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Abstract

Monero is the largest cryptocurrency with built-in cryptographic privacy features. The transactions are
authenticated using spend proofs, which provide a certain level of anonymity by hiding the source accounts
from which the funds are sent among a set (known as a ring) of other accounts. Due to its similarities to
ring signatures, this core cryptographic component is called Ring Confidential Transactions (RingCT). Because
of its practical relevance, several works attempt to analyze the security of RingCT. However, due to the
complexity of RingCT they are either informal, miss fundamental functionalities, or introduce undesirable
trusted setup assumptions. Regarding efficiency, Monero currently deploys a scheme in which the size of the
spend proof is linear in the ring size. This limits the ring size to only a few accounts, which in turn limits
the acquired anonymity significantly and facilitates de-anonymization attacks.

As a solution to these problems, we present the first complete rigorous formalization of RingCT as a
cryptographic primitive. We then propose a generic construction of RingCT and prove it secure in our formal
security model. By instantiating our generic construction with new efficient zero-knowledge proofs we obtain
Omniring, a fully-fledged RingCT scheme in the discrete logarithm setting that provides the highest concrete
and asymptotic efficiency as of today. Omniring is the first RingCT scheme which 1) does not require a
trusted setup or pairing-friendly elliptic curves, 2) has a proof size logarithmic in the size of the ring, and
3) allows to share the same ring between all source accounts in a transaction, thereby enabling significantly
improved privacy level without sacrificing performance. Our zero-knowledge proofs rely on novel enhancements
to the Bulletproofs framework (S&P 2018), which we believe are of independent interest.

1 Introduction

Cryptocurrencies such as Bitcoin and Monero eliminate the need for a trusted central party, giving rise to a fully
decentralized and publicly verifiable currency systems. A cryptocurrency typically consists of two components:
(1) a public ledger, e.g., realized by a blockchain protocol, to publish transactions, and (2) a transaction scheme
which specifies the format and validity of transactions. For example, we can think of the simplest transaction type
in Bitcoin as simply requiring a signed statement of the form “Pseudonym ¢ pays amount a to pseudonym j”. This
allows for easy public verification of the ledger but on the flip side, the inherently public nature of cryptocurrencies
is a threat for the individual privacy of their users. At first glance, the usage of pseudonyms may give the impression
that users are anonymous, but a long list of literature demonstrates that different pseudonyms belonging to the
same user can be linked by simple as well as sophisticated heuristics when observing transaction on the public
blockchain [3, 6, 31, 40, 41, 53, 59]. As a consequence, transactions can be traced and users can be re-identified.



In order to improve this situation, many privacy-enhancing technologies have been proposed by the academic
and the cryptocurrency community [9, 11, 26, 27, 30, 36, 37, 42, 54, 61, 62, 65], and multiple cryptocurrencies [44,
51, 63, 64] with a special focus on privacy have emerged. Monero [44] (with a market capitalization of $720M at
the time of writing [20]) is the largest such privacy-focused cryptocurrency. In contrast to other approaches, most
notably Zerocash [9], which relies on a trusted cryptographic setup to be able to scale to very large anonymity
sets, one of the main design goals of Monero is avoid any form of trusted setup. This approach is arguably much
closer to the original spirit of cryptocurrencies whose point is to avoid decentralization as much as possible.

For privacy, Monero uses Ring Confidential Transactions (RingCT) proposed by Noether et al. [47] as its
cryptographic core component. The idea behind RingCT is an ad-hoc approach to integrate three privacy-enhancing
technologies:

Its first component is similar in spirit to linkable ring signatures which guarantee some form of anonymity
and enable to detect double-spends simultaneously. The second component of RingCT is Confidential Transactions
(CT) [36], which hides the monetary amounts of transactions in homomorphic commitments while still being
able to verify that the balance of a transaction, i.e., the sum of the amounts sent to target accounts does not
exceed the sum of amounts available in the source accounts. The third component is Stealth Addresses (SA),
which provides a form of receiver anonymity. Given just a single long-term public key of a receiver (called stealth
address), a spender can derive an arbitrary number of seemingly unrelated public keys owned by this receiver,
which avoids that two transactions paying the same receiver can be linked.

Despite its practical importance, there is a lack of theoretical foundation of ring confidential transactions
(RingCT) and satisfactory constructions. In this work, we provide the first complete formalization of RingCT.
We also put forward a new construction of RingCT which is significantly better than existing ones in terms of
supported features and practical efficiency. The efficiency improvements allow implementations to choose larger
parameters that would strengthen privacy without sacrificing performance.

1.1 Owur Contributions

Our main contributions are summarized as follows.

1.1.1 Rigorous Formalization of RingCT

The necessity of precise security models for cryptographic primitives cannot be overstated, as they concisely
point out security guarantees, allow comparison, and serve as a guideline for protocol designs. An example which
highlights this necessity is the denial-of-spending attack [55] on Zerocoin [26, 42], a different cryptographic approach
for privacy in cryptocurrencies. This attack was not captured by the insufficient security model of Zerocoin and
lead to vulnerabilities in multiple cryptocurrencies allowing an attacker to destroy funds of honest users. Notably,
denial-of-spending attacks are not considered in the RingCT proposal by Noether et al. [47] either, even though
they generally apply to the RingCT setting as well [55]. While the concrete RingCT scheme by Noether et al. [47]
seems not susceptible to these attacks, the fact that the attacks have apparently been overlooked in [47] underlines
the importance of a rigorous and thorough security model.

Sun et al. proposed the first formalization of RingCT. Unfortunately, their definition and their scheme do
not cover stealth addresses, which is one of the central properties, and their security definitions are too weak,
as they fail to cover some realistic attacks. Below, we highlight the strength of our model and defer the comparison
with [60] to Appendix A.

Capturing Stealth Addresses Our model is the first one that captures stealth addresses. This is a critical
component of the overall security model because it directly relates to receiver anonymity, it also affects all
functionalities of the primitive itself, and all other security properties.

Non-reliance on External Communication Channels Our model only assumes a public ledger onto which
transactions can be published and does not rely on any external secure channels.



Stronger Security Guarantees We provide stronger security definitions for balance and spender anonymity.
In contrast to prior work, our definition requires balance if all accounts in the transaction are maliciously generated
and in case of spender anonymity, we allow some of the source accounts to be corrupt and still require the other
non-corrupt accounts to be anonymous.

Unified Ring for All Source Accounts All previous RingCT schemes use separate rings for each source
accounts. This means that transactions that spend from multiple source accounts (as is common in cryptocurrencies),
each source account is anonymous in a separate anonymity set. In our model, all source accounts of a single
transaction share one ring, hence the name “Omniring”. This approach does not only improve efficiency, but
it also improves the level of anonymity: Let us consider the case of spending from k source accounts. In the
separated-rings approach, each source account is hidden within a different ring of some size n, meaning that each
of the k source accounts has at most 1-out-of-n anonymity. On the other hand, in the unified ring approach of
ours, having a ring of size kn offers up to k-out-of-kn anonymity.

Now consider for instance the case that one of the real source accounts used for spending is de-anonymized.
In the unified ring approach, the other real source accounts now still have (k—1)-out-of-(kn—1) anonymity, i.e., all
other accounts in the unified ring still count towards the crowd to hide in. However, in the separated-ring approach,
the entire ring containing the de-anonymized account would be useless for anonymity after de-anonymization.

1.1.2 Efficient Construction

We propose a new construction of RingCT, Omniring, whose spend proof size is only O(log(|R||S|+8|T1)), where
|R|, |S], and |T| are the size of the ring, the set of source accounts, and the set of target accounts respectively,
and 2 is the maximum allowed amount to be transferred. It is the first scheme that does not require a trusted
setup or pairings, supports stealth addresses, and has a logarithmic spend proof size.

Our construction follows the high-level idea of combining a ring signature scheme with a range proof system.
We first propose a generic construction of RingCT from signatures of knowledge (SoK) of a certain language. In the
second step, we develop techniques to extend the Bulletproof framework [16] into an argument system for proving
knowledge of a discrete logarithm representation, where the exponents in the representation satisfies an arbitrary
arithmetic circuit. The statements of the desired language can be expressed in a format which is optimized for the
extended Bulletproof framework, leading to a very efficient RingCT construction. We argue that this extension of
ours has potentially far reaching consequences: It leads to a natural construction of logarithmic-size ring signatures,
which is ~20% shorter than the state of the art [14, 15, 26]. The technique can also be generalized to proving
general (bilinear) group arithmetic relations [4], which makes it a topic of independent interest.

We defer the overview of the techniques enabling this construction to Section 1.3.

1.1.3 Adaption to Monero

Our main instantiation presented in Section 4.4 is designed to simplify the language that it induces, and is not
directly applicable to Monero due to the difference in format of the tags (or the so called “key images”). To tackle
this issue, we formally detail in Appendix G how our Omniring construction can be adapted and readily deployed
in Monero. The adaption retains essentially the same efficiency as our main instantiation except for a slightly
higher computational effort for the verifier. We refer to Appendix G for more details.

1.2 On Ring Selection

Our formalization follows the spirit of ring signatures and does not cover how rings are sampled. We believe that
this question of formalizing what “good” ring sampler is, is orthogonal to the properties of a RingCT scheme. The
study of ring sampling strategies also does not seem to be a cryptographic, as the ring sampler does not involve
any cryptographic keys. We believe that understanding the strategies of ring selection, and hence maximizing
the non-deanonymized subsets of sampled rings, are important questions that deserve an in-depth investigation in
an independent paper. Our view is motivated by recent attacks against the anonymity provided by cryptocurrency



based on RingCT as discussed by Maéser et al. [45] and Kumar et al. [32]. These works show that the ring sampling
strategies of the spenders are critical.

What we do formalize is the intuition that, given a ring of accounts selected by some external mechanisms,
the source accounts of a transaction are hidden within the non-deanonymized subset of the ring.

1.3 Technical Overview

Recall that the statements to be proven in our RingCT construction use signature of knowledge and consists of two
parts. The first part corresponds to knowing the secret key of one of the ring accounts and second part guarantees
that the amount being transferred lies within a certain range. The first natural idea to construct a RingCT is to
combine a state-of-the-art ring signature scheme (e.g., by Groth and Kohlweiss [26] or Bootle and Groth [12]) with
the most efficient range proof to date, namely Bulletproof [16] with a logarithmic size in the number of bits in the
range. However, since both works use significantly different techniques, combining them naively yields a RingCT
scheme with signature size asymptotically equal to that of the proposed one, but with worse concrete efficiency.

We then explore the possibility of building a ring signature scheme using the techniques of [16], so that it can
be combined natively with all Bulletproof range proofs into one single Bulletproof of a single combined statement,
leveraging the logarithmic size of Bulletproofs as much as possible. In order to understand the challenge that
we tackled while exploring this path, recall that Bulletproof is a framework for proving “inner product relations”
between the exponents in a discrete logarithm representation. Although the Bulletproof framework is expressive
enough for capturing arithmetic circuits satisfiability, it is particularly optimized for range proofs. For instance,
proving that a committed integer a lies within a range [0,2° —1] yields a proof whose size is only O(log3).

In Bulletproof range proof, the prover encodes the binary representation of a in the vector a and sets
b=a— 1/ It commits to a and b as A= h“””‘hb with randomness a and public (vector of) group elements
h, g, and h. It then proves that a and b satisfy the Hadamard product aob= 0kl a— b= 11 and (a ,2'*“) =
These relations guarantee that a is a valid binary representation of a. Moreover, the length |a| guarantees that a
must be between 0 and 22/ —1. The extractability of the proof crucially depends on the assumption that non-trivial
discrete logarithm representations of the identity element with respect to base (h||g[/h) are unknown to the prover.
Under such an assumption, one can extract the exponents (a,ﬁ,B) in the discrete logarithm representation of A.

With the basics above, we can highlight the technical difficulties one would encounter, when attempting to
construct ring membership proofs using the Bulletproof techniques.

Let the vector of group elements R= (Ry||...||R,,) consist of the public keys of the ring members. In a ring
membership proof, one would like to prove the knowledge of a tuple (i,x;) such that R; = H*: for a public generator
H. Equivalently, the prover would prove its knowledge of a unit vector €; (whose i-th entry is 1 and zero everywhere
else) and an integer —x; such that I=H ~=R® where [ is the identity element; we call this relation the main equality.

An idea of using the Bulletproof technique for ring membership proof is to somehow embed the expression
H=R® into a part of the commitment A, show that €; is indeed a unit vector by defining certain inner product
relations, and at the same time show that the main equality holds Finding a way to embed the expression in A
is surely one of the main challenges. Added to the challenge, regardless of how the expression is embedded, is that
the prover might know about the discrete logarithms between the elements in R, which forbids one to argue about
soundness as done for Bulletproof. We propose a general technique to embed the main equality, or in general any
representation of the identity element, into the commitment A, and avoid the above problem regarding soundness.

First, we observe that if p is a vector of group elements chosen randomly and independently of R, then for
any w € Z,, the discrete logarithm representation problem base g, :=(H |R)®“op is equivalent to the standard
discrete logarithm problem.

Second, let a=(—;||€;). Note that g2 =g2, for any wuw' €7, due to the main equality (introduced above).

Therefore, if A=h"g2 hb for some w € Z, and some vector of group elements b, then for any other w' € Z, it
also holds that A=h*g2

With the above observations, we let the prover run a Bulletproof-like protocol twice on A with respect to
two different bases, i.e., (h||g|/h) and (h||g.||R). If the prover is able to convince the verifier in bo‘Eh executions,
then we can construct an extractor which extracts the exponents (a,ﬁ,B) such that A=h*g2h" = h“gﬁ,, hP.
Dividing the two representations of A yields the main equality.



At this point, we have already obtained a “Bulletproof-friendly” protocol for ring membership proofs, which
can be combined with the range proofs of [16] to construct a very efficient spend algorithm in RingCT. However,
this approach requires to execute the Bulletproof protocol twice, which blows up the proof size by a factor of
2. Our third observation allows to compress the two Bulletproof executions into one. Recall that in the second
observation we have A=h" @i hP for all w € Zg. Therefore the prover can first compute A=h® ggﬁb (i.e., w=0)
without knowing w, and then obtain a random w as a challenge by hashing A. If the prover is able to convince
the verifier with a randomly chosen w, then in the proof of extractability we can run the prover twice on w and
w’ respectively, and then apply the analysis mentioned above.

2 Formalizing RingCT

We present a complete formalization of ring confidential transactions (RingCT), which in particular incorporates
the stealth address feature. We first describe the intended use of each algorithm along with some conventions
that we adopt (Section 2.1), then provide a formalization of the core syntax (Section 2.2). In Appendix C, we
further extend the syntax to tracking and viewing features, which enable a user to delegate detection and decoding
of incoming transactions.

2.1 Overview

We overview the core functionality of RingCT.

Setup and Joining A RingCT scheme is initialized by running the Setup algorithm. Anyone can join the
system by generating a key-tuple (mpk,msk) using SAKGen, where mpk is the master public key, msk is the master
secret key. The master public key is also called a stealth address as it allows the derivation of one-time target
accounts for receiving funds.

Transaction A transaction tx consists of a set of ring accounts {acc?}g‘l, tags {tagi}ﬁll, target ac-

counts {ach’}lizlp and some message p. The “(linkability) tag” is known in the context of cryptocurrencies as
“serial number” (ZCash) or “key image” (Monero), but we follow the name convention of linkable ring signatures.
The public key is bound to a secret key sk, while the coin is bound to a secret coin key ck and a secret amount a.

Spending Let
S|
R= {acc} }‘:ll and S= {(ji,ckf,af,ski,tagi)} ,

i=1
where R is a set of ring accounts sampled by some external mechanism, such that a user knows a set of indices,

. . s
secret keys, coin keys, amounts and tags S corresponding to the source accounts {acc}f }L‘l. The user can

transfer a batch of amounts {a]

}Z‘l to the owners of the stealth addresses {mpki}ﬂ as follows. It first executes
OTAccGen on each (mpki7aZ—) tuple to generate a one-time target account accz—, and a coin key ck;. This process

is sometimes known as minting. The account acc will be made publicly available, while the coin key ck; is kept

T
secret by the spender. Let T = {(ck?aZ’,acciT) specifying the target accounts and other relevant information,

and p be some additional message that the user wishes to include as part of the transaction. The user runs Spend
on (R,S,T,u) to create a proof o that the transaction tx (defined by (R,S,T,u)) is valid. The transaction tx
and the proof ¢ are then published (e.g., in a public ledger) for verification. In practice, there may be parts of the
source and target accounts, e.g. trapdoor information intended to be used by the receiver, that are not necessary
for public verification. They can instead be sent to the receiver off-chain; we do not model this explicitly.



Verification Once a tuple (tx,0) is published, all parties can run the Vf algorithm to verify its validity. Roughly
speaking, a spend proof ¢ is considered valid for a transaction tx if it demonstrates that the total amounts in
the source accounts are equal to that in the target accounts. The infeasibility of forging a proof on an invalid
transaction will be formally modeled as the balance property defined in Section 3.1.

