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Abstract. Abelian secret sharing schemes (SSS) are generalization of
multi-linear SSS and similar to them, abelian schemes are homomorphic.
There are numerous results on linear and multi-linear SSSs in the litera-
ture and a few ones on homomorphic SSSs too. Nevertheless, the abelian
schemes have not taken that much attention. We present three main re-
sults on abelian and homomorphic SSSs in this paper: (1) abelian schemes
are more powerful than multi-linear schemes (we achieve a constant fac-
tor improvement), (2) the information ratio of dual access structures are
the same for the class of abelian schemes, and (3) every ideal homomor-
phic scheme can be transformed into an ideal multi-linear scheme with
the same access structure.
Our results on abelian and homomorphic SSSs have been motivated by
the following concerns and questions. All known linear rank inequities
have been derived using the so-called common information property of
random variables [Dougherty, Freiling and Zeger, 2009], and it is an open
problem that if common information is complete for deriving all such
inequalities (Q1). The common information property has also been used
in linear programming to find lower bounds for the information ratio
of access structures [Farràs, Kaced, Molleví and Padró, 2018] and it is
an open problem that if the method is complete for finding the optimal
information ratio for the class of multi-linear schemes (Q2). Also, it was
realized by the latter authors that the obtained lower bound does not
have a good behavior with respect to duality and it is an open problem
that if this behavior is inherent to their method (Q3).
Our first result provides a negative answer to Q2. Even though, we are
not able to completely answer Q1 and Q3, we have some observations
about them.

Keywords: Secret sharing· Information theory · Linear rank inequality
· Homomorphic secret sharing · Duality.

1 Introduction

A secret sharing scheme (SSS) [15, 51] is used to share a secret among a set of
participants by giving a share to each one. The most common security definition
of a SSS is that of prefect realization. In a perfect scheme, only certain pre-
specified subsets of participants are qualified to recover the secret. Every other
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subset of participants must not gain any information on the secret. The set of
all qualified subsets is called an access structure [39].

The most common type of SSS is the class of multi-linear schemes. In these
schemes, the secret is composed of some finite field elements and the sharing is
done by applying some fixed linear mapping on the secret elements and some
randomly chosen elements from the finite field. When the secret is a single field
element, the scheme is called linear in the literature.

A SSS is said to be ideal if every participants share size is equal to the secret
size. An access structure is said to be ideal if it admits a (perfect) ideal scheme.
Ideal access structures are the most desirable ones, since in perfect SSSs every
share size is at least as large as the secret size [44]. Ideal SSSs are closely related
to matroids and this connection was realized in early seminal works [17, 18, 50].
Classification of ideal access structures, except in very few cases (e.g., [1,18]), is
still an open problem.

The efficiency of a SSS is measured by its information ratio, defined as the
ratio between the largest share size (entropy) and the secret size. The information
ratio of an access structure is the infimum of all information ratios of all SSSs for
that access structure. Computation of the optimal information ratio has turned
out to be a challenging problem.

There is a natural notion of duality for access structures [40] and more gen-
erally access functions [27]. The relation between the information ratios of dual
access structures is a long standing open problem. This problem is even open
for the class of ideal access structures. However, it is known that the informa-
tion ratios of dual access structures are the same for the class of multi-linear
SSSs [40].

Several techniques have been devised for finding lower bounds for the infor-
mation ratio of access structures during the past three decades. One important
category of such techniques employs the so-called information inequalities to
derive a lower bound, which applies to general SSSs. This method was first used
by Capocelli, De Santis, Gargano and Vaccaro [19] and was later refined and
formalizes by Csirmaz in [21]. It was noticed in [12] that, by taking into account
the linear rank inequalities [25, 38], instead of the so-called non-Shanon type
information inequalities [57], a lower bound can be found for multi-linear SSSs.

A SSS is said to be homomorphic [14], if the secret and share spaces have
group structures and, additionally, it has the following property: the product of
the shares of a participant produces a share for the product of their correspond-
ing secrets. Our understanding of homomorphic SSSs is very limited and their
characterization, even for the case of ideal homomorphic schemes, is an open
problem. A few results are known about homomorphic SSSs. Frankel, Desmedt
and Burmester [30] have proved that the secret space of every homomorphic
scheme is an abelian group. In a subsequent work, Frankel and Desmedt [29]
showed that, when the scheme is ideal, the share spaces are all isomorphic to the
secret space, and hence abelian too. In a recent work [42], it has been proved that
homomorphic SSSs are equivalent to the so-called group-characterizable random
variables with normal subgroups, which will be defined in next paragraph.
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Secret sharing as random variables. A SSS is usually defined as a proba-
bilistic algorithm that given the secret computes the shares. By considering a
probability distribution on the secret space, a SSS can equivalently be considered
as a joint distribution of the secret and shares. In this paper, we study different
classes of SSSs as special cases of random variables. In particular, all classes of
SSSs which are studied in this paper (including multi-linear, abelian and homo-
morphic) can be considered as subclasses of group-characterizable random vari-
ables. A group-characterizable random variable, introduced by Chan and Yeung
in [20], is a vector of jointly distributed random variables pgG1, . . . ,gGnq on the
left cosets of subgroups G1, . . . , Gn of a finite group G, called the main group,
where g is a uniform random variable on G. We say that a group-characterizable
scheme is multi-linear if the main group is a vector space. This definition is
equivalent to two other more common definitions of multi-linear SSS in the liter-
ature1. It is called abelian if the main group is abelian. Furthermore, homomor-
phic schemes are equivalent to group-characterizable schemes whose subgroups
are normal in the main group [42]. Therefore, multi-linear schemes are abelian
and abelian schemes are homomorphic.

On the power of different classes of schemes. Simonis and Ashikhmin [52]
have shown that multi-linear SSSs are more powerful than linear schemes by
studying the access structure induced by the Non-Pappus matroid. The first
indication of superiority of general schemes to linear schemes was provided by
Beimel and Ishai [9] as their result was valid assuming some plausible number-
theoretic assumption holds true. Later, Beimel and Weinreb [13] proved the
result without relying on any assumption. To the best of our knowledge, there
is no result on the power of abelian and homomorphic SSSs; nor any result on
superiority of general secret sharing to multi-linear schemes.

1.1 Motivations and results

The contributions of this paper have been inspired by the following two main
motivations.

First motivation. A linear rank inequality (LRI) [38] is an inequality of the
form

ř

A cAHpXAq ě 0 that holds for every linear random variable pX1, . . . ,Xnq

where XA “ pXiqiPA, H is the Shannon entropy function, and cA’s are real coef-
ficients. All Shannon type information inequalities are LRIs and the first example
of non-Shannon type LRI was found by Ingleton [38] in 1971. LRIs can be used
to provide lower bounds on the information ratio for the class of multi-linear
SSSs. Dougherty, Freiling and Zeger [25] have used the so-called common infor-
mation (CI) property of random variables—first defined by Gács and Körner [31]
in 1973—to develop a method for deriving LRIs, which is called the DFZ method
in this paper. All known LRIs have been derived using the DFZ method. The
1 One definition is based on a collection of linear maps and the other one is the so-

called (multi-target) monotone span program [43].
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DFZ method has successfully derived all LRIs up to five variables [25] and so far
millions of LRIs on six variables [24] have been found. The following question
has been explicitly raised in the conclusion of [25]: Is the DFZ method complete
for determining all linear rank inequalities?

A related question can be asked in the context of SSSs. In Eurocrypt 2018 [28],
Farràs, Kaced, Molleví and Padró used the CI property in a clever way in an im-
proved linear programing and introduced a new lower bound technique, which we
call FKMP method in this paper. The obtained lower bound by FKMP method
applies not only to multi-linear SSSs, but also to a larger class that includes the
abelian schemes. Using the FKMP method, the authors were able to determine
the optimal “multi-linear information ratio”2 of several small access structures
which had remained open for a long time. The following question is then natural
to ask: Is the FKMP method complete for determining the optimal multi-linear
information ratio of access structures?

We noticed that in order to show the incompleteness of the FKMP method,
it is enough to show that abelian SSSs are superior to multi-linear schemes.
However, the incompleteness of the DFZ method remains unanswered.

First result. We prove that abelian SSSs (in particular mixed-linear ones to
be defined below) outperform multi-linear schemes. Consequently, the FKMP
method is incomplete for computing the optimal multi-linear information ratio
of access structures. We remark that we achieve only a constant factor gain and
it remains open if the class of abelian schemes contains schemes except for mix-
linear schemes, or a supper constant gain can be achieved. Note that historically
many improvements have first been achieved only with constant gain and much
later supper constant gains have been derived (one notable example is the case
of multi-linear secret sharing which will be discussed in Section 1.3).

We construct abelian schemes by mixing several multi-linear SSSs, possibly
with different field characteristics, and we refer to such schemes as mixed-linear.
The share space of a mixed-linear scheme is the product of the share spaces of
the underlying multi-linear schemes. To share a secret, we share each component
independently using its corresponding multi-linear scheme. Mixed-linear schemes
are abelian.

It remains open if there is any better way to construct abelian schemes; that
is, if abelian SSSs could be superior over mixed-linear schemes. This problem
will be formalized using the concept of convec set for access structures. Convec
is short for contribution vector and the convec of a SSS is a vector formed by all
participants share sizes divided by the secret size. The convec set of an access
structure contains convecs of all perfect SSSs realizing the access structure. It is
a more general parameter than the information ratio and, as we will see in the
paper, it is useful for studying the entropy region [57].

2 By the multi-linear (resp. abelian) information ratio of an access structure, we mean
its information ratio when restricted to the class of multi-linear (resp. abelian)
schemes.
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Second motivation. Despite the fact that dual access structures have the
same multi-linear information ratio, the authors of [28] sometimes had to apply
the FKMP method to the dual of an access structure as well. The reason was
that the technique did not result in the same value for dual access structures.
Consequently, it was left open if the FKMP method has a good behavior with
respect to duality or not. In other words, it was left open if the misbehavior is
inherent to the method. A potential negative answer can be justified due to the
following fact. The FKMP method integrates the properties of the CI of random
variables in a linear programing for computing a lower bound on the information
ratio. Therefore, the bound applies not only to multi-linear SSSs but also to any
class of schemes that satisfies the CI property. The CI property is known to hold
for abelian schemes too [28, Remark 3.7]. In this paper, using properties of finite
groups, we identify a subclass of group-characterizable schemes that satisfies the
CI property; additionally, we show that the homomorphic schemes are included
in this class. That is, the CI property holds not only for abelian, but also for
homomorphic schemes and even larger classes. It is then natural to ask the
following two questions: Do the dual access structures have the same information
ratios for the class of abelian schemes? How about the class of homomorphic
schemes? A negative answer to any of these questions would be a proof of
inherent misbehavior of the FKMP method with respect to duality. Even though
we do not have much to say about the duality of homomorphic SSSs (except for
the case of ideal schemes which follows by our third result), we show that the
answer is positive for duality of abelian SSSs.

Second result. We extend the result on duality of multi-linear secret sharing [27,
40] to the class of abelian schemes. In other words, we show that the abelian
information ratios of dual access structures are the same.

As we mentioned above, it remains open if our result on duality of abelian
schemes can be extended to homomorphic schemes. However, we show that the
duality of homomorphic schemes holds for the special case of ideal homomorphic
schemes. In particular, we prove the following result which is of independent
interest (note: it is a long standing open problem if any ideal scheme can be
converted into an ideal multi-linear scheme with the same access structure [52]).

Third result. Every ideal homomorphic SSS can be (constructively) transformed
into a multi-linear ideal SSS for the same access structure.

As we mentioned above, it remains open if abelian schemes are superior over
mixed-linear schemes. It also remains open if homomorphic schemes are superior
over abelian schemes. If the answer to any of these problems is negative, we will
show that the DFZ method is not complete for deriving all LRIs.
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1.2 Ideas and techniques

The results of this paper are based on—but not limited to—the following main
ideas and techniques.

– A new lower bound technique. Our main idea to achieve our first result—
i.e., superiority of abelian SSSs to mixed-linear ones—is to look for an access
structure whose multi-linear information ratio depends on the characteristic
of the underlaying finite field. To this end, we develop a new lower-bound
technique that can be applied to multi-linear schemes over finite fields with
a specific characteristic. We then apply our method to the Fano and non-
Fano access structures and determine the exact value of their characteristic-
dependent information ratios. Next, we consider the union of Fano and non-
Fano access structures, which is a well-known 12-participant access structure
and has already been studied in [11, 47]. It is non-ideal, but its information
ratio is one and there is no result on its multi-linear information ratio. We
determine the exact value of its multi-linear and mixed-linear information
ratios. The latter one turns out to be smaller than the first one; therefore, an
upper bound on its abelian information ratio is found too. To the best of our
knowledge, none of the known techniques in the literature—including [13]
which also takes the characteristic into account—could have been used to
achieve our result.
Our lower bound technique is purely algebraic. Two linear algebraic lemmas,
that we call the minimal subspace lemma (Lemma 4.1) and the kernel lemma
(Lemma 4.3), in companion with other concepts from linear algebra, lie at
the heart of our method. To derive a non-trivial lower bound, we consider
a collection of minimal subspaces, associated to different minimal qualified
sets, and use certain notions from linear algebra to show that the sum of
dimensions of their intersections has a non-trivial upper bound. To do this,
often the characteristic of the underlying finite field plays a crucial role.

