Improved Multiplication Triple Generation over
Rings via RLWE-based AHE

Deevashwer Rathee!, Thomas Schneider?, and K. K. Shukla!

! Department of Computer Science and Engineering,
Indian Institute of Technology (BHU) Varanasi, India
{deevashwer.student.csel15,kkshukla.cse}@iitbhu.ac.in
2 Department of Computer Science,

Technische Universitdt Darmstadt, Germany
schneider@encrypto.cs.tu-darmstadt.de

Abstract. An important characteristic of recent MPC protocols is an
input independent preprocessing phase in which most computations are
offloaded, which greatly reduces the execution overhead of the online
phase where parties provide their inputs. For a very efficient evaluation
of arithmetic circuits in an information-theoretic online phase, the MPC
protocols consume Beaver multiplication triples generated in the prepro-
cessing phase. Triple generation is generally the most expensive part of
the protocol, and improving its efficiency is the aim of our work.

We specifically focus on the semi-honest model and the two-party setting,
for which an Oblivious Transfer (OT)-based protocol is the currently best
solution. To improve upon this method, we propose a protocol based
on RLWE-based Additive Homomorphic Encryption. Our experiments
show that our protocol is more scalable, and it outperforms the OT-
based protocol in most cases. For example, we improve communication
by up to 6.9x and runtime by up to 3.6x for 64-bit triple generation.

Keywords: Secure Two-party Computation - Beaver Multiplication Triples
- Ring-LWE - Additive Homomorphic Encryption

1 Introduction

Secure multi-party computation (MPC) allows a set of distrusting parties to
jointly compute a function on their inputs while keeping them private from one
another. There is a multitude of MPC protocols such as [DPSZI12IKOST6/DSZ15]
that allow secure evaluation of arithmetic circuits, which form the basis of many
privacy-preserving applications. An important characteristic of many of the re-
cent MPC protocols is an input independent preprocessing phase in which most
computations are offloaded, which greatly reduces the execution overhead of the
online phase where parties provide their inputs. The idea is to compute Beaver
multiplication triples [Bea91] in the preprocessing phase, and then use them
to evaluate arithmetic circuits very efficiently in an information-theoretic on-
line phase, free from any cryptographic operations. In light of their significance

2 Deevashwer Rathee, Thomas Schneider, and K. K. Shukla

on the overall runtime of the protocol, the main focus of this work is efficient
generation of these triples.

In the malicious model and the multi-party setting, the first to employ
RLWE-based Somewhat Homomorphic Encryption (SHE) for triple generation
were [DPSZ12] in 2012. Their major source of efficiency was the packing method
from [SV14]. In 2016, this method was replaced by an Oblivious Transfer (OT)-
based method by Keller et al. [KOS16]. Later in 2017, SHE emerged again with
the Overdrive methodology [KPR18]. These protocols were designed to generate
triples over a finite field which can only be used to support finite field arithmetic
in the online phase. In 2018, Cramer et al. [CDE™18] proposed an OT-based
protocol that generates triples over rings of the form Z,¢, which was later imple-
mented in [DEFT19]. Designing protocols over rings is useful in a lot of applica-
tions since it greatly simplifies implementation of comparisons and bitwise oper-
ations, which are inefficient to realize with finite field arithmetic (cf. [DEET19]).
Apart from this, using ring-based protocols also implies that we can leverage
some special tricks that computers already implement to make integer arith-
metic very efficient. In 2019, Orsini et. al [OSV19] presented a solution based
on SHE and argued that it is more efficient than the OT-based protocol of
ICDE™1§].

Our Contributions. In this paper, we consider the semi-honest model and
the two-party setting, for which the current best method for generating triples
over rings is the OT-based approach of [DSZ15|. Taking inspiration from the
changing trend in the malicious model, we propose a protocol based on RLWE-
based Additive Homomorphic Encryption (RLWE-AHE) that improves upon
the widespread OT-based solution. In the process, we analyze the popular ap-
proaches for triple generation using AHE and adapt them to using state-of-the-
art RLWE-AHE and our scenario. We also argue why the approach taken in
[OSVI9] does not provide the most efficient solution in our semi-honest setting.
Our experiments show that our protocol is more scalable, and it outperforms
the OT-based protocol in most cases. For example, we improve communication
by up to 6.9x and runtime by up to 3.6x for 64-bit triple generation.