In a cryptocurrency system, the verifiers need to perform two additional checks other than the validity of the
proof to verify the validity of the transaction in the context of the ledger. First, they need to check that none of the
tags in {tag; }L‘i‘l appeared in a previous transaction (double-spending);the balance property will guarantee this

check is sufficient to detect double-spending. Second, they need to check that each of the ring accounts {accz2 }‘17:2‘1 in
the transaction tx has been a target account in some previous transaction, or is a “coinbase” account, i.e., an account
with which newly mined coins are generated. In the latter case, the miner runs OTAccGen to generate a new account
with his own stealth address and publishes the created account together with the amount and coin key to claim newly
mined coins in a coinbase account; then verifiers can verify the correctness of the claimed amount by CheckAmount.

Receiving A user can receive funds from a target account acc that it owns by running Receive on acc which
was published (e.g., via a public ledger) as part of a transaction. Using the output of Receive, which includes
a secret key of the target account, the amount in the account and its tag, the receiver can later spend the received
coin in another transaction.

In a cryptocurrency system, the receiver will need to check that he has not already received a different set
of funds in an account with the same tag, because then only set of funds be spendable and the other will be
considered a double-spend; this malicious reuse of the account by the spender is known as the faerie gold attack [46]
or burning bug [21]. To ensure that this check is sufficient, the balance property will guarantee that tag output
by Receive is indeed the correct tag for the given target account, as well as that the amount output by Receive
is the amount which is actually stored in the account.

2.2 Formal Syntax

Definition 2.1. A ring confidential transaction (RingCT) scheme consists of a tuple of main PPT algorithms
(Setup,SAKGen,OTAccGen,Receive,Spend,Vf), and a tuple of auxiliary PPT algorithms (CheckAmount,CheckTag)
defined as follows.

pp<—Setup(1*,1%,18): The setup algorithm takes as input the security parameter 1 and integers 1%,1%, where

1 represents an upper bound 2% on the number of outputs in a single transaction and 1° an upper bound 2° of
amounts to be transferred in a transaction. It outputs the public parameter pp to be given to all algorithms implicitly.

(mpk,msk) <~ SAKGen(pp): The stealth address / master key generation algorithm inputs the public parameter
pp, and outputs a master public key mpk and a master secret key msk. The master public key mpk is also knoun
as a stealth address.

(ck,acc) <~ OTAccGen(mpk,a): The one-time account generation algorithm takes as input a master public key mpk

and an amount a € {0,...,25—1}. It outputs a coin key ck and an account acc.

(ck,a,sk,tag) «— Receive(msk,acc): The receive algorithm takes as input a master secret key msk and an account
acc. It outputs a coin key ck, an amount a, a secret key sk, and a tag.

o+ Spend(R,S,T,u): The spend algorithm inputs the following:

e R= {accF }17:2‘1 : a set of ring accounts accX
. S S ‘Sl -y . . .
e S= {(]i,cki a5 ,ski,tagi)} : a set of tuples consisting of an index j; €[|R|], a coin key ck
i=1

and a tag ta—gi (of acc}f )

S

70

a secret key sk;,

an amount a®

72

T an amount aT Z’

7]
o T = {(ck?,a?,accz—) } e set of tuples consisting of a coin key ck; , ., and a target account acc
=

e 1 an additional message



It outputs a proof o.

b« Vf(tx,0): The verify algorithm inputs a transaction tx and a signature o. It outputs a bit b indicating the
validity of o. A transaction tx defined as follows:

(RS, T )= ( {acc? } ), {tag 2, {acc] 1)

b+« CheckAmount(acc,ck,a): The check amount algorithm inputs an account acc, a coin key ck, and an amount
a. It outputs a bit b indicating the consistency of the inputs.

b+« CheckTag(acc,sk,tag): The check tag algorithm inputs an account acc, a secret key sk, and a tag tag. It outputs
a bit b indicating the consistency of the inputs.

Definition 2.2 (Correctness). A RingCT scheme is said to be correct, if the following holds for all A« €N,
and all pp € Setup(1*,1%,15).

e Honestly generated payments should be received correctly. Concretely, for any (mpk,msk) € SAKGen(pp), any
amount a € {0,...2° =1}, any (ck,acc) € OTAccGen(mpk,a), and any (ck’,a’ sk tag) € Receive(msk,acc), it holds
that (ck,a)=(ck’,a’).

e Correctly received payments should have well-defined amounts and tags. Concretely, for any (ck,a,sk,tag) €
Receive(msk,acc) (# L), it holds that CheckAmount(acc,ck,a)=1 and CheckTag(acc,sk,tag)=1.

e Honestly generated transactions should be recognized as valid. Concretely, for any tuple (R,S,T ,u) with syntax
defined in Definition 2.1 and satisfying the following conditions:

- [TI<2*

— for alli€[|T]), a] € {0,..,2° -1}

— for all i€[|S]], CheckTag(acc? sk;,tag;) =1

— for all i€ [|S]], CheckAmount(accR ck} ,af) =1
— for all i€[|T]], CheckAmount(acc/ ,ck] ,al)=1

_ T
= Diclsn® = e[ %

and any proof o € Spend(R,S,T 1), it holds that Vf(tx,0) =1, where tx=tx(R,S,T ,u).

3 Security of RingCT

We formalize the security notions of RingCT, which consist of balance, privacy, and non-slanderability. The oracles
used in the security games are shown in Figure 1. Unlike prior works, our definitions take into account stealth
address. The definitions are further extended to account for the tracking and viewing features in Appendix C.

3.1 Balance

Balance roughly means that a spender cannot double-spend, or spend more than what it possesses. The formal
definition (Definition 3.1) is more complicated than one would initially expect because the amounts being
transferred in a transaction are confidential. In more detail, we say that a RingCT scheme is balanced if the
following two properties are satisfied.

First, the predicates CheckTag and CheckAmount are required to be “binding” in a sense similar to a
commitment scheme. The binding property of CheckTag ensures that a tag is computationally bound to a source
account, which in turn ensures that checking for duplicate tags is sufficient to prevent double-spending. Similarly,
the binding property of CheckAmount ensures that an amount is computationally bound to an account, which
ensures that money cannot be “created out of thin air” by changing the amount of coins in a given account. This



InitOracles() ReceiveO(k,acc)

/ Initialize Lists / Instruct user k to receive from acc.
MPK :=MSK := Received := Wallet := ) / Store the output in Wallet[k] for SpendO.
/ Initialize Sets Received := Received || (k,acc)
Spent:=X:=0 if Receive(MSK[k],acc) =L
then return “Fail”
SAKGenO() (ck,a,sk,tag) <— Receive(MSK|k],acc)

Wallet[k] := Wallet[k] || (ck,a,sk,tag,acc)

/| Generate keys for a new honest user. return “Success”

(msk,mpk) <— SAKGen(pp)
MPK :=MPK||mpk, MSK :=MSK||msk

return mpk

SpendO(I,R,S,T )

/ Instruct honest spender(s) to generate a proof.

/ R and S are (incomplete) lists containing malicious
information.

/ I contains instructions for populating R and S with information of honest spenders.
/| For each (s;,4;,ki,¢;) in I, fill in S[s;] and R[j;]
/ using data retrieved from Wallet[k;][¢;].
parse I as {(si,ji,khli)}yz‘l
for i€[|I]] do
(ckq,aq,sk; tag;,acc; ) :=Wallet[k;][£;]
Rlji] :=acc;
S[si]:=(ji,cki,a;,5Kki tag;)
endfor
tx:=tx(R,S,T,1)
o < Spend(R,S,T,1)
2:=3U {(tx,0) }
if Vf(tx;,04)=0 then return 0

Spent:=SpentU {tag; }llzll

return o

Figure 1: Oracles for Security Experiments

formalization does not contradict the mining of new coins, because this is modeled by explicitly creating a new
account (see Section 2.1). These binding properties make the balance experiment, defined below, meaningful.

The second property requires that, for any efficient adversary .4 which produces a transaction with a proof,

there exists an extractor €4 such that, if the proof is valid (Event 0), then the probability of the following
inconsistencies (Event 1 to 4) occurring is negligible.

Event 1: The extractor £4 extracted an index j; and a secret key sk;, yet sk; is inconsistent with the j;-th
ring account acc}f and the i-th tag tag; according to the predicate CheckTag.

Event 2: The extractor £4 extracted an index j;, a coin key ck®, and an amount af, yet (ck®,a¥) is inconsistent

with the j;-th ring account acc}? according to the predicate CheckAmount.

Event 3: The extractor £4 extracted a coin key ck;

the i-th target account acc/ according to the predicate CheckAmount.

)

and an amount a , yet (ck] ,a]) is inconsistent with

7 7

Event 4: The amounts extracted by £4 are not balanced, ¢.e., the sum of the target amounts exceeds the sum
of the source amounts.

The two properties can be interpreted in the following way. If a spender (e.g., the adversary) is able to produce

a transaction with a valid proof, then it must possess knowledge of balanced input and output amounts, as they



Balanceq 4 ¢, (1*,1%,17)

pp + Setup(1*,1%,1%)
(tx,0) «A(pp)
(RS, T ) <= Ea(ppitx,0)

R IRI
parse R as qacc;
i=1

S
parse S as {(ji,ckf,af,sk,ﬂ,,tagi)}‘ !

i=1
[Tl

=1

parse 7 as {(ck?,a?,accr) }
bo 1= Vf(tx,0)

by = (Hi e[|S]] s-t. CheckTag(accE,ski Jtag;) :0)
b= (Hi e[|S]] s.t. CheckAmount(acc}j,ck;S ,af) :O)
by = (Hi e[|T]] s.t. CheckAmount(ach,ck?,aZ-) :O)

b4:_< Z a‘is< Z a;’->

i€[|S] i€l T1]
return bo/\(bl Vbay \/bg\/b4)

Figure 2: Balance Experiment

can be extracted by £4. If the actual amounts of the source and target accounts are different from those extracted
by the extractor, e.g., the spender attempts to create money “out of thin air”, then one can break the binding
property of CheckAmount. Therefore the amounts that the spender has in mind cannot be different from those
extracted by 4. Similarly, if the spender attempts to spend from the same account twice by producing different
tags for the account, then with the spender and the extractor £ 4 one can break the binding property of CheckTag.
Therefore double-spending is infeasible.



Privacylg’z,A(l’\,la,lﬂ)

ppeSetup(l’\,lo‘,lB), InitOracles()
0:= {SAKGenO,SpendO,ReceiveO }

(I,JR.S,T ) A (pp)
Sp:=81:=8, To:=T1:=T
/ Preparing honest spenders as instructed by adversary.
.S 1 11
parse [ as {(siv{]t,hkt,wét,i}t:g)}v L
i=
for i€[|I]] do
for t€{0,1} do
(ckfi,skfi,afi,tagt,i,accii) :=Wa||et[kfi][€t,1y]
Rjt,i] ::accf,i
Sufsi]i= (G 1.0Ke sk i,07) 5 198, 1)
endfor
if tag, ; #tag, ; A {tagy ;,tag; ; }NSpent#P then return 0
endfor

/ Preparing honest receivers as instructed by adversary.

parse J as {(dw{ktT,,-vaZj}i:o)}
for j€[|J|] do
for t€{0,1} do
(ckzj ,acczj) = OTAccGen(MPK[ij],az:j)
Teld;]:= (ckzj *U’Zj ,acczj)

endfor
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j=1

endfor
for t€{0,1} do
txe :=tx(R,St, Tz 1)
o < Spend(R, S, T, 11)
if Vf(tx¢,04)=0 then return 0
endfor
bo <—A@(txb,ab)
bui=({#7,:te 0} 5€lI) }=0)
bo = ((Received)ﬁ {(kzj,acczj) :te{0,1},5€(|J]] } :@)

return boAby Abo

Figure 3: Privacy Experiment

NSlandg, 4(1*,1%,17)

ppeSetup(l’\,la,lﬁ), InitOracles()

SAKGenO,Receive O ,Spend O
A (pP)

parse tx* as ( {acczz }iil {tag; }ii‘l, {acc? }LZL,#)
bo :=Vf(tx",0™)

by = ((b(*,a*) QE)

bo = ( {tag; }Li‘l NSpent# (Z))

return bgAby Abs

(" ,0™)

Figure 4: Non-slanderability Experiment
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Definition 3.1 (Balance). A RingCT scheme € is balanced if:

1. CheckTag and CheckAmount are binding. That is, for any PPT adversary A, for all positive integers
a,Bepoly (A),
CheckTag(acc,sk,tag) =1 | pp <+ Setup(1*,1%,17)
Pr | CheckTag(acc,sk’ tag’) =1 sk,tag,
(sk,tag) # (sk’,tag’) sk’ tag’ «Alpp)
CheckAmount(acc,ck,a) =1 |pp+ Setup(1*,1%,1%)
Pr | CheckAmount(acc,ck’,a’) =1 ck,a,  Alpp)
(ck,a)# (ck',a’) ek o’ PP
2. For all PPT adversaries A, and all positive integers o,B €poly (N), there exists a PPT extractor €4 such that
Pr[BaIanceQA,gA(1)‘,10‘,1ﬁ):1] <negl (X)

<negl (A), and

<negl (\)

where Balanceq ¢, (1*,1%,1%) is defined in Figure 2.

3.2 Privacy

Privacy captures the anonymity for both the spenders and the receivers, and the confidentiality of the amounts
being transferred. The formalization of privacy is inspired by that of anonymity in ring signatures, key-privacy
of encryption, and hiding in commitments. While closely related to the anonymity of ring signatures, the spender
anonymity aspect of RingCT is significantly more difficult to capture as it must still hold in the presence of stealth
addresses, a concept that does not exist for ring signatures.

Roughly speaking, privacy means that an adversary should not be able to distinguish two transactions with
the same ring and their proofs, even if the majority of the ring is corrupt and the adversary has prior knowledge
about the identities of the spenders and receivers and the amounts being transferred. In more detail, the adversary
is allowed to specify a ring with arbitrarily many corrupt accounts, and two honest subsets of the ring which are
the potential spenders. The adversary also specify two sets of receivers and the amounts that they are supposed
to receive. A transaction is then created using one of the two specifications of the adversary, who should not
be able to tell which specification is used to create the transaction.

More concretely, we model privacy in the security experiments Privacyb for b€{0,1}. Let A be a PPT adversary
who, after several queries to the oracles, produces an incomplete input (R,S, T ,u) to the Spend algorithm (Figure 1),
along with two instructions I and J. The incomplete input (R,S,7,u) corresponds to all malicious information
that will be used to generate a transaction and its proof, while the instructions I and J specify how the sets
R, S, and T should be populated by information held by the honest users. Following the adversary’s instructions,
the experiment duplicates (S,T) into (Sp, 7o) and (S1,71), and populates (R,S;,T;) for t€{0,1} as follows.

The instruction I is of the form {(51,{ jm,kf’i Liitieo) }il_‘ L The experiment retrieves the £, ;-th entry from
the wallet of user kfi, which consists of an account accfi and the information required to spend from this account.
It sets R[j.;] to this account, and Sy[s;] to the retrieved spender information.

Similarly, the instruction .J is of the form {(dj,{kz_j @Zj Hoo) }Lil |- The experiment creates a one-time account
using the master public key of user kaJ and the amount a]Z:j, and set 7¢[d;] to the appropriate receiver information.

The experiment then proceeds to create the proofs oy and o for both transactions tx(R,So, 7o, 1) and
tx(R,S1,T1, 1) respectively. If both proofs are valid, meaning in particular that both sets of inputs created as
instructed by the adversary are well-formed,the experiment sends o}, to the adversary, where b is the parameter
of the experiment Privacy”.

Definition 3.2 (Privacy). A RingCT scheme € is private if for all PPT adversaries A and all positive integers
a,fepoly (A),

‘Pr [Privacy&A(l)‘,la,lﬁ) =1]- Pr[Privacy}LA(l)‘,la,lﬁ) =1] ‘ <negl (A)

where Privacy?z’ 4 s defined in Figure 5.
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3.3 Non-Slanderability (and Unforgeability)

In the context of RingCT, slandering is an act of producing a valid proof on behalf of another user. Note that
a proof authenticates a transaction which specifies a set of tags bound to a set of source accounts. If the owner
of one of the source accounts later attempts to spend from the account, the proof will not be accepted as the tag
corresponding to the account has already been published in the slandering transaction. Slandering thus effectively
causes the owners of these source accounts to lose money. Non-slanderability is a property that prevents the above
attack, which is known as denial-of-spending attack in the literature [55].

Formally, we model non-slanderability by defining a security experiment in which the adversary produces
a transaction-proof tuple, after several queries to the oracles (Figure 1). The adversary is successful if the tuple
is valid and not produced by the spend oracle, and some of the tags specified in the slandering transaction collide
with those that are signed by the spend oracle.

Definition 3.3 (Non-slanderability). A RingCT scheme 2 is non-slanderable if for all PPT adversaries A and
all a,f€poly (N),
Pr[NSIandQA(l)‘,la,lﬁ) =1] <negl ())

where the experiment NSlandqg 4 is defined in Figure 4.

Since a tag is computationally bound to a unique account (as required by the balance property), non-
slanderability (which states that no adversary can forge under a tag of a honest user account), naturally captures
that no adversary can forge spend proofs for honest accounts. As a consequence, we do not need to define an
unforgeability property explicitly.

4 RingCT Construction

We present a generic construction of RingCT schemes and an efficient instantiation.

