the public parameter,
respectively.

Output:
(
TX, σL′ (µ), TN

)
1: procedure MIMO.LRCT.Spend(µ, IW, IWπ, Kπ, OA, $

(j)

(out)
,Pub-Params)

2: User π selects
{

$
(j)

(out)

}
j∈[Nout]

such that (3) is satisfied.

3: User π runs MIMO.LRCT.Mint
(
A, $

(j)

(out)

)
for j ∈ [Nout] to generate

(
cn

(j)

(out)
, ck

(j)

(out)

)
and

sets OW as in (4).

4: User π sends securely coin-keys and amounts
{
ck

(j)

(out)
, $

(j)

(out)

}
j∈[Nout]

to user’s OAj =

a
(j)

(out)
for j ∈ [Nout].

5: Create the list of input wallets IW =
{
IWi

}
i∈[w]

=
{
a
(k)

(in),i
, cn

(k)

(in),i

}
i∈[w],k∈[Nin]

.

6: Let L′ =
{
a
(k)

(in),i

}
i∈[w],k∈[Nin+1]

, where a
(k)

(in),i
are defined in (7) and (6) for 1 ≤ k ≤ Nin

and k = Nin + 1, respectively.

7: Call MIMO.L2RS.SigGen
({

S
(k)

(in),π

}
k∈[Nin+1]

, L′, µ,Pub-Params
)

and obtain σL′ (µ) as in (8).

8: Decompose $
(j)

(out)
= (b

(j)
0 , . . . , b

(j)
l$

) and run MIMO.LRCT.Mint(A, b
(j)
i ) for each i ∈ [0, l$] to

obtain ck
(j)
out,i and cn

(j)

(out),i
.

9: Run σ(j)
range ← Prange

(
cn

(j)

(out)
, {b(j)

(out),i
, ck

(j)

(out),i
}`$−1

i=0 , $
(j)

(out)
, ck

(j)

(out)
,
)

for j ∈ [Nout].

10: Set sigπ = (σL′ (µ), {σ(j)
range}j∈[Nout]).

11: Let TX = (µ, IW,OW ) and TN =
{
h(k)

}
k∈[Nin+1]

.

12: return
(
TX, sigπ, TN

)

5.1 Range Preservation

In this section, we present a range proof for the statement that an amount
$ ∈ Sn,κ belongs to [0, 2`$ − 1]. To do so, we need first to prove that $ has the

following binary representation $ =
∑`$−1
i=0 2ibi, where bi ∈ {0, 1}. To prove that

bi, for 1 ≤ i ≤ `$ − 1, is binary, we use an OR proof introduced by [13] but
adapted to our commitment scheme, defined in Section 4.
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Binary Proof [13] We want to prove ROR , R0 ∨ R1 and the corresponding
relaxed relation R′OR , R′0 ∨R′1, where

R0 , {(cn, ck) ∈ R2
q ×R(m−1)×1

q , cn = A · ck + 0, ‖ck‖ ≤ BOR},

R1 , {(cn, ck) ∈ R2
q ×R(m−1)×1

q , cn = A · ck + 1, ‖ck‖ ≤ BOR},
R′0 , {(cn, ck, f), f · cn = A · ck + 0 · f, ‖ck‖ ≤ B′OR, ‖f‖ ≤ 2

√
κ},

R′1 , {(cn, ck, f), f · cn = A · ck + 1 · f, ‖ck‖ ≤ B′OR, ‖f‖ ≤ 2
√
κ},

for a public parameter A ∈ R2×(m−1)
q . We further let:

C0 , {Xi ∈ Rq, i = 0, . . . , 2n− 1}, (9)

with all the coefficients of (Xi − Xj)−1 in {−1, 0, 1} according to Lemma 2.
The challenge space P consists of the set of all permutations of dimension n,
Perm(n), and a vector of κ bits, i.e. P , {p = (s, c) ∈ Perm(n) × {0, 1}}.
Each p ∈ P permutes the exponents of a polynomial in C0 according to the
permutation s as follows: Let f, g ∈ C0 be two monomials. In particular, if
f = Xif , g = Xig and s(if ) − ig, then we denote such a permutation s(f) = g.
It holds Pr[p(f) = g] = 1/|C0|. Let σOR and BOR be two positive real numbers.
We also need a collision resistant hash function H, mapping arbitrary inputs to
the uniform distribution over the challenge space P. Note that the digit $ can
be encoded into a coefficient vector b = (b0, . . . , b`$−1) ∈ {0, 1}`$ Our OR proof
is defined in R′bi protocol in Table 2.

Table 2: ZKP- OR-Composition ΠOR-Protocol

POR(ck, b ∈ {0, 1}) VOR(cn = (cn(1) . . . cn(θ))

for j ∈ [θ] compute

f
(j)
1−b ← C0, r

(j)
1−b ← D

n(m−1)
σOR

u(j) ← D
n(m−1)
σOR

a
(j)
b = A · u(j)

a
(j)
1−b = A · r(j)1−b − f

(j)
1−b · cn

(j) + f1−b(1− b)
p , H

(
{cn(j),a

(j)
b ,a

(j)
1−b}

θ
j=1

)
← P

f
(j)
b = p2b−1(f

(j)
1−b)

r
(j)
b = u(j) + f

(j)
b · ck

(j)

Let u|| =
(
u(1), . . . ,u(θ)

)
Let (f · ck)|| =

(
f
(1)
b · ck(1), . . . , f

(θ)
b · ck(θ)

)
r|| = u|| + (f · ck)||
Abort with prob. ρb as in (10) .

{f (j)
0 , f

(j)
1 , r

(j)
0 , r

(j)
1 }θj=1−−−−−−−−−−−−−−−−−→

for j ∈ [θ] compute

a
(j)
0 = A · r(j)0 − f

(j)
0 · cn(j)

a
(j)
1 = A · r(j)1 + f

(j)
1 · (1− cn(j))

Let p = H({cn(j),a
(j)
0 ,a

(j)
1 }θj=1)

Check ‖r(j)0 ‖ ≤ B′OR ∧ ‖r
(j)
1 ‖ ≤ B′OR

Check f
(j)
0 ∈ C0 ∧ f (j)

1 = p(f
(j)
0 )
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Based on Lemma 1, note that the abort probability used in the protocol is
defined as

ρb(r||) , 1−min

 D
n(m−1)θ
σOR (r||)

M ·Dn(m−1)θ
(f ·ck)||,σOR

(r||)
, 1

 , (10)

for b ∈ {0, 1}. We let σOR = 2γ+1
√
κθn(m− 1) since ‖(f · ck)||‖ ≤√

θ‖f||‖∞‖ck||‖∞ ≤ 2
√
θκ · 2γ

√
n(m− 1) = 2γ+1

√
κθn(m− 1).

Range Proof Construction We define a range proof Πrange(Prange,Vrange)
with common input (cn = {cni}`$−1

i=0 , {cn(j)}j∈[Nout]) and prover’s input

($, {bi}`$−1
i=0 , r, {cki}`$−1

i=0 ) for the following relations:

Rrange ,


{cn

(j)
i , cn(j)}, {$, b(j)i , ck

(j)
i , r(j)} : ∃i ∈ [0, `$ − 1] s.t.

(b
(j)
i = 0 ∨ b(j)i = 1) ∧ cn

(j)
i = ComA(bi, ck

(j)
i ) ∧∀j ∈ [N(out)]

s.t. cn(j)=ComA($(j), r(j)) ∧ $(j) ∈ [0, 2`$ − 1]

∧‖r(j)‖ ≤ 2β, ‖ck(j)
i ‖ ≤ BOR



R′range ,



{cn
(j)
i , cn(j)}, {$, b(j)i , ck

(j)
i , r(j)′, f, fi} : ∃i ∈ [0, `$ − 1] s.t.

(b
(j)
i = 0 ∨ b(j)i = 1) ∧ fi · cn

(j)
i = ComA(fi · b(j)i , ck

(j)
i ) ∧

∀j ∈ [N(out)] s.t. f ·cn(j) = ComA(f · $(j), r(j)′) ∧
$(j) ∈ [0, 2`$ − 1] ∧ ‖r(j)′‖ ≤ βrange, ‖ck(j)

i ‖ ≤ B′OR∧
‖fi‖ ≤ 2

√
κ, ‖f‖ ≤ 4

√
κ


The range prove is defined for each output amount $

(j)
(out), j ∈ [Nout], i.e, for the

sum of output amounts $
(j)
out over Nout output wallets, the prover runs in parallel

the R′range protocols for all j ∈ [Nout]: In the last step of the range proof protocol
in Table 3 we use the proof of knowledge (PoK∗) of opening a zero-commitment
from [21] with

ρ0 := 1−min

 D
n(m−1)
σ0 (r)

M ·Dn(m−1)
(f ′·r),σ0

(r)
, 1

 (11)

and σ0 = 12n
√
n(m− 1). The prover’s inputs of this proof of knowledge are

given by a randomness r(j), while the verifier’s input is a commitment D(j) of
zero. The proof in [21] allows us to use the same relaxation factor f ′ in each of
the parallel runs of our range proof protocol in Table 3, which is significant for
the proof of balance of our MIMO.LRCT.

Remark 3. The main difference between our OR proof and the OR proof from
[13] is the size of the challenges. As we cannot achieve soundness of our range
proof using the same challenge space as in [13], we adapt their protocol to another
challenge space which we call C0 (this space was introduced in [6]). It consists of
monomials in Rq as defined in (9). Because of these relatively small challenges,
we need to repeat R′b-protocol θ times, where the rejection sampling as defined
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Table 3: ZK-Range Proof Πrange-Protocol

Prange({ck(j)
i , b

j)
i }i∈[`$], r

(j), cn(j), $(j)) Vrange(cn(j))

For all j ∈ Nout and all i ∈ [0, l$ − 1]:

Run POR(ck
(j)
i , b

(j)
i )

Output {σ(j)
OR, cn

(j)
i }j∈Nout

Compute D(j) :=
∑`$−1
i=0 2icn

(j)
i − cn(j)

= ComA(0, r(j)

Run PPoK∗(D(j), r(j)):

Pick r0 ∈ Dm(n−1)
σ0

Compute U := A · r0
Set f ′ := H(A · r0)

Compute r(j) := f ′r(j) + r0
Abort with prob. ρ0 from (17)

Output σ
(j)
PoK∗ = {(f ′, r(j))}j∈[Nout], {D

(j)}
{σ(j)

OR, cn
(j)
i , σPoK∗−−−−−−−−−−−−−−→

(j)}j∈[Nout]
For all j ∈ [Nout] :

Run VOR(σ
(j)
OR, cn

(j)
i )

Compute D(j) :=
∑`$−1
i=0 2icn

(j)
i − cn(j)

Run VPoK ({σ(j)
PoK∗ , D

(j)}j):
Check f ′ := H(Ar(j) − f ′D(j))

in Lemma 1, returns something after θ−1 repeats. With this new space C0 we are
now able to prove soundness of our relaxed range proof to the relaxed relation
R′range. In practice, we only need a relatively small θ < 20, whereas previous
lattice based range proofs [19] need much larger θ > 100 for the same soundness
level.

Theorem 3. If σOR ≥ 22
√
κBOR and B′OR ≥ 2

√
nσOR, then the protocol in

Table 2 is a R′b-Protocol complete for relation ROR and sound for relation R′OR.

Theorem 4. The protocol described in Step 2 of the range proof is a proof of
knowledge (from [21]) complete for relation Rrange and sound for relation R′range
with βrange = 2`$+2n

√
κn(m− 1)σOR + 22

√
nβv.

Proof. The proofs of Theorem 3 and Theorem 4 are given in Appendix A. ut

6 Security Analysis

Theorem 5 (Balance). If MIMO.L2RS with parameter
βv is unforgeable, linkable and ComA is β−binding with
β = 4

√
κ(2βv)2 + κ(2βv)2n(m− 1)((2Nin +Nout)2γ)2 +

2βvNout(2
`$+2n

√
κn(m− 1)σOR + 22

√
nβv), then MIMO.LRCT satisfies

balance.