– An equivalent definition of abelian schemes. A multi-linear SSS is
often defined as a collection of linear maps in the literature that produces
the shares using the secret and randomness as inputs. The authors of [27]
employ this definition to prove the duality of multi-linear SSSs. However,
extending their proof to the class of abelian schemes is not straightforward
at a first glance. Also, working with the above-mentioned definition of an
abelian random variable (i.e., as a group-characterizable random variable
whose main group is abelian) seems an obstacle to advance. To achieve our
result, using the notion of Pontryagin duality in group theory, we will first
provide an equivalent definition of abelian random variables which is much
easier to work with. Our definition is a generalization of the method that
has been used in [37] to construct a linear random variable based on a given
collection of subspaces of a vector space. Then, using properties of Pontryagin
duality, we prove that the information ratios of dual access structures are
the same for the class of abelian schemes.

– Building on old results on homomorphic schemes. We revisit the
results by Frankel, Desmedt and Burmester [29, 30] on homomorphic secret
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sharing, which was presented in 1992. Using concepts form abstract and
linear algebra, we then transform an ideal homomorphic scheme—in a non-
trivial way—into an ideal multi-linear one with the same access structure.

1.3 Related work and known results

We are not aware of any significant result regarding duality of secret sharing
schemes and common information property in the literature except those men-
tioned earlier. In this section, we discuss other important relevant results.

On known lower bound techniques. There are mainly two different ap-
proaches for determining a lower bound on the information ratio of an access
structure.

The first one is based on the properties of entropy of random variables. The
so-called Shannon-type information inequalities, were first used by Capocelli, De
Santis, Gargano and Vaccaro [19] due to the connection between Shannon en-
tropies and polymatroids. The method was later refined by Csirmaz [21], using
which he could prove his well-known Ωpn{ log nq lower bound on information
ratio. It was further improved in [12] by taking into account the so-called non-
Shannon-type information inequities [57] for general secret sharing or linear rank
inequalities [25, 38] for multi-linear secret sharing schemes. The recent modifi-
cation by Farràs, Kaced, Molleví and Padró [28] takes advantage of the non-
Shannon-type information inequalities implicitly by using the so-called Ahlswede-
Körner [23] and common information [25] properties, for deriving lower bounds
on general and abelian secret sharing, respectively. All above methods find a
lower bound for arbitrarily long secrets but it fails to work for restricted situa-
tions (e.g., for a specific secret space size or a specific field characteristic3).

The second method has mainly been used to derive lower bound on linear
secret sharing schemes (with [7] being an exception which also works for multi-
linear schemes). This method is based on counting and combinatorial-algebraic
arguments, first introduced by Beimel, Gál and Paterson [8], based on the equiv-
alence of secret sharing schemes and monotone span programs [43]. This method
has been mainly applied to linear secret sharing (i.e., when the secret is a single
field element) and was refined in [4, 5]. It was further improved by Gál in [32],
based on combinatorial-algebraic ideas of Raz [49], to prove a Ωpnlognq lower-
bound. Building on ideas from [33], Gál’s lower-bound was later shown in [6] to
hold for multi-linear secret sharing as well. An exponential lower bound on lin-
ear secret sharing has been recently proved in [48] along the same lines. Lower
bounds, merely based on counting arguments, have also been applied to the

3 We remark that examples of characteristic-dependent linear rank inequalities exists
in the literature [16, 26], however, we were not able to successfully apply them to
Fano and non-Fano access structures in an automated linear programing. This was
not very surprising because already it had been realized that the success of direct
use of linear rank inequities in linear programs is quite limited, and actually it was
for this reason that the CI method [28] was introduced.
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class of forbidden graph access structures [54] and their generalization known as
uniform access structures [1, 10,45], respectively, in [7] and [3].

We emphasize that none of these methods can be used for our purposes. In
particular, even though the method used in [13] also takes the characteristic of
the underlying finite field into account, it can not be applied to a specific access
structure. On the other hand, this method is algebraic-combinatorial and only
works for linear schemes. It is not even clear if it can be extended to multi-linear
schemes, let alone proving superiority of abelian schemes to multi-linear ones.

On the power of different classes of schemes. Our results show that mixed-
linear (and hence general) secret sharing schemes are superior to multi-linear
schemes. To the best of our knowledge, there is not result in the literature proving
superiority of general schemes to multi-linear ones.

Simonis and Ashikhmin [52] have shown that multi-linear secret sharing is
more powerful than linear secret sharing by studying the access structure induced
by the Non-Pappus matroid. The achieved gain was a constant factor and a
super-constant gain has been quite recently achieved in [2] (see [1] for a follow-
up).

The first indication of superiority of general schemes to linear schemes was
provided by Beimel and Ishai [9] (see [55] for a follow-up) as their result was valid
assuming some plausible number-theoretic (or complexity-theoretic) assumption
holds true. Later, Beimel and Weinreb [13] proved the result without relying on
any assumption. This result also follows by recent developments in secret sharing
via the connection between the class of forbidden graph access structures and
the CDS primitive [35], by Liu, Vaikuntanathan and Wee [46]. Applebaum and
Arkis [1] have further discussed the power of amortization in secret sharing.

On homomorphic secret sharing. The notion of homomorphic secret sharing
scheme was introduced by Benaloh [14]. Very little is known about homomorphic
secret sharing schemes. Frankel, Desmedt and Burmester [30] have proved that
the secret space of every homomorphic scheme is an abelian group. In a sub-
sequent work, Frankel and Desmedt [29] have shown that, when the scheme is
ideal, the share spaces are all isomorphic to the secret space, and hence abelian
too. Additionally, they have proved that there exist infinitely many abelian
groups over which there does not exist an ideal homomorphic scheme. In a re-
cent work [42], it has been proved that homomorphic schemes are equivalent to
group-characterizable schemes with normal subgroups.

1.4 Paper organization

In Section 2, we study the group-characterizable random variables, identify a
subclass of them that satisfies the CI property, and provide equivalent defini-
tions for abelian random variables. Basics of SSSs and simplified definitions for
linear and abelian schemes are presented in Section 3. In Section 4, we intro-
duce our new characteristic-dependent lower-bound technique and apply it to
Fano and non-Fano access structures. In Section 5, we provide upper bounds
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for Fano and non-Fano access structures by constructing optimal characteristic
dependent schemes using the pλ, ωq decomposition method [56]. In Section 6,
we prove superiority of abelian schemes to multi-linear ones. Section 7 studies
the connection between convec sets and entropy regions. Section 8 presents the
duality of abelian schemes. Section 9 presents our result on ideal homomorphic
SSSs. Finally, we conclude the paper in Section 10.

2 Random variables based on groups

Since secret sharing schemes are equivalent to jointly distributed random vari-
ables (RVs), before formally introducing this primitive, we prefer to study RVs.
In particular, we study the notion of group-characterizable random variables
(GCRVs), introduced by Chan and Yeung in [20]. The reason for this is that
some subclasses of GCRVs correspond to well-known classes of secret sharing
schemes which will be studied in this paper.

Notation. We use the terminologies of RV and distributions interchangeably
and use boldface characters for them. All RVs are discrete in this paper. The
Shannon entropy of a RV X is denoted by HpXq, and the mutual information
of RVs X and Y , is denoted by IpX : Y q.

2.1 Group-characterizable random variables

For reader’s convenience we provide the necessary background on abstract alge-
bra in Appendix A.

Definition 2.1 (GCRV [20]) Let G1, . . . , Gn be subgroups of a finite group
pG, ˚q, called the main group, and let g be a uniform RV on G. We refer to
the joint distribution pgG1, . . . ,gGnq as a group-characterizable RV (GCRV),
where gGi is a RV whose support is the left cosets of Gi in G. We say that
rG : G1, . . . , Gns is a group-characterization for the (induced) RV.

Let pX1, . . . ,Xnq be a GCRV induced by rG : G1, . . . , Gns, and fix a sub-
set A Ď rns. It can be shown that the marginal RV XA “ pXiqiPA is uni-
form on its support

!

pgGiqiPA : g P G
)

, which is a subset of the Carte-

sian product
ś

iPA

`

G{Gi

˘

. It is straightforward (e.g., see [20]) to show that
HpXAq “ log

`

|G|{|GA|
˘

.
Depending on the choice of main group or the subgroups, we will have differ-

ent subclasses of GCRVs. We are interested in the following classes: 1) when the
main group is a vector space, 2) when the main group is an abelian group, 3)
when the subgroups are normal in the main group and, 4) when the subgroups
are “globally permuting”.

The first class is equivalent to the so called linear RVs [37] (which in the con-
text of secret sharing it corresponds to multi-linear schemes). The second one is
called abelian and, before our results, there has been almost no significant result
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about them. By a recent result [42], the third class is equivalent to homomorphic
secret sharing schemes. Regarding the fourth class, in Section 2.5, we will define
the notion of globally permuting subgroups and show that GCRV in this class
satisfy the common information property [31], which before were known to be
satisfied by abelian schemes [28, Remark 3.7].

2.2 When the main group is abelian or a vector space

In this section, we provide an equivalent definition of GCRVs with abelian main
groups. Our approach is a generalization of the approach taken in [37] for defining
the notion of linear RVs. Therefore, we will not cover the case where the main
group is a vector space and refer the reader to the original paper.

Let pG,`q be a finite abelian group and G1, . . . , Gn be some subgroups of
G. We associate a vector of jointly distributed RVs that we refer to as the RV
induced by pG;G1, . . . , Gnq. We call such a distribution an abelian RV. The ap-
proach in [37] employs the dual of a vector space. We use the notion of Pontryagin
dual for abelian groups.

Definition 2.2 (Pontryagin dual) The Pontryagin dual of an abelian group
G, denoted by pG, is the group of all homomorphism from G to C˚, where C˚

is the multiplicative group of non-zero complex numbers. In other words, pG “

HompG,C˚q “ tα : G Ñ C˚|αp0q “ 1, αpa ` bq “ αpaqαpbqu.

It can be verified that | pG| “ |G| and in fact pG – G, i.e., pG and G are isomorphic.
Let Ki be the kernel of the map pG Ñ xGi defined by α Ñ α|Gi , where α|Gi

is the restriction map4; that is, Ki “ tα P pG : αpxq “ 1 for every x P Giu.
Now, the uniform probability distribution α on pG and the maps µi : pG Ñ pG{Ki

determine a joint distribution pXiqiPrns “
`

µipαq
˘

iPrns
, which we call the distri-

bution induced by pG;G1, . . . , Gnq. Clearly, the induced distribution is GC since
r pG : K1, . . . ,Kns is a group-characterization for it whose main group is abelian.
Since the same transformation takes p pG;K1, . . . ,Knq into rG : G1, . . . , Gns iso-
morphically, we conclude that a GCRV with abelian main group is an abelian
RV. That is, the two notions are equivalent.

Since the homomorphism pG Ñ xGi defined by α Ñ α|Gi is onto with kernel
Ki, we get an isomorphism pG{Ki – xGi – Gi. Therefore, | pG{Ki| “ |Gi|, implying
that HpXiq “ log | pG{Ki| “ log |Gi|. More generally, for every subset A Ď rns,
we have HpXAq “ log |GA| where GA “

ř

iPA Gi; because it can be shown
in a straightforward way that pG{KA – xGA – GA where KA “

Ş

iPA Ki. To
summarize, we have the following proposition.

Proposition 2.3 (Abelian random variable) Let pG,`q be a finite abelian
group and G1, . . . , Gn be some subgroups of G. Then, as discussed above, the tuple
4 For a function f : D Ñ R and a sub-domain A Ď D, the restriction map f |A is the

restriction of the map f to the subdomain A. That is, f |A : A Ñ R is defined by
f |Apxq “ fpxq for every x P A.
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pG;G1, . . . , Gnq induces a RV pX1, . . . ,Xnq, called an abelian RV, which is GC
with an abelian main group. Additionally, for every subset A Ď rns, HpXAq “

log |GA| where GA “
ř

iPA Gi.

2.3 When the subgroups are normal

We call a RV X “ pX1, . . . ,Xnq homomorphic if i) the support of each marginal
distribution Xi is a group, say Xi, ii) the support of X is a subgroup of the
direct product group X1 ˆ ¨ ¨ ¨ ˆ Xn, and iii) X is uniformly distributed on its
support. This means that every px1, . . . , xnq and py1, . . . , ynq in the support of
X are equiprobable and their product px1y1, . . . , xnynq is also in the support of
X. The following result has been proved in [42], which provides an equivalent
definition for homomorphic RVs in terms of GCRVs.