4.1 Tagging Scheme

Our generic construction depends on a new primitive called tagging schemes. Roughly speaking, a tagging scheme
is a one-way permutation over group elements.

Formally, a tagging scheme Tag = (TagSetup, TagEval) consists of a PPT setup algorithm TagSetup and an
efficient deterministic algorithm TagEval. TagSetup inputs the security parameter 1* and outputs the public
parameter pp, which defines a input space (x,+), which is a group equipped with the operation +, and a tag
space 1. TagEval inputs = € x and outputs a tag tage€ .

We require a tagging scheme which satisfies (related-input) one-wayness and pseudorandomness, defined as
follows.

Definition 4.1 (Security of Tagging Schemes). A tagging scheme Tag is said to be related-input one-way if for
any PPT adversary A,
Pr[OneWayr,, 4(1*)=1] <negl (\).

1t is related-input pseudorandom if for any PPT adversary A,
[P [PRY 4(1%) =1] ~Pr[PRE 4(1) = 1] | <negl (A),

where PRE}a& A and OneWay,, 4 are defined in Figure 5.
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I/ . ATagOZ (

PRE)I'ag,A(l)\)

tag” «+ TagEval(z+s")

pp,s” tag”)
return (TagEval(z') =tag™)

OneWay-,, 4(1%) TagO,()
pp(—TagSetup(lA) S X
z,8" —x return (s, TagEval(z+s))

Chy ()

tag” <
s x
if b=0 then

pp <—TagSetup(1>‘)
IHX
(s" tag™) «Chp ()

/
return b

b AT (pp,s” tag”)

tag” < TagEval(z+s™)

endif

return (s",tag™)

Figure 5: One-Wayness and Pseudorandomness Experiments for Tagging Schemes

Setup(1*,1,19)

OTAccGen(mpk,a)

PPpKE PKESetup(lA)

PPHC HCSetup(lA)

PPrag ¢ TagSetup(1™)

PPsok — SoKSetup(1™, (PPyic,PPT.g))
pp:= (/B:ppPKE7ppHC7ppTag7ppSoK)

return pp

SAKGen(pp)

(tpk,tsk) < KGen(pppye)
(vpk,vsk) < KGen(pppke)
T X

mpk := (tpk,vpk,Com(0;x))
msk:= (tsk,vsk,z)

return (mpk,msk)

parse mpk as (tpk,vpk,X)
ek <—${0,1}A7 cki=r+x
s:=H(mpk,ek)

pk:=X-Com(0;s), co:=Com(a;r)

ek < Enc(tpk, (pk,co),ek)
ck« Enc(vpk,(pk,co),(a,r))
acc:= (pk,co,e~k,c~k)

return (ck,acc)

Vi (tx,0)

R T
parse tx as ( {accz2 }i:‘l {tag; }Li‘l, { (acc?) -‘;:lfﬂ)

if |7]>2% then return 0
return b:=SoKVf(stmt(tx),o,tx)

Spend(R,S,T 1)

x:=tx(R,S,T,1)
return o < SoKSig(stmt(tx),wit(S,7),tx)

Receive(msk,acc)

parse msk as (tsk,vsk,z)

parse acc as (pk,co,e~k,c~k)

ek +— Dec(tsk, (pk,co),ek)

(a,r) < Dec(vsk,(pk,co) ,c~k)

s:=H(mpk,ek), 2’ :=x+s

if (pk,co)# (Com(0;z"),Com(a;r)) then return L
tag:= TagEval(z")

return (r,a,z’tag)

Figure 6: RingCT Construction (Core Components).

CheckAmount(acc,ck,a)

CheckTag(acc,sk,tag)

parse acc as (pk,co,e~k,c~k)

return (co= Com(a;ck))

parse acc as (pk,co,e~k,c~k)

return (tag=TagEval(sk) Apk =Com(0,sk))

Figure 7: RingCT Construction (Auxiliary Algorithms).

4.2 Scheme Description

Let BeN. Let PKE=(PKESetup,KGen,Enc,Dec) be a (labeled) public-key encryption scheme, HC = (HCSetup,Com)
be a homomorphic commitment scheme with message space (M,+) where {0,1,...,20+# —1} C M and randomness
space (x,+), Tag = (TagSetup, TagEval) be a tagging scheme with input space (x,+) and tag space ¢, and
SoK = (SoKSetup,SoKSig,SoKVf) be a signature of knowledge scheme for the language L£[ppyc,PPrag| (Parameterized
by the public parameters of HC and Tag) to be defined below; we recall the definitions of these well-known
primitives in Appendix B. Let H:{0,1}* — x be a hash function modeled as a random oracle. We give a generic
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construction of RingCT in Figure 6. An overview of the construction is as follows.
Recall that given the sets R, S, and 7, and a message i, where

R IR iR IR
R={acc]*},_ = {(pk co%ek; ck; )}i:1,
.S S o S S
S= {(]iaCki g aSkiatagi> }ifl {(]“rz e 7xl7tagz }z 1’
17
T= {(ckj,a?,acc?}iil
we defined the corresponding transaction to be

tX(R,S,T,u): ({accR}‘ 1,{tagl}lz‘jl, {(acc )}‘ 1,,u>
Given tx=tx(R,S,T,u), we further define the statement

R
stmt(tx) := < {Pkfmf }I-,‘lv {tag; }L‘ip {COT}lTl )

The witness to the above statement is defined as

wit(S,T):= ({ ]zaww }z 1 { i }lTI)

171

= {07 al (o] ol k! k[ )},

i=1

Setup The setup algorithm generates the public parameters of all the underlying primitives.

Stealth Address Generation The master public key mpk consists of the two PKE public keys tpk and vpk,
and a commitment X =Com(0;x) to 0 with randomness z. The master secret key msk consists of the two PKE
secret keys tsk and vsk, and the value z. The key tsk also serves as the tracing secret key.

One-Time Account Generation The algorithm commits to the amount a as co := Com(a;r) with some
randomness r. It then generates a random bit-string as an ephemeral key ek and hashes it with mpk to get a
random exponent s€ x. A one-time public key pk is then derived as pk=X-Com(0;s). Next it encrypts ek and
ck using the appropriate instances of PKE and obtains ek and ck respectively as ciphertexts. This for elements
are assembled to the account acc= (pk,co,ek,ck) and output together with the coin key, i.e. randomness 7.

Receiving The algorithm decrypts both ciphertexts ek and ck in acc = (pk,co,e~k,c~k) to obtain ek and (a,r),
checks if co=Com(a;r), derives the (one-time) secret key of the account as 2’ =xz+s, and checks if pk=Com(0;z').
It also generates the tag of the account as tag:=TagEval(2’).

Spending The algorithm derives the transaction tx, the statement stmt and the witness wit, and creates a
signature of knowledge of the statement stmteL’[ppHc,ppTag] with message tx, where

L{PPHC,PPTag]

stmt= ( { kR coR }‘Rl {tagi }1‘3‘17 {COT}IT‘ ) :
i [T

EIWIt: ({ ]l;xza }L 1 { i ,T } )

pk;-f = Com(O x;)
i=¢  Vi€[[S]],{ cot =Com(af;ry)
tag, = TagEval(x;)
‘ co] =Com(a] ;]
vie T % 4 )
al € {0,..,2° -1}
aS— ol
2iels) % = Liel )%
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Verify Given a transaction tx and a proof o, the verifier derives the statement stmt from tx and verifies if o
is a valid signature of knowledge of stmt with message tx.

4.3 Analysis

The correctness of the construction is obvious. Below we state the security results.
In Appendix C we further extend the construction to tracking and viewing features. The security games are
updated accordingly and the following theorems are proven for the extended versions.

Theorem 4.2 (Balance). If HC is computationally binding, and SoK is extractable, then Q is balanced.

Theorem 4.3 (Privacy). If HC is perfectly hiding and computationally binding, PKE is IK-CCA-secure and
IND-CCA-secure, H is modeled as a random oracle, SoK is simulatable, and Tag is related-input pseudorandom,
then ) is private.

Theorem 4.4 (Non-slanderability). If SoK is extractable and simulatable, Tag is related-input one-way, and H
is modeled as a random oracle, then Q) is non-slanderable.

The proofs of the above theorems are deferred to Appendix D.

4.4 Concrete Instantiation: Omniring (U)

We propose the following concrete instantiation of our generic construction (2) called Omniring denoted by .
We instantiate PKE with a (labeled variant of) ECIES [56], HC with the Pedersen commitment [50], and Tag with
the pseudorandom function of Dodis and Yampolsky [23] in a non-black-box manner, which we denote by Tags.

Concretely, let G=(G,q,G) be the description of a cyclic group G of prime order ¢>2°*# with generator G,
where certain Diffie-Hellman-types assumptions hold (see Appendix B for details). Let H €G be another random
generator of G. We set ppyc :=(G,q,G,H) which defines M:=7Z, and x:=Z,. We also set ppr,,:=(G,q,G) so
that the tag space of the tagging scheme Tag is ¢:=G. For a,r € Z,, we define Com(a;r) :=G*H". For z €Zy,
we define TagEval(z):=G . More details of these constructions can be found in Appendices B and F.

With the above choices of HC and Tag fixed, we introduce the following notation for describing the language
E[ppHc,ppTag] more conveniently. Given the statement and witness

stmt( {pk?,cof}[{l 7 {tagi}gl’ {coT}\TI )7
. IT]
W|t:<{ ]173317 }z 1’{ a; 51 } )

we define the following notation:

R:=(pk,. ,Pkm\) Cr:=(cof,.. 7co‘%l)

T:=(tag, ... tags)) éT::(coZ—,...,cog—l)
X:=(21,.,7)5]) ad.= (af,...,aﬁg‘)
%o hi= (a7t x|8\) al =(a],. ,a[g—‘)
2=l £ = (] |- lirfy)

Furthermore, let €; be the |R|-dimensional unit vector with 1 at the j;-th position and 0 everywhere else, and
let b; be the binary representation of aT We define their concatenations as the matrices E and B respectively.
That is, the i-th row of E and B are €; and b, respectively. We write the (row) vectorizations of E and B as

vec(E):: (élv---vé\&) vec(B):: (bl, b|7*‘)
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The language becomes:
‘CU [GaanaH]
stmt= (R,GR,T,GT) :
wit= (E,i,ﬁs,?sB,ﬁTjT) s.t.

€; is a unit vector of length |R|

Vie[|SIq 26 aS 1es
= Cr=G*% H"i
tag,=G"i
viel|T], b, is the binary rep. of a] of length j3

col-T —qo g
S_ T
2iels) % = 2ielT)%
Finally, we instantiate SoK for the language £[G,q,G,H| by applying the Fiat-Shamir transform [24] to the
argument of knowledge scheme for £]G,q,G,H| to be constructed in Section 5.

We remark that with the above instantiations, all public parameters can be generated using public coins, i.e.,
without trusted setup.

5 Argument of Knowledge

Below we construct a logarithmic-round argument of knowledge scheme for the language L5[G,q,G,H]. In the basic
protocol described below, the total size of the messages sent by the prover is bounded by O(|R||S|+8|T]). We can
then replace part of the protocol with the argument of knowledge for inner product relations Lip (defined below)
of [16] as a black-box, in the same fashion of their “range proof” construction. This squashes the communication

to O(log(|R|S|+8[T])).

5.1 Our Basic Protocol

Below we describe our basic protocol IIis = (Setup,(P,V)) and state its security properties. The notation used
within is defined in Section 4.4, Figures 9 to 11 and Figure 8.

Setup(1*,L5):
Recall that L is specified by a tuple (G,q,G,H). Output crs=(G,q,G,H).

(P(crs,stmt,wit),V(crs,stmt)):
V:

1. uw <—sZq
2. h+sG, p +sG3IRl g/« GmIRI=3 h «G™

P+ V:iuw,h,p,g.h

PYV:
1. Y:=RoC%'
2. T:=T""

3. For weZy, denote

gu:=((GIH|TIY)*oBlE") (1)
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P:
1. 1452,
2. A:=h"1g her
Note that g% =g for all w,uw’ €Z, since [=GEHTY®. Thus A=h"4g< her for all wEZ,.

P—-V:A
V:iw <—$Zq
P+V:w
P:

1. rg <—$Zq7 §L7§R <—$Z;n
2. S:=hrsgsrh®n,

P—-V:S
V1,2 sl
P—V:y,z
P:

1. Define the following polynomials (in X):

2. 11,7 (—$Zq
3. Ti:=gith™, Th:=g'2h™

P—=V:1T1,15
Vix sl
P—V:x

P:

L =22 (F7 g+ rztmna?
2. ri=ratrsx
3. (1,7,):=(l(x)r(x)t(x))

P—=V:iTr, 1 Tt
V: Check if the following relations hold:

t= <T ) (2)
hrglhf o = ASTgS P (3)

GtH =G CE e (4)
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Theorem 5.1. The verifier V is public-coin. Il is constant-round, perfectly complete, and perfect special
honest-verifier zero-knowledge.

Theorem 5.2. Assuming the discrete logarithm assumption holds over G, s has computational witness-extended
emulation.

The proofs of the above theorems can be found in Appendix E.

5.2 Inner Product Argument

We next recall the argument of knowledge for inner product relations in [16]. Formally, given a group description G=
(G,g,G), an integer m €N, and two vectors of group elements g,h € G™, we define the following inner product relation:

- (Pt)EGXZ,:
h|:=< _- Y -
Lielg.h] {31,?6231 s.t. P=g'h™ A (1,7)=t

We denote the argument of knowledge protocol of [16] by IIjp.

It is shown that if finding a non-trivial discrete logarithm representation of the identity element over (G)
with base @HH is hard, then ITjp has computational witness-extended emulation [16]. In their security proof, it is
implicitly assumed that g and h are uniformly sampled from G™. For our purpose, we require a slightly stronger
theorem which states that the argument of knowledge has computational witness-extended emulation even if the
adversary has certain control over the values of g and h.

Theorem 5.3 (Modified from [16]). Let g and h be sampled as in Corollary 1, such that it is hard to find a,
b with I :gaﬁb. Then Ilip has computational witness-extended emulation.

The proof of the above theorem is almost identical to that given in [16] and is therefore omitted.

5.3 Squashing Prover Communication

To squash the prover communication in our basic protocol from linear to logarithmic, we modify the protocol as
follows. In the last message that P sends to V), instead of sending [ and 7 in plain, P commits to them as P=
gl h0()71‘3f7 where g, is defined in Equation (1), and sends P to V. P and V then engage in the argument of knowl-

edge Iljp for inner product relation, which convinces V that P is computed correctly and indeed ¢t= <T,?> Finally,
2 517

V proceeds to check if h"P=AS*g%h” and G'HT=G*C%"V" T¥Ty". As shown in [16], the following holds: Vip
is public-coin; ITjp has [logym] rounds; and Ijp is perfectly complete, perfect special honest-verifier zero-knowledge.
As stated in Theorem 5.3, ITjp has computational witness-extended emulation if finding non-trivial discrete logarithm
relations among g,, and h is hard. Consequently, after the aforementioned changes, Theorem 5.1 and Theorem 5.2
still hold for the resulting protocol, except that the latter now consists of [logym]+O(1) number of rounds.

6 Optimizations and Performance

We discuss several optimization techniques and compare the efficiency of Omniring with that of Monero.

6.1 Efficient (Batch) Verification

An Omniring transaction is computationally efficient to verify, as it can be reduced to a single multi-exponentiation
of size 2m + log(m) + O(1) using the technique of [16], where m = 3 + |R| + |R||S| + B|T| + 3|S|. Since
multi-exponentiations can be computed much more efficiently than performing an equivalent amount of individual
exponentiations, they enable large savings. The cost of verification can further be lowered by batching. Specifically,
verifying a batch of n transactions can be reduced to a single multi-exponentiation of size 2mn-+nlog(m)+0(n).
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Notation Description

Y=Y (u):=RoC% Vector of compressed public keys and coins with randomness ©€Z,
é=é(v):=v°E Vector of compressed unit vectors with randomness v € Z,
T=T(uw): =T Compressed tag with randomness u,v €Z,

E=E(up):=—(01 u-as+u2-x°T) Compressed secrets with randomness u,v € Z,,.

n=n(uw):=— (0 X +u-5) Note that (€,7,8) satisfies [ =GéHMTY®,

CL,CR Encoding of witness by honest prover dependent on w and v,

see Figure 9.
Length of €7, and €g

m=3~+|R|+|R||S|+8|T|+3|S|

(Vo,.-,Vg,Uq) =(Vo,...,Vg,Ug ) (u,0,y) Constraint vectors parameterized by the randomness u,v,y € Z,,
see Figure 10.
(@, B, 4, 0, ¢ @b 7, W) Compressed constraint vectors parameterized by the randomness
=(a,8,0,0,(,1i,7,0)(u,0,y,2) U,0,Y,% € Zq, see Figure 10 and Figure 11.
EQ=EQ[a” ,u,v,y] System of equations parameterized by the amounts a’ and
randomness u,v,y € Z,, see Figure 12
Figure 8: Notation for signatures of knowledge construction.
cp=(&lnlL]lell  vec(®E) || vec(B) [|a%|[ TS| % )
GR ( OHRE || vec(E)— TIRIS || vee(B) ~TAITH|| 02181 | x°=1)
Figure 9: Honest encoding of witness.