Proof. The proof is given in Appendix B.1. ut

Corollary 1 (Balance). The Balance of MIMO.LRCT is satisfied if
MSISKq,m,k,βBalance is hard where βbalance = max(βcase1.1, βcase1.2, βcase2).
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Proof. By combining Theorem 5 (Balance), along with Theorem 2
(β−Binding), Theorem 9 (MIMO.L2RS Unforgeability) and Theo-
rem 11 (Linkability), this analysis concludes that the βbalance =
max(βcase1.1, βcase1.2, βcase2). βcase1.2 is seen as the maximum, then we
said that βbalance = 4

√
κ(2βv)2 + κ(2βv)2n(m− 1)((2Nin +Nout)2γ)2 +

2βvNout(2
`$+2n

√
κn(m− 1)σOR + 22

√
nβv). ut

Remark 4. In the balance proof, we only need zero-time unforgeability, meaning
that in the reduction the attacker produces a forgery without seeing any signa-
tures. Secondly, we do not need the message part of the signature, and thus this
is treated as a Proof of Knowledge.

Theorem 6 (LRCT-Anonymity). Suppose n · 1
2 ·
√

q4n

2(γ+1)·(m−1)·n and o · h ·
2−n+1 are negligible in n with an attack against the unconditional anonymity
that makes h queries to the random oracle H1, then the MIMO.LRCT scheme is
unconditionally secure for anonymity and amount privacy as defined in Def. 7.

Proof. The proof is given in Appendix B.2. ut

Theorem 7 (LRCT-Non-Slanderability). If MIMO.LRCT satisfies balance,
then it satisfies non-slanderability as in Def. 8. In addition, the non-
slanderability of MIMO.LRCT can be reduced to the non-slanderability of
MIMO.L2RS.

7 Performance Analysis

In this section, we propose a set of parameters for the MIMO.LRCT scheme.
This construction is secure against direct lattice attacks in terms of the BKZ
algorithm Hermite factor δ, using the value of δ = 1.007, based on the BKZ 2.0
complexity estimates with pruning enumeration-based Shortest Vector Problem
(SVP) [11]. We let n = 1024, m = 132, log q = 196, κ = 14, η = 1.1, α = 0.5,
σ = 22010, σOR = 277350 and `$ = 64 to achieve the security parameter λ = 100,
with α being the rejection sampling parameter determined in ([14] Section 3.2).
Signature sizes of this analysis are illustrated in Table 4, where regular numbers
for Nin and Nout were taken from Monero blockchain network4.
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whereas the work of Ron Steinfeld and Amin Sakzad was supported in part by
ARC Discovery Project grant DP150100285. The work of Ron Steinfeld and
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Table 4: Size estimation for MIMO.LRCT

MIMO.LRCT (Nin, Nout) = (1, 2) (Nin, Nout) = (2, 2) (Nin, Nout) = (3, 2)

log(β) (Theorem 5) ≈ 126.3 ≈ 126.3 ≈ 126.3

Signature size (w = 1) ≈ 4.8 MB ≈ 5.1 MB ≈ 5.4 MB

Signature size (w = 5) ≈ 6.7 MB ≈ 8 MB ≈ 9.2 MB

Private-key size ≈ 49 KB ≈ 73 KB ≈ 98 KB

Public-key size ≈ 97 KB ≈ 146 KB ≈ 195 KB
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A Proofs of Range Proof

Proof of Theorem 3 (OR-Proof):

Proof.
Correctness Using the conditions on rejections sampling from Theorem 2.5
of [13], we have σOR ≥ 22

√
κBOR ≥ ‖(f · ck)||‖, for σor. It follows that the

rejection step accepts with probability 1/M . If the prover is honest, the condition
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f1 = p(f0) can be verified. Using the tail-cut Bound from [2], we have the
following bound for b ∈ {0, 1}:

‖r||‖ ≤ 2
√
θn(m− 1)σOR ≤ B′OR,

with overwhelming probability.

Soundness Let (cn, rb) ∈ R0 ∨ R1. Let POR be a deterministic prover,
who queries H on the same input. Therefore, her success probability depends
on the output of H only. Let p0 = 1/|C0| + ε be the success probability of
the prover POR. We need to construct an extractor E to extract the values
r′′b and f ′′b while making poly(|(cn, rb)|)/ε times queries to H. It holds that
(cn, r′′b , f

′′
b ) ∈ R′0 ∨ R′1. Extractor E runs POR(cn) on a challenge p ← P and

outputs a valid proof (cn, (r0, r1, f0, f1)). Then, E runs POR(cn) on random
challenges and outputs a proof (cn, (r′0, r

′
1, f
′
0, f
′
1)) such that f0 6= f ′0 or f1 6= f ′1.

Let α ∈ {0, 1} be a bit such that fα 6= f ′α. Let (cn,a0,a1) be the hash query by
POR(cn). Since both proofs verify, we have aα = A · rα + fαα − fα · cn and
aα = A · r′α + f ′αα− f ′α · cn. Subtracting these two equations results into:

(fα − f ′α) · cn = A · (rα − r′α) + α(fα − f ′α)

Set r′′α = rα − r′α and f ′′α = fα − f ′α. It follows that (cn, r′′α, f
′′
α) ∈ R′0 ∨ R′1.

Finally, we show that POR(cn) outputs a proof such that fα 6= f ′α with at least
negligible probability ε.

Pr[POR succ. ∧(f0 = f ′0 ∨ f1 = f ′1)]

= Pr[POR succ.]− Pr[POR succ. ∧ (f0 = f ′0 ∧ f1 = f ′1)]

= p0 − Pr[POR succ. ∧ (f0 = f ′0 ∧ p(f0) = p(f ′0))]

≥ p0 − Pr[p(f0) = p(f ′0)] = ε. (12)

HVZK: To prove special honest-verifier zero-knowledgeness, we have to show
that the honest-verifier distribution and simulated distribution are identical. We
show how to construct a simulator S. For (cn, rb) ∈ R0 ∨ R1 and a challenge
p ∈ P the simulator S does the following:

1. f0 ← C0
2. f1 = p(f0)

3. For α ∈ {0, 1}, sample rα ← D
n(m−1)
σOR

4. For α ∈ {0, 1}, compute aα = A · rα + fα · α− fα · cn
5. Abort with probability 1− 1/M
6. Output (r0, r1, f0, f1)

Using the rejection sampling bounds, the distribution of the output of S is
identical to the honest one. ut
Proof of Theorem 4 (Range-Proof):

Proof. We prove the three security of a zero-knowledge proof of knowledge as
defined in Definition 2.2.



Lattice RingCT v2.0 with Multiple Input and Multiple Output Wallets 25

Completeness: If the prover follows the protocol, then the following equation
holds:

H(Ar− f ′D,µ) = H
(
A · (f ′r + r0)− f ′D,µ

)
(13)

From (16) follows that f ′D = ComA(0, r) = A · r. Then, (13) is equivalent to:

H(Ar− f ′D,µ) = H
(
A · (f ′r + r0)− f ′D,µ

)
= H

(
f ′Ar + Ar0 − f ′A · r, µ

)
= H(Ar0, µ) = f ′,

where the last equation satisfies the verification. By the rejection sampling (Def-
inition 1 the prover responds with probability 1/M2. The distribution of r is

statistically close to D
n(m−1)

12n
√
n(m−1)

since ‖f ′r‖ ≤ n
√
n(m− 1) within the statis-

tical distance 2−100.

Soundness: To prove the soundness, we need to extract a witness (f, $, r) s.t.
f · cn = ComA(f · $, r) with $ ∈ [0, 2`$ − 1].

From the OR proof witness extraction in Theorem 3, we first extract
(f ′′i , bi, ri) with bi ∈ {0, 1} such that for all i ∈ [`$] the following relation holds:

f ′′i · cni = ComA(f ′′i · bi, ri). (14)

Let f ′′i = fi − f ′i bet the difference between two challenges fi and f ′i . According
to Lemma 2 it holds that f ′′ is invertible in Rq. Consequently we can multiply
(14) by (f ′′i )−1 and get:

cni = ComA

(
bi, (f

′′
i )−1 · ri

)
, (15)

for all i ∈ [`$]. We now extract an opening (f ′, r̃) of a commitment to 0 in the
last step of the range proof protocol such that:

f ′ ·

(
`$−1∑
i=0

2i · cni − cn

)
= ComA(0, r) (16)

⇐⇒ f ′ ·
`$−1∑
i=0

2i · cni − f ′ · cn = ComA(0, r)

holds. Note that we use the PoK∗ protocol from [21] which we adapt to our

setting using D :=
(∑`$−1

i=0 2i · cni − cn
)

and present in the Table 5:

where

ρ0 := 1−min

 D
n(m−1)
σ0 (r)

M ·Dn(m−1)
(f ′·r),σ0

(r)
, 1

 (17)
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Table 5: ΠPoK∗ protocol [21]

PPoK(r, µ,D) VPoK(D)

Pick r0 ∈ Dm(n−1)
σ0

Compute U := A · r0
Set f ′ := H(Ar0, µ)
Compute r := f ′r + r0
Abort with prob. ρ0 from (17)

f ′, r
−−→

Check f ′ := H(Ar− f ′D,µ)

and σ0 = 12n
√
n(m− 1). Using (15), it follows that:

f ′ ·
`$−1∑
i=0

2i · cni = f ′ · ComA

(
`$−1∑
i=0

2i · bi,
`$−1∑
i=0

2i(f ′′i )−1 · ri

)
. (18)

After inserting the definition of cn into (16), we obtain:

f ′ · cn = f ′ ·
`$−1∑
i=0

2i · cni − ComA(0, r) (19)

Next, we insert (18) into (19) to get:

f ′ · cn = f ′ · ComA

(
`$−1∑
i=0

2i · bi,
`$−1∑
i=0

2i(f ′′i )−1 · ri

)
− ComA(0, r)

= ComA

(
f ′ · $, f ′ ·

`$−1∑
i=0

2i(f ′′i )−1 · ri − r

)
, (20)

where we set $ =
∑
i 2ibi (note $ ∈ [0, 2`$ − 1]). Now, we would have liked to

show that f · (f ′′i )−1 · ri is ‘small’, but it is not. Instead, assume, there is a small
and invertible g ∈ Rq, such that g · (f ′′i )−1 = hi is small. Since f ′′i is a non-zero
difference of monomials from C0, by Lemma 2, we can take g = 2 as it is small
and invertible in Rq. Multiplying the right hand-side of (20) by g yields:

(g · f ′) · cn = ComA

(
g · f ′ · $, f ′ ·

`$−1∑
i=0

2ihi · ri − g · r

)
. (21)

We get the desired ‘small’ range proof witness(
f = g · f ′, $, r′ = f ′ ·

∑`$−1
i=0 2ihi · ri − g · r

)
, where ‖r′‖ ≤ βrange and us-

ing estimations from Lemma 3,
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βrange =

∥∥∥∥∥f ·
`$−1∑
i=0

hi · ri − g · r

∥∥∥∥∥
2

≤

∥∥∥∥∥f ·
`$−1∑
i=0

hi · ri

∥∥∥∥∥
2

+ ‖g · r‖2

≤
√
n · ‖f‖∞ ·

∥∥∥∥∥
`$−1∑
i=0

2ihi · ri

∥∥∥∥∥
∞

+
√
n · ‖g‖∞ · ‖r‖∞

≤
√
n · 2
√
κ ·
√
n · 2`$ · 2

√
n(m− 1)σOR +

√
n · 2
√
κ · 2βv

≤ 2`$+2n
√
κn(m− 1)σOR + 22

√
nκβv. (22)