Theorem 2.4 A vector of jointly distributed RVs is homomorphic if and only
if it is, up to relabeling, group-characterizable with normal subgroups.

The notion of relabeling has been defined in [42]. Two random variables X and
Y are said to be relabeling of one another if there exists a mapping f from
the support of X to the support of Y such that fpXq and Y are identically
distributed.

2.4 When the subgroups are globally permuting

In this section, we identify a subclass of GCRV that satisfies the common infor-
mation (CI) property. We say that the pair pX,Y q of jointly distributed random
variables satisfies the CI property if there exists a RV Z such that HpZ|Xq “

HpZ|Y q “ 0 and HpZq “ IpX : Y q. We say that a vector pX1, . . . ,Xnq of
jointly distributed RVs satisfies the CI property if for every pair of (not neces-
sarily disjoint) subsets A,B Ď rns, pXA,XBq satisfies the CI property.

In the original paper [31] that coined the term, it was shown that general RVs
do not necessarily satisfy the CI property. It is known that linear and abelian
RVs satisfy the CI property. In the remaining part of this section, we show that
the CI property is satisfied by GCRVs when the subgroups are globally permuting
(to be defined). This class includes the homomorphic RVs, which itself contains
the linear and abelian RVs.

Let us recall the definition of product of two subgroups. For subgroups H,K
of a group pG, ˚q, their product is defined to be K ˚ H “ tk ˚ h : h P K,h P Hu.
Trivially, K ˚ H contains both K and H. The set K ˚ H is not necessarily a
subgroup and its size is given by the product formula: |K ˚ H| “

|K||H|

|kXH|
. The

product of two subgroups H,K is a group if and only if they are permuting ; that
is, H ˚ K “ K ˚ H.

Globally permuting subgroups. We say that a collection G1, . . . , Gn of sub-
groups of a group pG, ˚q are globally permuting if GA and GB are permuting
subgroups for every A,B Ď rns, where GA “

Ş

iPA Gi.
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Proposition 2.5 (GCRVs with CI) Every group-characterizable random vari-
able whose subgroups are globally permuting satisfies the CI property.

Proof. Let pX1, . . . ,Xnq be a GCRV induced by rG : G1, . . . , Gns and let A,B Ď

rns. By the product formula and definition of mutual information, we have IpXA :

XBq “ log |G|

|GA˚GB |
. Since GA and GB are permuting subgroups, their product

is a subgroup, say G0, which contains both GA and GB . Therefore, IpXA :

XBq “ log |G|

|G0|
. Now consider the GCRV pX0,XAq induced by rG : G0, GAs. By

definition of conditional entropy, we have HpX0|XAq “ log |GA|

|GAXG0|
“ log |GA|

|GA|
“

0. Similarly, HpX0|XBq “ 0. Also, HpX0q “ log |G|

|G0|
. Therefore, X0 satisfies

the required conditions of CI. [\

The intersection of normal subgroups is normal. Also, normal subgroups are
permuting. Therefore, a collection of normal subgroups are globally permuting.
The following corollary then follows by Theorem 2.4.

Corollary 2.6 (CI for homomorphic RV) Homomorphic random variables
satisfy the common information property.

3 Secret sharing schemes: basic definitions

In this section, we present the basic concepts in secret sharing. Throughout the
paper, n stands for the number of participants, P “ rns “ t1, . . . , nu is the
participants set and Q “ P Y t0u, where 0 stands for the dealer.

Access structure. A non-empty subset A Ď 2P , with H R A, is called an
access structure on P if it is monotone; that is, A Ď B Ď P and A P A imply
that that B P A. A subset A Ď P is called qualified if A P A; otherwise, it
is called unqualified. A qualified subset is called minimal if none of its proper
subsets is qualified.

Secret sharing scheme. A tuple S “
`

Si

˘

iPQ
of jointly distributed random

variables (RVs) is called a secret sharing scheme (SSS) on participant set P
when HpS0q ą 0. The RV S0 is called the secret RV and its support is called
the secret space. The RV Si, for any participant i P P , is called the share RV of
the participant i and its support is called his share space.

Linear, p-linear and abelian SSS. In the rest of paper we do not distinguish
between linear and multi-linear SSS and simply call them linear. A SSS is said to
be linear (resp. abelian), if as a RV it is linear (resp. abelian). It is called p-linear,
for a prime p, if the characteristic of the underlying finite field is p. Based on our
discussion in Section 2.2, we use the simplified notations Π “ pT ;T0, T1, . . . , Tnq

and Π “ pG;G0, G1, . . . , Gnq for a linear and an abelian scheme, respectively.
Here, T is a finite dimensional vector space on a finite field and Ti’s are subspaces
of it. Similarly, G is a finite abelian group and Gi’s are its subgroups. More
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precisely, when we refer to a secret sharing scheme Π (linear or abelian), we
are actually referring to the induced secret sharing scheme S “

`

Si

˘

iPQ
. When

there is no confusion, we omit T and G and simply write Π “ pTiqiPQ and
Π “ pGiqiPQ for a linear and an abelian scheme, respectively.

Perfect security. We say that
`

Si

˘

iPQ
is a (perfect) SSS for A, or it (perfectly)

realizes A, if the following two conditions hold (where SA “ pSiqiPA for a subset
A Ď P ):

– Correctness: HpS0|SAq “ 0 for every qualified set A P A and,
– Privacy: IpS0 : SBq “ 0 for every unqualified set B P Ac.

Convec of a SSS. The convec (short for contribution vector) of a secret sharing
scheme pS0,S1, . . . ,Snq is defined by the vector

´

HpS1q

HpS0q
, . . . , HpSnq

HpS0q

¯

.

Information ratio. The maximum and average information ratios of a SSS
on n participants with convec pσ1, . . . , σnq are defined to be maxtσ1, . . . , σnu

and pσ1 ` . . . ` σnq{n, respectively. The maximum/average information ratio
of an access structure is defined to be the infimum of all maximum/average
information ratios of all SSSs that realize it.

Linear, p-linear and abelian information ratio. In the computation of
(max/average) information ratio, if we restrict ourselves to the class of linear
(resp. p-linear or abelian) schemes, we refer to it as the linear (resp. p-linear or
abelian) information ratio.

4 A new lower bound technique

In this section, we introduce our new technique for finding a lower bound on the
characteristic-dependent linear information ratio of an access structure. We then
apply our method to determine the exact value of the maximum/average linear
information ratio of the Fano and non-Fano access structures on odd and even
characteristics, respectively. Both access structures are ideal for the opposite
characteristic.

Recap on linear SSS. As we mentioned in Section 3, we use the notation
Π “ pTiqiPQ for a linear SSS. It is easy to verify that the convec of Π is simply
given by

´

dimTi

dimT0

¯

iPP
. Also, the correctness and privacy conditions for realization

of an access structure A by Π are simplified as follows, where TA “
ř

iPA Ti:

– Correctness: T0 X TA “ T0 for A P A,
– Privacy: T0 X TA “ t0u for A R A.

These relations follow by properties of entropy function and the product
formula (which was mentioned in Section 2.4) for vector spaces (i.e., |V ` W | “
|V ||W |

|V XW |
, or equivalently dimpV ` W q “ dimV ` dimW ´ dimpV X W q).
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4.1 Two useful lemmas

Two linear algebraic lemmas, that we call the minimal subspace lemma and the
kernel lemma, in companion with other concepts from linear algebra lie at the
heart of our method.

Lemma 4.1 (Minimal subspace lemma) Let pT0, T1, . . . , Tnq be a linear SSS
for an access structure A and A P A be a minimal qualified set. Then, there exists
a subspace collection tViuiPA, where Vi Ď Ti for each i P A, such that:

(i) dimVi “ dimT0 for every i P A,
(ii) Vk X

ř

iPAztku Ti “ t0u for every k P A,
(iii) T0 Ď

À

iPA Vi (i.e., every s P T0 can be uniquely written as s “
ř

iPA ai
where ai P Vi),

(iv) the projection of T0 onto Vi is surjective and injective for every i P A.

Proof. Let e1, . . . , ez be a basis for T0. Since T0 Ď
ř

iPA Ti, one can write ej “
ř

iPA eij for eij P Ti. We define Vi as the linear span of ei1, . . . , eiz. These vectors
are independent because a linear relation

řz
j“1 λjeij “ 0 implies that

řz
j“1 λjej

is expressed inside
ř

kPAztiu Tk. But since Aztiu is unqualified, it must hold that
řz

j“1 λjej “ 0; i.e., λj ’s are all zero. Hence, dimVi “ dimT0 “ z that proves (i).
To prove (ii), let a P Vk X

ř

iPAztku Ti. We show that a “ 0. Write a “
řz

j“1 λjekj
and notice that

řz
j“1 λjej “

řz
j“1

ř

iPA λjeij “ a `
řz

j“1

ř

iPAztku λjeij .
Since both a and

řz
j“1

ř

iPAztku λjeij belong to
ř

iPAztku Ti, so is
řz

j“1 λjej .
But Aztku is not qualified and hence

řz
j“1 λjej “ 0. So λj ’s are all zero and

hence a “ 0. To prove (iii), it is clear that T0 Ď
ř

iPA Vi. But this sum is indeed a
direct sum; i.e., VkX

ř

iPAztku Vi “ t0u for every k P A, since a stronger statement
was proved in (ii). To prove the last statement, since dimT0 “ dimVi, we only
need to prove that projecting T0 onto Vi is surjective. Suppose a P Vi and write
a “

řz
j“1 λjeij . Then, the Vi component of

řz
j“1 λjej is a, and therefore, its

projection onto Vi is a. [\

The following corollary can be proved using Shannon inequalities (e.g., refer
to [22, Proposition 2.3 (i)]). Here, we present an alternative proof using the
minimal subspace lemma (MSL).

Corollary 4.2 Let pT0, T1, . . . , Tnq be a linear SSS for the access structure A.
Then, for every minimal qualified set A P A and every participant k P A, we
have dimTk ě dimT0 ` dim

`

Tk X
ř

iPAztku Ti

˘

.

Proof. Let tViuiPA be a minimal subspace collection. Clearly, Tk X
ř

iPAztku Ti is
a subspace of Tk and so is Vk by the lemma. By Lemma 4.1 (ii), these subspaces
are independent. It then follows that dimTk ě dimVk ` dim

`

Tk X
ř

iPAztku Ti

˘

.
This completes the proof since dimVk “ dimT0 by Lemma 4.1 (i). [\

Lemma 4.3 (Kernel lemma) Let pT0, T1, . . . , Tnq be a linear SSS for an ac-
cess structure A on n participants. Let A P A be a minimal qualified subset and
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for every participant i P A let Ai (not necessarily different from A) be a mini-
mal qualified subset that includes i. For the minimal qualified subsets A and Ai,
i P A, consider minimal subspace collections tVjujPA and tV i

j ujPAi , respectively.
Define the linear map ϕ : T0 Ñ

À

iPA
Vi

ViXV i
i
, by sending s P T0 to its projections

on Vi and taking it modulo Vi XV i
i for i P A. That is, if s “

ř

iPA ai for ai P Vi,
we define ϕpsq “

`

rais
˘

iPA
, where r¨s stands for the class in the corresponding

quotient space. Then,
ř

iPA dimTi ě p|A| ` 1q dimT0 ´ dimkerϕ.

Proof. The linear map ϕ induces a 1-1 linear map ϕ̄ : T0

kerϕ Ñ
À

iPA
Vi

ViXV i
i
.

Hence,
ř

iPA dim Vi

ViXV i
i

ě dim T0

kerϕ , or equivalently,
ř

iPA

`

dimVi ´ dimpVi X

V i
i q
˘

ě dimT0´dimkerϕ. Add
ř

iPA dimpV i
i q “ |A|dimT0 —see Lemma 4.1 (i)—

to the both sides of this inequality and simplify to get
ř

iPA dimpVi ` V i
i q ě

p|A| ` 1qdimT0 ´ dimkerϕ. The claim then follows due to Vi ` V i
i Ď Ti, which

implies
ř

iPA dimTi ě
ř

iPA dimpVi ` V i
i q. [\

4.2 Application to Fano

The Fano access structure, denoted by F , is the port of the Fano matroid, with
the following representation5: F “ 14 ` 25 ` 36 ` 123 ` 156 ` 246 ` 345. It
is ideal on finite fields with even characteristics but it does not admit an ideal
scheme if the secret space size is odd [47]. We employ our method to determine
the exact value of its maximum and average p-linear information ratios for every
odd prime p, which turns out to be independent of p. The Fano access structure
enjoys a high degree of symmetry6 which is useful for both finding lower bounds
and upper bounds.

Proposition 4.4 (Fano with odd characteristics) For an odd prime p and
every p-linear SSS pT0, T1, . . . , T6q for Fano access structure, we have:

(I) dimTi ě dimT0, for every i P t1, . . . , 6u,
(II) dimTi ` dimTj ` dimTk ě 4 dimT0, for every size-3 minimal qualified set

ti, j, ku.