Vo] r g RISIHAITI . 7

vl . y\S\

Vo . B 7T ®28 )

V3 . y!S| ISl TR

va| |1 - . . u-gls! .

Vs | T 1 . . w- oS! zlsl

Ve —gIRl - 3lSlgylRI .

\'4 . 1T 28 TSI

Vg G RISIHBIT]

| Uy i S|

Figure 10: Definitions of constraint vectors. (Dots mean zeros.)
6.2 Log-size Transactions

While Omniring produces spend proofs of logarithmic size, the spender needs to communicate the set of destination
accounts {acc ,info; }l,p the set of tags {tag; }1 1> and a set of ring accounts {acc® l. within the transaction
to allow the cryptocurrency network to verify the transaction. Since |7 and |S| are typically small (we typically
have |T]=2 and |S| < 5), they can be safely neglected. However, the ring size |R| is a problem if a high level
of privacy is desired. The obvious solution to include |R| ring members in the transaction needs O(|R|) space
which quickly becomes impractical. However, using the recovery sampling technique by Chator and Green [19],
which is built for this exact purpose, the description of the set of ring members can be as short as O(log|R|),
yielding a transaction size (not only proof sizes) logarithmic in m.

6.3 Performance Comparison

We compare the performance of Omniring with the RingCT scheme currently employed in Monero, i.e., the
scheme by Noether et al. [47] with a minor modification [2], together with Bulletproofs [16] range proofs (all of
the range proofs in a transaction aggregated into a single Bulletproof). For conciseness we simply use Monero
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4 oI 8 (YL, YRrOV0) =0 (5)

0 :_Z,zZ Vi C-:Zzl.vl i :Zz Vi (1.5 RoV1) =<TIS\,y\SI> (6)
= = 122 (71,92) —@&"y'") (7)

s L (VL. V3) = (TISIH1 glsi+t) (8)

v I (V) +(Trts) =0 (9)

~ L (Y:Vs5) =0 (10)
a:=0°""to(w-7) B:=0°"topi (71,%6) -0 (11)
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Figure 11: Definitions of constraint vectors (cont.). Figure 12: A system of equations guaranteeing the
integrity of the encoding of witness.

to refer to this scheme. We consider the typical case of |7|=2,! and the amount range 3=64 used in Monero. For
a fair comparison we also consider only transactions with one source account (|S|=1), to exclude the advantages
that our model of RingCT provides for |S|>1 (see Section 1.1.1).

Proof Size In Figure 14 we compare the proof size of known RingCT schemes. We assume (non-pairing) elliptic
curves as in Monero and therefore do not differentiate between group elements and scalars because they have
roughly the same size. The proof size of Omniring is

2[1ogy (3+[R|+|R|S|+A[T1+3|S])1+9
while that of Monero is
(IR[+2)(IS[+1)+log,(|T15) +9.
RingCT 3.0 proposed in a concurrent work [28] can be instantiated in the same setting, and has proof size
[S1(2[1oga[RI+17)+2[logy (BIT 1) [+2.

The proof size of RingCT 2.0 [60] is O(|S|+1og(5|T1)) elements where the hidden constant is in the hundreds.
The concrete count is incomparable to other schemes and is omitted, as the scheme is based on pairing groups
and has a trusted setup.

Figure 13a shows the number of elements in the proof against the size of the ring. Note that even when |R] is as
small as 11, which is the ring size currently enforced in Monero, the proof size of Omniring is already significantly
smaller than that of Monero, and for larger |R|, the difference in proof size grows further. Finally, we remark that
although our comparison only considers |S|=1 and |7|=2, for general |S| and |7, the gap in proof size would only
be larger as the proof size of Monero scales linearly with |S| and |7| while Omniring’s only scales logarithmically.

Running Time To compare the running time, we make use of the fact that our spend algorithm is very similar
in structure to a Bulletproof range proof, which has been implemented in Monero; the only difference significant for
performance is the size of the vectors in the inner product proof. By modifying the Monero benchmark suite to run
Bulletproofs with larger vectors, we could obtain precise estimates for the running time of Omniring, and compare
them with running times for the RingCT scheme used in Monero. Our estimates are suitable for a comparison with

LA typical transaction uses one destination account to pay to the receiver and one change account to pay the remaining funds
from the source accounts back to a new account of the sender. This model, introduced by Bitcoin, is common in cryptocurrencies
and it is actually fundamental to RingCT because the spend proof only reveals that the sum of the source amounts equals the sum
of the output amounts. Partial spends of a source account would require accounting for the exact amount that has been spent.

20



a) Proof size [elements], log-log scale

b) Spending time [ms], lin-log scale

¢) Verification time [ms], lin-log scale
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Figure 13: Performance Comparison
Scheme Spend proof size (in elements) Pairing Trusted setup
Monero [2, 47] with BP rangeproofs O(|R||S|+1og(8IT1)) No No
RingCT 2.0 [60] with BP rangeproofs O(|S|+1og(BIT1)) Yes Yes
RingCT 3.0 [28] with BP rangeproofs O(|S|log|R|+1og(B]T1)) No No
Omniring O(log(|R||S|+8|T1)) No No

Figure 14: Comparison of RingCT schemes.

Monero because they rely on the same C++ implementation of Bulletproofs, i.e., on the same elliptic curve using the
same optimizations. Our modified code is available in an anonymized repository [49]. All experiments were run on
a single core of an Intel Core i7-7600U (Kaby Lake) CPU with TurboBoost disabled to get more consistent results.

Figure 13b and Figure 13c show the estimated time needed for generating and verifying a proof respectively
against the size of the ring, with the latter being particularly important as each proof generated by a single spender
has to be verified by virtually all other users. The time needed for generating proofs in Omniring is about twice
of that in Monero. Omniring, however, has considerably faster verification than Monero does for higher |R|. For
instance, at |R|=128, verifying an Omniring transaction is 4 times faster than verifying a Monero transaction. This
gap is further amplified if we employ batch verification techniques in Omniring; we included a graph for a sample
batch size of 16 to demonstrate this. Batch verification is particularly useful in cryptocurrencies to reduce the
verification time of nodes catching up with the blockchain, e.g., they can verify all transactions in a block in one batch.

A Related Work
A.1 Comparison with RingCT “1.0” and 2.0

We compare our formalization with the one in [60] and our construction with the one in [47] and “RingCT 2.0”
proposed in [60].

Formalizing RingCT The formal model in [60] does not formalize the central property of stealth addresses nor
receiver anonymity. While both our model and that of [60] define balance and spender anonymity, our definitions
assume stronger adversaries. In the case of balance, we require the property to hold even if all accounts in the
transaction are maliciously generated. In contrast, [60] considers only honestly generated accounts. While [60]
only considers spender anonymity in the case where all source accounts are not corrupt, we allow some of the
source accounts to be corrupt and still require the non-corrupt accounts to be anonymous. Moreover, related to the
support of stealth addresses, we allow the source accounts to be the target accounts in previous transactions created
by the adversary. This naturally makes it non-trivial to define spender anonymity in contrast to previous works that
only relied on a ring signature style anonymity definition. Therefore our model offers stronger security guarantees.
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Constructing RingCT The construction of Noether et al. [47] produces proofs of size O(|S|-|R|,|T|,5). This
inefficiency incentivizes users of Monero to employ smaller ring sizes thus effectively reducing the anonymity set,
which leads to de-anonymization of the spending accounts as shown by Moser et al. [45] and Kumar et al. [32].
A core component in this construction is a “range proof” protocol which allows a spender to prove that an amount
being transferred lies within a pre-defined range. A recent improvement is made by the Monero team, who replaces
such range proof with Bulletproof range proof [16]. This reduces the linear dependency on 3 to a logarithmic one
and the linear dependency on |S|-|R| becomes the bottleneck of the system. In contrast we extend the Bulletproof
framework (Section 1.3) and exploit its efficiency not just for range proofs but also for the spender to prove his
ownership of coins and their spendability.

Sun et al. [60] proposed an accumulator-based construction which features signature size independent of |7
and |R|. However, their scheme relies on a trusted setup, and a pairing-friendly elliptic curve over which operations
are computationally more expensive than non-pairing-friendly ones. While setup-free accumulators are known
based on unknown order groups, they require considerably larger parameters to be secure. Also, the construction
of [60] does not support stealth addresses.

A.2 Comparison with RingCT 3.0

A very recent concurrent work proposes RingCT 3.0 [28] which uses a syntax similar to ours and improves upon
RingCT 2.0 mainly by supporting stealth addresses and getting rid of the trusted setup. Their results differ in
two main aspects from our findings: First, we argue that their security model is insufficient and does not cover
certain real-world attacks. Second, our construction is more efficient as it supports an unified ring and directly
incorporates range proofs. In the following paragraph, we discuss the differences in detail.

Regarding their security model, RingCT 3.0 suggests a more restricted definition of balance that forces the
adversary to generate its transactions using oracles provided by the experiment. This is necessary to learn the
amounts corresponding to the adversarial transaction by witnessing the oracle queries. We believe that this notion
is too restrictive because it does not cover adversaries that simply forge proofs of false statements and which do
not use the oracle at all. Our approach is different and more general allowing arbitrary adversaries and we only
require is the existence of an extractor which extracts the amounts by running code of the adversary.

The second weakness in their formal security model is their definition of anonymity, which is split into
anonymity against receivers and anonymity against ring insiders. First, the two properties together do not seem
to imply the combined property, ¢.e., anonymity against a coalition of receivers and ring members. Second, their
definition only holds with respect to honestly generated source accounts. We believe that this notion is too
weak because it rules out natural real-world attacks where a curious user, who has transferred some money to
a one-time account of the victim, tries to determine if the victim’s account is used in a given transaction. Third,
their definition only covers spender but not receiver anonymity.spender.

Aside from the definitional issues, the construction seems also less efficient compared to our “unified ring’
construction because RingCT 3.0 requires separate rings for separate source accounts like all other previous
RingCT schemes. Moreover, range proofs are not directly included in their construction. Instead, for real-world
applications, one would need to compose their construction with a separate range proof system. While this is
acceptable from a theoretical point of view, it incurs unnecessary computational and communication overheads
which impact concrete efficiency.

)

A.3 Other Privacy-Preserving Currencies

We briefly compare other privacy-preserving currencies with RingCT. The second largest currency that has certain
privacy-preserving properties is DASH. Since DASH uses trusted mixers to achieve some form of anonymity, it
is incomparable to RingCT. The third largest competitor is ZCash, which is an implementation of the zerocash
protocol by Ben-Sassonet al. [10]. In contrast to RingCT, the underling protocol uses a SNARKs that requires a
trusted setup. While setup-free SNARKSs are known, they do seem to be applicable due to their inefficient nature.

Zerocoin and Zerocash Zerocoin [43] and Zerocash [10] are schemes for cryptocurrencies aiming to provide
anonymity and the privacy of amounts based on zero-knowledge proofs. Ring signatures in CryptoNote v2.0 [62]
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(the underlying scheme of Monero) serve the same purpose as the non-interactive zero-knowledge proofs in Zerocoin.
In fact, the zero-knowledge proofs can be seen as a form of ring signatures. Zerocoin was developed as an extension
to Bitcoin, and Zerocash is designed as an independent currency and has been implemented in Zcash [63]. Both
Zerocoin and Zerocash use a trusted setup, and Zerocash uses zero-knowledge succinct non-interactive arguments
of knowledge (ZK-SNARKSs) to prove the integrity of computations. Due to the trusted setup, the system per
se cannot be considered as completely decentralized. By using cryptographic accumulators which give constant-size
membership proofs, Zerocoin and Zerocash can handle very large anonymity sets; the anonymity set is the set of
all coins ever created. In contrast, Monero scales only to moderate anonymity sets but does not require a trusted
setup; the same is true for another instantiation of Zerocoin proposed by Groth and Kohlweiss [26].

A.4 Brief History of RingCT and Monero

To ensure anonymity in cryptocurrencies while still preventing double-spending, van Saberhagen mentioned the
use of linkable ring signatures in a cryptocurrency called CryptoNote v2.0 [62], which ensures that messages signed
by the same sender are linkable, independently of the rings or messages. The construction is a slight modification
of the scheme by Liu, Wei, and Wong [34], however the security analysis is not detailed and is carried out with
respect to informal definitions.

Back [5] observed how to improve CryptoNote v2.0 relying on ideas from [1]. Noether et al. [47] generalized Back’s
scheme in the name of ring confidential transactions (RingCT) to allow for batch spending with improved confiden-
tiality (by using Confidential Transactions (CT)) and anonymity guarantees (Stealth Addresses). While the original
proposal by Maxwell [36] leaves out many cryptographic details, which could just be found in the source code, the
concept of CT for confidentiality of amounts has been explained by Gibson [25] and partially formalized by Poelstra
et al. [52]. However, the analysis of Noether et al. [47] is informal. (Some versions of) CryptoNote v2.0 / RingCT was
implemented in (some versions of) Monero, one of the major (privacy-preserving) cryptocurrencies which is deployed.

Sun et al. [60] gave another attempt to formalize RingCT and provide a construction with constant size
signature. However, as we have discussed in Appendix A, their formalization is far from satisfactory. Moreover,
their construction achieves (asymptotic) efficiency improvements using accumulators that require a trusted setup,
which is especially undesirable for the setting of Monero.

Stealth Addresses To our best knowledge, the concept of “stealth addresses” first appeared in CryptoNote
v2.0 [62] in the name “public user keys” without formalization. Meiklejohn and Mercer [38, 39] attempt to formalize
stealth addresses. They require that the one-time public keys are identically distributed as randomly chosen ones,
in the view of external parties. This requirement is necessary but not sufficient because the spender who derives
the one-time public key may know extra information about the key which can be used to link signatures (hence
breaking spender anonymity).

Bulletproofs Bulletproofs [16] is a recently proposed general purpose proof system improved from [13] for
arithmetic circuit satisfiability. In particular, they allow to prove that a committed value lies within a given range,
a relation to be proved when spending in RingCT. As discussed in [12], the tools used to construct general purpose
proof systems (e.g., [13]) seem to be more computationally expensive than the ones for specific languages (e.g.,
low-degree polynomial relations in [12] and this work).

Non-slanderability = Linkability In Sun et al. [60], it is claimed that non-slanderability implies linkability.
Since their claim is informal, it is unclear whether the implication is claimed just for RingCT systems or also for
linkable signatures. We show that either case is not true by giving an intuition for constructing counter examples.
Consider a RingCT or a linkable ring signature scheme where the tag is a commitment of the signer secret key.
A signature consists of a proof where, among other relations, the tag is a commitment of a secret key, and the
public key corresponding to the secret key is a member of the ring. It is clear that such a construction can be
made unforgeable and anonymous (and balanced in the case of RingCT) when instantiated with appropriate
proof system and commitment scheme. In particular, suppose the proof system is perfectly zero-knowledge and
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is a PoK, and the commitment scheme is perfectly hiding. In this case, we observe that the scheme can be made
non-slanderable yet non linkable, falsifying the claim in Sun et ol. [60] that non-slanderability implies linkability.

Obviously, the scheme is not linkable since the tag is completely independent of the secret key. Intuitively,
the scheme is non-slanderable, since given a tag (a commitment of some secret key sk) along with a proof about
it, sk is information-theoretically hidden from the adversary due to the perfectly zero-knowledge and perfectly
hiding property. If the adversary manages to produce a proof that the tag is a commitment of a secret key sk’,
with overwhelming probability we would have sk#sk’. Since the proof system is a proof of knowledge, we can
extract sk’ and thus break the binding property of the commitment scheme. We remark that the construction
of Sun et al. [60] is nevertheless linkable since a tag is uniquely determined by an account.

B Preliminaries

Let AeN denote the security parameter. We denote by poly (A) and negl () the sets of polynomials and negligible
functions in A, respectively. PPT means probabilistic polynomial time. Given a set S, x <—sS means sampling an ele-
ment z from S uniformly at random. For an algorithm A with input « and output z, we write z<— A(z). For n€N the
set [n] is defined as [n]:={1,...,n}. Unless specified, all sets are ordered. All algorithms may output L upon failure.

B.1 Vectors and Matrices

Vectors (of integers and group elements) are always written as row vectors unless specified. The actual orientation
of a vector in a matrix-vector product is implicit and is not specified unless there is an ambiguity. Both *
and ‘|| are used as delimiters, e.g., V= (v1,...,u,) € Z"™ and U= (uq||...||un) € Z™. Inner products are denoted
by (4,v)=3" uv;. Let g €G" be a vector of group elements, and = € Z. We define the following operations
between vectors of group elements and (vectors of) integers:

e Hadamard Powers: g°*:=(g7,...,g%)
e Hadamard Products: g¥:=(g}{",....g2")
We also define the operations between (vectors of) integers:

e Hadamard Products: ToV :=(ujvy,...,unvy)

<l

e Kronecker Products: G®v:=(u1Vv,...,u, V)

e Consecutive Powers: "= (1,z,....2" 1)

Given a matrix E € Zy**", its (row) vectorization is defined as vec(E):= (€1,...,€,,), where €; is the i-th row
of E. Conversely, we write E=vec™!(@1,...,6,,).