SHVZK: Here we have to show that our range proof from 3 satisfies the require-
ment of perfect simulation. Since the underlying OR proof is perfectly simulat-
able as showed in the last proof of Theorem 3, we only need to show that the un-
derlying proof of knowledge from Table 5 is simulatable too. Given a challenge f ′,
the simulator aborts with probability 1−1/M2. Otherwise, we have to show the

PoK is zero-knowledge. To do so the simulator picks r← D
n(m−1)

12n
√
n(m−1)

and com-

putes A ·r−f ′D to guarantee that the verification equation f ′ = H(A ·r−f ′D)
is satisfied. The simulator outputs simulated transcript r, f ′, which is indistin-
guishable by rejection sampling (1) and by hiding property declared in Theorem
1 of our commitment scheme. ut

B LRCT - Proofs of the Security Analysis

B.1 LRCT - Balance (Theorem 5)

Proof. By definition of successful balance attack (Def. 6), ∃i ∈ [w] such that∑
k∈Ei∗

(in)
$

(k)
(in),i∗ <

∑
j∈Gi∗

(out)
$

(j)
(out),i∗ , being i∗ a dishonest transaction. For this

analysis we consider three cases, case 1.1, case 1.2 and case 2:

– Case 1 - TN ∈ T N from ActGen: we consider two sub-cases, the outsider
and insider attacks which are described as follows:

• Case 1.1 - The outsider attack: ∀i ∈ [w] ∃k∗ ∈ [Nin] such that

IW
(k∗)
i is not corrupted, this means that not all inputs to Ti∗ are cor-

rupted. We show that given any PPT MIMO.LRCT adversary, we can
construct a MIMO.L2RS adversary, which has equal advantage. In do-
ing this reduction, we firstly define the entities interacting to prove
LRCT-Unforgeability. We use a challenger, MIMO.L2RS.Challenger, and
two adversaries MIMO.L2RS(B) and MIMO.LRCT(A). This experi-
ment begins with the challenger who generates the Pub-Params ←
MIMO.L2RS.Setup(λ), and these Pub-Params are given to the adversary
B. This adversary then runs A, by simulating A’s oracle answers (Def. 6).
We assume that A makes at most qad, qac, qco and qspend queries to Ad-
dGen, ActGen, Corrupt and O-Spend respectively. This simulation runs as
follows:
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∗ AddGen(i): on input a query number i, B forwards the query to its

own JO and obtains the public-key(s) pk
(k)
i . B returns these to A.

∗ ActGen(i, $i): on input address index i and an amount $i, B runs al-
gorithm MIMO.LRCT.Mint(Pub-Params, $i) and returns the account

IWi =
(
pk

(k)
i , cn

(k)
i

)
and its corresponding ck

(k)
i to A.

∗ O-Spend(µ, IW, IWi, OA, $
(j)
(out),Pub-Params): on input the trans-

action strings µ, input wallet IW containing IWi, output ad-
dresses OA, and Pub-Params, B creates a signature by calling

its signing oracle as: σL′(µ)i ← SO(w, IW, pk
(k)
i , µ), then B

builds the MIMO.LRCT.Spend output as (TXi, sigi, TNi), where
TX = (µ, IW,OA), TNi is the linking tag, and sigi =

(σL′(µ)i, {σ(j)
range}j∈[Nout]). These outputs are returned to A.

∗ Corrupt(i): on input query number i, B calls its corruption oracle

to obtain the private key sk
(k)
i ← CO(pk

(k)
i ). This private-key is

returned to A.

A outputs a forgery transaction (TX∗, sig∗π, TN
∗) such

MIMO.LRCT.Verify(TX∗, sig∗π, TN
∗) = 1 where sig∗π =

(σL′(µ)∗π, {σ
(j)
range}∗j∈[Nout]

). B also outputs its forgery σL′(µ)∗π and
IW ∗, where IW ∗ is the input list in TX∗. We show that the ad-
vantage of MIMO.L2RS(B) adversary is equal as the advantage of
MIMO.LRCT(A) to break the unforgeability property. In this simu-
lation, A’s view is perfectly simulated by B as in the real balance
game. Moreover, in the event where A wins the game and case 1.1
occurs, then B also wins its game. This forgery meets the conditions of
both definitions, the MIMO.L2RS one-time unforgeability (Def. 9) and
balance (Def. 6), which we summarise below:

1. In both views MIMO.LRCT.Verify(·) = 1 (Def. 6 Cond. 1) and
MIMO.L2RS.SigVer(·) = 1 (Def. 9, Cond. 1), transaction signatures
must be valid.

2. The pk
(k)
i of the list accounts were generated during the simulation

by AddGen oracle (Def. 6 Cond. 2) and this oracle forwarded queries
to the MIMO.L2RS’s oracle JO(·) (Def. 9, Cond. 2).

3. The forgeries sig∗π and σL′(µ)∗π are not the output of the O-Spend(·)
(Def. 6 Cond. 3) and SO(·) (Def. 9, Cond. 3) oracles, respectively.

4. pk(k)
π was only queried to O-Spend(·) oracle once (Def. 6 Cond. 4),

and thus only a query was forwarded to SO(·) (Def. 9, Cond. 4).
5. The condition of this case 1.1 (∀i ∈ [w] ∃k∗ ∈ [Nin] such that

IW
(k∗)
i ) implies that ∃k∗ s.t. pk(k∗)

i is not corrupted (Def. 9, Cond.
5). Therefore, this also meets the condition of the MIMO.L2RS.

To sum up, if the outsider adversary breaks this case 1.1 attack, then
we refer to the Theorem 9 (Unforgeability) where the security analysis
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reduces to the MSISKq,m,k,β problem with β = 2βv. Thus we said that
βcase1.1 = 2βv.

• Case 1.2 - The insider attack: ∃i ∈ [w] ∀k∗ ∈ [Nin] such that

IW
(k∗)
i is corrupted, meaning that all inputs to Ti∗ are corrupted.

We start this case by running the extractor of the MIMO.L2RS’s
proof of knowledge (in Proposition 2) so we can extract the witness

of this signature relation as a
(Nin+1)
(in),i∗ · v(Nin+1)

i∗,(2) = ComA

(
0,v

(Nin+1)
i∗,(1)

)
with (v

(Nin+1)
i∗,(1) ,v

(Nin+1)
i∗,(2) )T 6= 0 mod q. For simplicity, we define

gL2RS , v
(Nin+1)
i∗,(2) and r , v

(Nin+1)
i∗,(1) . Then, we have a

(Nin+1)
(in),i∗ =

g−1
L2RS · ComA

(
0, r
)

=
∑Nin
k=1 a

(k)
(in),i∗ + cn

(k)
(in),i∗ −

∑Nout
j=1 cn

(j)
(out),i∗

from definition of a
(Nin+1)
(in) in (6) [from Section 5]. We said that∑Nout

j=1 cn
(j)
(out),i∗ ,

∑
j∈Gi∗

(out)
cn

(j)
(out),i∗ +

∑
j∈Ei∗

(out)
cn

(j)
(out),i∗ where

Gout and Eout are Ti∗ ’s not corrupted and corrupted outputs, re-
spectively. Then, replacing with this definition, we have g−1

L2RS ·
ComA

(
0, r
)

= ComA

(∑Nin
k=1 $

(k)
(in),i∗ −

∑
j∈Gi∗

(out)
$

(j)
(out),i∗ ,S

(Nin+1)
(in),i∗

)
+∑

j∈Ei∗
(out)

cn
(j)
(out),i∗ . The latter equation is

equivalent to
∑
j∈Ei∗

(out)
cn

(j)
(out),i∗ = g−1

L2RS ·

ComA

(∑Nin
k=1 $

(k)
(in),i∗ −

∑
j∈Gi∗

(out)
$

(j)
(out),i∗ , r− S

(Nin+1)
(in),i∗

)
. Afterwards,

we multiply both sides by gL2RS and it results in:

gL2RS ·
∑

j∈Ei∗
(out)

cn
(j)
(out),i∗ = ComA (gL2RS ·∆, r) , (23)

where r , gL2RS · (r − S
(Nin+1)
(in),i∗ ) and ∆ ,

∑Nin
k=1 $

(k)
(in),i∗ −∑

j∈Gi∗
(out)

$
(j)
(out),i∗ . Since $

(k)
(in),i∗ ∈ [0, 2`$ − 1] and max(Nin, Nout) ≤ N ,

then
∑Nin
k=1 $

(k)
(in),i∗ ∈ [0, N ·2`$−1] and

∑
j∈Gi∗

(out)
$

(j)
(out),i∗ ∈ [0, N ·2`$−1]

where Nin ≤ N and Nout ≤ N , respectively. We have,
∣∣∣$(k)

(in),i∗ −

$
(j)
(out),i∗

∣∣∣ ≤ N · (2`$ −1) and $
(k)
(in),i∗ −$

(j)
(out),i∗ < 0, which is less than q/2

by the choice of q. Therefore, ∆ mod q = ∆ ∈ [−N · (2`$ − 1),−1]. We
now run the proof of knowledge extractor of parallel range proofs from

Theorem 4, ∀j ∈ [Eout] cn
(j)
(out),i∗ . We then obtain:

gRange ·
∑

j∈Ei∗
(out)

cn
(j)
(out),i∗ = ComA

(
gRange · $, ck

)
, (24)

where gRange = f, $ ,
∑
j∈Ei∗

(out)
$

(j)

(out) and the randomness

ck ,
∑
j∈Ei∗

(out)
ck

(j)

(out), as per in (21). If we multiply and sub-
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tract both equations (23) and (24) by gRange and gL2RS , respectively, it

results to 0 = ComA

(
gRange · gL2RS · (∆− $),gRange · r− gL2RS · ck

)
.

Assuming that ‖gRange · gL2RS‖ < 1√
k
· q1/k where k denotes the

number of irreducible factors modq of xn + 1, then by [Corollary
1.2 from 2.[22]], gRange · gL2RS is invertible in Rq. This implies

that gRange · gL2RS · (∆ − $) 6= 0 mod q, using the fact that

∆ − $ 6= 0 mod q. Therefore, we obtain a β−binding collision for

ComA with β−binding =
∥∥∥gRange ·r−gL2RS ·ck

∥∥∥ ≤ βcase1.2. By replac-

ing this β−binding with the results of the witness extraction, it turns
out that βcase2.2 ≥ 4

√
κ(2βv)2 + κ(2βv)2n(m− 1)((2Nin +Nout)2γ)2 +

2βvNout(2
`$+2n

√
κn(m− 1)σOR + 22

√
nβv).

– Case 2 - TN /∈ T N from ActGen (Linkability Attack):
∃k∗ ∈ [Nin] s.t. IW k∗

i with i ∈ [w] was queried to O-Spend, where
k∗’th is the real input account in the forgery transaction with TN , and
TN 6⊆ T N .
In this proof, we show that any PPT MIMO.LRCT adversary has equal
advantage to the corresponding MIMO.L2RS adversary. In doing this
reduction, we firstly define the entities interacting to prove the LRCT-
Linkability. We use a challenger, MIMO.L2RS.Challenger, and two adversaries
MIMO.L2RS(B) and MIMO.LRCT(A). This experiment begins with the chal-
lenger who generates the Pub-Params ← MIMO.L2RS.Setup(λ), and these
are given to the adversary B. This adversary then runs A, by simulating A’s
oracle answers (see Section 3.1). We assume that A makes at most qad, qac
queries to AddGen and ActGen respectively, then by querying the oracle
O-Spend, it will generate a signature or PoK. This simulation runs as follows:

• AddGen(i): on input a query number i, B forwards the query to its own

JO and obtains the public-key(s) pk
(k)
i . B returns these to A.

• ActGen(i, $i): on input address index i and an amount $i, B runs al-
gorithm LRCT.Mint(Pub-Params, $i) and returns the account IWi =(
pk

(k)
i , cn

(k)
i

)
and its corresponding ck

(k)
i to A.