2 Preliminaries

Notation. We denote the players as Py and P;. x denotes the symmetric se-
curity parameter, o the statistical security parameter, and A the computational
security parameter respectively. (x) is a shared value of z € {0, 1}, which is a
pair of £-bit shares ({x)g, (x)1), where the subscript represents the party that
holds the share. The key pair of party P; is denoted by (pk;, sk;).

Problem Statement. A Beaver multiplication triple [Bea91] is defined as the
tuple ({(a), (b), (c)) with ((a)o + (a)1) - (B0 + (b)1) = ((c)o + {c)1) mod 2¢. Our
aim is to construct a two-party protocol that securely realizes a functionality
which generates a Beaver multiplication triple in the ring Zqe for two parties Py

Improved Multiplication Triple Generation over Rings via RLWE-based AHE 3

and P;, and sends the respective shares of the triple to each party.

Security Model. Our protocol is secure against a semi-honest and compu-
tationally bounded adversary. This adversary tries to learn information from
the message it sees during the protocol execution, without deviating from the
protocol. It is not allowed to deviate from the protocol execution.

Ring-LWE-based Additive Homomorphic Encryption (RLWE-AHE).
We use an AHE scheme with the following 5 algorithms:

— KeyGen(1): Key Generation is a randomized algorithm that outputs the key
pair (pk,sk), with public key pk and secret key sk.

— Enc(pk, m): Encryption takes a vector m € Z,, as input, where n depends on
scheme parameters m and p, along with pk, and outputs a ciphertext ct.

— Dec(sk, ct): Decryption takes the secret key sk and a ciphertext ct, and out-
puts the underlying plaintext m € Z.

— Add(cty, cta): Addition takes as input two ciphertexts cty, cta, and outputs a
ciphertext ct, such that Dec(sk, ct,) = m; +mg € Z;, where addition is per-
formed component-wise. This algorithm is also denoted by the 4 operator.

— ScalarMult(cty, mg): Given inputs ct; and ma, scalar-multiplication outputs
a ciphertext cty € C such that Dec(sk, cts) = my - mg € Zj, where multipli-
cation is performed component-wise. This algorithm is also denoted by the
- operator.

Possible instantiations of RLWE-based schemes that satisfy the description above
are [FVI2IBGV12]. We assume that the parameters of the scheme have been cho-
sen to be large enough to allow evaluation of the circuit for our triple generation
protocol and accommodate the extra noise added to prevent leakage through
ciphertext noise (cf. §4)).

3 Previous Works

The previous approaches for generating multiplication triples in the semi-honest
model are based on AHE and OT. Initially, Beaver triples were generated using
AHE schemes such as Paillier [Pai99] and DGK [DGKO08]. However, the authors
in [DSZ15] showed that the OT-based generation method greatly outperforms
the AHE-based generation, and is currently the best method. In this section, we
summarize both approaches. Although the protocols based on AHE are much
slower, their design is similar to our proposed protocol.

3.1 AHE-based Generation

Case I - 2°|p. Protocol [1| describes a well-known protocol for generating triples
using AHE. This protocol generates multiplication triples in Zqe, using an AHE
scheme with plaintext modulus p, and it works if and only if 2¢|p. This is due to
the fact that the AHE scheme implicitly reduces the underlying plaintext modulo