B.2 Hardness Assumptions over Cyclic Groups

Let G=(G,q,G) be the description of a cyclic group G of prime order ¢ with generator G. In the following, we
recall the (generalized) discrete logarithm assumption and the strong decisional Diffie-Hellman inversion (SDDHI)
assumption. While the generalized discrete logarithm assumption trivially holds in the generic group model [57],
the SDDHI assumption and the GapDH assumption can be proven to hold in the generic group model [17, 56].

Definition B.1 (Discrete Logarithm (DL) Assumption). We say that the discrete logarithm assumption holds
over G if for every PPT adversary A
Pr [DLA(G) = 1] <negl (\),

where the game DL 4(G) is defined in Figure 15.

24



DLA4(9)

T —slq

'+ A(G,q,G,G")
bi=(G"=G")

return b

Figure 15: Security Game for Discrete Logarithm

Definition B.2 (Generalized Discrete Logarithm (GDL) Assumption). We say that the generalized discrete
logarithm assumption holds over G if for all £€poly (X), every PPT adversary A

Pr [(-GDLA(G)] < negl (),

where the game (-GDL 4(G) is defined in Figure 16.

(-GDL4(9)

T <—$Lq
o AGqg.GG G G
bi=(G*=G")

return b

Figure 16: Security Game for GDL

Definition B.3 (Strong Decisional Diffie-Hellman Inversion (SDDHI) [17]). We say that the SDDHI assumption
according to holds over G if for all £€poly (X), every PPT adversary A

Pr [SDDHI% (G)=1]—Pr [SDDHI;(G)=1] ( <negl (\),

where the game SDDHI4(G) is defined in Figure 17.

SDDHI%(G) 0. (2)
A Z:=ZJ{z}

€T < $ZZ
s+ A" (G,q,G.G")

1
return G++=

if s€ Z then return 0

/
return b

Figure 17: Security Game for SDDHI
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Definition B.4 (Decisional Diffie-Hellman (DDH)). We say that the DDH assumption according to holds over
G if for all £€poly (N), every PPT adversary A

‘Pr [DDHY (G)=1] —Pr [DDHY(G)=1] ‘ <negl (M),

where the game DDH4(G) is defined in Figure 18.

DDH%(G)

x,Y,2 < sl

b +s{0,1}

Zo=G"™

Z=G*

b+ AG,q,G,G",GY, Zp)
boi=(b=1)

return by

Figure 18: Security Game for DDH

We now define an interactive variant of the discrete logarithm (representation) assumption, and show that
it is equivalent to the standard discrete logarithm assumption.

Definition B.5 (Interactive Discrete Logarithm (iDL) Assumption). We say that the interactive discrete logarithm
assumption holds over G if for all £€poly (N\), every PPT adversary A

Pr [¢-DL4(G)] <negl (),

where the game ¢-iDL4(G) is defined in Figure 19.

£-iDL4(G)

(8st) < A(Gq,G)
h «sG*
(a,b) <+ A(st,h)
bo:=(I=g>hP)
br:=(b#0")

return by Aby

Figure 19: Security Game for iDL

Theorem B.6. The interactive discrete logarithm assumption holds over G if and only if the discrete logarithm
assumption holds over G.

Proof. The forward direction is trivial. For the backward direction, suppose there exists a PPT adversary A which
solves the interactive discrete logarithm problem for some £€N. We construct a PPT algorithm B for the discrete
logarithm problem as follows.

B receives the discrete logarithm instance G* for some unknown z. It runs A up to the point where A outputs
a vector of group elements g. Let m=|g| € poly (A) be the length of g. B forks the execution of A into m+1
parallel instances. Let i* <—s[¢] and j* <—s[m+1]. For the j-th instance, B does the following:
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If j#4*, B samples X; <—$Zf;. If j=j*, B chooses a random index i* <—s[¢] and writes symbolically z;« ;- :=x.
For i€ [(]\{i*}, it samples z; j- < sZ,. In either case, it sends h;:=G% to A, who responds with (a;,b;) with

I=g% H?j and Bj 756[‘ We can write
G~ (B %;) — g%,

Note that |a;|=m for all j€[m+1] and therefore the set {aj,...,a,,4+1} must be linearly dependent, i.e., there
exists ¢1,...,cm+1 not all zero such that

C1 '51 +...+Cm+1 '§m+1 :67”
Since j* is chosen randomly, with probability at least 1/(m+1), we have ¢;- #0. We can therefore write
ﬁj* = Z C;- . ﬁj
FE[m+IN\{5*}
for some ¢}« _1,Clu g 1,0sCppq- This implies

géj* _ H (géj ) C;

JEMAIN{G*}

/
o B c
Gbi %) — H (G<ijxj>) ’
Jem+IN{*}
Gbi*,j*x:GZjE[m+1]\{j*}C;"<bj);(J'>7Zi€[£]\{i*}bﬂr,j*mi‘j*

Since 7* is chosen randomly, with probability at least 1/¢, we have b;« ; # 0. Hence we have z = (b ;) ™'+

(Zje[mﬂ]\{j*}cg . <Bj7§j>_ZiE[Z]\{i*}biaj*xivj*> which is a solution to the discrete logarithm problem instance.
O

Definition B.7 (Gap Diffie-Hellman (GapDH) [48]). We say that the GapDH assumption according to holds
over G if for all £€poly (A), every PPT adversary A

Pr [GapDH 4(G) = 1] <neg] (A),

where the game GapDH 4(G) is defined in Figure 20

GapDH 4(9) Obpn(4,B,C)

@ 5Ly <Ly a:=log(A);b:=log(B)
H+ A%™(G,q,G,G",GY)  c=logg(C)

return (H=G"Y) return (G**=G°)

Figure 20: Security Game for GapDH

B.3 Arguments of Knowledge

Definition B.8 (Arguments of Knowledge). A triple (Setup,P,V) is called an argument of knowledge for a
relation R if it satisfies the following two definitions.

On input 1* the setup algorithm Setup produces a common reference string crs. When interacting the prover
P and verifier V produce a transcript tr=(P(.),)(.)) where (.) denotes the actual protocol between P and V.
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Definition B.9 (Perfect completeness). (Setup,P,V) has perfect completeness if for all non-uniform polynomial

time adversaries A
(crs,stmt,wit) R V crs+Setup(1*)

Pr (P(crs,stmt,wit),V(crs,stmt) = 1) | (stmt,wit) + .A(crs) =1
Definition B.10 (Computational Witness-Extended Emulation [33]). (Setup,P,V)) has witness-extended emulation
if for all deterministic polynomial time P* there exists an expected polynomial time emulator € such that for all
pairs of interactive adversaries Ay, Ag there exists a negligible function negl () such that

crs<Setup(1?),
stmt,wit) <— Az (crs),
PriAu(tr)=1 ti —(P* (er,stm’iwii), B
V(crs,stmt)) <negl (A)
Ai(tr)=1A crs«Setup(1%),
Pr| (tr is accepting | (stmt,wit) < As(crs),
= (crs,stmt,wit) € R) |(tr,wit) < £ (crs,stmt)

where the oracle is given by O = (P*(crs,stmt,wit),V(crs,stmt)), and permits rewinding to a specific point and
resuming with fresh randomness for the verifier from this point onwards.

Definition B.11 (Public coin). An argument of knowledge (Setup,P,V) is called public coin if all messages sent
from the verifier to the prover are chosen uniformly at random and independently of the prover’s messages, i.e.,
the challenges correspond to the verifier’s randomness p.

Definition B.12 (Perfect Special Honest-Verifier Zero-Knowledge). A public coin argument of knowledge
(Setup,P,V) is a perfect special honest verifier zero knowledge (SHVZK) argument of knowledge for R if there
exists a probabilistic polynomial time simulator S such that for all pairs of interactive adversaries Ay, As

A A
(crs,stmt,wit) € RA crs<—_Setup(1 ) (crs,stmt,wit) ERA crs<—_Setup(1 );
Pr (i) =1 (stmt,wit,p) < As(crs), =Pr (i) =1 (stmt,wit,p) < As(crs),
! tr+ (P(crs,stmt,wit),V(crs,stmt;p)) ! tr+S(stmt,p)

B.4 Signatures of Knowledge

The term signatures of knowledge was widely used in the literature before it was formalized by [18]. We present
a simplified definition which captures schemes in the random oracle model.

Definition B.13 (Signatures of Knowledge). Let R be an NP relation for the language Lr = {stmt| Iwit :
R(crs,stmt,wit) =1} for a statement x and witness w. Let H be a random oracle. A signature of knowledge for
L and the message m in presence of H is a tuple of algorithms ¥ = (Setup,SoKSignH,SoKVerifyH ,S) defined below.
Note that SoKSign and SoKVerify have oracle access to the random oracle H.

pp<Setup(1*,£) on input the security parameter 1* and the description of the language L outputs the public
parameters pp.

0eSoKSignH(pp,stmt,Wit,m) on input the public parameters pp, a statement stmte€ L, the corresponding witness
wit, and a message me M, outputs a signature o.

b+ SoKVerifyH(pp,stmt,U,m) on input the public parameters pp, a statement stmt€ L, a signature o, and a message
meM, outputs a bit b deciding whether o is a valid signature on m.

o+ S(pp,stmt,m) on input the public parameters pp, a statement stmt € L, and a message m € M, outputs a
signature o.

Definition B.14 (Perfect Completeness). For all A € N, pp € Setup(1*,£), (z,w) such that R(stmt,wit) =1,
meM, UESoKSignH(pp,stmt,wit,m), we have SoKVerifyH(pp,stmt,a,m):1.
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Definition B.15 (Perfect Simulatability). It holds that that

(pp,0r): (pp.0):
pp < Setup(1*,£) =< pp+Setup(1*,£)
o+ SoKSign" (pp,stmt,wit,m) o+ S(pp,stmt,m)

Definition B.16 (Extractability). For all PPT adversaries A, there exists a PPT extractor €4 such that for all
stmte {0,1}*, if
pp < Setup(1*,£)
Pr|b=1:(o,m)< A" (pp) >negl (\)
b+ SoKVerifyH(pp7stmt,o,m)

then
w)=1: pp < Setup(1*,£)

Pr | R(x, ‘w<—EA(pp,stmt)

>1—negl (A)

It is straightforward to show that a perfectly complete, perfectly special honest verifier zero-knowledge,
public-coin logarithmic-round argument of knowledge scheme for a language £ with extended-witness emulation
can be transformed into a perfectly complete, extractable, perfectly simulatable signature of knowledge scheme
for £ and the message space M ={0,1}* using the Fiat-Shamir heuristics [24].

B.5 Labeled Public-key Encryption Scheme

The notion of the labeled public-key encryption scheme is formally considered by Shoup [58]. Compared with
the standard public-key encryption, the encryption and decryption algorithms of a labeled encryption scheme take
an additional labeled as input. A label can be considered as a binary string with a length polynomially bounded
by the security parameter.

Definition B.17 (Labeled Public-key Encryption). A labeled public-key encryption scheme is a tuple of algorithms
PKE = (Setup,KGen,Enc,Dec) defined below.

pp < Setup(1) is a probabilistic algorithm which takes as input the security parameter 1, and outputs a public
parameter pp.

(pk,sk) <~ KGen(pp) is a probabilistic algorithm which takes as input the public parameter pp, and outputs a public
key pk and a secret key sk. We assume the existence of an algorithm SKVerify(pk,sk) which checks if pk is a valid
public key corresponding to sk.

c<—Enc(pk,7,m) is a probabilistic algorithm which inputs the public key pk, a labeled T, and a message m, and
outputs a ciphertext c.

m < Dec(sk,7,¢) is a deterministic algorithm which takes as input the secret key sk, a labeled T, and a ciphertext
¢, and oulputs a message m (or L upon failure).

Correctness of PKE requires that for all message-label pairs (m,7), all pp € Setup(1*), and all (pk,sk) € KGen(pp),
Dec(sk,,Enc(pk,7,m)) always returns m.

We follow the CCA security requirement of the labeled encryption considered in [58]. This notion is stronger
than weak CCA in [29, 35] by allowing the adversary to make any query to the decryption oracle provided that
the queried label and the queried ciphertext are not the challenging ones simultaneously.

Definition B.18 (IND-CCA). PKE is indistinguishable under chosen-ciphertext attack (IND-CCA) if for every
PPT adversary A there exists a negligible function negl (\) such that

‘Pr [IND-CCAe (1 A):1]

—Pr[IND-CCApe 4 (1) =1] ‘ <negl (\)

where the game IND- CCAPKE A(1*) is defined in Figure 21.
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IND-CCARye 4 DecO(,c)

pp ¢ PKE.Setup(1*) if (r,0)=(7",c")

(pk,sk) < PKE.KGen(pp) return |
(st,;mo,ma,7") — AP=© (pk) else

¢* < PKE.Enc(pk, 7" ms) return PKE.Dec(sk,7,c)
b « AP0 (st,c") endif

return b’

Figure 21: Security Game for IND-CCA of PKE

IK—CCAZI;KE,.A DecO(i,T,c)

pp < PKE.Setup(1*) i ()= (" ")

({pk;,ski }i—o) < PKE.KGen(pp) return |

(st,;m™ 7)) = APC (pky,pk, ) else

¢« PKE.Enc(pk,,m",m") return PKE.Dec(sk;,T,c)
b/ %ADec(’) (St C*) endif

return b’

Figure 22: Security Game for IK-CCA of PKE

Key-privacy of the public-key encryption is first introduced by Bellare et al. [8], which requires no PPT adversary
viewing a chosen message encrypted under one of two public keys can guess which public key is used. It implies
that the receiver of the ciphertext (i.e., the owner of the public key) is anonymous from the point of view of the
adversary. Key-privacy property is essential for the scenario where identities are needed to be protected, e.g.,
anonymous communications and cryptocurrencies. We give the definition of key privacy for a labeled public-key
encryption scheme as below.

Definition B.19 (IK-CCA). PKE is key-private under chosen ciphertext attack (IK-CCA) if for every PPT
adversary A there exists a negligible function negl (\) such that

‘Pr[IK-CCAgKE, A1) =1]
—Pr[IK-CCAbe 4(1M) =1] ’ <negl (\)

where the game IK—CCAlFJ,KEA(l)‘) is defined in Figure 22.

B.6 Homomorphic Commitment Scheme

A commitment scheme allows the sender to commit to a value and later reveal that value to a receiver by showing
the value together with the opening. The receiver is able to verify that this value was indeed contained in the
commitment. A commitment scheme should be hiding that the commitment does not tell anything about the
committed value, and binding that the commitment can only be opened to the value which it was committed to.

Definition B.20 (Commitment). A commitment scheme consists of two probabilistic algorithms (Setup,Com)
defined below.

crs<—Setup(1?) is a probabilistic algorithm which takes as input the security parameter 1*, and outputs a common
reference string crs, which specifies a message space M, a randomness space x and a commitment space C.

C'+ Comgs(myr) is a probabilistic algorithm which takes as input the common reference string crs, a message
meM, and a randomness r €, and outputs a commitment C'€C.
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Hidingfic 4(1*)
crs < Setup(1%)
(mo,mq) < A(crs)
C <+ Comers(my)
b« A(0)

/
return b

Figure 23: Hiding Experiment for Commitments

Bindingic _4(1*)

crs<—Setup(1?)

(mo,ro,ma,r1) < Acrs)
bo:=((1mo,r0) # (ma,r1))

by = (Comcrs (mO;TO) =Comgrs (ml ;Tl))

return by Ab;

Figure 24: Security Game for Binding of Commitments

Definition B.21 (Perfect Hiding). A commitment scheme HC=(Setup,Com) is perfectly hiding if for every PPT
adversary A there exists a negligible function negl (X\) such that

Pr [Hidingﬂcﬂ(l)‘) = 1] = Pr[Hiding,l_,C,A(lA) = 1]
where the game Hidinglﬁc’ A(1Y) is defined in Figure 23.

Definition B.22 (Computationally Binding). A commitment scheme (Setup,Com) is computationally binding
if for every PPT adversary A there exists a negligible function negl (X) such that

Pr[BindingHC_’A(l’\):l} <negl (A)

where the game BindingHC’A(l’\) is defined in Figure 24.

Suppose that (M,+), (x,+), and (C,-) are groups. Then HC is said to be homomorphic if the product of two
commitments is a commitment to the sum of the two committed values.

Definition B.23 (Homomorphic Commitment Scheme). A commitment scheme is homomorphic if for all
crs€Setup(1?), all m;m’ € M and all r' €x

Comes(m—+m’ r+71") = Comes(m,r)-Comes(m/,r').

C Tracking and Viewing

C.1 Definitions

We extend the model to cover transaction tracking and viewing, which are features supported by some previous
schemes.

Definition C.1 (Extended RingCT). An extended RingCT is a RingCT scheme with a slightly extended syntaz,
where an original account acc is split into an extended form, consisting of an account acc, some tracking information
infoTiack, and some viewing information infoyiey -
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C.1.1 Trackability

CryptoNote [62], the predecessor of RingCT, introduces a feature called tracking. It allows a user to voluntarily
delegate a tracking key to a trusted third party?, so that the latter can track incoming transactions on behalf
of the user. This is particularly useful for a computationally constrained user as tracking incoming transactions
requires monitoring all new messages posted on the public ledger.