• O-Spend(µ, IW, IWi, OA, $
(j)
(out),Pub-Params): on input the transaction

strings µ, input wallet IW containing IWi, output addresses OA, and
Pub-Params, B creates a signature by calling its signing oracle as:

σL′(µ)i ← SO(w, IW, pk
(k)
i , µ), then B builds the MIMO.LRCT.Spend

output as (TXi, sigi, TNi), where TX = (µ, IW,OA), TNi is the linking

tag, and sigi = (σL′(µ)i, {σ(j)
range}j∈[Nout]). These outputs are returned

to A.
• Corrupt(i): on input query number i, B calls its corruption oracle

to obtain the private key sk
(k)
i ← CO(pk

(k)
i ), and this private-key is

returned to A.
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A outputs two transaction forgeries (TX∗, sig∗π, TN
∗) and

(TX ′,∗, sig′,∗π , TN
′,∗), whereas B outputs two signature forgeries σL∗(µ)∗π

and σL∗(µ)′,∗π with their corresponding IW ∗ and IW ′,∗ which were taken
from TX∗ and TX ′,∗, respectively. These forgeries meet the conditions of
the balance MIMO.LRCT (Def. 6) and the MIMO.L2RS linkability definition
(Def. 11), and we summarise these as:

1. In both views MIMO.LRCT.Verify(·) = 1 (Def. 6 Cond. 1) and
MIMO.L2RS.SigVer(·) = 1 (Def. 11, Cond. 1), transaction signatures
must be valid.

2. The pk
(k)
i of the list accounts were generated during the simulation by

AddGen oracle (Def. 6 Cond. 2) and this oracle forwarded queries to the
MIMO.L2RS’s oracle JO(·) (Def. 11, Cond. 2).

3. Condition 3 of (Def. 6) implies MIMO.L2RS.SigLink(σL∗(µ)∗π, σL∗(µ)′,∗π ) =
Unlinked (Def. 11, Cond. 3).

We showed that the advantage of MIMO.L2RS(B) adversary is equal as
MIMO.LRCT(A) to break the linkability property. Then, we refer to the The-
orem 11 (Linkability) where the security analysis reduces to the MSISKq,m,k,β
problem with β = 2βv. Thus we said that βcase2 = 2βv. ut

B.2 LRCT - Anonymity - Proof

Proof. We prove the anonymity of this scheme using the sequence-of-games ap-
proach. We begin our analysis by:

Game 0 - Real Game : We firstly define the entities interacting to prove this
LRCT-Anonymity property. We use a challenger, MIMO.LTCR.Challenger, and
two adversaries, MIMO.LRCT(A1) and MIMO.LRCT(A2). This experiment be-
gins with the challenger who generates the Pub-Params← MIMO.L2RS.Setup(λ),
and this output is given to the adversary A1. Then, A1 runs the oracles, which
were defined in Def. 7. We assume that A1 makes at most qad, qac, and qco
queries to AddGen, ActGen, and Corrupt, respectively. This simulation runs as
follows:

– AddGen(i): on input a query number i, it returns the public-key(s) pk
(k)
i .

– ActGen(i, $i): on input address index i and an amount $i, A1 runs algorithm

LRCT.Mint(Pub-Params, $i) and returns the account IWi =
(
pk

(k)
i , cn

(k)
i

)
and its corresponding ck

(k)
i .

– O-Spend(µ, IW, IWi, OA, {$(j)
(out),i}j∈[Nout],Pub-Params), and it outputs

(TX, sigi, TNi).

– Corrupt(i): on input query number i, it outputs (sk
(k)
i , ck

(k)
i ).

Now A1 construct IW with w accounts from the ActGen’s queries qac, then it

selects two elements π0 and π1 from IW , such IWπ0
= {pk(k)

π,0, cn
(k)
π,0}k∈[Nin]
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and IWπ1
= {pk(k)

π,1, cn
(k)
π,1}k∈[Nin], with pk

(k)
π,0 = ComA(0, sk

(k)
π,0), pk

(k)
π,1 =

ComA(0, sk
(k)
π,1), cn

(k)
π,0 = ComA($

(k)
(in),0, ck

(k)
π,0) and cn

(k)
π,1 = ComA($

(k)
(in),1, ck

(k)
π,1).

After this A1 outputs (µ, IWπ0
, IWπ1

, IW,OA, $
(j)
(out),0, $

(j)
(out),1), where∑Nin

k=1 $
(k)
(in),0 =

∑Nout
j=1 $

(j)
(out),0 and

∑Nin
k=1 $

(k)
(in),1 =

∑Nout
j=1 $

(j)
(out),1.

The MIMO.LRCT.Challenger picks at random b = {0, 1} and returns
(TX∗, sig∗b , TN

∗
b ) ← RCT.Spend(µ,Kπb , IWπb , IW,OA, $(out)bPub-Params)

where IWπb = {pk(k)
πb
, cn

(k)
πb } and cn

(k)
πb = ComA($

(k)
(in),πb

, ck(k)
πb

) to A2. The

adversary A2 runs the oracles as (Def. 7):

– O-Spend(µ, IW ′, IW ′π, OA, $
(j)
(out),Pub-Params) with IW ′ 6= IW and IW ′π 6=

Wπ0 ,Wπ1 . This outputs (TX∗′, sig∗b′
′
, TN∗b′

′), with TN∗b′
′ = ComH(0, sk

(k)
π,b′

′
)

– Corrupt(i): on input query number i, it returns (sk
(k)
i , ck

(k)
i ).

The adversary A2 outputs b′. If we define the S0 to be the event that b = b′,
then the A2’s advantage is |Pr[S0]− 1

2 |.

Game 1 - Signature : In this game, we perform changes in the signature

sig∗b = (σL′(µ)b, {σrange(j)
b }j∈[Nout]), in particular σL′(µ)b. Instead of generat-

ing this real signature with MIMO.L2RS.SigGen (Algorithm 2), we use the hy-
brids MIMO.L2RS.Hybrid-1 and MIMO.L2RS.Hybrid-2, Algorithms 6 and 7, re-
spectively; based on our security analysis in Appendix (MIMO.L2RS unforge-
ability). In the transition from the real signature to hybrid 1, the (cπ+1)b is
chosen at random. This transition concluded that the statistical distance be-
tween cπ+1 and Sn,κ ⊆ R2q will be at most εGame1 = o · h · 2−n+1, which is
negligible (Based on [14], Lemma 3.4), where h and o are the number of queries
to H1 and the hybrid 1, respectively. We now consider the transition from hybrid
1 to hybrid 2. The output of both hybrids follows the same distribution due to
the rejection sampling (Lemma 1). This means that choosing tπ at random, will
not have any effect in the output of both hybrids. Let S0 be the event that b = b′

in Game 1. We claim that the view of the adversary in Game 0 and Game 1 is:

|Pr[S0]− Pr[S1]| ≤ εGame1. (25)

Game 2 - User Anonymity (π0 6= π1 with $(out),0 = $(out),1) : Changes
in this game are made to TN∗b and pkπb . TN

∗
b is now randomly chosen from R2

q.
When b′ = 0, then pkπ0

← R2
q whereas pkπ,1 = ComA(0, skπ,1). When b′ = 1

then pkπ1
← R2

q whereas pkπ,0 = ComA(0, skπ,0). When skπ,b is multiplied by
H and A respectively, it gives TN∗b and pkπb that are close to uniform over R2

q.
By applying the Leftover Hash Lemma (LHL) - Lemma 4, the statistical dis-
tance between the distribution of (TN∗b mod q and pkπb mod q) and the uniform

distribution on R2
q ×R2

q is at most

(
n · 1

2 ·
√

q4n

2(γ+1)·(m−1)·n

)
, which is negligible.
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Let S2 be the event that b = b′ in Game 2. We claim that

|Pr[S1]− Pr[S2]| ≤ εGame2. (26)

Game 3 - User Anonymity (π0 6= π1 with $(out),0 = $(out),1) : We now
transform Game 1 into Game 2, where we choose pkπ1−b

at random. This means

that when b′ = 0, then pkπ1
← R2

q and when b′ = 1 then pkπ0
← R2

q. We
conclude that by applying the Leftover Hash Lemma (LHL) - Lemma 4, the
statistical distance between the distribution of (pkπb mod q) and the uniform

distribution on R2
q is at most

(
n · 1

2 ·
√

q2n

2(γ+1)·(m−1)·n

)
which is negligible. Let

S3 be the event that b = b′ in Game 3. We claim that

|Pr[S2]− Pr[S3]| ≤ εGame3. (27)

Game 4 - Amount Privacy (π0 = π1 with $(out),0 6= $(out),1) :
In this transitional Game, we choose cnπb at random, instead of computing
cnπb = ComA($(out),πb , ckπb). We use the result of the Theorem 1 (Homomor-
phic Commitment Hiding), to show that by applying the Leftover Hash Lemma
(Lemma 4), we argue that the statistical distance between the distribution of

cnπb and the uniform distribution on R2
q is at most

(
1
2 ·
√

q2n

2(γ+1)·(m−1)·n

)
which

is negligible. Let S4 be the event that b = b′ in Game 4, then we claim that

|Pr[S3]− Pr[S4]| ≤ εGame4. (28)

Combining (25), (26), (27) and (28), we obtain∣∣∣∣Pr[S0]− 1

2

∣∣∣∣ ≤ εGame1 + εGame2 + εGame3 + εGame4,

and this is negligible. ut

C MIMO.L2RS Security model

C.1 MIMO.L2RS Definitions

An MIMO.L2RS scheme has five PPT algorithms (MIMO.L2RS.Setup,
MIMO.L2RS.KeyGen, MIMO.L2RS.SigGen, MIMO.L2RS.SigVer,
MIMO.L2RS.SigLink). In addition, the correctness of this scheme is satis-
fied by the Signature correctness MIMO.L2RS.SigGen Correctness and the
Linkability correctness MIMO.L2RS.SigLink Correctness. These algorithms are
defined as follows:

– MIMO.L2RS.Setup: a PPT algorithm that takes the security parameter λ
and produces the Public Parameters (Pub-Params).
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– MIMO.L2RS.KeyGen: a PPT algorithm that by taking the Pub-Params, it
produces a pair of keys: the public-key pk and the private-key sk.

– MIMO.L2RS.SigGen: a PPT algorithm that receives the Pub-Params, a singer
π’s sk, a message µ and the list L of users’ pk’s in the ring signature, and
outputs a signature σL(µ). w is defined as the size of the ring and Nin as
the number of input wallets (used in the MIMO.LRCT protocol).

L ,
{
pk

(k)
i

}
i∈[w],k∈[Nin]

(29)

– MIMO.L2RS.SigVer: a PPT algorithm that takes Pub-Params, a signature
σL(µ), a list L of pk’s and the message µ, and it verifies if this signature was
legitimately created, this algorithm outputs either: Accept or Reject.

– MIMO.L2RS.SigLink: a PPT algorithm that inputs two valid signatures
σL(µ1) and σL(µ2) and it anonymously determines if these signatures were
produced by same signer π. Thus, this algorithm has a deterministic output:
Linked or Unlinked.

Correctness Requirements:

– MIMO.L2RS.SigGen Correctness: this guarantees that valid signatures signed
by honest signers will be accepted by a verifier with overwhelming probabil-
ity.

– MIMO.L2RS.SigLink Correctness: this ensures that if two signatures σL(µ1)
and σL(µ2) are signed by an honest signer π, SigLink will output Linked with
overwhelming probability.

C.2 Oracles for adversaries

The following oracles are available to any adversary who tries to break the se-
curity of an MIMO.L2RS scheme:

– pk
(k)
i ← JO(⊥). The Joining Oracle, on request, adds new user(s) to the

system. It returns the public-key(s) pk
(k)
i .