Additionally, the maximum and average p-linear information ratios are both 4
3

for every odd prime prime p.

Proof. The first inequality is trivial and follows by Corollary 4.2. To prove (II), by
symmetry, we only prove the inequality for the qualified set t1, 2, 3u. Let ϕ be the
linear map defined in Lemma 4.3 by the minimal qualified sets A “ t1, 2, 3u, A1 “

5 A subset A “ ti1, . . . , iku Ď rns is represented by i1 ¨ ¨ ¨ ik; e.g., 14 for the set t1, 4u.
An access structure with minimal qualified subsets tA1, . . . , Aku is represented by
A1 ` . . . ` Ak.

6 We call a permutation ϕ on the participants set of an access structure A a symmetry
of A, if ϕpAq is isomorphic to A, where σpAq is an access structure which is achieved
by replacing participant i with ϕpiq.
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t1, 4u, A2 “ t2, 5u and A3 “ t3, 6u with the corresponding minimal subspace
collections tV1, V2, V3u, tV 1

1 , V
1
4u, tV 1

2 , V
1
5u and tV 1

3 , V
1
6u. The claim follows if we

show that kerϕ is zero, since dimT1 ` dimT2 ` dimT3 ě 4 dimT0 ´ dimkerϕ.
Suppose s “ a1 ` a2 ` a3 P T0, where ai P Vi for i “ 1, 2, 3, maps to zero by

ϕ; i.e., ϕpsq “ pra1s, ra2s, ra3sq “ 0, or equivalently, ai P Vi X V 1
i , for i “ 1, 2, 3.

There are a1
4 P V 1

4 , a1
5 P V 1

5 and a6 P V 1
6 such that a1 ` a1

4 P T0, a2 ` a1
5 P T0

and a3 ` a1
6 P T0. By subtracting each vector from s “ a1 ` a2 ` a3 P T0, it then

follows that a2 ` a3 ´ a1
4 P T0, a1 ` a3 ´ a1

5 P T0 and a1 ` a2 ´ a1
6 P T0. But since

t2, 3, 4u, t1, 3, 5u and t1, 2, 6u are unqualified sets, all these vectors must be zero;
i.e., a1

4 “ a2 ` a3, a1
5 “ a1 ` a3 and a1

6 “ a1 ` a2. Since the characteristic of
the underlying finite field is odd, we have s “ pa1

4 ` a1
5 ` a1

6q{2. Since t4, 5, 6u is
unqualified, it implies that s “ 0. This shows that kerϕ “ t0u.
Proof of claim on information ratio: By adding up inequality (II) for every
size-3 minimal qualified set ti, j, ku, we get 2

ř6
i“1 dimTi ě 16. It then follows

that the maxim and average p-linear information ratios are both at least 4{3. In
Section 5.3, we will show that, for every odd prime p, it admits a p-linear SSS
with convec p 4

3 ,
4
3 ,

4
3 ,

4
3 ,

4
3 ,

4
3 q, showing that the max and average lower bounds

are both tight (see Corollary 5.5). [\

4.3 Application to non-Fano

The non-Fano access structure, denoted by N , is the port of the non-Fano ma-
troid, with the following representation: N “ 14 ` 25 ` 36 ` 123 ` 156 ` 246 `

345` 456; that is, N “ F ` 456 (see Footnote 5). It is ideal on finite fields with
odd characteristics but it does not admit an ideal scheme if the secret space size
is even [47]. We apply our technique to find the exact value of its maximum
and average 2-linear information ratios. Similar to Fano, the non-Fano access
structure also enjoys a high degree of symmetry (see Footnote 6).

Proposition 4.5 (Non-Fano with even characteristic) For every 2-linear
SSS pT0, T1, . . . , T6q for the non-Fano access structure, we have:

(I) dimTi ě dimT0, for every i P t1, . . . , 6u,
(II) dimT1 ` dimT2 ` dimT3 ` dimTi ě 5 dimT0, for every i “ 4, 5, 6,

(III) dimT4 ` dimT5 ` dimT6 ě 4 dimT0,
(IV) dimTi ` 2 dimTj ` dimTk ě 5 dimT0, for every triple pi, j, kq “ p1, 5, 6q,

p1, 6, 5q, p2, 4, 6q, p2, 6, 4q, p3, 4, 5q, p3, 5, 4q.

Additionally, the maximum and average 2-linear information ratios are 4
3 and

23
18 , respectively.

Proof. The first inequality is trivial and follows by Corollary 4.2. Proofs of (II)-
(IV) are based on the kernel lemma (Lemma 4.3).

Proof of (II). By symmetry, we prove the inequality for i “ 4. Let ϕ
be the linear map defined in Lemma 4.3 by the minimal qualified sets A “
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t1, 2, 3u, A1 “ t1, 4u, A2 “ t2, 5u and A3 “ t3, 6u with the corresponding sub-
space collections tV1, V2, V3u, tV 1

1 , V
1
4u, tV 1

2 , V
1
5u and tV 1

3 , V
1
6u. Since the inequal-

ity dimT1 ` dimT2 ` dimT3 ě 4 dimT0 ´ dimkerϕ holds, it is enough to show
that dimT4 ě dimT0 ` dimkerϕ. By Corollary 4.2, for the minimal qualified
set t4, 5, 6u, we have dimT4 ě dimT0 ` dimpT4 X pT5 ` T6qq. Therefore, it is
enough to construct a 1-1 map from kerϕ into T4 X pT5 ` T6q. This implies that
dimpT4 X pT5 ` T6q ě dimkerϕ, which completes the proof.

We construct the 1-1 map from kerϕ into T4 X pT5 ` T6q by associating a
unique a1

4 P T4 X pT5 ` T6q to every s P kerϕ. Suppose s “ a1 ` a2 ` a3 P T0,
where ai P Vi for i “ 1, 2, 3, maps to zero by ϕ; i.e.; ai P Vi X V 1

i for i “ 1, 2, 3.
Therefore, one can find a1

4 P V 1
4 , a1

5 P V 1
5 and a1

6 P V 1
6 such that a1 ` a1

4 P T0,
a2 ` a1

5 P T0 and a3 ` a1
6 P T0. If we add each of these three vectors separately

to s “ a1 ` a2 ` a3 P T0, we get a2 ` a3 ` a1
4 P T0, a1 ` a3 ` a1

5 P T0 and
a1`a2`a1

6 P T0 (recall the characteristic is even). Now all these vectors need to be
zero since t2, 3, 4u, t1, 3, 5u and t1, 2, 6u are unqualified sets; hence, a1

4 “ a2 `a3,
a1
5 “ a1 `a3 and a1

6 “ a1 `a2. It follows that a1
4 “ a1

5 `a1
6 and, hence, it belongs

to T4 X pT5 `T6q. So we have defined a 1-1 map from kerϕ into T4 X pT5 `T6q by
sending s to a1

4. The 1-1 ness of this map follows from the uniqueness of a1
4 P V 1

4

such that a1 ` a1
4 P T0; see Lemma 4.1 (iv).

Proof of (III). The proof is similar to that of Proposition 4.4. Let ϕ be
the linear map defined in Lemma 4.3 by the minimal qualified sets A “ t4, 5, 6u,
A4 “ t1, 4u, A5 “ t2, 5u and A6 “ t3, 6u with the corresponding subspace
collections tV4, V5, V6u, tV 1

1 , V
1
4u, tV 1

2 , V
1
5u and tV 1

3 , V
1
6u. It is enough to show that

kerϕ is zero because dimT3 ` dimT4 ` dimT5 ě 4 dimT0 ´ dimkerϕ. Suppose
s “ a4 ` a5 ` a6 P T0, where ai P Vi for i “ 4, 5, 6, is in the kernel of ϕ;
i.e.; ai P Vi X V 1

i for i “ 4, 5, 6. We can find a1
i P V 1

i , for i “ 1, 2, 3, such that
a1
1 ` a4 P T0, a1

2 ` a5 P T0 and a1
3 ` a6 P T0. By adding the sum of the first two

vectors to s “ a4 ` a5 ` a6 P T0, it follows that a1
1 ` a1

2 ` a6 P T0 (characteristic
is even). But since t1, 2, 6u is unqualified, the resulting vector must be zero; i.e.,
a6 “ a1

1`a1
2. Similarly, a4 “ a1

2`a1
3 and a5 “ a1

1`a1
3. Hence s “ a4`a5`a6 “ 0.

This shows that kerϕ “ t0u.
Proof of (IV). By symmetry, we prove the inequality only for the triple

pi, j, kq “ p1, 5, 6q. Let ϕ be the linear map defined in Lemma 4.3 by the minimal
qualified sets A “ t1, 5, 6u, A1 “ t1, 4u, A5 “ t2, 5u and A6 “ t3, 6u with the
corresponding minimal subspace collections tV1, V5, V6u, tV 1

1 , V
1
4u, tV 1

2 , V
1
5u and

tV 1
3 , V

1
6u. The proof continues similar to that of (I). It is enough to show that

dimT5 ě dimT0 ` dimkerϕ, because dimT1 ` dimT5 ` dimT6 ě 4 dimT0 ´

dimkerϕ. Since t4, 5, 6u is a minimal qualified set, by Corollary 4.2, we have
dimT5 ě dimT0 ` dimpT5 X pT4 ` T6qq. Therefore, to complete the proof, it is
enough to construct a 1-1 map from kerϕ into T5 X pT4 ` T6q. Suppose s “

a1 `a5 `a6 P T0 for i “ 1, 5, 6, where ai P Vi, maps to zero by ϕ; i.e.; ai P Vi XV 1
i

for i “ 1, 5, 6. Our map sends s to a5. The uniqueness of this choice follows from
Lemma 4.1 (iv). It remains to prove that a5 P T5 X pT4 ` T6q. It is enough to
show that a5 P T4 ` T6 since clearly a5 P T5. Find a1

i P V 1
i , for i “ 2, 3, 4 such

that a1 `a1
4 P T0, a1

2 `a5 P T0 and a1
3 `a6 P T0. By adding the second vector, the
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third one and the sum of the three vectors to s “ a1`a5`a6 P T0, it respectively
follows that a1`a1

2`a6 P T0, a1`a1
3`a5 P T0 and a1

2`a1
3`a1

4 P T0 (characteristic
is even). But all these vectors must be zero since t1, 2, 6u, t1, 3, 5u and t2, 3, 4u

are unqualified sets. Hence a5 “ a1`a1
3 “ pa1

2`a6q`pa1
2`a1

4q “ a1
4`a6 P T4`T6.

Proof of claim on information ratio: By inequality (III), the maxim 2-linear
information ratio is at least 4

3 . By multiplying inequality (III) by two and adding
it up with inequality (II) for every i “ 4, 5, 6, we get 3

ř6
i“1 dimTi ě 23, which

show that the average 2-linear information ratio is at least 23
18 . In Section 5.4, we

will construct a 2-linear scheme with convec p 4
3 ,

4
3 , 1,

4
3 ,

4
3 ,

4
3 q, showing that both

lower bounds are tight. [\

5 Upper bounds for Fano and non-Fano

In this section, we construct characteristic-dependent SSSs for Fano and non-
Fano access structures that match the lower bounds on the information ratios
stated in Proposition 4.4 and Proposition 4.5, respectively. We use the pλ, ωq-
decomposition technique [56] for constructing our schemes.

Even though the exact value of information ratios are determined, we try to
determine their convec sets, where convec set is a parameter more general than
information ratio. Our motivation for the study of convec sets will be discussed
in Section 7.

The p-linear convec set of Fano is completely determined for every odd prime
p. But, for the 2-linear convec set of non-Fano, an almost matching upper-bound
is found.

5.1 Convec set

Before presenting the definition of a convec set, we present some basic definitions
from topology which are useful for their understanding.

Definition 5.1 A subset X Ď Rn is said to be convex if for every pair of points
x, y P X and for every real number α P r0, 1s, the point αx ` p1 ´ αqy, called
a convex combination of x and y, is also in the set. The intersection of finitely
many half-spaces is called a convex polytope. The closure of a set X is denoted
by X , defined as the union of X with all its limit points. A point of a convex
set X is said to be an extreme point if it does not lie in any line segment with
endpoints in X .

We refer to [36] for background on convex sets. A convex set can be described
either in terms of the intersection of a collection of half-spaces or in terms of
its extreme points (together with some extra information called rays, which are
redundant for convec sets).

Definition 5.2 (Convec set) The convec set of an access structure A, denoted
by ΣpAq, is defined as the set of all convecs of all SSSs that realize A. When we
restrict to the class C of SSSs, we use the notation ΣCpAq.
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In particular, for the class of abelian (resp. p-linear/linear/homomorphic)
SSSs, we use the notation ΣAbl (resp. Σp/ΣLin//ΣHom) and call it the abelian
(resp. p-linear/linear/homomorphic) convec set.