Note that the trackability is not meant to be a security feature. Indeed, a user can easily avoid being
tracked by not delegating the tracking key or simply creating another master public key. Tracking also relies
on the well-formedness of the account acc in a transaction. As a spend proof does not necessarily guarantee the
well-formedness of the entire account acc while still being considered as valid, a “cheating” spender can easily
help the receiver to avoid being tracked?®.

Definition C.2 (Trackability). An extended RingCT scheme is said to be trackable if the following holds:
1. There exists additionally a tuple of PPT algorithms (TKGen, TKVerify, Track) defined as follows:

tsk«— TKGen(msk): The tracking key generation algorithm inputs a master secret key msk, and outputs a
tracking key tsk.

b+« TKVerify(mpk,tsk): The tracking key verification algorithm inputs a master public key mpk and a tracking
key tsk. It outputs a bit b indicating if tsk is a valid tracking key corresponding to the master public key mpk.

b+« Track(tsk,acc,infotrack): The track algorithm inputs a tracking key tsk, an account acc, and some tracking
imformation. It outputs a bit b indicating if acc is an account generated from the master public key mpk
corresponding to tsk.

2. For all \,3,€N, all pp€Setup(1*,12,17), all (mpk,msk) € SAKGen(pp), all tsk€ TKGen(msk), it holds that
TKVerify(mpk,tsk) =1.

3. For all A\, o, 3,€ N, all pp € Setup(1*,1%,1%), all (mpk,tsk) such that TKVerify(mpk,tsk) = 1, all
a€ {0,...2° =1}, all (ck,acc,inforrack,infoview) € OTAccGen(mpk,a), it holds that Track(tsk,acc,inforrack) =1.

C.1.2 Viewability

RingCT extends the tracking capability such that the designated third party can also learn the amount to be received
in an incoming transaction. Viewability is useful in scenarios where a user wishes to have incoming transactions to its
address audited. For instance, a charity fund may want a third party or even the general public to audit the amount
of donations that it receives, given that the donors are willing to disclose it. To allow more fine-grained tracking per-
missions, we call this new feature viewability. Similar to trackability, viewability is not meant to be a security feature.

Definition C.3 (Viewability). An extended RingCT scheme is said to be viewable if the following holds:
1. There exists additionally a tuple of PPT algorithms (VKGen,VKVerify,View) defined as follows:

vsk<—VKGen(msk): The viewing key generation algorithm inputs a master secret key msk, and outputs a
viewing key vsk.

b+« VKVerify(mpk,vsk): The viewing key verification algorithm inputs a master public key mpk and a viewing
key vsk. It outputs a bit b indicating if vsk is a valid viewing key corresponding to the master public key mpk.

a < View(vsk,acc,infoview): The view algorithm inputs a viewing key vsk, an account acc, and some viewing
wnformation infoyiey. It outputs an amount a stored in the account acc.

2. For all \,o,3€N, all pp€ Setup(1*,12,17), all (mpk,msk) € SAKGen(pp), all vsk € VKGen(msk), it holds that
VKVerify(mpk,vsk) =1.

3. For all \,o, 3 € N, all pp € Setup(1*,1%,18), all (mpk,vsk) such that VKVerify(mpk, vsk) = 1, all
a€ {O,...,Qﬁfl }, all (ck,acc,inforrack,infoview ) € OTAccGen(mpk,a), it holds that View(vsk,acc,infoyiew) =a.
2Different users can delegate to different third parties.

3This could happen in a scenario where the sender is donating some money to a political entity and the entity wishes to hide
it from the IRS.
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Extending syntax of accounts
/ All accounts acc = (pk,co,ek,ck) are now split into acc= (pk,co),
infoTrack :e~k, and infoyiew =ck.

TKGen(msk) VKGen(msk)

parse msk as (tsk,vsk,z) parse msk as (tsk,vsk,z)

return tsk return vsk

TKVerify(mpk,tsk) VKVerify(mpk,vsk)

parse mpk as (tpk,vpk,X) parse mpk as (tpk,vpk,X)

return SKVerify(tpk,tsk) return SKVerify(vpk,vsk)

Track(tsk,acc,infoTrack) View(vsk,acc,infoview)

return b:=Dec(tsk,acc,inforck) # L (a,r) < Dec(vsk,acc,infoyiew )
if co=Com(a;r) then return a
else return |

Figure 25: RingCT Construction (Extensions).
C.1.3 On Trackability and Viewability against Malicious Parties

The above definitions for traceability and viewability assume honest spenders and receivers, which is sufficient
for the intended purposes as discussed above. For curiosity, we briefly discuss trackability and viewability against
malicious spenders and receivers, and even trackers and viewers.

From a definitional point of view, defining such notions is not an issue. Indeed, similar notions are well-known
in related primitives, such as the traceability and non-frameability of group signatures [7]. It is straightforward
to adopt these definitions to RingCT.

Any schemes satisfying these strengthened notions however are likely much less efficient than those that do not.
Intuitively, in a scheme which is trackable against malicious receivers, a user should not be able to spend from an
account unless the account can be tracked by the tracker. Consider the following construction template. The user
generates a tracking key and proves that the key is bound to its master public key. To spend, the user must prove
that the source account is associated to some master public key. This convinces the tracker that the user is only able
to spend from accounts that can be tracked. However, notice that the spender has to prove that the master public key
associated to the source account is a member of the set of all master public keys. This is much more expensive than
proving that the source account is a member of a set of ring accounts, and is against the design philosophy of RingCT.

Lastly, even if the RingCT scheme provides trackability and viewability against malicious parties, the users
can still easily avoid being tracked or viewed by simply creating another stealth address.

C.2 Extension to Construction

We extend our construction in Section 4 to support tracking and viewing. The descriptions of the algorithms
are in Figure 25.

Extending syntax of accounts All accounts (output of OTAccGen, input to Spend, Receive, and Vf)
acc=(pk,co,ek,ck) are now split into acc= (pk,co), inforack =€k, and infoyje, =ck.

Tracking key generation Given the master secret key msk the tracking key generation algorithm parses msk
as (tsk,vsk,x) and returns tsk.
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InitOracles()

VKGenO(k)

/ In addition to the original InitOracles()...

/ Initialize Sets
Tracked := Viewed :=
TKRevealed := VKRevealed := ()

TKGenO(k)

/ Reveal tracking key of an honest user.

tsk < TKGen(MSK[k])
TKRevealed := TKRevealedU {k}

return tsk

TrackO(k,acc,inforrack)

/ Reveal viewing key of an honest user.
vsk < VKGen(MSK[k])
VKRevealed :=VKRevealedU {k}

return vsk

ViewO (k,acc,infoyiew )

/ Instruct (auditor of) user k view amount of
/ account acc.

vsk :=VKGen(MSK[k])

a < View(vsk,acc)

Viewed := Viewed U{ (k,acc,infoview) }

return a

/ Instruct (auditor of) user k to track acc.
tsk:= TKGen(MSK([k])

b < Track(tsk,acc)

Tracked := Tracked U{ (k,acc,infoTrack) }

return b

Figure 26: Oracles for track and view

Track Given a tracking key tsk, an account acc, and some tracking information inforyack, the tracking algorithm
checks if Dec(tsk,acc,inforyack)# L.

Viewing key generation Given the master secret key msk the viewing key generation algorithm parses msk
as (tsk,vsk,x) and returns vsk.

View Given a viewing key vsk, an account acc, and some viewing information info,iew, the viewing algorithm
checks if Dec(vsk,acc,infoyiew) = (a,r)# L and returns a if successful.
To prove security in the presence of these additional algorithms we define the oracles Figure 26.

D Security Proofs for ()

We present here the full security analysis of our RingCT construction 2 in Section 4. In addition to the oracles
given in Figure 1 we extend the security games for privacy and non-slanderability by providing the adversary
with the additional oracles described in Figure 26 to model the implications of Tracking and Viewing on security.

D.1 Proof of Theorem 4.2 (Balance)

Proof. First we show that CheckTag is computationally binding. Suppose not, let A be a PPT adversary who outputs
an account acc= (pk,co,eNk,c~k) and two distinct inputs (sk,tag) and (sk’,tag’) such that both satisfy the predicate
CheckTag. That is, tag=TagEval(sk), tag’ = TagEval(sk’), and pk=Com(0,sk)=Com(0,sk’). From the last relation,
we must have sk=sk’ or otherwise we can construct an adversary against the binding property of HC. It then
follows that tag=tag’ since TagEval is deterministic. We therefore have (sk,tag)=(sk’,tag’) which is a contradiction.
Next we show that CheckAmount is computationally binding. Suppose not, let A be a PPT adversary who
outputs an account acc= (pk,co,ek,ck) and two distinct inputs (ck,a) and (ck’,a) such that both satisfy the predicate
CheckAmount. That is, co=Com(a;ck)=Com(a’;ck’). This directly contradicts with the binding property of HC.
We then construct an extractor £ given any PPT adversary A which outputs (tx,o) such that Vf(tx,o)=1 with
non-negligible probability. By extractability of the SoK, there exists an efficient extraction algorithm SoK.£ 4 which
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extracts a witness wit for the statement stmt=stmt(tx) with overwhelming probability. Parse stmt and wit as
RAIRI S TAUTI
stmt:( {accR V", Ttag M2 {ac] D)

. ; S| 71
wit= ( {(Jiaxiaafvrf) }i:17 {(a’;‘rvr;'r) }i:1)
We have
pk;-j =Com(0;x;)

Vi€[[S]],{ coft =Com(af;r?)
tag, = TagEval(x;)
co] =Com(a] sr7)
al € {0,...,2°-1}

IS I
]

ie(|S[] i€(|7T]

\ﬁe[ﬂL{

This implies the following:
o Vi [|S|],CheckTag(acc}f,ski tag,)=1
o Vi€ ||S[],CheckAmount(acc ck} af) =1
e Vie[|T]],CheckAmount(acc! ,ck a7 )=1

Furthermore, since a] € {0,...,.2° =1} for all i € [|T|], |T] <2, and {0,....2°7°—-1} C M, Ziem—l]a? has the
same value when interpreted as an element in M and as an element in Z. On the other hand, for each i€ [|S]],
the value of af when interpreted as an element in Z must be greater than that when interpreted as an element
in M. Therefore 33, 1spaf = icqrpal (in M) implies 35108 > ,eqqal (in Z).
Now, for any PPT adversary A, let £€ = SoK.E4. By the analysis above, it must hold that
Pr[Balanceq, 4., (1*,1%,1%)=1] <negl (X).
O

D.2 Proof of Theorem 4.3 (Privacy)

We extend the privacy game from Figure 3 to include viewing and tracing.

Proof. We give a brief intuition of the proof.

Intuition. We prove by hybrid arguments. To give some intuition as to how we progress through the hybrids: We
start off in the real experiment for Privacy?L 4 where the challenge bit b is set to 0. This means that the challenge
spend proof given to the adversary is associated with the keys from the sets Sy and 7y (remember, two sets of
source accounts Sy and S; with |Sp| =|S1| and target accounts Ty and T with || =|T1| were specified by the
adversary). We then transition through four hybrids where, in the end the spend proof is independent of the
sets Sp and 7o, while the tags are generated corresponding to the keys in S;.

We now begin switching the target accounts from being associated to the set Ty to the set 7;. We can
do this without worrying about the spending keys because the spending keys are already delinked from the
tags and are independent from the target accounts. After a sequence of hybrids we will completely switch to
having the target accounts as being associated to set 71. Now we switch the spend proof from being simulated
to being honestly generated from (S;,7;). With this we finally end up with a hybrid that is identical to the
real experiment for Privacyslz, 4 Where the challenge bit b is set to 1. Proving the indistinguishability of the
successive hybrids results in proving indistinguishability in the theorem. We define the hybrid experiments as
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Privacyg,A(l)‘,lo‘,lﬁ)
pp<—Setup(1>‘,1°‘,1B), InitOracles()
0:= {SAKGenO,TKGenO,VKGenO,SpendO,ReceiveO, TrackO,ViewO }
(IJRS,T 1) ¢ A° (pp)
So:=81:=8, To:=T1:=T
/ Preparing honest spenders as instructed by adversary.
. &l
parse [ as {(si,{Jt,i,kfi,Zt,i}:zo) } )
i=1
for i€[|I]] do
for t€{0,1} do

S S S S . S . S S
(cky ;,5Ky 150y 4:tagy ;,acCy hinfoT, 4 4yinfoyie, ; ;) = Wallet[k; ;1[€¢,:]
. s
Rije,i]i=acc?,
. s S S
Silsi]:= (]t,iath,i vSkt,ivat,iatagt,i)
endfor
if tag, ; #tag; ; A{tagg ;,tag; ; }NSpent#( then return 0
endfor

/| Preparing honest receivers as instructed by adversary.

T T4 171
parse J as {(djv{kt,jlat,j}t:(])}jzl
for j€[|J|] do

for t€{0,1} do
(cky j,ace] ;infod g 4 1oy, ¢ ;) :=O0TAccGen(MPKk/ 1,0/ ;)
T T T T . T
Teld;] = (ckq j.a, j.acc, j,inforag s 5sinfoyiey 4 ;)
endfor
endfor
for t€{0,1} do
tx i =tx(R,S¢, Tt pt)
ot <= Spend(R, 8¢, T 1)
if Vf(tx;,00)=0 then return 0
endfor

bg < AU(tX},,Gb)

by = ((TKReveaIedUVKRevealed)ﬂ {k77 te{0,1},5 €] } :(z))
by = (Receivedﬂ {(ktT] ,ach:j ,info{ack’bvj ,info?,i’ewrb’j) :te{0,1},5€(|J]] } :@)
by 1= (Trackedﬂ {(ij ,acc;—j ,infog:ack’b,j) :te{0,1},5€[J]] } :@>

by = (Viewedﬂ {(ij ,ach,—j,info\ﬁ/riew,byj) :te{0,1},5€[|J]] } :@)

return bg Abi Aba Abs Aby

Figure 27: Privacy Experiment (with Tracking and Viewing)

follows:

Definition of main hybrid experiments.

Hyb, is identical to the privacy experiment Privacy& A

Hyb, differs from Hyb,; in the way the signature o is generated whenever the Spend algorithm is executed (both

in the spend oracle and the challenge selection). Instead of using SoKSig, the challenger computes o using the
simulator S that is guaranteed to exist by the simulatability of SoK.
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Note that in Hyb, the only information about b available to the adversary is the transaction

R~ IR S T e T . e T I71
txo= ( {acci }izl, {tago,i }‘Z.le, {accoﬂ-,|nfoTraCk’O’i,mfoVieW’O,i k)
The proof o does not give any extra information as it is computed from stmt(txp). In the following hybrids, we
gradually switch

Tl
S| T T e T |
{tago,i };_; and qaccy ;,infot,e 0.1+NfOView. 0.

i=1
to
Tl
s T T T |
{tagl,i}gl and {accl,i’mfoTrack,l,i’meView,l,i}4 L
ie

respectively.
Hyb differs from Hyb, in the way the proof is simulated. The proof is now simulated from

R . . [T
accl Ll , {tag,i }gp acc] ;. infoT ek 0.4 INOView. 0.1 s
=1 b sy sUy -1

i
instead of from

Tl
R IR IS T T T |
({acci }i:17{tag0,i}i:17 aCCO,i’meTrack,O,i7mfoView,0,i 71,;1, .

i=

Hyb, differs from Hyb; in the way the proof is simulated. The proof is now simulated from

Tl
R IR S| T e T T |
( {accl- }7;:17 {taglvi }i:p accl,i’InfoTrack,l,i7mf0View,1,7l _1’/1’

1=

instead of from

Tl
RAIRI S T . T s T |
({acci }i:p {tagl,i}izlp accq ;,infoTrack 0,4+1NfOView,0,i _17:“ :

i

Hyb; differs from Hyb, in the way the signature o is generated whenever the Spend algorithm is executed
(both in the spend oracle and the challenge selection). Instead of using the simulator S of SoK, the challenger
computes o using SoKSig. Note that this hybrid is identical to the privacy experiment Privacy, 4 with

b=1.
Proving indistinguishability of hybrids.

Hyb, =Hyb, The equivalence of Hyb, and Hyb, follows directly from the perfect simulatability of the signature
of knowledge SoK.

Hyb, ~.Hyb; To show the indistinguishability between Hyb, and Hyb; we build a series of |S|+1 sub-hybrids
with Hyb, =Hyb, 4 and Hybs =Hyb, 5. In Hyb, ,, The proof is now simulated from

RAUIRI ¢ S|
{acci }i=17 {tagl,i }izlu {tago,i “'J’%lz,g+17
T e T LT
{aCCo,iv'”fOTrack,o,i7'”fOView,0,i} 17l~‘

i=

It remains to show that Hyb,, ; ~. Hyb,,. Note that at every point in the experiment TagEval is called
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with a randomly chosen input of the form x4+ s, where s is an output of the random oracle. Therefore we
can use the related-input pseudorandomness of the tag function as defined in Definition 4.1 to argue that
tago,e and tag; ¢ are both indistinguishable from a random tag in 1, and hence indistinguishable from each
other.