– sk
(k)
i ← CO(pk

(k)
i ). The Corruption Oracle, on input a pk

(k)
i that is a query

output of JO, returns the corresponding sk
(k)
i .

– σ′L(µ)← SO(w,L, pk(k)
π , µ). The Signing Oracle, on input a group size w, a

set L of w pk(k)’s, the signer’s pk(k)
π , and a message µ, this oracle returns a

valid signature σ′L(µ).

C.3 Threat Model for MIMO.L2RS

– One-time Unforgeability. One time unforgeability for the MIMO.L2RS
scheme is defined in the following game between a simulator S and an adver-
sary A who has access to the oracles JO, CO, SO and the random oracle:
• S generates and gives the list L of pk(k)’s to A.
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• A may query the oracles according to any adaptive strategy.
• A gives S a ring signature size w, a set L of w pk(k)’s, a message µ and

a signature σL(µ).

A wins the game if:
1. MIMO.L2RS.SigVer(σL(µ))=Accept.

2. pk(k)’s in the L are outputs from JO oracle.
3. σL(µ) is not an output of SO.

4. No signing key pk(k)
π was queried more than once to SO.

5. ∀i ∈ [w] ∃k ∈ [Nin] s.t. pk
(k)
i is not corrupted.

The advantage of the one-time unforgeability in the MIMO.L2RS scheme is
denoted by

Advantageot−unfA (λ) = Pr[A wins the game ]

Definition 9 (One-Time Unforgeability). The MIMO.L2RS scheme is

one-time unforgeable if for all PPT adversary A, Advantageot−unfA (λ) is
negligible.

– Unconditional Anonymity. It should be infeasible for an adversary A
to distinguish a signer’s pk(k) with probability 1/2, even if the adversary
has unlimited computing resources. This property for MIMO.L2RS schemes
is defined in the following game between a simulator S and an unbounded
adversary A.
• A may query JO according to any adaptive strategy.

• A gives S the L = {pk(k)
0 , pk

(k)
1 }k∈[Nin], which is the output of the JO,

and a message µ.
• S flips a coin b = {0, 1}, then S computes the signature σb =

MIMO.L2RS.SigGen(L, sk
(k)
b , µ,Pub-Params). This signature is given to

A.
• A outputs a bit b′.
• The output of this experiment is defined to be 1 if b = b′, or 0 “zero”

otherwise.
A wins the game if:
1. pk

(k)
0 and pk

(k)
1 cannot be used by CO and SO.

2. Outputs 1, where b = b′, with Pr = 1/2.
The unconditional anonymity advantage of the MIMO.L2RS scheme is de-
noted by

AdvantageAnonA (λ) =
∣∣∣Pr[b = b′]− 1

2

∣∣∣.
Definition 10 (Unconditional Anonymity). The MIMO.L2RS
scheme is unconditional anonymous if for any unbounded adversary
A, AdvantageAnonA (λ) is zero.

– Linkability. It should be infeasible for an adversary A to unlinked two
valid MIMO.L2RS signatures which were correctly generated with same skπ.
To describe this, we use the interaction between a simulator S and an ad-
versary A:
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• The A queries the JO multiple times.
• The A outputs two signatures σL(µ) and σ′L′(µ

′) and two lists L and L′

of pk(k)’s.

L′ ,
{
pk
′(k)
i

}
i∈[w],k∈[Nin]

(30)

A wins the game if:

1. By calling MIMO.L2RS.SigVer on input σL(µ) and σ′L′(µ
′), it outputs

Accept on both inputs.
2. The pk(k)’s in L and L′ are outputs of JO.
3. Finally, it gets Unlinked, when calling MIMO.L2RS.SigLink on input
σL(µ) and σ′L′(µ

′).

Thus the advantage of the linkability in the MIMO.L2RS scheme is denoted
by

AdvantageLinkA (λ) = Pr[A wins the game].

Definition 11 (Linkability). The MIMO.L2RS scheme is linkable if for all
PPT adversary A, AdvantageLinkA is negligible.

– Non-slanderability. It should be infeasible for an adversary A to linked
two valid MIMO.L2RS signatures which were correctly generated with differ-
ent sk(k)’s. This means that an adversary can frame an honest user for signing
a valid signature so the adversary can produce another valid signature such
that the MIMO.L2RS.SigLink algorithm outputs Linked. To describe this,
we use the interaction between a simulator S and an adversary A:

• The S generates and gives the list L of pk(k)’s to A.
• The A queries the JO and CO to obtain pk(k)

π and sk(k)
π , respectively.

• A gives the generated parameters to S.
• S uses the sk(k)

π and calls the SO to output a valid signature σL(µ),
which is given to A.

• The A uses the remaining keys of the ring signature (w − 1) to create a
second signature σ′L(µ) by calling the SO algorithm.

A wins the game if:

1. The MIMO.L2RS.SigVer, on input σL(µ) and σ′L(µ), outputs Accept.

2. The keys pk(k)
π and sk(k)

π were not used to generated the second signature
σ′L(µ).

3. When calling the MIMO.L2RS.SigLink on input σL(µ) and σ′L(µ), it out-
puts Linked.

Thus the advantage of the non-slanderability in the MIMO.L2RS scheme is
denoted by

AdvantageNSA (λ) = Pr[A wins the game].

Definition 12 (Non-Slanderability). The MIMO.L2RS scheme is non-
slanderable if for all PPT adversary A, AdvantageNSA is negligible.
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D MIMO.L2RS Scheme construction

The scheme MIMO.L2RS = (MIMO.L2RS.Setup, MIMO.L2RS.KeyGen,
MIMO.L2RS.SigGen, MIMO.L2RS.SigVer, MIMO.L2RS.SigLink) works as follows.

D.1 MIMO.L2RS.Setup

By receiving the security parameter λ, this MIMO.L2RS.Setup algorithm ran-

domly chooses A ← R2×(m−1)
q and H ← R2×(m−1)

q . This outputs the public
parameters (Pub-Params): A and H.

Remark 5. To prevent malicious attack, MIMO.L2RS.Setup incorporates a trap-
door in A or H, in practice MIMO.L2RS.Setup would generate A and H based
on the cryptographic Hash function H2 evaluated at two distinct and fixed con-
stants.

Definition 13 (Function MIMO.L2RS.Lift). This function maps R2
q to R2q

with respect to a public parameter A ∈ R2×(m−1)
q . Given a ∈ R2

q, we let

MIMO.L2RS.Lift(A,a) , (2 ·A,−2 · a + q) ∈ R2×m
2q with q = q · (1, 1)T .

D.2 Key Generation - MIMO.L2RS.KeyGen

This algorithm receives the public parameter Pub-Param: A ∈ R2×(m−1)
q , then

it generates a key pair in R2
q, we:

– Pick (s1, . . . , sm−1) with every component chosen uniformly and indepen-
dently with coefficients in (−2γ , 2γ).

– Define S = (s1, . . . , sm−1)T ∈ R1×(m−1)
q .

– Compute a = (a1,a2)T = A ·S mod q ∈ R2
q. The a and S are the public-key

pk and the private-key sk, respectively.

This MIMO.L2RS.KeyGen algorithm is described in the following Algorithm 1.

D.3 Signature Generation - MIMO.L2RS.SigGen

The MIMO.L2RS.SigGen algorithm inputs the user’s private-key S
(k)
(in),π, the mes-

sage µ, the list of user’s public-keys L′ and the public parameters Pub-Params:

H ∈ R1×(m−1)
q and A ∈ R1×(m−1)

q . This algorithm outputs the signature
σL′(µ). We call π the index in {1, . . . , w} of the user or signatory who wants
to sign a message µ. For a message µ ∈ {0, 1}∗, the fixed list of public-keys

L = {a(k)
(in),1, . . . ,a

(k)
(in),w} and the private-key S

(k)
(in),π which corresponds to a

(k)
(in),π

with 1 ≤ π ≤ w and k ∈ [1, Nin + 1]; the following computations are performed:

1. We define the linkability tag as H
(k)
2q =

(
2 ·H,−2 ·h(k) + q

)
∈ R2×m

2q , where

H is the fixed public parameter for all users, and h(k) = H · S(k)
(in),π ∈ R

2
q.

We consider S
(k),T
(in),π ∈ R

1×(m−1)
q as an element in R2q and let S

(k),T
(in),2q,π =(

S
(k),T
(in),π, 1

)
∈ R1×m

2q , such that H
(k)
2q · S

(k),T
(in),π = q ∈ R2q.
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2. The π’s public-key is lifted fromR1×m
q toR1×m

2q , so by calling the lift function

MIMO.L2RS.Lift(A,a
(k)
(in),π), we get A

(k)
2q,π = (2 ·A,−2 · a(k)

(in),π + q) ∈ R2×m
2q .

3. Note that A
(k)
2q,π · S

(k),T
(in),π = q ∈ R2q

4. By choosing a random vector u(k) = (u1, . . . , um)T , where ui ←
Dn
σ , for 1 ≤ i ≤ m, we calculate cπ+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π ·

u(k)
}
k∈[Nin+1]

,
{
H

(k)
2q · u(k)

}
k∈[Nin+1]

)
.

5. We choose random vector t
(k)
i = (ti,1, . . . , ti,m)T , where ti,j ← Dn

σ , for 1 ≤
j ≤ m, then for (i = π + 1, . . . , w, 1, 2, . . . , π − 1), after lift-

ing from R1×m
q to R1×m

2q , using MIMO.L2RS.Lift(A,a
(k)
(in),i), we obtain

A
(k)
2q,i = (2 · A,−2 · a

(k)
(in),i + q) ∈ R2×m

2q . Then, we compute ci+1 =

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i · t

(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i + q ·

ci
}
k∈[Nin+1]

)
.

6. Select a random bit b ∈ {0, 1} and finally compute t
(k)
π ← u(k) + S

(k)
2q,π · cπ ·

(−1)b
(k)

using rejection sampling (Definition 1).

7. Output the signature σL′(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
.

A formal description of this algorithm is shown in Algorithm 2.

Correctness of MIMO.L2RS.SigGen

Proof. Beyond the required conditions of MIMO.L2RS.SigVer, we claim

that if σL′(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
is the out-

put of the MIMO.L2RS.SigGen algorithm on input (µ,L,Sπ,Pub-Params),
then the output of MIMO.L2RS.SigVer on input (µ,L, σL(µ)) should
be accepted. We need to show that when MIMO.L2RS.SigVer computes

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i · t

(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i +

q · ci
}
k∈[Nin+1]

)
, the result is equal to c1. We also show that this

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i · t

(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i + q ·

ci
}
k∈[Nin+1]

)
= ci+1 for 1 ≤ i ≤ w − 1 in MIMO.L2RS.SigVer. In this evalu-

ation, we consider two scenarios, one when i 6= π and i = π:

– For i 6= π, in MIMO.L2RS.SigGen we have ci+1 =

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i · t

(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i +

q · ci
}
k∈[Nin+1]

)
, while in MIMO.L2RS.SigVer we compute ci+1 =

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i · t

(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i + q ·

ci
}
k∈[Nin+1]

)
. These are equal since A

(k)
2q,i·t

(k)
i +q·ci (in MIMO.L2RS.SigGen)
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= A
(k)
2q,i ·t

(k)
i +q ·ci (in MIMO.L2RS.SigVer); and H

(k)
2q ·t

(k)
i +q ·ci

}
k∈[Nin+1]

(in MIMO.L2RS.SigGen) = H
(k)
2q ·t

(k)
i +q·ci

}
k∈[Nin+1]

(in MIMO.L2RS.SigVer).