4 Deevashwer Rathee, Thomas Schneider, and K. K. Shukla

Protocol 1 Basic Beaver Triple Generation using AHE

IRasicTripleAHE:
Py: Sample uniformly random {(a)o, (b)o € Zqe
Py: Sample uniformly random (a)1, (b)1 € Zye and r € Z,,
(e)1 = {(a)1 - (b)1 — r mod 2°
Py — Pi: cta = Enc(pky, (a)o), cts = Enc(pky, (b)1)
Pr — Po: ctqg = (cto - (b)1) + (cty - (a)1) + 7
Po: (c)o = {a)o - (b)o + Dec(sko, cty) mod 2°

p. We can use the DGK cryptosystem [DGKOS] since it uses a 2-power modulus,
whereas for using the Paillier cryptosystem [Pai99] whose plaintext modulus is
the product of two distinct primes, we require some changes to IIgasicTripleHE-

Case II - 2° { p. Firstly, we choose r from an interval such that d = {(a) -
(b)1 + (b)o - (a)1 + r does not overflow the bound p. This affects the security
of the protocol as we no longer have information theoretic security provided by
uniform random masking by 7. To get around this issue, we resort to ”smudging”
[AJL™12], where we get statistical security of o-bits by sampling r from an
interval that is by factor 27 larger than the upper bound on magnitude of the
expression v = (a)g - (b)1 + (b)o - (a);. Since the upper bound on v is 22*!
we sample 7 from Zgze+o+1. Consequently, the plaintext modulus p has to be of
bitlength 2¢ + o + 2. This prevents the overflow and provides statistical security
of o-bits.

3.2 OT-based Generation

The feasibility result for triple generation over Zge using Oblivious Transfer
was given in [Gil99], and it was shown in [DSZ15] that it is the currently best
method for triple generation in the semi-honest setting. This protocol facilitates
the triple generation by allowing secure computation of the product of two secret
values. The amortized complexity of generating a triple in Zye using OT-based
generation is 2¢ Correlated-OT (C-OT) over (¢ + 1)/2-bit strings (cf. [DSZ15]).
The protocol uses state-of-the-art C-OT extension (cf. [ALSZ13]) that requires
K + ¢-bit communication per C-OT on ¢-bit strings.

4 RLWE-based Generation

In we described two cases, namely 2¢|p and 2 { p, and presented a protocol
for both of them. While we can build a protocol based on our RLWE-AHE scheme
that follows a similar design as in §3.1] for both cases, the two protocols are not
equally efficient. In this section, we analyze these differences and show that the
protocol for 2¢ { p is more efficient. Before comparing the two cases, we detail
some optimizations and a security consideration that are crucial for our analysis.

Improved Multiplication Triple Generation over Rings via RLWE-based AHE 5

Batching Optimization. Using a RLWE-AHE scheme, we can generate many
triples at the cost of generating one by leveraging the ciphertext packing tech-
nique described in [SV14]. For a prime p, we can encrypt a maximum of n =
¢(m)/ordz: (p) plaintexts m; € Z, in a single ciphertext. The operations per-
formed on a ciphertext are applied to all the slots of the underlying plaintext in
parallel. As a result, in a single run of the protocol, we can generate n triples.

CRT Optimization. Using a very large plaintext modulus p results in inef-
ficient instantiations since a larger p leads to a larger ciphertext modulus to con-
tain the noise growth. Therefore, we use the CRT optimization to split the plain-
text modulus p into e distinct primes p; of equal bitlength such that p = [[;_] p;
for some e € Z. We create e different instances of the cryptosystem for each p;,
and the whole protocol is performed for each instance. The plaintexts produced
after decryption are combined using the Chinese Remainder Theorem (CRT)
(with precomputed tables) to get the output in Z,. This technique also has the
advantage that it can be parallelized in a straightforward manner.

Leakage through Ciphertext Noise. The ciphertexts of RLWE-based schemes
have noise associated with them, whose distribution gets skewed on performing
homomorphic operations on the ciphertext. This can lead to potential leakage
through the noise, and reveal information in the case of scalar multiplication.
A solution to this problem, called the noise flooding technique, was proposed in
[Gen09]. This technique involves adding a statistically independent noise from an
interval B’ much larger than B, assuming that the ciphertext noise is bounded by
B at the end of the computation. Specifically, this is done by publicly adding an
encryption of zero with noise taken uniformly from [—B’, B'] such that B’ > 27 B,
to provide statistical security of o-bits. We denote the encryption with noise from
an interval p - 27 times larger than the normal encryption as Enc’.