Hyb, ~.Hyb, To show the indistinguishability between Hyb, and Hyb, we build a series of |T|+1 sub-hybrids
with Hybs =Hybs ; and Hyb, =Hybs 7. In Hybs ;, The proof is now simulated from

R S
{accF}E {tagni })7,

T T T ‘
{accl,ivmeTrack,l,i7mfoView,1,i}i_ u 1.
17T

T T : T
{aCCO,i’InfoTrack,O,ivmeView,O,i }i*ZJrl M

It remains to show that Hybs ,_; ~. Hybs ,. For this we define 4 sub-hybrids with Hybs ,_; = Hybs ,_; o and
Hybs ,=Hybs ;4 3. In Hybs ,_; ;, the proof is simulated from
T e T o T
(aCCLm'”fOTrack,o,iv'“fOView,o,i)-
In Hybs ;_; 5, the proof is simulated from
LT LT
(acczi7meTrack,1,i?mfoView,O,i)'
In Hybs ;_; 3, the proof is simulated from
. T . T
(accfi’meTrack,l,i?lmcoView,l,i)'

Recall that acc], and acc] , are of the form

-
aCCOT,e = (Pko,bcog:é)
T
acclT,@ = (P'ﬁ,bcofe)
Since HC is computationally hiding, clearly Hybs , ; o~.Hybs ;1 ;.
Next we argue that Hybs ,_; ; ~.Hybs ,_; 5. Note that in Hybs ,_, 4, info{ack’oyi is of the form

info%ack’o’i — PKE.Enc(tpkO,(ple,e,coIg),eko)
for some tpk, and ekg. In Hybs ,_; 5, infofTrrackJ’i is of the form
info%ack’l’i + PKE.Enc(tpk, ,(ple,e,coIg),ekl)

for some tpk; and ek;. Note that by the definition of the privacy experiment, the adversary cannot succeed if it re-
quests for the keys tsko or tsky, or queries the tracking oracle on ((pk{ ;,c0] ,),infol,,e o.5) or ((Pk{ 4:c0] ,).info ey 1.4)-
We can thus use the IK-CCA and IND-CCA security of PKE to show that Hybs ;—1.1~cHybs s 1 5.

The argument for Hybs ,_; 5~Hybs ,_; 5 is similar to that for Hybs , ; ; ~cHybs ;4 o, except that now the
adversary might be able to learn the amount hidden in cofz using the ViewO oracle. To do so, the adversary could
query the ViewO oracle on ((pk,coﬂ),c) for some pk and ¢. If the oracle outputs some a# 1, then the adversary
could learn the amount hidden in COI[. We argue that this would only happen with negligible probability.

Note that since HC is perfectly hiding, cofe contains no information about the amount that is committed.
Therefore the probability that the ViewO oracle outputs the “correct” amount is negligible. Suppose the oracle
outputs a different amount than what is committed, then the oracle would have obtained a different opening
to colTj which breaks the binding property of HC. We can therefore conclude that the ViewQO oracle outputs L
on such inputs with overwhelming probability.

Hyb, =Hyby The equivalence of Hyb, and Hyby follows directly from the perfect simulatability of the signature
of knowledge SoK.

O
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D.3 Proof of Theorem 4.4 (Non-Slanderability)

We extend the non-slanderability game from Figure 4 to include viewing and tracing.

NSlandg, 4 (1*,1%,17)

pp < Setup(1*,1%,17), InitOracles()

P SAKGen© ,Receive® ,Spend©, TKGen® ,VKGen©®
(tx",0")+ A (pp)

parse tx* as < {accz2 }Z‘l, {tag; }Li‘l, {acc;’—,info?—;ck,i,info\ﬂ/rieW,i }le ,M)
b :=Vf(tx*,0™)

by :=((tx",0™) &)

by:= ( {tag; }Li‘l NSpent# (B)

return boAby Abs

Figure 28: Non-slanderability Experiment (with Tracking and Viewing)

Proof. We prove by hybrid arguments. Consider a PPT adversary A who participates in the experiment
NSlandg, 4(1*,1%,17). Without loss of generality, we assume that A makes at most g, gr, and gs queries to the H

oracle, receive oracle, and spend oracle respectively. We define a hybrid experiment NSla nd;)’ A(l)‘,la,lﬁ ) as follows:
NSIand/Q’A(l’\,l‘)ﬁlB) differs from NSlandg, 4(1*,1%,1°) in the way the Spend© behaves. In particular, in

NSIandIQ A(1A12.17) ) after running the line tx:=tx(R,S,T,u) and stmt=stmt(tx), the challenger runs the simulator
S (which is guaranteed to exist by the simulatability property of SoK) to obtain o.
We argue that the two hybrid experiments are functionally identical, i.e., NSlandg 4(1*,1% 17) =

NSIand/Qy A(l/\,la,lﬁ ), which follows directly from the simulatability property of SoK.
Now, we show that if there exists a PPT adversary A such that

! A qa 18y L

Pr[NSlandp, 4(1*,12,1%) 1} >

for some polynomial p, then we can construct another PPT adversary B that can find a pre-impage of Tag with
non-negligible probability thus breaking the OneWay property of Tag.

The algorithm B simulates the NSIand/Q7 A(12,1217) experiment for A by generating pp < 2.Setup(1*) and
simulating the oracles in the following way:

H oracle: When the adversary queries with a master public key mpk and an ephemeral key ek as inputs for
the j-th time, B queries TagO,() and receives (s;,TagEval(z+s;)). B programs H(mpk,ek) :=s; and returns s;.
Since we assume that A only queries H at most gy times, we have that j € [gn]. o

Receive oracle: When A queries the receive oracle with an account acc = (pk,co,ek,ck) as inputs, B first
performs the integrity check honestly. Then B is able to set tag:=TagEval(z+s), as s=s; for some j € [gn] due
to how H is simulated,.

Spending oracle: B can simulate the responses to the Spend© queries honestly as in NSIand;L A(1A12.1P), since
SoK is simulatable.

All key generating oracles are simulated honestly as they do not depend on the tag.

A outputs a slander (tx*,0*). Parse tx* as

IR| - I
( {accz2 }i=1’ {tag; }Lﬂp {(acciT,lnfol-) }¢=1’fu)
Since NSIand;lA(lk,la,lﬁ) =1, the following conditions hold:

o SoKVf(stmt*,0*tx*)=1 and
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e Ttag,. € ( {tagl} 1ﬂSpent5£@)

where stmt* =stmt(tx*).
B exploits the PPT extractor & of SoK to cxtract a witness wit™ for the statement stmt*.

Parse wit* as ({ ]Z,I,, }IZSIF{ a; T }ITI)

Since tag;. € Spent, it must be the case that in a previous receive oracle query on some account acc’ and
help information info’, the algorithm computes the tag tag’ where tag;. = tag’. Note that tag’ was set as
tag’ = TagEval(z+s*) where s*=H(mpk,ek’) for some ek’. B then simply outputs z;~ as a pre-image of Tag.

Due to the extractability property of SoK, R(stmt* wit*) =1 with non-negligible probability. So z;« is a
pre-image of Tag with non-negligible probability, which violates the security of Tag from Definition 4.1. O

E Security Proofs for Argument of Knowledge Construction

We present the formal security proofs of the argument of knowledge construction in Section 5.

E.1 Proof of Theorem 5.1 (Zero-Knowledge)

Proof. By inspection, V is public-coin and II consists of 8 rounds. II is also trivially perfectly complete. Next,
we show that II is perfect special honest-verifier zero-knowledge by _constructing an efficient simulator S.
Let stmt= (R CR,T CT) and the verifier public coin (h,p,g’, h ,u,0,w,x,y,%z) be provided by A. Recall that

S computes Y ,and g, as in II. That is,

Y:Roéou

gu=((GIH|TIIY)"oplg")

S then samples A, T <G, 7,r <—sZ,, and o7 <sZ;". It computes t=([,7). It then computes S and T as follows:

S= (h—rAgg—fHB—@”loF)—l/w
2 |7'\

le(Gé(y,z)ftH ’TCZ Y )71/1

Finally, S outputs (A7S7T1,T2,T,T,T,ﬁt).
Since all elements produced by S and those produced by II are either independently randomly distributed
or fully determined by the verification equations, they are identically distributed. O

E.2 Proof of Theorem 5.2 (Soundness)

To prove that II is sound, or more precisely has extended-witness emulation, we first state some useful lemmas
(Lemma 1 and Lemma 2). For that we establish the following notation.

For i € {L,R}, let 7; = (7i,1,%.2,7i,3, Vids-, Vi9) € Zy' be variable vectors of the same format as €;, i.e.,
. N R| RIS - Tl o o S ~ N
Vi1 Vi,2:7i,3 €L, %‘,4€Z11 ; %‘,5€Z|q =l Y46 GZEI : %’,7,%‘,8%,9621 |, and i =vec(l';) and 7; ¢ =vec(4;)
for some matrices I'; EZL‘S‘X‘R| and A; EZLﬂXﬁ .

We define a system of constraints CS:CS[éT,u,U] parameterized by as,u,v as follows:
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CS(?L,ﬁR) =0<=

Lemma 1. Fiz ¢>2%, éTEZLTI

values of y we have EQ(¥,7r)=0, then CS(¥1,7r)=0.

_TIRISHAIT]

(V57 1.6)°(TR5:7 R6) = 0IRISHAITI

YR,9 :72’*91

A28 —aT

r 1" _7I9]

L1 =— (015 u-y L 7+u* FRyo)
L2 :_@‘S'ﬁL,g—FuﬁL@
VL4 — 5ISIr,

(T 5L7) —1ITIA, 36

(YR R.6) —(FL.571,6)

YL,3 =1

N 2NN N s NN S N NI

, UV E€ZLy. Suppose there exists Y, YrE€Zy" such that, for |R||S|+B|T| different

Proof. Since EQ(7,7r) =0 for |R||S| + B|T| different values of y, then the following polynomials (in y) of
degree at most |R||S|4+5|T|—1 each has [R||S|+5|T| different roots and therefore must be all equal to the zero

polynomial. These polynomials are:

(Frs7Le)o(TrsTRe), 5 HISHAIT]

(VL0907 R9)— 11!

TITIAL§/37<TIS\’7L,7 —

(Y£572.6)—(VR5TR6)

=0
_TIRISIHAIT] GIRISI+AITI)

By comparing coefficients, we conclude that CS(7,,7r)=0
The following is obtained by observing the system CS.
Lemma 2. If CS(7.,7r)=0, then:

e Each row of T'r, is a unit vector of length |R|.

e The i-row of Ay is the length-B binary representation of aZT,

o (181 3L7) = seqryal -

Using the above lemmas, we now prove that II has witness-extended emulation.

Proof. (Theorem 5.2) Assuming the discrete logarithm assumption holds over G, by Theorem B.6, the interactive
discrete logarithm assumption (as defined in Definition B.5) also holds over G. The following is a straightforward

corollary of Theorem B.6.

Corollary 1. If there exists a PPT adversary A which does the following:
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1. On input (G,q,G,H), choose vector of group elements (T||X) and an integer w.

2. Receive a uniformly random vector of group elements (h||p||g’||h) of appropriate dimensions.

3. Produce a non-zero integer vector (r||@||b) such that I:h’“giﬁf’, where g, = ((G||H||T|[Y)“op|g").
then there exists a PPT algorithm solving the discrete logarithm problem over G.

Proof. Suppose A exists, we construct an adversary B against the interactive discrete logarithm assumption. B
receives (G,q,G) and samples a random group element H. It passes (G,q,G,H) to A, and receives from the latter
a vector of group elements (7||Y) and an integer w. B then sends to its challenger the vector (G| H|/T|[Y), and
receives from the latter a uniformly random vector of group elements (h(|p[|g’ |h). B simply forwards (h||p|g’[|h)
to A, and receives a non-zero integer vector (r||a||b) such that I=h"ga hP.

Let a=(aj,a2) be of the appropriate dimensions. We can thus write

I=(GI|HITY)"* (h]p || B) 141

Since (r||@||b) is non-zero, (w«ﬁlﬂrHéHB) is a valid solution to the interactive discrete logarithm problem instance.
B therefore outputs (w-a||r||a||b). O

With the above corollary, we can proceed to construct an extractor. Let pp ¢ Setup(1*,£) and (stmt,wit) <
As(pp). We construct an extractor £ which, on input pp and stmt, outputs a transcript and, if the transcript is accept-
ing, a witness wit’ to the statement stmt. It is trivial for £ to produce a transcript which is indistinguishable to that
produced by (P*(pp,stmt,wit),V(pp,stmt)) for any prover P* as £ is given an oracle O = (P*(pp,stmt,wit),V(pp,stmt)).
We thus focus on describing how £ can extract a witness wit’ in the case where the transcript is accepting.

€ runs P* on 1 uniformly random chosen (u,v), 2 different values of w, |R||S|+ 8|7 different values of y, 9
different values of z, 3 different values of . This results in 54(|R||S|+3|T]) transcripts. Fix a particular choice
of (w,y,z), € obtains three transcripts of the form (A4,5,71,T5,7%,, 1 2> Tapste;) for i=1,2,3. Below, we show
how the extractor can extract the discrete logarithm representations of A, S, 71, and T5.

Extracting A Choose k;—; 2 € Z, such that Zi:um =1and ), , ,kix; =0. This leads to the extraction of
A by Equation (3) as

2 . =a . -

A= hzle’{irmi E%q‘:“’“' - 7ahz?:1’”"i‘0° Loy, B
& e
=h g, ;h "

Note that 7’4, €}, and €’ depend on w. To obtain a discrete logarithm representation which is independent
of w, £ repeats the above for the other choice of w, which we denote by w’. With this additional transcript

YN

the extractor can extract A as hTA gox hCR Note that we now have two (possibly different) representations of
A. Write €}, =(¢€}, || ») and €7 = (E’L’ 1II€7 ) with appropriate dimensions. We have

hrA E'LCUIL Eé'R hrA el Eé'}’%

8w

I= W G H Ty i

. (r)H )CL_CL th_CR

We can assume 1/, =7/, ¢}, = ¢/ and €/, = ¢’. Suppose not, since (p||g’||/h) is chosen uniformly after fixing
(G| H||IT|IY), we would have an efficient algorithm against interactive discrete logarithm assumption. Note that
w#w'. Let €7, =(¢'||n'[|¢']|€'). We can obtain the relations

I=(G||H|T|[Y)®=*)<a
I=(G|H|T|Y)%
I=GH" V'Y (24)
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Extracting S Similar to the extraction of A, £ can extract S from Equation (3) by sampling some k;=1 2 with
Yim1ofi=0and 37, oka;=1. This leads to

2 TN Fo—1 =
S:hz‘?:lﬁirzi g%i:ﬂiil% hzlemw LoPa,
— h’”./s‘ gi:L BglR

Note that for fixed w, the above expressions of A and S hold for all choices of (z,y,z), for otherwise we would
obtain a non-trivial discrete logarithm representation base (h|g.||/h), which violates the discrete logarithm
assumption due to Corollary 1.

Putting the expressions of A and S back into Equation (3), it follows that for all challenges (z,y,z)

1 =¢)+0°to(@—p)+8) -z
7! =0o(Cpt8hx)+i

or otherwise we would have obtained a non-trivial representation of the identity element base (h||g,|/h), and
thus violated the discrete logarithm assumption due to Corollary 1.

Extracting 77 and 7> To extract T4, the extractor chooses k=123 ¢ Z, with Z?zllﬂi:(), Zlemxizl and
% ka2 =0. Together with Equation (4) we have
T :GZ?=1Hitli HZ?:I’%TQ%'
= G"H™

Similarly, by choosing rj_ 5 3 ¢ Zq with Zlem; =0, Zf’:lmgxi =0and Zlemgxf =1 and Equation (4) we have

T2 = GZ?=1 ”;t% HZ?:l"irliTIv:
— Gl

Note that the above expressions of T and 15 hold for all challenge x, or otherwise we would have obtained a
non-trivial discrete logarithm representation of the identity element base (G||H) which directly violates the discrete
logarithm assumption.

Extracting C7. Fix a certain choice of (y,2). By putting the representations of 77 and T, back to Equation (4),
il T
the extractor can find some (a,r) with G*H"=C¥- . Repeating this for |7 different y, and using the technique
similar to that for extracting A, S, T}, and Ty, & can extract (a7 7") such that coZ—:G“iT/H 7 for all i€ 71
/
).
Note that the above expressions of coiT hold for all challenges (z,y,z), for otherwise we would obtain a
non-trivial discrete logarithm representation base (G||H), which directly violates the discrete logarithm assumption.