– For i = π, in MIMO.L2RS.SigGen we have cπ+1 =

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π · u(k)

}
k∈[Nin+1]

,
{
H

(k)
2q ·

u(k)
}
k∈[Nin+1]

)
, whereas in MIMO.L2RS.SigVer we calculate cπ+1 =

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π · t

(k)
π + q · cπ

}
k∈[Nin+1]

,
{
H

(k)
2q ·

t
(k)
π + q · cπ

}
k∈[Nin+1]

)
. In this case, we need to show that cπ+1 (in

MIMO.L2RS.SigGen) = cπ+1 (in MIMO.L2RS.SigVer). In doing so, the
following equalities need to be proved:

1. A
(k)
2q,π ·u(k) = A

(k)
2q,π ·t

(k)
π +q·cπ, which is equivalent to A

(k)
2q,π ·(u(k)−t

(k)
π )

= q · cπ. Here, we replace t
(k)
π as defined in Algorithm 2, to obtain:

A
(k)
2q,π · (u(k) − u(k) + S

(k)
2q,π · cπ · (−1)b

(k)

) = q · cπ ⇐⇒

−A
(k)
2q,π · S

(k)
2q,π · cπ · (−1)b

(k)

= q · cπ ⇐⇒
−q · cπ · (−1)b = q · cπ

We distinguish two cases for b:
• When b = 0, we verify that -q · cπ = q · cπ mod 2q.
• When b = 1, we have q · cπ = q · cπ mod 2q.

2. H
(k)
2q · u(k) = H

(k)
2q · t

(k)
π + q · cπ, which means that:

H
(k)
2q · (u(k) − t(k)

π ) = q · cπ ⇐⇒

H
(k)
2q · (u(k) − u(k) + S

(k)
2q,π · cπ · (−1)b

(k)

) = q · cπ ⇐⇒

−H
(k)
2q · S

(k)
2q,π · cπ · (−1)b = q · cπ ⇐⇒
−q · cπ · (−1)b = q · cπ

We distinguish between two cases:
• When b = 0, it is verified that −q · cπ = q · cπ mod 2q.
• When b = 1, we have q · cπ = q · cπ mod 2q.

ut

D.4 Signature Verification - MIMO.L2RS.SigVer

This is described in Algorithm 3. Furthermore, in the following theorem, we show
the bound of βv which is used in this verification algorithm (MIMO.L2RS.SigVer).

Theorem 8. Let βv = ησ
√
nm and q/4 >

(√
2(λ+ 1) ln 2 + 2 ln (nm)

)
σ and

σL′(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
be generated based on Al-

gorithm 2. Then the output of Algorithm 3 on input σL′(µ) is accepted with
probability 1− 2−λ.
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Proof. In this proof, we start mentioning that in BLISS [14], for a desired ex-

pected rejection and repetition M , if we take the definition of α where M = e
1

2α2 ,

then t
(k)
π will be indistinguishable from Dσ if σ ≥ α · ‖S(k)

2q,π · cπ‖ [Section 3.2
in [14]]. We also use [lemma 4.4, parts 1 and 3, in [21]]. The part 3 of this
lemma shows that the bound on Euclidean norm βv = ησ

√
nm, for a given

η > 1, has a probability Pr[‖t(k)
i ‖2 > ησ

√
nm] ≥ 1 − 2λ. In addition, the

bound on infinity norm (‖ti‖∞ < q/4) is analysed in part 1 of this lemma
where its union bound is also considered. It turns out that η is required such
q/4 > ησ >

(√
2(λ+ 1) ln 2 + 2 ln (nm)

)
σ, except with probability of 2−λ. ut

D.5 Signature Linkability - MIMO.L2RS.SigLink

The MIMO.L2RS.SigLink algorithm, illustrated in Algorithm 5, takes two
signatures as input: σL(µ1) and σ′L′(µ2), and it outputs either Linked if these
signatures were generated by same signatory, or Unlinked, otherwise. Given
public-keys’ lists L and L′, and two signatures: σL(µ1) and σ′L′(µ2), which can

be described as: σL(µ1) =
(
c1,µ1

,
{
t
(k)
1,µ1

, . . . , t
(k)
w,µ1

}
k∈[Nin+1]

,
{
h(k)
µ1

}
k∈[Nin]

)
and σ′L′(µ2) =

(
c1,µ2

,
{
t
(k)
1,µ2

, . . . , t
(k)
w,µ2

}
k∈[Nin+1]

,
{
h(k)
µ2

}
k∈[Nin]

)
.

These two signatures must be successfully accepted by the
MIMO.L2RS.SigVer algorithm, then one can verify that the linkability property
is achieved if the linkability tags (h(k)

µ1
and h(k)

µ2
) of the above signatures σL(µ1)

and σ′L′(µ2) are equal.

Algorithm 5 L2RS.SigLink - Signature Linkability

Input: σL(µ1) and σ′L′(µ2)
Output: Linked or Unlinked
1: procedure MIMO.L2RS.SigLink(σL(µ1), σ′L′(µ2))

2: if
(
MIMO.L2RS.SigVer(σL(µ1)) = Accept and MIMO.L2RS.SigVer(σ′L′(µ2)) =

Accept
)
then Continue [

3: else if h
(k)
µ1 = h

(k)
µ2 then Linked

4: else Unlinked ]

5: return Linked or Unlinked

Correctness of MIMO.L2RS.SigLink

Proof. We show that an honest user π who signs two messages µ1 and µ2 in
the MIMO.L2RS scheme with the list of public-keys L, obtains a Linked output
from MIMO.L2RS.SigLink algorithm with overwhelming probability. As shown in
Algorithm 5, two signatures σL(µ1) and σL(µ2) were created, and then success-

fully verified by MIMO.L2RS.SigVer. Therefore, the linkability tags h(k)
µ1

and h(k)
µ2
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must be equal. To prove this, we show that:

H
(k)
2q,µ1

=
(
2 ·H,−2 · h(k)

µ1
+ q

)
∈ R2×m

2q ,where

H = Pub-Param and h(k)
µ1

= (H · S(k)
(in),π + q) ∈ R2

q

H
(k)
2q,µ2

=
(
2 ·H,−2 · h(k)

µ2
+ q

)
∈ R2×m

2q ,where

H = Pub-Param and h(k)
µ2

= (H · S(k)
(in),π + q) ∈ R2

q

The first parts of the linkability tag in both MIMO.L2RS signatures have same
equality with following probability:

Pr
[
2 ·H = 2 ·H

]
= 1.

Ultimately, the second part uses the honest user’s private-key S
(k)
(in),π is used, so

we conclude that:

Pr
[
− 2 · h(k)

µ1
+ q + 2 · h(k)

µ2
− q = 0

]
= 1.

ut

E MIMO.L2RS - Security Analysis

Theorem 9 (One-Time Unforgeability). Suppose
√

q4n

2(γ+1)·(m−1)·n is negli-

gible in n, 1
|Sn,κ| is negligible and y = h is polynomial in n, where h de-

notes the number of queries to the random oracle H1. If there is a PPT
algorithm against one-time unforgeability of MIMO.L2RS with non-negligible
probability δ, then there exist a PPT algorithm that can extract a solution
to the MSISKq,m,k,β problem (with β = 2βv) with non-negligible probability(
δ − 1

|Sn,κ|

)
·
(
δ− 1
|Sn,κ|
y − 1

|Sn,κ|

)
−
√

q4n

2(γ+1)·(m−1)·n .

Proof. The proof is given in Appendix F. ut

Theorem 10 (Anonymity). Suppose
√

q4n

2(γ+1)·(m−1)·n is negligible in n with an

attack against the unconditional anonymity that makes h queries to the random
oracle H1, where h, w are polynomial in n, then the MIMO.L2RS scheme is
unconditionally secure for anonymity as defined in Def. 10.

Proof. The proof is given in AppendixG. ut

Theorem 11 (Linkability). The MIMO.L2RS scheme with parameter βv is
linkable in the random oracle model if the MSISKq,m,k,β problem (with β = 2βv)
is hard.
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Proof. The proof is given in Appendix H. ut

Theorem 12 (Non-Slanderability). For any linkable ring signature, if it sat-
isfies unforgeability and linkability, then it satisfies non-slanderability.

Proof. The proof is given in Appendix I. ut

Corollary 2 (Non-Slanderability). The MIMO.L2RS scheme is non-
slanderable under the assumptions of Theorem 9 and Theorem 11.

F MIMO.L2RS - Security Analysis - One-Time
Unforgeability

Proof. As stated in [14], this MIMO.L2RS scheme relies on the MSISKq,m,k,β
problem to be secure against any existential forger. This means that a forgery
algorithm succeeds with a negligible probability and so we conclude that under
this probability, the attacker will also find a solution to the MSISKq,m,k,β prob-
lem. To prove this, we start replacing the MIMO.L2RS.SigGen algorithm with
MIMO.L2RS.Hybrid-1 and MIMO.L2RS.Hybrid-2 algorithms that are used to sim-
ulate the creation of the signatures, until we obtain an algorithm that breaks
the MSISKq,m,k,β problem. These Hybrid algorithms are illustrated in Algorithm
6 and Algorithm 7, respectively.

In MIMO.L2RS.Hybrid-1, the output of the random oracle H1 is chosen at
random from Sn,κ ⊆ R2q and then it is programmed, without checking the value

of A
(k)
2q,π · u(k) and H

(k)
2q · u(k) being already set. This equality can be described

as:

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,w · t

(k)
i + q · cw

}
k∈[Nin+1]

,{
h

(k)
2q · t(k)

w + q · cw
}
k∈[Nin+1]

)
=

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π · u(k)

}
k∈[Nin+1]

,
{
H

(k)
2q · u(k)

}
k∈[Nin+1]

)
Every time the MIMO.L2RS.Hybrid-1 is called, the probability of generating u,

(such that A
(k)
2q,π · u(k) and H

(k)
2q · u(k) are equal to one of the previous output

that was queried), is at most 2−n+1. We define that the probability of getting
a collusion each time is at most h · 2−n+1, where “h” is the number of calls to
the random oracle H1, whereas the probability of occurring a collision after “o”
queries to the MIMO.L2RS.Hybrid-1 is at most o · h · 2−n+1, which is negligible
(Based on [14], Lemma 3.4).

After analyzing how c1 can be forged, we evaluate the t
(k)
1 , . . . , t

(k)
w of the

MIMO.L2RS scheme. We claim that these are forgeable when an attacker finds a
PPT algorithm F to solve the MSISKq,m,k,β problem. This attack can be simu-
lated using the MIMO.L2RS.Hybrid-2 shown in Algorithm 7, where tπ is directly
chosen from the distribution Dn

σ (Based on [14], Lemma 3.5).
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Algorithm 6 MIMO.L2RS.Hybrid-1

Input: {S(k)

(in),π
}k∈[Nin+1], µ, L′ as in (5), and Pub-Params.

Output: σL′ (µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
1: procedure MIMO.L2RS.Hybrid-1(S

(k)

(in),π
, µ, L′,Pub-Params)

2: for (1 ≤ k ≤ Nin + 1) do

3: Set H
(k)
2q =

(
2 ·H,−2 · h(k) + q

)
∈ R2×m

2q , where h(k) = H · S(k)

(in),π
∈ R2

q .

4: Call L2RS.Lift(A, a
(k)

(in),π
) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

(in),π
+ q) ∈ R2×m

2q .

5: Let u(k) = (u1, . . . , um)T , where ui ← Dnσ , for 1 ≤ i ≤ m.

6: Choose at random cπ+1 ← Sn,κ
.

7: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
8: for (1 ≤ k ≤ Nin + 1) do

9: Call L2RS.Lift(A, a
(k)

(in),i
) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

(in),i
+ q) ∈ R2×m

2q .

10: Let t
(k)
i = (ti,1, . . . , ti,m)T , where ti,j ← Dnσ , for 1 ≤ j ≤ m.

11: Compute ci+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i · t

(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q ·

t
(k)
i + q · ci

}
k∈[Nin+1]

)
.

12: for (1 ≤ k ≤ Nin + 1) do

13: Choose b(k) ← {0, 1}.
14: Let t(k)π ← u(k) + S

(k)
2q,π · cπ · (−1)b

(k)
, where S

(k)
2q,π = [(S(k)

π )T , 1]T .