Parameter Selection. The plaintext modulus p determines the protocol to
be used as mentioned in After determining p and essentially the approach,
we can determine the other parameters to maximize efficiency as follows:

Case I - 2|p: This approach was recently considered in [OSV19] for the malicious
model. In order to generate authenticated triples in Zqe, the authors required
Zero Knowledge Proofs of Knowledge (ZKPoKs) and triples to be generated in
Zoe+s to prevent a malicious adversary from modifying the triples with error
probability 27511°8s However in the semi-honest setting, the adversaries can
not deviate from the protocol. Hence we do not require ZKPoKs, and comput-
ing triples in Zye suffices. We start by choosing m to be a prime like in [OSV19]
to ensure a better underlying geometry. Given that d is the order of 2 in Z7,, we
get n = ¢(m)/d slots, each of which embeds a d-degree polynomial (cf. [SV14]).
In case we naively utilize just the zero coefficient of the slot, even for small val-
ues of d, we are getting an order of magnitude fewer slots than the maximum
possible value. In order to better utilize the higher coefficients of the polynomial

6 Deevashwer Rathee, Thomas Schneider, and K. K. Shukla

Protocol 2 Beaver Triple Generation using RLWE-AHE

I vipleRLWE

Py: Sample uniformly random (a)o, (b)o € Z3,
P;: Sample uniformly random (a)1, (b)1 € Z3, and 7 € Zl2p4 041
(e)1 = (a)1 - (b)1 — r mod 2°
ct, = Enc’(pky,T) > Enc’: Encryption with noise in [~ B’, B']
Py — Pi: cto = Enc(pky, (a)o), cts = Enc(pky, (b)1)
Py — Py: ctg = (Cta . 1) + (Ctb . <CL>1) + ct,
Po: <C>0 = <a>0 . 0 + Dec(sk07 Ctd) mod 2é

embedded in each slot, we employ the packing method from [OSV19] to essen-
tially achieve a maximum utilization of ¢(m)/5 slots, each packing a message
€ Zy. Despite this significant optimization, most of the slots are being wasted.
Moreover, since p is a power of 2, we can not use the CRT optimization.

Case II - 2 { p: Here, we choose m to be a power of 2 for efficiency reasons
described in [CLP17], and big enough to provide security greater than 128-bits.
Accordingly, we choose a prime plaintext modulus p of 2¢ + o + 2 bits that sat-
isfies p = 1 mod m, thereby maximizing the number of slots to ¢(m). A concern
of inefficiency here is that now our plaintext modulus is much larger than it was
in the previous case. However, using the CRT optimization, we can split the
plaintext modulus into e = (2¢ 4 o + 2)/¢ distinct primes p; and get e instances
of the cryptosystem with similar parameter lengths as in the previous case. A
run of the protocol will require e times more computation and communication,
but here we can use the maximum number of slots. An important consideration
here is that while we will have similar plaintext modulus and ciphertext modu-
lus bitlengths, taking a 2-power m might result in at most twice as large n than
is required for 128-bit security. However with increasing n, the communication
and computation increase only linearly and quasi-linearly respectively, and the
number of triples generated increase linearly as well. Therefore, the amortized
communication remains the same and the amortized computation increases at
most by a factor of A = (log(n)+1)/log(n), which is small for the minimum value
of n typically required to maintain security (for n = 4096, A = 1.08). Choosing
n = 8192 instead of n = 4096, while keeping the other parameters unchanged, we
experimentally observed a maximum slowdown in amortized runtime by 1.035x.