Similar to the convec sets, the abelian, p-linear and homomorphic convec
sets all have convex closures (this claims follows by Lemma 6.2 and Remark 6.3,
which will be stated in next section). However, as we will see in Section 6, the
closure of a linear convec set is not necessarily convex, but union of convex sets,
due to the following relation ΣLinpAq “

Ť

p:prime Σ
ppAq. In fact, our result on

superiority of abelian schemes to linear schemes stems from this intuition.
It is clear that convec set is a more general parameter than information ratio.

In particular, the maximum and average information ratios of an access structure
A on n participants, with respect to the class C of schemes, can equivalently
be defined as mintmaxpxq : x P ΣCpAqu and 1

n mint
řn

i“1 xi : px1, . . . , xnq P

ΣCpAqu, respectively.
We remark that there exist examples of access structures such that the ex-

treme points of their convec sets are not realizable (e.g., the nearly-ideal access
structures [11], which are non-ideal but their information ratio is one, do not
contain the all-one vector in their convec sets). It is an open problem if there
exists an access structure whose convec set is not a convex polytope (i.e., it has
infinity many extreme points) and we conjecture that such access structures ex-
ist. Nevertheless, we conjecture that (1) the p-linear convec set of every access
structure is a convex polytope, and (2) all its extreme points are realizable.

5.2 The pλ, ωq-decomposition technique

In this subsection, we review the pλ, ωq-decomposition technique from [56], which
is a generalization of λ-decomposition, first proposed by Stinson [53]. It is used
for constructing a SSS given a collection of SSSs, satisfying some particular
conditions.

Definition 5.3 (pλ, ωq-decomposition) Let λ ą ω ě 0 be integers and A
be an access structure. A pλ, ωq-decomposition for A consists of a collection
A1, . . . ,Am of access structures on the same set of participants as A such that
the following requirements are satisfied: (1) if A P A, then A P Aj for at least λ
distinct values of j P rms, and (2) if A P A, then A P Aj for at most ω distinct
values of j P rms.

Theorem 5.4 Let p be a prime and A1, . . . ,Am be a pλ, ωq-decomposition for
A. If for every j P rms there exists a p-linear SSS for Aj with convec σj, then
there exists a p-linear SSS for A with convec 1

λ´ω

řm
j“1 σj.

5.3 Matching upper-bound for Fano (odd characteristic)

We have used a computer to determine the extreme points of the polytope de-
scribed by the 10 half-spaces mentioned in Proposition 4.4 (a normalization to
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dimT0 is considered). It has the following 7 extreme points, which due to sym-
metries of Fano (see Footnote 6), they have been grouped in two columns:

p2, 1, 1, 2, 1, 1q p2, 2, 2, 1, 1, 1q

p1, 2, 1, 1, 2, 1q p1, 2, 1, 2, 1, 2q

p1, 1, 2, 1, 1, 2q p2, 1, 1, 1, 2, 2q

p1, 1, 2, 2, 2, 1q

(5.1)

Table 1: pλ, ωq decompositions
for Fano (odd).

Aj convec F1 F2

14 p1, 0, 0, 1, 0, 0q ✓
F14 p1, 1, 1, 1, 1, 1q ✓

1 ` 2 ` 3 p1, 1, 1, 0, 0, 0q ✓
N p1, 1, 1, 1, 1, 1q ✓

pλ
,ω

q

p1
,0

q

p2
,1

q

Table 2: Convec names.
# Convec
F1 p2, 1, 1, 2, 1, 1q

F2 p2, 2, 2, 1, 1, 1q

N1 p1, 1, 1, 2, 2, 2q

N2 p2, 1, 1, 2, 1, 1q

N3 p2, 1, 1, 1, 2, 2q

N4 p 3
2
, 1, 1, 3

2
, 3

2
, 3

2
q

N5 p 4
3
, 4

3
, 1, 4

3
, 4

3
, 4

3
q

N6 p 7
5
, 6

5
, 6

5
, 6

5
, 7

5
, 7

5
q

Table 3: pλ, ωq decompositions for non-Fano
(even).

Aj Convec N1 N2 N3 N4 N5 N6

14 p1, 0, 0, 1, 0, 0q ✓
456 p0, 0, 0, 1, 1, 1q ✓

1`5`6 p1, 0, 0, 0, 1, 1q ✓
14`456 p1, 0, 0, 1, 1, 1q ✓

123`36`25 p1, 1, 1, 0, 1, 1q ✓
14`36`156
`345`456

p1, 0, 1, 1, 1, 1q ✓ ✓

14`25`156
`246`456

p1, 1, 0, 1, 1, 1q ✓

N14 p1, 1, 1, 1, 1, 1q ✓ ✓ ✓ ✓
N25 p1, 1, 1, 1, 1, 1q ✓ ✓
N36 p1, 1, 1, 1, 1, 1q ✓
F p1, 1, 1, 1, 1, 1q ✓ ✓ ✓ ✓

N`234 p1, 1, 1, 1, 1, 1q ✓

pλ
,ω

q

(1,0)

(1,0)

(2,1)

(2,0)

(3,0)

(5,0)

Refer to Footnote 5 for representation of access structures. The minimal qualified sub-
sets of the access structure F14 is the same as F except that 14 is excluded and
124, 134, 145, 146 are all added. The access structure N14 is defined similarly; i.e., 14 is
excluded from N and 124, 134, 145, 146 are all added. For, N25 (resp. N36), the set 25

(resp. 36) is excluded from N and the sets 125, 235, 245, 256 (resp. 136, 236, 346, 356)
are all added. A check mark (✓) indicates that the corresponding access structure
appears in the desired pλ, ωq-decomposition. All sub-access structures, i.e., Aj ’s, in
Table 1 are ideal on every odd prime characteristic. Those in Table 3 are ideal on even
characteristic.

Using the pλ, ωq-decomposition, we show that for every prime p, all 7 points
(convecs) are realizable for Fano by some p-linear scheme. Since the convecs
of each column are symmetries of each other, it is enough to realize one from
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each group. Table 1 presents a pλ, ωq-decomposition for the first convec of each
column.

To summarize, we have determined the linear convec set of Fano for every odd
prime, which is the convex polytope described by the 10 half-spaces mentioned
in Proposition 4.4 with the 7 vectors in (5.1) as its extreme points.

Since the collection F ,F ,F is a p3, 0q-decomposition for F , by taking the
average of the convecs in the first column, we have the following corollary.

Corollary 5.5 For every prime p, there exists a p-linear scheme for Fano with
convec p4

3 ,
4
3 ,

4
3 ,

4
3 ,

4
3 ,

4
3 q. In particular, this convec is optimal with respect to both

maximum and average information ratios.

5.4 An almost matching upper-bound for non-Fano (even
characteristic)

The convex polytope described by the 16 half-spaces mentioned in Proposi-
tion 4.5 (after a normalization to dimT0), has the following set of 13 extreme
points. Again, this has been verified using a computer. Note that due to sym-
metries of non-Fano (see Footnote 6), they have been grouped in five columns.

p2, 1, 1, 2, 1, 1q p2, 1, 1, 1, 2, 2q p 3
2 , 1, 1,

3
2 ,

3
2 ,

3
2 q p 5

3 , 1, 1,
4
3 ,

4
3 ,

4
3 q

p1, 1, 1, 2, 2, 2q p1, 2, 1, 1, 2, 1q p1, 2, 1, 2, 1, 2q p1, 3
2 , 1,

3
2 ,

3
2 ,

3
2 q p1, 5

3 , 1,
4
3 ,

4
3 ,

4
3 q

p1, 1, 2, 1, 1, 2q p1, 1, 2, 2, 2, 1q p1, 1, 3
2 ,

3
2 ,

3
2 ,

3
2 q p1, 1, 5

3 ,
4
3 ,

4
3 ,

4
3 q

We have been able to realize all, except those in the last column, with a
2-linear scheme. In particular, using the pλ, ωq-decomposition, we show that the
following 16 extreme points can be realized by a 2-linear scheme. Table 3 presents
a pλ, ωq-decomposition for the first convec from each column.

p2, 1, 1, 2, 1, 1q p2, 1, 1, 1, 2, 2q p 3
2 , 1, 1,

3
2 ,

3
2 ,

3
2 q p 4

3 ,
4
3 , 1,

4
3 ,

4
3 ,

4
3 q p 7

5 ,
6
5 ,

6
5 ,

6
5 ,

7
5 ,

7
5 q

p1, 1, 1, 2, 2, 2q p1, 2, 1, 1, 2, 1q p1, 2, 1, 2, 1, 2q p1, 3
2 , 1,

3
2 ,

3
2 ,

3
2 q p 4

3 , 1,
4
3 ,

4
3 ,

4
3 ,

4
3 q p 6

5 ,
7
5 ,

6
5 ,

7
5 ,

6
5 ,

7
5 q

p1, 1, 2, 1, 1, 2q p1, 1, 2, 2, 2, 1q p1, 1, 3
2 ,

3
2 ,

3
2 ,

3
2 q p1, 4

3 ,
4
3 ,

4
3 ,

4
3 ,

4
3 q p 6

5 ,
6
5 ,

7
5 ,

7
5 ,

7
5 ,

6
5 q

The convex polytope which has the above set of vectors as its extreme points
can be described by 22 half-spaces, 16 of which are those of Proposition 4.5.
The additional 6 half-spaces are given by inequality dimTi ` dimTj ` dimTk `

dimTℓ ě 5 dimT0, for every pi, j, k, ℓq “ p1, 5, 6, 2q, p1, 5, 6, 3q, p2, 4, 6, 1q, p2, 4, 6, 3q,
p3, 4, 5, 1q, p3, 4, 5, 2q.

To summarize, if one construct a 2-linear scheme with convec p 5
3 , 1, 1,

4
3 ,

4
3 ,

4
3 q

for non-Fano, then the lower bound given by Proposition 4.5 is tight. On the
other hand, if one derives the above 6 additional inequalities (by symmetry only
one), it proves that our upper-bound (that corresponds to the last set of 16
extreme points) is tight.
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6 Power of abelian schemes

In this section, we prove that abelian SSSs are more powerful than the linear
schemes. To this end, we study the access structure F`N [11,47], to be described
below. In Section 6.1, we compute the exact value of its maximum and average
linear information ratios. In Section 6.2, we provide an upper bound on its
maximum and average abelian information ratios. It turns out that our upper-
bound on the maximum abelian information ratio (7{6) is smaller that the exact
value of the maximum linear information ratio (4{3). In Section 6.3, we will see
that the lower bound technique of [28] (FKMP) fails to determine the exact
value of linear information ratio of access structures. Two open problems are
also presented and discussed in Section 6.4.

The F `N access structure. For the purpose of this section, we assume that
the participants sets of F and N access structures are t1, . . . , 6u and t7, . . . , 12u,
respectively. The access structure F ` N , with participants set t1, . . . , 12u, is
then defined to be the union of F and N . This access structure is non-ideal but
its information ratio is one, and hence called nearly-ideal [11].

6.1 Optimal linear schemes for F ` N

Let p be an arbitrary prime (odd or even). Given a p-linear scheme for F with
convec σF and a p-linear scheme for N with convec σN , we can combine them
in a straightforward way to construct a p-linear SSS for F ` N with convec
pσF , σN q. The converse is also true (technically because Fano and non-Fano are
minors of F ` N ).

Therefore, for every odd prime p, every extreme point of ΣppF ` N q is
of the form px,1q, where x is an extreme point of ΣppFq and 1 is an all-1
vector of length six. Consequently, by Proposition 4.4, the maximum p-linear
information ratio of F ` N is 4

3 . Also, the average p-linear information ratio is
p 4
3 ˚6`6q{12 “ 7{6. By Corollary 5.5, there exists a p-linear scheme with convec

σodd “ p 4
3 ,

4
3 ,

4
3 ,

4
3 ,

4
3 ,

4
3 , 1, 1, 1, 1, 1, 1q that meets these optimal values.

Similarly, every extreme point of Σ2pF `N q is of the form p1, yq, where y is
an extreme point of Σ2pN q. Therefore, by Proposition 4.5, the maximum 2-linear
information ratio of F ` N is 4

3 . Additionally, the average 2-linear information
ratio is p6 ` 23

18 ˚ 6q{12 “ 41
36 . By our results in Section 5.4, there exists a 2-

linear scheme with convec σeven “ p1, 1, 1, 1, 1, 1, 4
3 ,

4
3 , 1,

4
3 ,

4
3 ,

4
3 q that meets these

optimal values.
We conclude that the maximum and average linear information ratios of

F ` N are 4{3 and 41{36, respectively.