15: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π · cπ‖
2

2σ2

)
cosh

( 〈t(k)π ,S
(k)
2q,π · cπ〉
σ2

))−1

other-

wise Restart.

16: return σL′ (µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
.

The public-key A
(k)
2q,π ∈ R

2×m
2q is generated such A

(k)
2q,π · S

(k),T
(in),π = q ∈ R2

2q,

so finding a vector v such that A
(k)
2q,π · v = 0 mod q with 0 = (0, 0)T . We denote

y = h where y is the number of times the random oracle H1 is programmed
during this attack. Then this attack is performed as follows:

1. Random coins are selected for the forger φ and signer ψ.
2. The random oracle H1 is called to generate the responses of the users in the

L2RS scheme, (c1, . . . , cw)← Sn,κ.

3. These create a SubRoutine that takes as input (A
(k)
2q,π, φ, ψ, c1, . . . , cw).

4. F is initialized and run by providing the A
(k)
2q,π and forger’s random coins φ.

5. The SubRoutine signs the message µ using the signer’s coins ψ in the
MIMO.L2RS.Hybrid-2, this produces a signature σL(µ).

6. During the signing process, F calls the oracle H1 and answers are placed in
the list (c1, . . . , cw), the queries are kept in a table in the event that same
queries are used in this oracle.

7. F is stopped and it outputs a forgery that is the SubRoutine’s result

(c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

), with negligible probability δ.

This output has to be successfully accepted by the MIMO.L2RS.SigVer algo-
rithm.

If the random oracle was not called using some input
{
A

(k)
2q,i · t

(k)
i + q ·

ci
}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i + q · ci

}
k∈[Nin+1]

, then F has 1/|Sn,κ| chances of
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producing a c such that c = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q · t(k) + q ·

c
}
k∈[Nin+1]

,
{
H

(k)
2q · t(k) + q · c

}
k∈[Nin+1]

)
. This turns out that δ − 1/|Sn,κ| be

the probability that c = cj for some j.

Algorithm 7 MIMO.L2RS.Hybrid-2

Input: {S(k)

(in),π
}k∈[Nin+1], µ, L′ as in (5), and Pub-Params.

Output: σL′ (µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
1: procedure MIMO.L2RS.Hybrid-2(S

(k)

(in),π
, µ, L′,Pub-Params)

2: for (1 ≤ k ≤ Nin + 1) do

3: Set H
(k)
2q =

(
2 ·H,−2 · h(k) + q

)
∈ R2×m

2q , where h(k) = H · S(k)

(in),π
∈ R2

q .

4: Call L2RS.Lift(A, a
(k)

(in),π
) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

(in),π
+ q) ∈ R2×m

2q .

5: Let u(k) = (u1, . . . , um)T , where ui ← Dnσ , for 1 ≤ i ≤ m.

6: Choose at random cπ+1 ← Sn,κ.
7: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
8: for (1 ≤ k ≤ Nin + 1) do

9: Call L2RS.Lift(A, a
(k)

(in),i
) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

(in),i
+ q) ∈ R2×m

2q .

10: Let t
(k)
i = (ti,1, . . . , ti,m)T , where ti,j ← Dnσ , for 1 ≤ j ≤ m.

11: Compute ci+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i · t

(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q ·

t
(k)
i + q · ci

}
k∈[Nin+1]

)
.

12: for (1 ≤ k ≤ Nin + 1) do

13: Choose b(k) ← {0, 1}.

14: Choose t(k)π ← Dn×mσ

15: Continue with probability
1

M
otherwise Restart.

16: return σL′ (µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
.

Forgery 1. Let’s consider the situation that cj+1 is the result after using F
which is cj+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ′,
{
A

(k)
2q ·t′(k) +q·cj

}
k∈[Nin+1]

,
{
H

(k)
2q ·

t′(k) +q ·cj
}
k∈[Nin+1]

)
. Then by comparing this with a legitimate signature, we

have:

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q · t(k) + q · cj

}
k∈[Nin+1]

,
{
H

(k)
2q · t(k) + q ·

cj
}
k∈[Nin+1]

)
= H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ′,
{
A

(k)
2q ·t′(k)+q·cj

}
k∈[Nin+1]

,
{
H

(k)
2q ·

t′(k) + q · cj
}
k∈[Nin+1]

)
F will find a preimage of cj if µ 6= µ′ or A

(k)
2q ·t(k) +q ·cj 6= A

(k)
2q ·t′(k) +q ·cj

or H
(k)
2q · t(k) + q · cj 6= H

(k)
2q · t′(k) + q · cj . Then, we have with overwhelming

probability that µ = µ′ and A
(k)
2q · t(k) + q · cj = A

(k)
2q · t′(k) + q · cj and

H
(k)
2q · t(k) + q · cj = H

(k)
2q · t′(k) + q · cj . These equalities will result in:

A
(k)
2q (t(k) − t′(k)) = 0 mod q and H

(k)
2q (t(k) − t′(k)) = 0 mod q. We assume that

both t and t′ are different and they met the MIMO.L2RS.SigVer conditions, so
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it yields t− t′ 6= 0 mod q, and ‖t− t′‖ ≤ 2βv.

Forgery 2. In this scenario, we assume that the MIMO.L2RS scheme can be
forged by an attacker F as it was presented in the Forgery 1 and obtain cj ,
then another attacker can generate (c′j , . . . , c

′
w) ← Sn,κ by replaying the first

attack and using same message µ. We use the forking lemma [4] to show the
probability of cj = c′j and the forger uses an oracle response c′j is at least:(

δ − 1
|Sn,κ|

)
·

(
δ− 1
|Sn,κ|
y − 1

|Sn,κ|

)
(31)

Therefore, with the probability (31), F creates a signature σL(µ) =(
c′1,
{
t
′(k)
1 , . . . , t

′(k)
w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
where A

(k)
2q · t(k) + q · cj = A

(k)
2q ·

t′(k) + q · cj and H
(k)
2q · t(k) + q · cj = H

(k)
2q · t′(k) + q · cj . We now obtained:

A
(k)
2q ·(t(k)−t

′(k)) = q(cj−c′j) mod 2q and H
(k)
2q ·(t(k)−t

′(k)) = q(cj−c′j) mod 2q.

Since cj − c′j 6= 0 mod 2, so in both equations, we have t(k) − t
′(k) 6= 0 mod 2q

where ‖t(k) − t
′(k)‖∞ < q/2. By applying modq reduction, we find a small non-

zero vector v(k) = t(k) − t
′(k) 6= 0 mod q. This v(k) will compute A

(k)
2q · v(k) =

0 mod q and H
(k)
2q · v(k) = 0 mod q with ‖v(k)‖ ≤ 2βv. Since v(k) is same for

both A
(k)
2q and H

(k)
2q , we only use the former to continue this analysis. We say

that A
(k)
2q mod q = 2(A,−a(k)) mod q, then 2(A,−a(k))v(k) = 0 mod q, this im-

plies that (A,−a(k))v(k) = 0 mod q, since q is odd. The probability of success
of an attacker in MIMO.L2RS.Hydrid-3 differs by a negligible amount from the
success probability in MIMO.L2RS.KeyGen and is thus non-negligible. Therefore,
this vector v will be a solution to the MSISKq,m,k,β problem, where β = 2βv,

with non-negligible probability and with respect to (A,−a(k)) over R2
q. Fur-

thermore, notice that MIMO.L2RS.Hybrid-2 shown in Algorithm 7 no longer uses

the private-key S(k)
π , except for generating A

(k)
2q,π and H

(k)
2q to obtain the final

MSISKq,m,k,β solution. For A
(k)
2q,π, we modified the MIMO.L2RS.KeyGen algorithm

with the MIMO.L2RS.Hydrid-3 game shown in Algorithm 8, where the public-key

a(k) is uniformly and randomly taken as a(k) ← R2
q. On the other hand, for H

(k)
2q ,

we chose the linking taq uniformly and randomly as h(k) ← R2
q. By the argu-

ment of the Leftover Hash Lemma (LHL) - Lemma 4 and our assumption that√
q4n

2(γ+1)·(m−1)·n is negligible in n.
ut

G MIMO.L2RS - Security Analysis - Anonymity

Proof. We prove the anonymity of this scheme using the sequence-of-games ap-
proach [33] where we make changes between successive games. In doing so, we
use the “transition based on indistinguishability”. We can start this analysis by:
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Algorithm 8 MIMO.L2RS.Hybrid-3 (a,S)

Input: Pub-Param: A.
Output: (a,S), being the public-key and the private-key, respectively.
1: procedure MIMO.L2RS.hybrid-3(A)

2: Let ST = (s1, . . . , sm−1) ∈ R1×(m−1)
q , where si ← (−2γ , 2γ)n, for 1 ≤ i ≤ m−1

3: Choose a←R2
q

4: return (a,S).

Game 0: Suppose that an attacker A is given the list of pk’s L =

{a(k)
0 ,a

(k)
1 }k∈[Nin+1], the signature σL(µ), message µ, and the random oracle

model (H1). The key generation algorithm creates the pair of users’ keys in

this ring signature: Private-Keys← {S(k)
0 ,S

(k)
1 }k∈[Nin+1] and the Public-Keys←

(a
(k)
0 ,a

(k)
1 ); a user b is chosen uniformly at random from the list L = {a(k)

0 ,a
(k)
1 },

then the signature σL(µ) = MIMO.L2RS.SigGen(S
(k)
b , µ, L,Pub-Param) is gener-

ated. So in Game 0, a PPT adversary A outputs a guess b′ ∈ {0, 1}; thus
in the event Game 0, A succeeds in breaking ambiguity Game 0(b = b′) if
Pr[Game 0] ≤ 1

2 + non− negl(λ).

Game 1: Changes in this game are made to the user π in the second part of
the linkability tag h(k) = (H · S(k)) ∈ R2

q, in signature of user π, and public-

key a(k) = (A · S(k)) ∈ R2
q in the MIMO.L2RS.KeyGen algorithm. The h(k)

and a(k) are now randomly chosen from R2
q. We claim that |Pr[Game 0] −

Pr[Game 1]| ≤ εLHLG1
.

Where εLHLG1
is the advantage of some efficient algorithm which is negligible.

In both cases h(k) = (H · S(k)) ∈ R2
q and a(k) = (A · S(k)) ∈ R2

q, we know that

H and A are uniform and S(k) is chosen small and with coefficients in (−2γ , 2γ).

When S(k) is multiplied by H and A respectively, it gives h(k) and a(k) that
are close to uniform over R2

q . By applying the Leftover Hash Lemma (LHL)

- Lemma 4, the statistical distance between the distribution of (h(k) mod q
and a(k) mod q) and the uniform distribution on R2

q × R2
q is at most n · 1

2 ·√
q4n

2(γ+1)·(m−1)·n . We conclude that in Game 1:

|Pr[Game 0]− Pr[Game 1]| ≤ n · 1
2 ·
√

q4n

2(γ+1)·(m−1)·n . (32)

Game 2: This time a change is made in the second part of the remaining public-
keys ai (1 ≤ i ≤ w, i 6= π) which are in the ring signature list L. They are now

randomly chosen as a
(k)
i ← R2

q. It turns out that |Pr[Game 1]−Pr[Game 2]| ≤
εLHLG2

.
Where εLHLG2

is the advantage of some efficient algorithm which is negligible.

We consider that for (i = 1 to w where i 6= π), we know that a
(k)
i = (A·S(k)

i mod
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q) are uniform and all S
(k)
i ’s are chosen small with coefficients in (−2γ , 2γ).