Conclusion: A single run of the protocol for case I requires e times more compu-
tation and communication than case II. However, the protocol for case II requires
at least 5 runs of the protocol to generate the same number of triples. Hence,
considering o = 40-bits and with the exception of small values of £ (¢ < 15), case
IT is more efficient. Although we conclude that case I could be better for smaller
£, we have implemented the protocol just for case II because SEAL [CLPI7],
currently the most efficient publicly available library that satisfies the descrip-
tion of our RLWE-AHE scheme, only supports 2-power cyclotomics.

Improved Multiplication Triple Generation over Rings via RLWE-based AHE 7

Table 1: Amortized runtime (in ps) for generating one ¢-bit Beaver multiplication
triple with 7" threads in the LAN10, LAN1, and WAN setting. A total of N = 220
triples are generated. Smallest values are marked in bold.
T=2 T=8 T=32

oT [RLWE [Impr. oT [RLWE [Impr. oT [RLWE [Impr.
81 0.92 2.36 |0.39x|| 0.35 0.70 |0.51x|| 0.24 0.51 |0.47x
16(| 1.74 2.38 |0.73x|| 0.56 0.69 |0.81x|| 0.39 0.50 |0.77x
32|| 3.35 2.37 |1.41x]|| 0.99 0.68 |1.46x|| 0.75 0.49 |1.51x
64|| 6.53 4.61 |1.41x|| 1.89 1.30 |1.46x| 1.61 0.80 [2.01x
8|l 1.30 3.07 |0.42x|| 1.27 2.07 |0.61x|| 1.28 2.02 |0.64x
16| 2.64 3.08 |0.85x|| 2.56 2.09 |[1.22x|| 2.58 1.99 |1.29x

Setting| £

LAN10

LANI 32| 5.55 | 3.07 |1.81x|| 5.53 | 2.34 [2.36x|| 549 | 2.24 |2.45x
64| 13.14 | 5.85 |2.25x|| 13.09 | 4.06 [3.23x|| 13.03 | 3.88 |3.35x
81/ 20.48 | 20.02 [1.02x(|19.33| 25.11 |0.77x|(/20.14| 22.90 [0.88x
WAN 16|| 31.10 | 20.39 |1.53x|| 32.66 | 26.11 |1.25x|| 28.98 | 23.83 |1.22x

32]1 60.81 | 23.85 [2.55x|| 60.22 | 26.42 |2.28x|| 61.25 | 26.44 (2.32x
64(/140.48| 39.34 |3.57x||138.54| 45.20 [3.07x||140.79| 41.57 |3.39x

Table 2: Amortized communication (in Bytes) for generating one ¢-bit Beaver
multiplication triple. Smallest values are marked in bold.

[¢]] OT [RLWE [[Impr.]
81| 272 224 1.21x
16|| 576 224 2.57x
32| 1280 256 ||5.00x
64| 3072 448 6.85x

Our Final Protocol. Our final protocol that we have used to obtain the bench-
marks is given in Protocol 2} As discussed above, we have used the parameters
for case II with 2¢ { p. Rather than drowning the ciphertext noise with a fresh
encryption of zero with extra noise, we combine it with the step of adding 7,
and simply add a fresh encryption of r with extra noise. The advantage of us-
ing RLWE-AHE for generating triples is not only efficiency (cf. ; we also get
post-quantum security, unlike with previous OT and AHE-based schemes.

5 Implementation Results

In this section, we compare the performance of our RLWE-based method (cf.
with the OT-based method (cf. §3.2)) for generating Beaver multiplication triples.