In the following, we write a7 = (alT/||...||a|7;-|/) and ?T/::(7“¥’/||...Hr‘7;|

Outputing Witness Write €7, as
N “ ol gl
e = (&l [/ 1€ |vec(E")|vec(B") |2 || 7| X).
Together with the vectors a” and 7 extracted above, £ outputs the witness

. g <!l ./ 7! .7
wit' = (E’,x’,as 7o B.al 77 )
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Showing Well-Formedness It remains to show that €/, (and €;) are well-formed, and hence wit’ is a valid

witness to stmt. Putting the expression of éT back to Equation (4), we have
t,=22-@" g +o+tz+tha?

for all challenges (x,y,2), or we would have a discrete logarithm relation between G and H. Let

té::22~<§7—/,§m>+5
I'(X):=cp+a+s7-X
H(X):=Bo(h 5% X) i
t(X) = {'(X)r' (X))

We have that for each choice of (y,z) the following quadratic polynomial

2
> HX—t(X)
i=0

has at least three distinct roots and therefore has to be the zero polynomial. In particular, for all (y,z) it holds

that t{,=t'(0). Examining both sides of the equation, we have:
to=="-@"" g+

=211 5154 22. @7 3Th+
ZS.<T\S|+1’g\S\+1>+

The above implies that

z: <T|S‘ ’y\8|>+22 : <§7—/7y\7_|> +
B (TISTH il

Since the above holds for 9 different values of z, the system of equations EQ[ﬁT/,u,v,y](E'L,é’R) as defined

in Figure 12 is satisfied for |R||S|+ 3|7 different values of y. By Lemma 1, we have CS[a7 ,u,v](
Then from the definition of CS[ST/,U,U], and by Lemma 2, the following conditions must hold:
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e Each row of E' is a unit vector of length |R|.
e The /¢-th row of B’ is the length-3 binary representation of a[l.
i Zee[|5|]a2§/=zzew|]a;zﬂ'
Furthermore, let vec(E')=(€,....€|5)), we can write
5/: < |S| u-a +u2 </o— 1>

= (518 % u- TS
=1

=vlIE' = Y "ol

Le[ls])

<= 3
Il

By Equation (24), we have
I=GEH"TV'Y¥
— @ wa x0T - @K e F ) H tag)

Le[|S]]
(ﬁoé%‘)zfeusuvz_l'é@
o HG (a )uvfl HG( ;) 2,01
ee[|S|] Le(|S|)
H @) H H™ H tag
Le[|S]] Le[|S]] Le[|S]]
IT @) IT o
Le[|S]] Le[|S]]
_ H (H—a:g’ﬁég)q;“l
Le[|S]]
H (Gfaf/Hfrf’é%)uv
Le[|S]]
[T (@ tag)™"
Le[|S]]

The last equality can be viewed as an evaluation of a degree-(|S|+1) polynomial (in the exponent) at a random
point (u,v) to zero. By the Schwartz—Zippel lemma, the probability that this happens when the polynomial is
non-zero is bounded by ikl
always zero. That is, for all £€[|S]], the following equations hold:

which is negligible given ¢>2*. We can therefore assume that the polynomial is

Ré[, — Hm}
¢y - o't
tag, = GY/%
To conclude, wit’ extracted by & is indeed a valid witness corresponding to stmt. O

F Detailed Instantiation

We describe the details of the instantiation mentioned in Section 4.4
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F.1 Tag function
We instantiate the tagging scheme Tag=(TagSetup, TagEval) as (G,q,G) < TagSetup(1*) and TagEval(z):=G=

Theorem F.1. If the generalized discrete logarithm assumption holds over G=(G,q,G), then the tagging scheme
Tag instantiated as above is a secure tagging scheme according to Definition 4.1.

Proof. We prove related-input one-wayness and related-input pseudorandomness separately.

Related-input one-wayness Suppose Tag is not related-input one-way, let A be a PPT adversary for which
Pr[OneWay 4(1*)=1] > negl (A),

i.e. A can guess a preimage for TagEval(x+s*). Without loss of generality, we assume .4 makes at most [ —1
queries to the oracle TagQ,. We construct an adversary B against (-GDL from Definition B.2 with input
(G,q,G,...7G’JL) as follows:

e Sample 5%,51,...,51—1 < Zq.

e Denote symbolically the polynomial p(X):=(X +s*)Hi;} (X +s;) :ZézlaiX 3

-1

o Set T:=GPX) =Glets Tz (wts:)

(a4 (i)

e Set pp=(G,q,T") and tag*:Tﬁ(:G @+s™)

e Run A on (pp,s*,tag*). Note that since G,G”‘,...£¥”UZ are not given to A, pp generated this way has the
same distribution as those generated using Setup.

@+ (a+s5)

1
e On the j-th query to TagQ, return T (=G (=ts5) ).
e Eventually, A returns z’. B outputs z=1'—s*.

With non-negligible probability, A is successful in breaking the related-input one-wayness of Tag, i.e., 2’ =xz+s*.
Then, with the same non-negligible probability, B recovers z correctly and solve the -GDL instance, violating
the generalized discrete logarithm assumption.

Related-input pseudorandomness Suppose Tag is not related-input pseudorandom, let A be a PPT adversary
for which

Pr[PR%, (1Y) =1]
—Pr[PRYL (1) =1] ‘ > negl (\)

holds, i.e. it can distinguish Tag(z+s*) from a random value y; +sG given s*.
We construct an adversary B against SDDHI from Definition B.3, which uses A as follows:
e On input (G,q,G,G*) sample s*+G and output s* to get a challenge .
e Set pp=(G,q,G) and run A on (pp,s*,yp).

e Upon receiving a query to TagQ,, from A, sample s+ G and return (s,0,(s)).

e Eventually, A outputs ¥ which is also output by B.
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Note that if B is participating in SDDHI%, then it simulates the environment of PR?4 perfectly. Likewise, if B
is participating in SDDHI;;7 then it simulates the environment of PR}L‘ perfectly. Furthermore, with overwhelming
probability, we have s#s*. Therefore, for each b€ {0,1}, the probability that B outputs 1 in SDDHI% is negligibly
close to that of A outputting 1 in PR}4. Hence,

‘Pr[SDDHIOB((G,q,G):l]
—Pr[SDDHI(G,q,G) =1] ’ > negl (\)

which violates the SDDHI assumption. O

F.2 Homomorphic Commitments

The Pedersen commitment [50] can commit to a vector of messages m= (my,...,m,) € Z; by picking group elements
G1,...G +G and computing Comeys(m;r):=H" [, GI*. The Pedersen commitment is naturally homomorphic.
If the DL assumption holds in G, this commitment scheme is perfectly hiding and computationally binding.

F.3 Labeled Encryption

The Elliptic Curve Integrated Encryption Scheme (ECIES) [56] is a practical hybrid encryption scheme on
elliptic curves. We provide below an abstract description of a labeled variant over generic groups. Below, let
H:{0,1}*—{0,1}** be a hash function modeled as a random oracle, and let SKE and MAC be a symmetric key
encryption scheme and a message authentication code scheme respectively both with key space {0,1}*.

Setup(l’\): On input the security parameter 1%, it outputs a public parameter pp consisting of a description of
a cyclic group G of order ¢ together with a group elements G€G.

KGen(pp): On input the public parameter pp, the algorithm samples = <+ Z, and computes H :=G®. H is the
public key pk and z is the secret key sk.

Enc(pk,7,m): On input the public key pk, a label 7, and a message m € G, the algorithm samples r < Z, and
computes R:=G", P:= H", (skskg,skmac) := H(P,7), e+ SKE.Enc(skske,m), and o - MAC.Sig(skmac,e). The
ciphertext is then c:=(R,e,0).
Dec(sk,7,¢): On input the secret key sk, a label 7, and a ciphertext ¢, the algorithm computes P := R* and
(skske,skmac):= H(P,7). It checks if MAC.Vf(skmac,e,0)=1. If so, it outputs m:=SKE.Dec(skskg,e). Otherwise,
it outputs L.

If the GapDH assumption (Definition B.7) holds in G, SKE is IND-CPA and MAC is a strongly unforgeable
MAC, then it is well-known that ECIES is IND-CCA in the random oracle model [22, 56]; this can easily be
extended to IK-CCA.

G Adaption to Monero

Our RingCT scheme Omniring presented in the body of the paper is incompatible with Monero due to the
difference in the formats of tags. In Omniring, the tag for an account with public key pk = H? is given by
tag:G’fl. On the other hand, the corresponding tag in Monero would be tag=H(pk)” for some hash function
H. If Monero were to adopt Omniring while keeping the current set of unspent transaction outputs, a spender
who has already spent from an account with tag=H(pk)* would be able to spend from that account again using
a transaction with tag:Gx_l, which would wrongly not be rejected as a double-spend.

To resolve this issue and make Omniring usable in Monero, we describe slight changes to the instantiations
of the tagging scheme and the argument system, which ensure that tags have the same format as those currently
used in Monero.
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G.1 Tagging Scheme

The tagging scheme Tag, = (TagSetup,,, TagEval,) in Monero is as follows. TagSetup,, chooses a hash function
H:G— G (modeled as a random oracle) which maps group elements to group elements, and a group element
H which is shared with the commitment scheme. On input « € Z,, TagEval,, outputs H(H?)®.

We show that Tag satisfies (related-input) one-waynesss and pseudorandomness.

Theorem G.1. If the discrete logarithm assumption holds over G = (G,q,G), then the tagging scheme Tag,,
instantiated as in Monero is a secure tagging scheme according to Definition 4.1 in ROM.

Proof. We prove related-input one-wayness and related-input pseudorandomness separately.

Related-input one-wayness Suppose Tag,, is not related-input one-way, let A be a PPT adversary for which
Pr[OneWay 4(1*)=1] > negl (A),

i.e. A can guess a preimage for TagEvaly(z+s*). Without loss of generality, we assume .4 makes at most ¢
queries to the oracle TagQ, and ¢, queries to the random oracle. We construct an adversary B against DL from
Definition B.1 with input (G,q,G,G*) as follows:

e Sample 5*,a* < Z,.

Compute G**" =G*-G*" and set H(G*t*")=G*".

Compute the challenge tag tag* =G+ " =(G)e" .G ",

Set pp=(G,q,G) and run A on (pp,s*tag*).

On the j-th query to TagO,, sample s;,a; ¢+ Z, and set H(G*)=G%. Then return (s;,G@+:)).

e On querying the random oracle with input X, check if X =G*** for some s; where H(G*15/) was set during
the j-th query to the TagO,. If so, return the set value. If not, sample a<-Z, and return G* as the reply.

e Eventually, A returns /. B outputs x=12"—s*.

With non-negligible probability, A is successful in breaking the related-input one-wayness of Tag,, i.e.,
2’ =x+s*. Then, with the same non-negligible probability, B recovers x correctly and solve the DL instance,
violating the discrete logarithm assumption.

Related-input pseudorandomness Suppose Tag, is not related-input pseudorandom, let A be a
PPT adversary for which

Pr[PRY(1%)=1]
—Pr[PRL (1Y) =1] ‘ >negl (\)

holds, i.e. it can distinguish Tag, (v+5*) from a random value y; < sG given s*.
We construct an adversary B against DDH from Definition B.4, which uses A as follows:

e On input (G,q,G,G*,GY,Z), sample s* +G and set H(G"t*")=H(G*-G*")=GY and tag* =Z-(GY)*".
e Set pp=(G,q,G) and run A on (pp,s*,tag*).
e On the j-th query to TagQ,, sample s;,a; < Z, and set H(G"T%/)=G% . Then return (Sj,G(’”‘*““j)'“f).

e On querying the random oracle with input X, check if X =G**% for some s; where H(G**5/) was set during
the j-th query to the TagO,. If so, return the set value. If not, sample a<-Z, and return G* as the reply.
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e Eventually, A outputs o’ which is also output by B.

Note that if B is participating in DDHOB, then it simulates the environment of PR& perfectly. Likewise, if B is
participating in DDHp, then it simulates the environment of PR perfectly. Therefore, for each b€ {0,1}, the
probability that B outputs 1 in DDH% equals the probability of4 outputting 1 in PRZ\. Hence,

’Pr[DDHOB(G,q,G):l]
—Pr[DDH(G,q,G)=1] ) > negl (\)

which violates the DDH assumption. O

G.2 Language for Spend Proofs

With the new instantiation of the tagging scheme, the language that needs to be proven by spenders changes
slightly. Given a vector of public keys R, we define a new vector H of hashes of public keys as

H:= (H(pk?),...,H(pk%)).

The corresponding language is changed to the following;:

£HJ [G7Q7G7H]
stmt= (ﬁ,én,ﬁ,T,éT) :
Jwit=(Ex,a%, 75 B,a’ ¥7) s.t.
€; is a unit vector of length |R|
R& = f@i

Vi€ [|S[],4 a@: _ qas 7S
— Ci=G% lf{ i
He: =tag}’
vie [Tl b; is the binary rep. of a] of length j3

coiT:G“fTHTiT
S_ T
Diellsn = Lief%

G.3 Argument System

As in Section 5 we describe a protocol II,,, with linear communication for the updated language Ly,. A protocol
with logarithmic communication can be obtained using the same squashing technique presented in Section 5. The
notation used in the protocol below is defined above (for H), and in Section 4.4, Figures 29 to 31 and Table 1.

Setup,,, (1*,Lyy):
Recall that L, is specified by a tuple (G,q,G,H). Output crs=(G,q,G,H).

(Pry(crs,stmt,wit),Vy, (crs,stmt)):
2

1. u,v 4—sZq
2. h+sG, p +sG2HRIHSI g/« Gm~IRI=ISI=2 | sG™

Pry Vi :u,v,h,f),g’,ﬁ
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Py Vg
.Y ::ﬁoé%“oﬁo“2
2.18|

2. Ti=To 7

3. For weZy, denote
go:=((G|H|[Y|T)*"op|g") (25)

Pry:
1. ra <52,
2. A:i=h"4g5rher
Note that g% =g for all w,uw' €Z, since [=GEHTY®T* . Thus A=h"1g< h°" for all wEZ,.

Pry— VA
Vi :W <—sZg
Pry Vg w
Pry:

1. rg <—$Zq7 §L7§R <—$Z;n
2. S:=hrsgschn,

Pry—Vy: S
Vi 1,2 < sZq
Py Vi 9,2
Py

1. Define the following polynomials (in X):

2. 11,7 (—$Zq
3. Ty Z:gtl h™, T, Z:gtth2

'Pm—>VmZT1,T2
Vi1 T =324
Py Vi
Py

L 7=22-(F7 gl +matmna?

2. ri=ratrsx
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3. (7,?,t)::(l(:v),r(x),t(x))
Py — Vi :T,T,T,?,t
Vi Check if the following relations hold:
t=(1,7) (26)
hrglh? T = ASTgS kP 27)

ctar=cocs eyt (28)

Theorem G.2. The verifier Vy, is public-coin. Il is constant-round, perfectly complete, and perfect special
honest-verifier zero-knowledge.

Theorem G.3. Assuming the discrete logarithm assumption holds over G, Il has computational witness-extended
emulation.

The proofs of the above theorems are almost identical to those of Theorems 5.1 and 5.2 and are omitted.
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Notation

Description

Vector of compressed public keys and coins with randomness v €Z,

Y=Y(u) :::EA{OG%OI?IO”2

T=T(uw):=T° T Scaled tag with randomness u,v €Z,

E=¢E(uw):= —(ﬁ“ﬂ u-a®) Compressed secrets with randomness u,v € Z,.

n=n(uw):=— (T8 X 4+u-¥°) Note that (£,n,6,X°~!) satisfies I[=GSH"YeT*
é=é(v):=1v°E

CL,CR Encoding of witness by honest prover dependent on w and v,

see Figure 9.

m=2+|R|+|R||S|+8|T|+3|S|

Length of €7, and €g

(607'--7v87ﬁ5) = (\70,...,V8,ﬁ5)(u,1},y)

Constraint vectors parameterized by the randomness u,v,y € Zg,
see Figure 10.

C ) ﬁ7 l/’
®)(u,0,y,2)

)

Compressed constraint vectors parameterized by the randomness
U,Y,2 € Ly, see Figure 10 and Figure 11.

System of equations parameterized by the amounts a’ and

randomness u,v,y € Z,, see Figure 12

Table 1: Notation for signatures of knowledge construction (for Monero).

(] e [Ix

T vee(B) || vee(B) a] %)

PHRISH % vec(B)— TIRIS! | vec(B)— 1771 || %1 )

Figure 29: Honest encoding of witness (for Monero).

GL = (6

ER = ( 6

ol T

Vi

2

\&

va| |1 -
vi| 7| 1
Ve

V7

Vs

_ﬁ5 L

_g\RI

g RISHAITI . .
ylS! .
. 7 Tl2s
7Sl 1IRI . .
. w- oSl
. w- oS!
718l 7R . .
. 1T w28 _TISI
IRISIHAITI
sl |

Figure 30: Definitions of constraint vectors (for Monero). (Dots mean zeros.)
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1 7 8
Hzgzlvl C:zgzzﬁz ﬁ:Ezvz
1=0 =2 =2
v =2"Vg Wi=2"-Us

—~ . po—1_/—~ = 7A._po—1
a:=0"""o(w—7) B:=0°""op

0:= (T8, 22 (1181, g1 + (i) + (1™ )

Figure 31: Definitions of constraint vectors (for Monero)
(cont.).
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by
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&
Il
o

<7L,7ROVO> =0 (29)
(YL, YrOV1) = (11513151 (30)
(Vr,V2) =@’y (31)
(YL:V3) = (111,311 (32)
(Yr,Va) =0 (33)
(YL:Vs5)+(Yr,Us) =0 (34)
(Vr,Ve) =0 (35)
(Yr,v7) =0 (36)
(FL—Tr—1"s) =0 (37)

Figure 32: A system of equations guaranteeing the
integrity of the encoding of witness (for Monero).
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