When the S
(k)
i ’s are multiplied by Ai’s, it gives (a

(k)
i mod q)’s that are close to

uniform over R2
q. By applying the Leftover Hash Lemma (LHL) - Lemma 4,

the statistical distance between the distribution of the (A ·S(k)
i mod q)’s and the

uniform distribution on R2
q ×R2

q is at most n · 1
2 ·
√

q2n

2(γ+1)·(m−1)·n · (w− 1). So in

Game 2, we conclude that:

|Pr[Game 1]− Pr[Game 2]| ≤ n · 1
2 ·
√

q2n

2(γ+1)·(m−1)·n · (w − 1). (33)

Game 3: At this time, we make a change in cπ+1. Instead of program-

ming the oracle as H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π · u(k)

}
k∈[Nin+1]

,
{
H

(k)
2q ·

u(k)
}
k∈[Nin+1]

)
, it is now randomly chosen cπ+1 ← Sn,κ. We have that

|Pr[Game 2] − Pr[Game 3]| ≤ εG3 where εG3 is the advantage of some
efficient algorithm which is negligible. This scenario outputs a signature

σL′(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
and programs the oracle

as H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π · u(k)

}
k∈[Nin+1]

,
{
H

(k)
2q · u(k)

}
k∈[Nin+1]

)
=

cπ+1. Then, the adversary A makes h queries to H1; so the distinguishing ad-
vantage of the signing algorithm and the one in Game 2 is at most h · 2−n+1.
We conclude that in Game 3:

|Pr[Game 2]− Pr[Game 3]| ≤ h · 2−n+1. (34)

Game 4: In this game a change is made in t
(k)
π . Namely, instead of computing

it as u(k) + S
(k)
2q,π · cπ · (−1)bit, it is now directly chosen from the Gaussian

distribution Dn
σ . It is argued that |Pr[Game 3]− Pr[Game 4]| ≤ εRSG4

.

Where εRSG4
is the advantage of some efficient algorithm which is negligible.

In previous Games, t
(k)
π is computed using rejection sampling - Lemma 1, thus

it is always sample from the Gaussian distribution Dn
σ . In this Game, however,

t
(k)
π is directly chosen from Dn

σ , this means that the advantage εRSG4
will be zero

as in both Game 3 and Game 4, t
(k)
π is having same distribution. In Game

4, we have:

|Pr[Game 3]− Pr[Game 4]| = 0. (35)

Game 5: Finally, in the Game 5, a change is made in the index π. Namely,
instead of choosing π + 1, it will be randomly chosen (1, . . . , w). We claim that
|Pr[Game 4]−Pr[Game 5]| ≤ εG5 where εG5 is the advantage of some efficient
algorithm which is negligible. In this Game 5, we consider that when π is
replaced by a fixed d, it might produce some collisions with previous queries to
the oracle H1; saying this, the adversary A may make h queries to H1; therefore,
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the distinguishing advantage of the signing algorithm between Game 4 and this
Game 5 is at most h · 2−n+1 · w. Finally, in Game 5 we have:

|Pr[Game 4]− Pr[Game 5]| ≤ h · 2−n+1 · w. (36)

We also conclude that in Game 5, the adversary’s view is statistical independent
of π, thus Pr[Game 5] = 1

w .
Combining the probabilities of the above games (32), (33), (34), (35) and (36)
we obtain:

|Pr[Game 5]− Pr[Game 0]| ≤ |Pr[Game 1]− Pr[Game 0]|+ |Pr[Game 2]−
Pr[Game 1]|+ |Pr[Game 3]− Pr[Game 2]|+ |Pr[Game 4]− Pr[Game 3]|+
|Pr[Game 5]− Pr[Game 4]|.

By replacing the resulting probabilities, we have:

|Pr[Game 5]− Pr[Game 0]| ≤ 1

w
− 1

2
+ ε, (37)

which means that |Pr[Game 5]−Pr[Game 0]| ≤ ε, which itself is smaller than

n · (w − 1)

2
·

(√
q4n

2(γ+1)·(m−1)·n +

√
q2n

2(γ+1)·(m−1)·n

)
+ h · 2−n+1 · (1 + w).

We notice that since h and w are polynomial in n, we get h·2−n+1 ·(1+w) is neg-

ligible in n. In addition, we can say that

(√
q4n

2(γ+1)·(m−1)·n +
√

q2n

2(γ+1)·(m−1)·n

)
≤ 2·√

q4n

2(γ+1)·(m−1)·n , which is negligible by the assumption that
√

q2n

2(γ+1)·(m−1)·n is also

negligible. Hence we conclude that ε is negligible, meaning that Pr[Game 0] ≤
1
2 + ε. ut

H MIMO.L2RS - Security Analysis - Linkability

Proof. We construct the algorithm B for the MSISKq,m,k,β problem. This algo-
rithm runs the linkability attack game (Def. 11) as follows:

1. B generates using the MIMO.L2RS.KeyGen algorithm all private-keys S
(k)
i ’s

with the corresponding public-keys a
(k)
i ’s, then B gives S(k)

π to the attacker
A as a response to the attacker’s CO query.

2. A outputs two signatures σL(µ1) and σ′L′(µ
′) along with their correspond-

ing lists L and L′ such that both signatures are successfully verified by

MIMO.L2RS.SigVer, but the linkability tags are different h(k)
µ1
6= h

(k)
µ′ with

k ∈ [Nin].
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3. B computes h(k)
µπ = H · S(k)

π mod q, where π is the true signer’s π linkability

tag. This h(k)
µπ tag can then be compared with the linkability tags h(k)

µ1
and

h
(k)
µ′ , output by A, in step 2, and one of them will be different.

4. Without loss of generality, suppose h(k)
µ1
6= h(k)

µπ mod q. Using the forking
lemma [4], B rewinds the attacker A to the H1 query corresponding to
the MIMO.L2RS.SigVer of the signature σL(µ1). B reruns A with a dif-
ferent response of H1 and ultimately gets another signature: σL(µ2) =(
c1,µ2

,
{
t
(k)
1,µ2

, . . . , t
(k)
w,µ2

}
k∈[Nin+1]

,
{
h(k)
µ2

}
k∈[Nin]

)
. This second signature is

used to extract a solution to the MSISKq,m,k,β problem, in case the A finds
an efficient way to unlink these signatures, as shown in step 7.

5. The adversary A matches the challenge message of both signatures where

H
(k)
2q,µ1

and A
(k)
2q,w,µ1

are kept. Thus we have:

(a) A
(k)
2q,w,µ1

· t(k)
w,µ1 + q · cw,µ1

= A
(k)
2q,w,µ1

· t(k)
w,µ2 + q · cw,µ2

,

(b) H
(k)
2q,µ1

· t(k)
w,µ1 + q · cw,µ1 = H

(k)
2q,µ1

· t(k)
w,µ2 + q · cw,µ2

.
These expressions can be represented as:
(a) A

(k)
2q,w,µ1

· (t(k)
w,µ1 − t

(k)
w,µ2) = q · (cw,µ2 − cw,µ1),

(b) H
(k)
2q,µ1

· (t(k)
w,µ1 − t

(k)
w,µ2) = q · (cw,µ2

− cw,µ1
).

Reducing them modq we have (if (cw,µ2 − cw,µ1) 6= 0 mod 2):

(a) A
(k)
2q,w,µ1

· (t(k)
w,µ1 − t

(k)
w,µ2) = 0 mod q,

(b) H
(k)
2q,µ1

· (t(k)
w,µ1 − t

(k)
w,µ2) = 0 mod q.

We denote by t
′(k)
w,µ1 , the first (m− 1) ring elements in t

(k)
w,µ1 and by t

′′(k)
w,µ1the

m-th ring element in t
(k)
w,µ1 , i.e. t

(k)
w,µ1 − t

(k)
w,µ2 =

(
t
′(k)
w,µ1 − t

′(k)
w,µ2

t
′′(k)
w,µ1 − t

′′(k)
w,µ2

)
∈ Rmq , and

using the public-key and linkability parts, we have:
(a) 2 ·A · (t′(k)

w,µ1 − t
′(k)
w,µ2) = −2 · a(k) · (t′′(k)

w,µ1 − t
′′(k)
w,µ2),

(b) 2·H·(t′(k)
w,µ1−t

′(k)
w,µ2) = −2·h(k)

µ1
·(t′′(k)

w,µ1−t
′′(k)
w,µ2), where h(k)

µ1
, H·S(k)

π ∈ R2
q.

6. We let S̄
(k)

=
(t′(k)w,µ1

−t′(k)w,µ2
)

(t
′′(k)
w,µ1

−t′′(k)w,µ2
)

mod q where (t
′′(k)
w,µ1 − t

′′(k)
w,µ2) 6= 0 mod q. We

distinguish two cases:

(a) If S̄
(k) 6= S(k)

π mod q, since we have A · S̄(k)
= A · S(k)

π = a(k) mod q,

then (S̄
(k) − S(k)) is a small non-zero vector MSISKq,m,k,β solution for

A ∈ R2×(m−1)
q .

(b) If S̄
(k)

= S(k)
π mod q, then h(k)

µ1
= H · S̄(k)

mod q = H · S(k)
π mod q.

The target is to show that h(k)
µ1

= h(k)
µπ mod 2 and h(k)

µ1
= h(k)

µπ mod q. If

so, then we have h(k)
µ1

= h(k)
µπ mod 2q, which is a contradiction with our

assumption at step 4 of this proof. We now prove the first target:

h(k)
µ1

= −2 · h′(k)
µ1

+ q = 1 mod 2 = −2 ·H · S(k)
π + q = h(k)

µπ ,

where the first and the last equalities follow from definition of h(k) in
second line of Algorithm 2. To show the second target, we have

h(k)
µ1

= −2 · h(k)
µ1

+ q = −2 · h(k)
µ1

mod q
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= −2 ·H · S̄(k)
mod q = −2 ·H · S(k)

π mod q = h(k)
µπ ,

where the first and the last equalities follow from definition of h(k) in
second line of Algorithm 2 and the middle equality is true based on the
argument at the beginning of step (6.b).

7. Since (cw,µ2
− cw,µ1

) 6= 0 mod 2, we have (t
(k)
w,µ1 − t

(k)
w,µ2) 6= 0 mod 2q. In

addition, we know that ‖t(k)
w,µ1 − t

(k)
w,µ2‖∞ < q/2, which implies that (t

(k)
w,µ1 −

t
(k)
w,µ2) 6= 0 mod q. Ultimately, we have A · (t(k)

w,µ1 − t
(k)
w,µ2) = 0 mod q and

‖(t(k)
w,µ1−t

(k)
w,µ2) mod q‖ ≤ 2βv. Therefore, this small non-zero vector (t

(k)
w,µ1−

t
(k)
w,µ2) is the output of the algorithm B, and this vector is a solution to the

MSISKq,m,k,β problem with β = 2βv for a(k) ∈ R2
q.

ut

I MIMO.L2RS - Security Analysis - Non-Slanderability

Proof. Let’s suppose there is a non-slanderability adversary ASland who is given
pki, ski, i 6= π, and i ∈ {1, . . . w}, and he produces a valid signature σ′L(µ) with
linkability tag hσ′L(µ) which is equal to hσL(µ), σL(µ) being the legitimate sig-
nature generated with respect to skπ. This means that ASland can create a
signature with the linkability tag hσL(µ) without knowing skπ. The adversary
can also compute a valid σ′′L(µ) with ski, i 6= π, and i ∈ {1, . . . w} for which
hσ′′L(µ) 6= hσ′L(µ). We give (σ′′L(µ), σ′L(µ)) to the forger, which can turn it to an

MSISKq,m,k,β solution. In particular, it will be computationally secure when two
valid signatures created by different users are unlinked using the L2RS algo-
rithms. An adversary A will break these properties with negligible probability
as demonstrated in Theorems (9 and 11), and with these probabilities the A
will find a MSISKq,m,k,β solution. Therefore, non-slanderability is implied by the
definitions of the unforgeability (Def. 9) and linkability (Def. 11), and security
analysis, (Appendix F) and (Appendix H), respectively. ut