Experimental Setup. Our benchmarks were performed on two servers, each
equipped with an Intel Core 19-7960X @ 2.8 GHz CPU with 16 physical cores and
128 GB RAM. We consider triple generation for bitlenghts ¢ € {8, 16,32,64}. We

8 Deevashwer Rathee, Thomas Schneider, and K. K. Shukla

Time vs N (LAN10, £=8) Time vs N (LAN10, £=16)
o e OT-2 s] @ OT-2
5 @ RLWE-2 oo @eereee RLWE-2
. =2 or-8 =3 oT-8
e o RLWE-8 4 o RLWE-8
41 - ——@-—- OT-32 ——@—- 0T-32

——-e-—- RLWE-32 ——-8——- RLWE-32

Time (in s)
Time (in s)

15 16 17 18 19 20 21 22 15 16 17 18 19 20 21 22

loga(N) (V: Number of Triples) 10ga(N) (N: Number of Triples)
(a) £ =8 (b) £ =16
Time vs N (LAN10, £ =32) Time vs N (LAN10, [=64)
7
. e OT2 ol = or-2
weoee RLWE-2 l. RLWE-2
6 o or-8 or-8
'u.. o RLWE-8 ° RLWE-8
s ———- 0732 81 . ——a-—-- 0T-32
a ——-——- RLWE-32 em, ——-e——- RLWE-32
7) 7 °. R o s -
4 4
g’ s
Es £ \\ S o @ g °
4 ‘\\ AN
NG Y
2 \‘\\\ o
R SN o
1 R 3"“"‘-———-————-9——-—5
~. o
~——_
~o-———o————o————o
15 16 17 18 19 20 21 22 15 16 17 18 19 20 21 22
10g(N) (N: Number of Triples) 10g2(N) (N: Number of Triples)
(c) € =32 (d) £ =64

Fig. 1: Performance plots showing amortized runtime (over generating N triples)
to compute one £-bit Beaver multiplication triple in the LANIO0 scenario. The
legend entries represent the method and the number of threads T used.

have used the Microsoft SEAL library v3.1 [CLP17] to implement the RLWE-
based method Iltpleriwe, and the OT-based method IfipeoT is implemented
in ABY library [DSZ15]. In all experiments, we have set the symmetric security
parameter to kK = 128, and the statistical security parameter to o = 40. The
computational security parameter A\ for the RLWE-AHE scheme has been cho-
sen to get security of 128-bits.

We run the benchmarks for three network settings (bandwidth, latency): LAN10
(10 Gbps, 0.5ms), LAN1 (1 Gbps, 0.5ms), and WAN (100 Mbps, 50ms). In
each setting, we performed experiments for N € {2% 216 . 222} triples and
T € {2,8,32} threads.

Results and Analysis. We give the amortized (over generating N = 220 triples)
runtimes in Tab. [1| and the communication in Tab. [2] to compute one Beaver
multiplication triple using RLWE-AHE and OT for bitlengths ¢ € {8,16, 32,64}
and 128-bit security parameters. For a more detailed analysis, we also varied the

Improved Multiplication Triple Generation over Rings via RLWE-based AHE 9

Time vs N (LAN1, /= 8) Time vs N (LANL, £ =16)
45] e, & OT2 e OT2
@ RLWE-2 504 - RLWE-2
40 o oT-8 oT-8
o RLWE-8 4sd RLWE-8
——&-—- OT-32) - OT-32
35 ——--—- RLWE-32 - RLWE-32
= 5 40
% @, 3
R T, " ... ° <
v ‘@ 35
£ £
E 25 =
3.0
2.0 e ——————g g
259
.
15 ~=
‘.‘~-s~‘..
s g 2.0
15 16 17 18 19 20 21 22 15 16 17 18 19 20 21 22
loga(N) (V: Number of Triples) 10ga(N) (N: Number of Triples)
(a) =8 (b) £ =16
Time vs N (LANL, [= 32) Time vs N (LANL, [= 64)
e OT2 & OT-2
8 @ RLWE-2 16 - i@ RLWE-2
a— or8 e, a— ors
B o RLWE-8 144 i Sy o RLWE-8
———- 0732 w'*"*“'—’:i_-:;; ——#-- OT-32
——-——- RLWE-32 ——-@——- RLWE-32
R S 1]
2 Ty, o
4 S 4
< [y S - <
b 3 10
P P
£ £
S °.. S
8
N o L — °
5 N o R S Ay * e 2
s e S
‘*g——.._g_-__'_____g_____e_____. 44 =8 8 8 P & ®
2
15 16 17 18 19 20 21 22 15 16 17 18 19 20 21 22
10g(N) (N: Number of Triples) 10g2(N) (N: Number of Triples)
(c) £ =32 (d) £ =64