6.2 An abelian (mixed-linear) scheme for F ` N

We will work with a special type of abelian schemes that we call mixed-linear.
Let Πk’s be linear SSSs for k “ 1, . . . ,m and let Πk “ pT k

0 , T
k
1 , . . . , T

k
n q. We

refer to the abelian schemes Π1 ‘ ¨ ¨ ¨ ‘Πm “ pG0, G1, . . . , Gnq as a mixed-linear
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scheme where Gi “ T 1
i ‘ ¨ ¨ ¨ ‘ Tm

i . If the characteristics corresponding to the
underlying finite fields are different, Π1 ‘ ¨ ¨ ¨ ‘Πm is non-linear. Informally, the
secret space of Π1 ‘ ¨ ¨ ¨ ‘ Πm is the Cartesian product of the secret spaces of
Πk’s. To share a secret ps1, . . . , smq using Π1 ‘ ¨ ¨ ¨ ‘ Πm, where sk is in the
secret space of Πk, for each k P rms, we share sk using Πk with an independent
randomness. Each participant in Π1 ‘¨ ¨ ¨‘Πm receives m shares, one from each
Πk, k P rms.

The following proposition follows from Lemma 6.2.

Proposition 6.1 (Mixed-linear convec set) Denote the convec set of an ac-
cess structure A with respect to the class of mixed-linear schemes by ΣMixLpAq.
Then, ΣMixLpAq “ convh

´

ΣLinpAq

¯

, where convhpX q, the convex hull of X , is
the set of all convex combinations of vectors in the subset X Ď Rn.

Proof. Let Π “ pTiqiPQ and Π 1 “ pT 1
i qiPQ be two linear secret sharing schemes

for A, and denote their convecs with σ and σ1, respectively. We need to show that
for every real number 0 ď x ď 1, there exists a sequence tΠ2

j u of mixed-linear
scheme for A such that the sequence tcvpΠ2

j qu converges to xσ ` p1 ´ xqσ1.
Let y “ log |T0|{ log |T 1

0| and txju, tyju be two sequences of non-negative
rational numbers respectively converging to x and y, respectively. Let xj “ cj{dj
and yj “ ej{fj where cj , dj , ej , fj are non-negative integers. The secret sharing
scheme Π2

j is constructed as follows:

Π2
j “ Π ‘ . . . ‘ Π

loooooomoooooon

fjcj times

‘Π 1 ‘ . . . ‘ Π 1
looooooomooooooon

ejpdj´cjq times

,

where the notation ‘ similarly defined as in the beginning of this subsection.
Informally, the scheme works as follows. The secret space of Π2

j is T ℓ
0 ˆT 1k

0 where
ℓ “ fjcj and k “ ejpdj ´ cjq. To share a secret ps1, . . . , sℓ, s

1
1, . . . , s

1
kq, we share

each si using an independent instance of Π and each s1
i using an independent

instance of Π 1. That is, each participant receives ℓ ` k total pieces of shares.
It is easy to see that Π2

j is mixed-linear and it realizes A. We continue to
show that the sequence of convecs of Π2

j , tcvpΠ2
j qu, converges to xσ ` p1´xqσ1.

We have

cvpΠ2
j q “

log
`

|Ti|
ℓ ¨ |T 1

i |k
˘

log p|T0|ℓ ¨ |T 1
0|kq

“
fjcj log |Ti| ` ejpdj ´ cjq log |T 1

i |

fjcj log |T0| ` ejpdj ´ cjq log |T 1
0|

“
xj

xj ` p1 ´ xjqyj{y

log |Ti|

log |T0|
`

p1 ´ xjq

xjy{yj ` p1 ´ xjq

log |T 1
i |

log |T 1
0|

,

or more compactly,

cvpΠ2
j q “

xj

xj ` p1 ´ xjqyj{y
σ `

p1 ´ xjq

xjy{yj ` p1 ´ xjq
σ1 ,

which clearly converges to xσ ` p1 ´ xqσ1, concluding the claim. [\
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Lemma 6.2 (Convex combination lemma) Let Π and Π 1 be two mixed-
linear SSSs for an access structure A with convecs σ and σ1. Then for every
real number x P r0, 1s, there exists a family tΠ2

j u of mixed-linear schemes such
that: 1) each Π2

j realizes A, 2) the sequence of convecs of Π2
j ’s converges to

xσ ` p1 ´ xqσ1.

Remark 6.3 Lemma 6.2 remains true even if we replace “mixed-linear” in the
statement of lemma with p-linear, abelian or homomorphic; or if we remove it.
That is, the lemma is not only true for the general schemes but also for p-linear,
mixed-linear, abelian and homomorphic schemes.

By our discussion in Section 6.1, F ` N has a p-linear scheme with convec
σodd for every odd prime p and a 2-linear scheme with convec σeven. Therefore, by
letting x “ 1

2 in above lemma, it follows that F `N has a family of mixed-linear
(and hence abelian) schemes such that the sequence of their convecs converges
to 1

2σodd ` 1
2σodd “ p 7

6 ,
7
6 ,

7
6 ,

7
6 ,

7
6 ,

7
6 ,

7
6 ,

7
6 , 1,

7
6 ,

7
6 ,

7
6 q. Consequently, the maximum

and average mixed-linear (and hence abelian) information ratios of F `N are at
most 7{6 and 41{36, respectively. Using Proposition 6.1 and our lower-bounds
for Fano and non-Fano (Proposition 4.4 and Proposition 4.5), we have verified
by a computer that these values are tight for mixed-linear schemes. We refer the
reader to Appendix B for further details. It remains open if these bounds are
optimal for abelian schemes (this will be further discussed in Section 6.4).

We remark that similar to the nearly-ideal schemes, we do not have an abelian
(mixed-linear) scheme for F `N with maximum information ratio 7{6. Instead,
for every ϵ ą 0, we have an abelian (mixed-linear) scheme with maximum infor-
mation ratio 7{6 ` ϵ.

6.3 On incompleteness of FKMP lower bound method

Farràs, Kaced, Molleví and Padró [28] introduced a new method (FKMP for
short) for computing a lower bound on the information ratio of access struc-
tures. It integrates the common information (CI) property of random variables
(which was studied in Section 2.4) in a linear programing by adding extra vari-
ables and extra constraints due to CI conditions. The method was implemented
and successfully applied to several small access structures. Since linear, mixed-
linear, abelian and homomorphic random variables all satisfy the CI property
(Corollary 2.6), the FKMP lower bound applies not only to linear schemes but
also to other three classes. Our result on superiority of abelian schemes to lin-
ear schemes implies that the FKMP method is “incomplete” for determining the
optimal linear information ratio of access structures.

It remains open if the method is “incomplete” for determining the optimal
mixed-linear, abelian or homomorphic information ratios of access structures
too. In particular, it is an interesting problem to apply the FKMP method to
see if a non-trivial lower bound for F`N can be found. We remark that any new
result in this direction should probably be achieved analytically; because the size
of the corresponding linear programing is out of reach for nowadays computers.
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6.4 Two open problems about abelian and homomorphic SSSs

By our previous discussions, the maximum information ratio and maximum
mixed-linear information ratio of F ` N are respectively 1 and 4/3. There-
fore, general secret sharing outperforms mixed-linear secret sharing. It remains
open if general SSSs can outperform abelian ones too. Also, it remains open if
(1) abelian schemes are superior to mixed-linear schemes, or (2) homomorphic
schemes are superior to abelian schemes.

Probelm 6.4 (Abelian/Homomorphic convec set problems) Is any of the
following relations true for every access structure A?

‚ (Abelian) ΣAblpAq “ ΣMixLpAq.
‚ (Homomorphic) ΣHompAq “ ΣAblpAq.

If the answer to abelian convec set problem is positive, it shows that general
SSSs are superior to abelian schemes. Nevertheless, one might be to prove supe-
riority of general schemes to abelian schemes without solving the abelian convec
set problem.

If the answer to abelian convec set problem is negative, it shows that abelian
schemes are superior to mixed-linear (and in particular linear) schemes. Simi-
larly, if the answer to the homomorphic convec set problem is negative, it shows
that homomorphic (and hence general) schemes are superior to abelian schemes
schemes.

In Section 7, we will talk more about consequences of negative answers to
any of these problems; see Corollary 7.3.

7 On relation between convec sets and entropy regions

The motivations behind working with convec sets are three folds.
First, the extreme points of convec sets play an important role in constructing

(optimal) secret sharing schemes via decomposition methods such as the pλ, ωq-
decomposition discussed in Section 5.2. Second, it helps us to understand the
limits of techniques for lower bounding information ratio of access structures
better. A technique might be good enough to derive an inequality to determine
the optimal information ratio, but it might fail to derive all inequalities necessary
to describe the convec set completely. (The reader may refer to Appendix C for
further discussions on these two motivations).

The rest of this section is devoted to discuss our third motivation, which is
the following. Convec sets can help us to understand the structure of the so-
called entropy region, introduced by Zhang and Yeung in [57]. In this section,
we review the notion of entropy region and study its relation with convec sets.

7.1 Entropy region

The purpose of this subsection is to introduce the notations Γ̃n, Γ̃Lin
n , Γ p

n , Γ̃MixL
n ,

Γ̃Abl
n , Γ̃Hom

n which will be used in the subsequent subsections. As we will see in
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Section 7.2, in the context of secret sharing, they are related to the closures of
the following sets Σ, ΣLin, Σp, ΣMixL, ΣAbl and ΣHom.

A point h P R2n´1, whose indices are indexed by non-empty subsets of rns “

t1, . . . , nu, is said to be entropic if there exists a RV pX1, . . . ,Xnq such that
hA “ HpXAq for every non-empty A Ď rns. If the RV is group-characterizable,
h is said to be a group-characterizable entropic point. Similarly, p-linear, linear,
mixed-linear, abelian and homomorphic entropic points are defined.

The set of all entropic points in R2n´1 is called the entropy region on n RVs
and is denoted by Γn. When we restrict to the class of group-characterizable
(resp. p-linear/mixed-linear/abelian/homomorphic) entropic points, we use the
notation ΓGC

n (resp. Γ p
n , Γ

MixL
n , ΓAbl

n , ΓHom
n ); notice that we have deliberately

excluded the case of “linear” which will be handled separately. The closure of
the entropy region is a convex set. Chan and Yeung [20] have proved that the
closure of the entropy region is equal to the closure of the cone of all group-
characterizable entropic points; that is, Γn “ cone

`

ΓGC
n

˘

, where the cone of
a set X Ď Rn is defined to be conepX q “ tαx : x P X , α ě 0u. We refer to
conepΓ p

nq as the p-linear region and denote it by Γ̃ p. The mixed-linear, abelian
and homomorphic regions are similarly defined and denoted by Γ̃MixL

n , Γ̃Abl
n and

Γ̃Hom
n , respectively. To have a consistent notation, we denote the closure of the

entropy region, i.e., Γn, also by Γ̃n, and also call it the entropy region which will
be clear from the context. We let Γ̃Lin

n :“
Ť

p:prime Γ̃
p and and call it the linear

regions. Notice that the relation Γ̃MixL
n “ convhpΓ̃Linq holds (see Definition 6.1

for definition of convex hull).
Similar to the closure of the entropy region, the p-linear, mixed-linear, abelian

and homomorphic entropy regions are all convex sets. Although the linear en-
tropy region is known to be convex for n ď 5 [25], it is not the case for
n ě 7 [16, 26]. The situation is unknown for n “ 6 [24].

Notice that the relation Γ̃Lin
n Ď Γ̃MixL

n Ď Γ̃Abl
n Ď Γ̃Hom

n trivially holds true.
Except for the first inclusion, which is known to be proper for n ě 7 by [16],
it remains open if the other inclusions are proper for any n. It remains open
if Γ̃MixL

n , Γ̃Abl
n and Γ̃Hom

n all coincide, which as we will see in next subsection,
if this turns out to be the case, it shows that the answer to the abelian and
homomorphic convec set problems (Problem 6.4) are both positive.

7.2 Entropy region and convec set

Next, we discuss the relation between different types of entropy regions and their
corresponding convec sets. We explain the relation between Γ̃n`1 and ΣpAq,
where A is an access structure on n participants (the extra variable corresponds
to the secret). The other cases are similar.

We first remark that the correctness and privacy conditions in the definition
of perfect realization for an access structure on n participants correspond to
hyperplanes in R2n`1´1. The set ΣpAq can equivalently be computed by the
following steps. The intersection of the entropy region Γ̃n`1 and the hyperplanes
that describe the correctness and privacy conditions for the access structure
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is computed. Each point of the resulting area is then scaled by dividing all
coordinates to the entry that corresponds to the secret entropy. The obtained
region, which is a (convex) subsets of R2n`1´1, is then projected on the n entries
that correspond to the participants share entropies. It can easily be seen that
what we get is essentially ΣpAq. Based on above discussion, we have the following
proposition.

Proposition 7.1 Let A be an access structure on n participants.

– If ΣMixLpAq Ĺ ΣAblpAq, then Γ̃MixL
n`1 Ĺ Γ̃Abl

n`1 .
– If ΣAblpAq Ĺ ΣHompAq, then Γ̃Abl

n`1 Ĺ Γ̃Hom
n`1 .

Therefore, by studying SSSs one may gain some information about the struc-
ture of the entropy region with respect to different classes of RVs.