Fig. 2: Performance plots showing amortized runtime (over generating N triples)
to compute one ¢-bit Beaver multiplication triple in the LAN1 scenario. The
legend entries represent the method and the number of threads T used.

number of triples generated N, and the corresponding plots are given for the
LAN10 (Fig. , LAN1 (Fig. , and WAN (Fig. [3]) scenario. The results of our
experiments can be summarized as follows:

1. RLWE-AHE requires less communication than OT, and the difference grows
with increasing ¢. For ¢ = 64, the improvement factor over OT is 6.9x.

2. RLWE-AHE requires more computation than OT for smaller bitlengths.

3. RLWE-AHE is faster than OT for larger bitlengths due to lower computation
and communication requirements, achieving speedup by 3.6x for ¢ = 64 in
the WAN setting.

4. OT is faster than RLWE-AHE for smaller bitlengths and faster networks.

5. Due to less communication, the improvement factor in runtime of RLWE-
AHE over OT increases with decreasing network performance.

6. RLWE-AHE benefits more from multi-threading than OT for faster net-
works. For ¢/ = 64 in the LANI setting, the improvement factor increases

10 Deevashwer Rathee, Thomas Schneider, and K. K. Shukla

Time vs N (WAN, { = 8) Time vs N (WAN, £ =16)
e OT-2 a e OT-2
0 v RLWE-2 201 @ RLWE-2
o or-8 13 o oT-8
o RLWE-8) ©— RLWES
50 ——&—- OT-32 604 \\"v. ——&-—- 0T-32
——-——- RLWE-32 N ——-——- RLWE-32
A
o N\ g
= 50 \ ,/’l\v.»\
£ 40 o RN
o
£
E

Time (in ps)

e
2 E-E
204 s :-‘-38-»—..,.....
15 16 17 1B 1 20 71 2 15 16 7 15) 20 2 72
loga(N) (N: Number of Triples) 10ga(N) (N: Number of Triples)
(a) (=8 (b) £ =16
Time vs N (WAN, [=32) Time vs N (WAN, £ = 64)
250
e OT2)
o oo RLWE-2 PN
120 \ o ors ™o
EY © RLWE-8 2004 i; © RLWE-8
"‘i ———- 0732 N, ——-—- 0732
100 ~ ————- . Y - .
,\\B‘ -e——- RLWE-32 e -e——- RLWE-32
% N T I
B \ - 150 e
£ 80 £ g
o ™y o e |
£ S £
E g 5
60 e ——
e 100
PY——
40 &=T-—eu.__g
o T, TSR s @
O '8‘“_—“~-\ 50 4 L ’! N _2‘"“‘9*-—-
" RS N R T s TS S
15 16 17 18 19 20 21 22 15 16 17 18 19 20 21 22
1692(N) (N: Number of Triples) 10g2(N) (N: Number of Triples)
(c) € =32 (d) £ =64

Fig. 3: Performance plots showing amortized runtime (over generating N triples)
to compute one ¢-bit Beaver multiplication triple in the WAN scenario. The
legend entries represent the method and the number of threads T used.

from 2.25x to 3.35x as we move from 2 to 32 threads.When communication
is the bottleneck, multi-threading does not benefit either method.

7. OT benefits more from increasing N, and the gains are more prominent for
smaller £. For £ = 8 (resp. 64) in the LAN10 setting, the performance of OT
improves by 4.80x (resp. 1.60x) as we increase N from 2! to 222, compared
to a performance improvement by 2.19x (resp. 1.56x) for RLWE-AHE. As
we get to N = 229, the performance of both the methods tends to converge
in almost all cases.