Here we discuss one such application. Recall that in Section 6.1 we almost
determined the linear convec set of the 12-participant access structure F ` N .
Our almost matching lower and upper bounds for ΣLinpF ` N q is enough to
deduce that it is a non-convex set. Consequently, the same thing holds for Γ̃Lin

n

for any n ě 13. This proves the existence of characteristic-dependent linear rank
inequalities on at most 13 variables. The first examples of such inequalities were
found in [16] which are on seven variables.

7.3 On completeness of the DFZ method

Recall that we index the indices of vectors in R2n´1 with non-empty subsets of
rns. A vector c P R2n´1 is called a (linear) information inequality on n variables
if for every entropic vector h P Γn it holds that xc, hy :“

ř

H‰AĎrns cAhA ě 0.
We call c P R2n´1 a rank inequality if xc, hy ě 0 for every linear entropic

point h P Γ̃Lin
n (this is equivalent to say for every h P convh

´

Γ̃Lin
n

¯

“ Γ̃MixL
n ).

In [25], Dougherty, Freiling and Zeger have presented a method (called DFZ
for short), using which they have been able to derive all rank inequalities on at
most five variable. In particular, all known rank inequalities, including millions
on six variables [24], have been derived using the DFZ method. The method
employs the common information (CI) property of RVs which was defined in
Section 2.5. In [25], it has been explicitly asked if the DFZ method is complete
for determining all rank inequalities. Here is a formal description of completeness.

Completeness of the DFZ method. Let In denote the set of all rank in-
equalities on n variables derived using the DFZ method. We say that the DFZ
method is complete for the (mixed-)linear region with n variables if and only if
Γ̃MixL
n “

Ş

cPIn
th P R2n´1 : xc, hy ě 0u. The completeness of the DFZ method

can similarly be defined with respect to the abelian and homomorphic regions.

It is known that the DFZ method is complete for linear region for every n ď 5
variables. In particular, for n ď 5, the linear entropy region is a convex polytope;
that is, it can be described as an intersection of finitely many half-spaces.



28 A. Jafari and S. Khazaei

Recall that by Corollary 2.6, the CI property holds for homomorphic RVs
and consequently abelian ones too. Therefore, for every c P In and every homo-
morphic (and hence abelian) entropic point h P R2n , we have xc, hy ě 0. The
following proposition then follows.

Proposition 7.2 If the DFZ method is complete for the mixed-linear region
with n variables, then Γ̃Hom

n “ Γ̃Abl
n “ Γ̃MixL

n .

We remark that the converse might not be true because, as we saw in Sec-
tion 2.4, the CI property holds for a larger class of RVs (see Proposition 2.5).

By Proposition 7.1, we then have the following corollary.

Corollary 7.3 If the DFZ method is complete for the mixed-linear region with
n ` 1 variables, then for every access structure A on n participants, we have
ΣHompAq “ ΣAblpAq “ ΣMixLpAq. In particular, if the answer to abelian (resp.
homomorphic) convec set problem (Problem 6.4) is not true, then for some n,
the DFZ method is not complete for the mixed-linear (resp. abelian) region with
n variables.

We remark that even if the answer to both abelian and homomorphic con-
vect set problems both turn out to be positive, we do not interpret it as a strong
indication of completeness of the CI method in determining all linear rank in-
equalities. The reason is that, as we saw earlier, the CI property holds for a
larger class of random variables (see Proposition 2.5).

8 Duality of abelian secret sharing schemes

In this section, we generalize the well-known result of [27,40] on duality of linear
schemes to the class of abelian schemes. We first present the definition of access
function [27] and dual of an access function. Access function is a generalization of
the notion of access structure to allow non-perfect realization (with a control on
the amount of information gained by every subset of participants on the secret).
The dual of an access function is a natural generalization of dual of an access
structure [40]. The dual of an access structure A on a participant set P is an
access structure A˚, on the same set of participants, defined as follows: A P A˚

if and only if pP zAq R A.

Definition 8.1 (Access function and its dual) A mapping Φ : 2P Ñ r0, 1s

is called an access function if ΦpHq “ 0, ΦpP q “ 1 and it is monotone; i.e.,
A Ď B Ď P implies that ΦpAq ď ΦpBq. The dual of Φ, denoted by Φ˚, is defined
by Φ˚pAq “ 1 ´ ΦpP zAq, for every A Ď P .

The access function of a secret sharing scheme Π “ pSiqiPP is defined by
ΦΠpAq “

IpS0:SAq

HpS0q
. The access function of an abelian scheme Π “ pGiqiPQ can be

computed by the simplified relation ΦΠpAq “
log |G0XGA|

log |G0|
, where GA “

ř

iPA Gi.
This relation follows by properties of entropy function and the product formula
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(which was mentioned in Section 2.4) for abelian groups (i.e., |K`H| “
|K||H|

|KXH|
).

Also, its convec is simply given by cvpΠq “

´

log |Gi|

log |G0|

¯

iPP
.

Proposition 8.2 (Duality) Let Π “ pG;G0, G1, . . . , Gnq be an abelian scheme
that satisfies G0 Ď

řn
i“1 Gi (so that ΦΠprnsq “ 1). Then, there exists an abelian

scheme Π˚ such that ΦΠ˚ “ Φ˚
Π and cvpΠ˚q ď cvpΠq.

Proof. Let P “ rns. We construct an abelian scheme Π˚ “ pG˚;G˚
0 , G

˚
1 , . . . , G

˚
nq

such that |G˚
0 | “ |G0| and |G˚

i | ď |Gi|. This proves the relation between the
convecs. For proving the the relation between the access functions, since |G˚

0 | “

|G0|, we essentially need to show that for every A Ď P , we have log |G˚
0 XG˚

A| “

log |G| ´ log |G0 X GP zA|, where GA “
ř

iPA Gi and similarly G˚
A :“

ř

iPA G˚
i .

Equivalently, we will prove the following equality:

|G˚
0 X G˚

A| “
|G|

|G0 X GP zA|
. (8.1)

The dual construction. Consider the subgroup C Ď
ś

iPQ Gi whose elements
are the vectors pxiqiPQ P

ś

iPQ Gi satisfying
ř

iPQ xi “ 0. For every i P P , let Ci

be the subgroup of C whose projection on the ith component is zero. To define
our dual abelian scheme Π˚, we let G˚ “ pC and G˚

i “ tα P pC|αpCiq “ t1uu.
The reader may recall the definition of Pontryagin dual given in Section 2.2.
The claim on convec. It is clear that G˚

i “ {

`

C{Ci

˘

since, in general, the

subgroup of pG that vanishes on a subgroup H ď G is isomorphic to {

`

G{H
˘

.
Note that the projection C Ñ Gi that sends pxiqiPQ to xi is onto for i “ 0
(since G0 Ď

řn
i“1 Gi) and its kernel is C0. So G0 – C{C0. Therefore, |G˚

0 | “
ˇ

ˇ

{

`

C{C0

˘ˇ

ˇ “ |C{C0| “ |G0|. Also the projection C Ñ Gi has kernel Ci so C{Ci is

a subgroup of Gi; hence, |G˚
i | “

ˇ

ˇ

{

`

C{Ci

˘ˇ

ˇ “ |C{Ci| ď |Gi|. The claim on convec
then follows.
The claim on access function. To prove (8.1), we define CA “

Ş

iPA Ci

for A Ď P and prove two relations: (I) G˚
0 X G˚

A – C
C0`CA

and (II) C0`CA

C0
–

G0 X GP zA. Equation (8.1) then follows because in the above we proved that
G0 – C{C0.
Proof of (I). We claim that G˚

A “ tα P pC|αpCAq “ t1uu. Notice that CA Ď Ci

for all i P A. Therefore, if αpCiq “ t1u then αpCAq “ t1u. So G˚
i Ď tα P

C˚|αpCAq “ t1uu and hence
ř

iPA G˚
i Ď tα P C˚|αpCAq “ t1uu. Conversely, if

α P pC and αpCAq “ t1u, then α, on input pxiqiPQ, depends only on variables xi

for i P A, i.e., αpx0, x1, . . . , xnq “ αpy0, y1, . . . , ynq, where yi “ 0 for i R A and
yi “ xi for i P A. Now we have αpy1, . . . , ynq “

ř

iPA αp0, . . . , 0, yi, 0, . . . , 0q and
αp0, . . . , 0, yi, 0, . . . , 0q is an element of G˚

i for i P A. Therefore, α P
ř

iPA G˚
i . It

is easy to see that G˚
0 XG˚

A “ tα P pC|αpC0 `CAq “ t1uu –
{

´

C
C0`CA

¯

– C
C0`CA

.
Proof of (II). Let C0 ` CA Ñ G0 be the projection onto the 0-th component.
Then its kernel is C0 and its image is G0 X GP zA; because if pxiqiPA P CA, then
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ř

iPA xi “ 0 and for every i P A, xi “ 0. Therefore x0 “ ´
ř

iPP zA xi and hence
x0 P GP zA. Therefore, C0`CA

C0
– G0 X GP zA. [\

9 On ideal homomorphic secret sharing schemes

The main goal of this section is to prove that every ideal homomorphic SSS can
be converted to an ideal linear scheme, without changing its access structure.

Notation. We say that a SSS is homomorphic if, as a random variable, it is
homomorphic (see Definition 2.3 for definition of homomorphic RVs). In this
section, we simply refer to a subgroup Ω of a product group

ś

iPQ Ωi as a ho-
momorphic secret sharing scheme; because, a uniform distribution on Ω induces
a random variable pSiqiPQ, i.e., a secret sharing schemes. We assume that the
projection of Ω on its i’th component is onto such that Ωi is the support of Ωi.
For x P Ω, we denote the projection on entires with indices in a subset A Ď Q
by xA; we use xi for i P Q.

Secret sharing with weak privacy. It is easier to prove our result for a secu-
rity notion with a weaker privacy requirement for SSSs, introduced by Brickell
and Davenport in [18]. They have proved that for ideal schemes, the two no-
tions coincide. We show that the two notions coincide for general homomorphic
schemes (Lemma 9.1 Part I).

Instead of requiring that unqualified subsets gain no information about the
secret, the weak privacy requires that unqualified subsets must not be able to
rule out any possibility for the secret. That is, for an unqualified subset A Ď P ,
we require the following holds: for any x (in the support of the secret sharing)
and for any secret s, there exists some y (in the support of the secret sharing)
such that xA “ yA and y0 “ s.

A key lemma. We need the following lemma for proving our main result of this
section. Part (II) has been proved by Frankel, Desmedt and Burmester in [30]
and Part (III) was proved in a subsequent work by Frankel and Desmedt in [29].
For completeness, we provide a simple and clean proof. In the remaining part
of this section, we assume that our access structures have at least one minimal
qualified subset of size at least two.

Lemma 9.1 (Homomorphic SSS) Let Ω Ď
ś

iPQ Ωi be a homomorphic SSS
with weak privacy for an access structure A. Then,

(I) Ω is a perfect scheme for A.
(II) the secret space, Ω0, is an abelian group.

(III) if Ω is ideal, then Ω0 – Ωi.

Proof. For a subset A Ď Q, we have a projection map πA from
śn

i“0 Ωi onto
ś

iPA Ωi and we use the notation ΩA to denote the projection of the group Ω
onto its A component

ś

iPA Ωi i.e., πApΩq.
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(I) Since Ω is a SSS for A with weak privacy, for any B R A, any x P Ω and
any s P Ω0, one may find y P Ω such that yB “ xB and y0 “ s. This
is equivalent to the statement that the projection Ω Ñ Ω0 ˆ ΩB is onto.
Since the pre-image of any point of an onto homomorphism of groups have
exactly as many elements as the number of the elements of the kernel of
that homomorphism, it follows that the number of y P Ω with yB “ xB and
y0 “ s is independent of the choice of s P Ω0. Hence Ω is a prefect SSS for
A.

(II) We need to show that for all s1, s2 P Ω0, s1 ¨ s2 “ s2 ¨ s1. Let e P Ω be
the identity element, that is, an element whose i component is the iden-
tity elements of the corresponding groups Ωi. Let A “ tj1, j2, . . . , jku be
a minimal set in A of size at least 2 and, for i “ 1, 2, let Ai “ Aztjiu.
Since Ai R A and e P Ω, there are xpiq P Ω such that xpiqAi “ eAi and
xpiq0 “ si. Then since any element in a group commutes with the identity
element, we have pxp1q ¨ xp2qqA “ pxp2q ¨ xp1qqA, and since A P A, we must
have pxp1q ¨ xp2qq0 “ pxp2q ¨ xp1qq0, that is s1 ¨ s2 “ s2 ¨ s1.