8. Overall, RLWE-based method is a better option for most practical cases. It is
faster in almost all scenarios for the WAN setting, while even in the LAN10
setting, the performance improvement is significant for larger bitlengths.

Note. Table 2| shows that the communication complexity remains the same for
¢ = 8 and ¢ = 16. This is due to the fact that SEAL serializes each prime in
the ciphertext modulus as a 64-bit integer, irrespective of the size of the prime.
Therefore, the communication for a ciphertext modulus consisting of 4 primes

Improved Multiplication Triple Generation over Rings via RLWE-based AHE 11

of 40 bits each and that of 4 primes of 50 bits each is the same and only the
computation is increased for the latter case.

Acknowledgements. This work was co-funded by the DFG as part of project
E4 within the CRC 1119 CROSSING and project A.1 within the RTG 2050
“Privacy and Trust for Mobile Users”, and by the BMBF and the HMWK within

CRISP.

References

AJLT12.

ALSZ13.

Bea9l.

BGV12.

CDE*18.

CLP17.

DEF™19.

DGKO08.

DPSZ12.

DSZ15.

FV12.
Gen09.

Gil99.
KOS16.

Gilad Asharov, Abhishek Jain, Adriana Lépez-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty Computation with Low
Communication, Computation and Interaction via Threshold FHE. In FU-
ROCRYPT, 2012.

Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner.
More Efficient Oblivious Transfer and Extensions for Faster Secure Compu-
tation. In ACM CCS, 2013.

Donald Beaver. Efficient Multiparty Protocols Using Circuit Randomization.
In CRYPTO, 1991.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully
Homomorphic Encryption Without Bootstrapping. In Innovations in The-
oretical Computer Science Conference, 2012.

Ronald Cramer, Ivan Damgard, Daniel Escudero, Peter Scholl, and Chaop-
ing Xing. SPDZ,.: Efficient MPC mod 2 for Dishonest Majority. In
CRYPTO, 2018.

Hao Chen, Kim Laine, and Rachel Player. Simple Encrypted Arithmetic
Library - SEAL v2.1. In WAHC at FC, 2017. Code: https://github.com/
microsoft/SEAL.

I. Damgrd, D. Escudero, T. Frederiksen, M. Keller, P. Scholl, and N. Volgu-
shev. New Primitives for Actively-Secure MPC over Rings with Applications
to Private Machine Learning. In IEEE Symposium on Security and Privacy
(SP), 2019.

Ivan Damgard, Martin Geisler, and Mikkel Krgigard. Homomorphic Encryp-
tion and Secure Comparison. International Journal of Applied Cryptography,
1(1), 2008.

Ivan Damgard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty Computation from Somewhat Homomorphic Encryption. In
CRYPTO, 2012.

Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY — A Frame-
work for Efficient Mixed-Protocol Secure Two-Party Computation. In NDSS,
2015. Code: https://encrypto.de/code/ABY.

Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homo-
morphic Encryption. Cryptology ePrint Archive, Report 2012/144, 2012.
Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
2009.

Niv Gilboa. Two Party RSA Key Generation. In CRYPTO, 1999.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster Ma-
licious Arithmetic Secure Computation with Oblivious Transfer. In ACM
CCs, 2016.

https://github.com/microsoft/SEAL
https://github.com/microsoft/SEAL
https://encrypto.de/code/ABY

12 Deevashwer Rathee, Thomas Schneider, and K. K. Shukla

KPR18. Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ
Great Again. In FEUROCRYPT, 2018.

OSV19. Emmanuela Orsini, Nigel P. Smart, and Frederik Vercauteren. Overdrive2k:
Efficient Secure MPC over Z,r from Somewhat Homomorphic Encryption.
Cryptology ePrint Archive, Report 2019/153, 2019.

Pai99. Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In EUROCRYPT, 1999.

SV14. N. P. Smart and F. Vercauteren. Fully Homomorphic SIMD Operations.
Designs, Codes and Cryptography, 71(1), 2014.

	Improved Multiplication Triple Generation over Rings via RLWE-based AHE