(III) We first show that for a general homomorphic scheme Ω and for every i P Q,
the secret group Ω0 is a sub-quotient of Ωi; that is, there is an into group
homomorphism from a subgroup of Ωi to Ω0. Let A P A be a minimal set of
size at least two that contains i and A1 “ Aztiu. Let Ω1

i be the kernel of the
projection πA1 : ΩA Ñ ΩA1 . Then Ω1

i can be identified with a subgroup of
Ωi. We show that the restriction of the reconstruction homomorphism RA

to Ω1
i is an onto homomorphism to Ω0. For any s P Ω0 we need to find an

element y P Ω such that yA1 “ eA1 and y0 “ s, since then yA P Ω1
i and

RApyAq “ s. This follows from the fact that A1 R A.
Therefore, there is an onto homomorphism from a subgroup Ω1

i of Ωi onto
Ω0. But for an ideal Ω, since |Ωi| “ |Ω0|, we must have Ω1

i “ Ωi and the
homomorphism must be an isomorphism; because an onto map between sets
of the same size is also one to one. So all Ωi’s are isomorphic to Ω0.

[\

Now we provide two proofs for the main result of this section.

Theorem 9.2 If an access structure admits an ideal homomorphic SSS, then it
also admits an ideal linear SSS.

Notation. For an integer m and an abelian group G, we use m : G Ñ G for
the homomorphism that sends x to mx :“ x ` . . . ` x (m times). We also use
mG for the image of this map, which is a subgroup of G.

Proof. (First) Let Ω be an ideal homomorphic SSS for an access structure A.
By Lemma 9.1, without loss of generality, we can consider Ω as a subgroup of
Gn`1, where G is a finite abelian group. Let p be a prime factor of |G| and
let Ω1 be the image of Ω inside G

pG ˆ G
pG ˆ ¨ ¨ ¨ ˆ G

pG . We claim that Ω1 is an
ideal linear SSS for A which proves the theorem. A vector space over Fp is
an abelian group V such that pV “ 0. Therefore G

pG is a vector space over
Fp and Ω1 is a subspace. To prove the claim, it is enough to show that for



32 A. Jafari and S. Khazaei

every A P A, if for x, y P Ω we have xA ” yA mod p, then x0 ” y0 mod p.
Let RA : G|A| Ñ G be the reconstruction function for the qualified subset A,
where by definition it a homomorphism. It follows that RA maps pG|A| to pG.
Therefore, if xA ´ yA P pG|A| then x0 ´ y0 P pG. For A R A, if x P Ω and s P G,
we know that there is y P Ω such that xA “ yA and y0 “ s. If we take everything
modulo p, we get the required element in Ω1 that verifies the condition of weak
privacy for Ω1. [\

Proof. (Second) Let Ω be an ideal homomorphic SSS for an access structure
A. By Lemma 9.1, without loss of generality, we can consider Ω as a subgroup
of Gn`1, where G is a finite abelian group. Let r be the exponent of the group
Ω inside G ˆ ¨ ¨ ¨ ˆ G. This is the smallest integer that rΩ “ 0. Choose a prime
factor p of |G|. Since G has elements of order p, hence Ω that projects onto G
surjectively has elements of order p; therefore p|r. Let m “ r

p . We claim that
mΩ, as a subgroup of mGˆ ¨ ¨ ¨ ˆmG, is an ideal linear SSS for A which proves
the theorem. Note that mG is a non-trivial abelian group such that pmG “ 0.
Hence, it is a vector space over Fp and mΩ is a subspace of mG ˆ ¨ ¨ ¨ ˆ mG.
To prove the claim, we need to show that for every A P A, if x, y P mΩ and
xA “ yA, then x0 “ y0. But this is true for any x, y P Ω and, therefore, it is
true for x, y P mΩ. We need also to show that for every A R A, if x P mΩ and
s P mG, then there is y P mΩ such that xA “ yA and y0 “ s. Let x “ mx1 and
k “ ms1 for x1 P Ω and s1 P G. Since Ω is a SSS fo A, there is y1 P Ω such that
x1
A “ y1

A and y1
0 “ s1. It follows that if we let y “ my1 P mΩ, we have found the

required element. [\

Discussion. Here we mention two consequences of the result of this section.

– We remark that we do not know if our result on duality of abelian secret shar-
ing can be extended to homomorphic schemes, in general. However, by our
third result, and the result on duality of multi-linear schemes, it can be con-
cluded that the result on duality holds true for ideal homomorphic schemes.
This consequence is particularly interesting since it is an open problem if
the duality result holds for ideal secret sharing schemes or if it holds for
the homomorphic secret sharing schemes. In next section, we discuss a more
interesting consequence of this result.

– A well-known open problem in secret sharing is to prove or refute the fol-
lowing statement [52]: every ideal access structure admits an ideal multi-
linear secret sharing scheme. Our result bring us one step closer to solving
this problem since its is enough to prove or refute the following equivalent
statement: every ideal access structure admits an ideal homomorphic secret
sharing scheme.

10 Conclusion

We introduced the notion of mixed-linear secret sharing and presented some re-
sults about abelian and homomorphic secret sharing schemes. On of our main
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goals was to understand the completeness of the following two methods, which
both use the common information property of random variables: DFZ [25], a
method for deriving linear rank inequalities, and FKMP [28], a method for de-
riving lower bounds on the multi-linear information ratio of access structures.

We showed that mixed-linear schemes are superior to multi-linear schemes,
which proves the incompleteness of the FKMP method. The completeness or
incompleteness of the DFZ method remains open. Solving the abelian and ho-
momorphic open problems (Problem 6.4). Also, extending the duality of abelian
schemes—proved in this paper and before only known to hold for multi-linear
schemes—to the class of homomorphic schemes sounds challenging (we managed
to handle the ideal case). If this extension fails to hold, it justifies the misbehav-
ior of the lower bound obtained by the FKMP method with respect to duality,
which was observed in [28].
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A Basics of group theory

For reader’s convenience, we recall the basic concepts from group theory which
are used in this paper. They can be found in any standard textbook in algebra,
e.g., [34].

Group. A group is a tuple pG, ˚q where G is a set and ˚ is a binary operation
on G that satisfies the group axioms: closure (i.e., a ˚ b P G for every a, b P G),
associativity (i.e., a ˚ pb ˚ cq “ pa ˚ bq ˚ c for all a, b, c P G), identity (i.e., there
exists an element e P G called the identity such that a ˚ e “ e ˚ a “ a for every
a P G) and invertibility (i.e., for every a P G there exists an element a´1 P G
such that a ˚ a´1 “ a´1 ˚ a “ e).

Subgroup. A subset H of a group G is called a subgroup of G if it satisfies the
group axioms under the operation of G. By Lagrange theorem, the order of a
subgroup H of group G divides the order of G; i.e., |H| | |G|.
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Coset and quotient set. Given a group G and a subgroup H, and an element
g P G, one can consider the corresponding left coset: aH :“ tah : h P Hu. The
set of all left cosets of a subgroup H in a group G is called the quotient set,
denoted by G{H. In particular, |G{H| “ |G|{|H|. The left cosets of a subgroup
partition the group.

Normal subgroup and quotient group. A subgroup N of a group G is
called normal if it is invariant under conjugation by members of G; that is,
gNg´1 “ N for all g P G. Indeed, for a normal subgroup N of G, the quotient
set G{N admits a natural group structure, called the quotient group. The group
operation is defined by paNq ˚ pbNq “ pa ˚ bqN which can be shown to be well-
defined.

Group homomorphism/isomorphism. Given two groups pG, ˚q and pH, ¨q,
a group homomorphism from G to H is a mapping ϕ : G Ñ H such that for all
a, b P G it holds that ϕpa ˚ bq “ ϕpaq ¨ ϕpbq. A bijective group homomorphism is
called an isomorphism.

Kernel. The kernel of a group homomorphism ϕ : G Ñ H is the set of all
elements of G that maps to eH , the identity of H; i.e., kerϕ “ tg P H : ϕpgq “

eHu. The kernel of ϕ is a normal subgroup of G.

The first isomorphism theorem. The image of any group G under a homo-
morphism is always isomorphic to a quotient of G. In particular, the image of G
under a homomorphism ϕ : G Ñ H is isomorphic to G{ kerpϕq.

Direct product group. The direct product of groups pG, ‚q and pH, ¨q, denoted
by G ˆ H, is a group defined on the set G ˆ H by the natural group operation
pg1, h1q ˚ pg2, h2q “ pg1 ‚ g2, c1 ¨ h2q.

B Lower and upper bounds for ΣMixLpF ` N q

Let 1 denote an all-1 vector of length six. For the purpose of this section let
p “ 3. Also, ignore to take the set closures into account.

Recall that in Section 4 we found lower bounds for ΣppFq and Σ2pN q. Also, in
Section 5 we found upper bounds for them. Our lower and upper bounds where
matching for ΣppFq, which determined its closure. Let Σ2

lbpN q and Σ2
ubpN q

denote our lower and upper bounds for Σ2pN q, respectively. It is easy to see
that we have the following lower and upper bounds for ΣMixLpF ` N q.

ΣMixL
lb pF ` N q “ convh

!

␣

p1, xq : x P Σ2
lbpN q

(

Y tpx,1q : x P ΣppFqu

)

,

ΣMixL
ub pF ` N q “ convh

!

␣

p1, xq : x P Σ2
ubpN q

(

Y tpx,1q : x P ΣppFqu

)

.
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Using a computer, we have computed the half-space descriptions of the above
sets which are given below:

ΣMixL
lb pF ` N q :
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’
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xi ě 1,
i P t1, . . . , 12u

xi ` xj ` xk ` x10 ` x11 ` x12 ě 7,
pi, j, kq P tp1, 2, 3q, p1, 5, 6q, p2, 4, 6q, p3, 4, 5qu

xi ` xj ` xk ` xℓ ` x7 ` x8 ` x9 ě 7,
ℓ P t10, 11, 12u

pi, j, kq P tp1, 2, 3q, p1, 5, 6q, p2, 4, 6q, p3, 4, 5qu

xi ` xj ` xk ` xℓ ` xm ` xm ` 2xn ě 8,
pℓ,m, nq P tp9, 10, 11q, p9, 11, 10q, p8, 10, 12q,

p8, 12, 10q, p7, 11, 12q, p7, 12, 11qu

pi, j, kq P tp1, 2, 3q, p1, 5, 6q, p2, 4, 6q, p3, 4, 5qu

ΣMixL
ub pF ` N q :
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%

xi ě 1,
i P t1, . . . , 12u

xi ` xj ` xk ` x10 ` x11 ` x12 ě 7,
pi, j, kq P tp1, 2, 3q, p1, 5, 6q, p2, 4, 6q, p3, 4, 5qu

xi ` xj ` xk ` xℓ ` x7 ` x8 ` x9 ě 7,
ℓ P t10, 11, 12u

pi, j, kq P tp1, 2, 3q, p1, 5, 6q, p2, 4, 6q, p3, 4, 5qu

xi ` xj ` xk ` xℓ ` xm ` xm ` 2xn ě 8,
pℓ,m, nq P tp9, 10, 11q, p9, 11, 10q, p8, 10, 12q,

p8, 12, 10q, p7, 11, 12q, p7, 12, 11qu

pi, j, kq P tp1, 2, 3q, p1, 5, 6q, p2, 4, 6q, p3, 4, 5qu

xi ` xj ` xk ` xℓ ` xm ` xm ` xn ` xp ě 8,
pℓ,m, n, pq P tp7, 9, 11, 12q, p7, 9, 11, 10q, p7, 8, 11, 12q,

p7, 8, 10, 12qp8, 9, 10, 5qp8, 9, 10, 12qu

pi, j, kq P tp1, 2, 3q, p1, 5, 6q, p2, 4, 6q, p3, 4, 5qu

Even though, the lower and upper bounds on ΣMixLpF ` N q do not match,
they are sufficient to determine the exact value of the maximum and average
mixed-linear information ratios of F ` N .

C On usefulness of convec sets

In an unpublished work, we have shown that, using the pλ, ωq-decomposition,
almost all extreme convecs of all linear convec sets of access structures on five
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participants can recursively be constructed. We start from an initial collection of
convecs and take the duality of linear schemes into account. That is, when a new
scheme with convec σ is constructed for an access structure A, the dual pairs
pA, σq and pA˚, σq are added to the collection. Our initial collection includes all
extreme convecs of access structures on at most four participants and all ideal
access structures on five participants. The initial collection were all known by
1996 [41], however, the linear optimal schemes for some access structures on five
participants were only determined in 2018 [28], by direct construction.

Our method constructs all extreme convecs of all linear convec sets of ac-
cess structures on five participants, except 7 convecs. By duality and symmetry,
essentially 3 convecs can not be constructed (which fortunately they have very
simple constructions). Our results show that the pλ, ωq-decomposition is not a
complete method for construing every secret sharing scheme with an extreme
convec, even if we assume that all ideal access structures are known.

We have also tried to use the FKMP method [28] to determine the linear
convec set of small access structures. We have been able to find the optimal
linear convec set for all access structures on five participants. For graph access
structures on six participants, we have been able to find the optimal linear convec
set of almost all access structures. We have not been able to determine the linear
convec set of a few graph access structures on six participants. It is not clear to
us yet, if this is a computational imitation, or if it is an inherent weakness of the
FKMP method in determining the exact linear convec set of access structures.
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