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Abstract. Information ratio of an access structure is an important mea-
sure for efficiency of the best secret sharing scheme realizing it. The most
common notion of secret sharing security is that of total (perfect) real-
ization. Two well-known relaxations are the notions of statistical and
quasi-total secret sharing. In this paper, we study the relation between
different security notions. The most non-trivial and technical result of
this paper is that quasi-total and total information ratios coincide for lin-
ear schemes. The proof is non-intuitive and uses tools from linear algebra
in companion with a new relaxed security notion, called partial realiza-
tion. We provide some intuition that why proving coincidence/separation
between total and quasi-total information ratios for the class of abelian
schemes is probably much more challenging.
We also present some additional results which shed further light on our
understanding of different security notions. In particular, one of our re-
sults, in combination with a recent result, shows that statistical and total
security notions coincide for the class of group-homomorphic schemes, or
maybe even a larger class.

Keywords: Secret sharing · Access structure · Information ratio · Linear
Algebra · Information theory.

1 Introduction

A secret sharing scheme [9, 42] is a powerful cryptographic tool that allows
a dealer to share a secret among a set of participants such that only certain
qualified subsets of participants are able to reconstruct the secret. The secret
must remain information theoretically hidden from the remaining subsets, called
unqualified. The collection of all qualified subsets is called an access structure,
which is supposed to be monotone, i.e., closed under the superset operation.
The original definition, known as threshold secret sharing, only dealt with access
structures that include all subsets of size larger than a certain threshold and the
general notion was later introduced in [26]. Another generalization is that of an
access function [21]. This concept has been matured by building on a sequence
of important works [10,32,43,46]. An access function is a monotone real function
that specifies the percentage of the information on the secret that is obtained
by each subset of participants. An access structure corresponds to a total access
function which allows all-or-nothing recovery of the secret.
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The information ratio [11,13,36] of a participant in a secret sharing scheme
is defined as the ratio of the size of his share and the size of the secret. The most
common interpretation of size of a random variable is its Shannon entropy. The
information ratio of a secret sharing scheme is the maximum (also sometimes
defined as the average) of all participants’ information ratios. The information
ratio of an access structure is defined as the infimum of the information ratios
of all secret sharing schemes that realize it. Computation of information ratio
of access structures is a challengingly difficult problem even when restricted
to certain classes of schemes. In this paper, we are mainly interested in the
information ratio for the class of linear and abelian schemes, and called the
corresponding measure the linear (resp, abelian) information ratio. Some other
classes will also show up in the paper.

Relaxed security notions. Most of the literature on secret sharing deals with
total (perfect) realization of access structures by secret sharing schemes. In this
notion, the security is considered for a single scheme, all the qualified sets re-
cover the whole secret, and the secret remains information theoretically hidden
from the unqualified sets. These requirements can be relaxed by loosening the
reconstruction and privacy requirements. The qualified subsets may miss some
information about the secret or may recover it with some error probability. The
unqualified subsets are also allowed to gain some information on the secret. By
considering a family of schemes, the information leak and incomplete reconstruc-
tion are required to be negligible. Two different approaches have been proposed
in the literature. The first approach is a standard cryptographic relaxation, called
statistical secret sharing (see [3] for probably the oldest modern definition and [8]
for an old construction). The second one has been introduced in [30, 31], under
the name of quasi-perfect secret sharing.

Our main motivation and main result. It is an open problem if the infor-
mation ratio of an access structure is invariant with respect to different security
notions. We look for subclasses of schemes for which this happens. It is an
easy exercise to see that the statistical and total securities coincide for linear
schemes [3]. But the situation for quasi-total security is unclear. We show that
quasi-total and total information ratios are equal for the class of linear schemes.
Additionally, we provide some intuition that why it might be more difficult to
say something about any larger class, even the class of abelian schemes. On the
other hand, as we will see, statistical security implies total security, for some
non-trivial class of schemes which includes group-homomorphic1 secret sharing
schemes, and in particular, the abelian ones.

Our result on the equality of quasi-total and total linear information ratios
is the most technical result of our paper, which is discussed is Section 1.1. Ad-
ditional contributions will be mentioned in Section 1.2 and Section 1.3.

1 A secret sharing scheme is called homomorphic if the product of the shares of two
secrets produce a share for the product of the secrets. A homomorphic scheme is
called group-homomorphic if the secret and share spaces are all groups.
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1.1 Technicality of proving equality of total and quasi-total linear
information ratios

We take the following steps for proving that the total and quasi-total information
ratios coincide for the class of linear schemes.

Introducing the notion of partial secret sharing. We introduce an ex-
tremely relaxed security notion, called partial security, and a slightly more liberal
one called semi-partial. These are the missing ingredients for proving coincidence
of total and quasi-total information ratios for the class of linear schemes. We say
that a secret sharing scheme partially realizes an access structure if the amount
of information gained by any qualified set is strictly greater than that of any
unqualified one. In other words, the qualified sets have a positive advantage δ
over the unqualified ones with regard to the secret recovery. In the semi-partial
realization, we additionally require that the secret remain perfectly hidden from
the unqualified sets. See

Introducing the notion of partial information ratio. The total informa-
tion ratio of a secret sharing scheme is defined on its own, i.e., regardless of
what access structure it realizes, if any. However, we measure the efficiency of a
(semi-) partial scheme, which we refer to as the partial information ratio, with
respect to the access structure that it realizes. We define the partial information
ratio as a scaled version of the total information ratio where the scale factor is
1{δ, where δ is the advantage mentioned above. The intuition behind this choice
stems from decomposition constructions [24,45,46,48].

Equality of partial and total linear information ratios. We prove that the
(semi-) partial information ratio of an access structure is the same as its total
information ratio for the class of all linear secret sharing schemes. The proof is
somewhat technical and is handled via two linear algebraic lemmas. Our first
lemma (Lemma 4.2) promises the existence of some linear maps that work for
any subspace over a given finite field. The lemma does not hold if the space is
not defined over a field that is not finite and its correctness is not trivial on finite
fields a priori. On the other hand, our second lemma (Lemma 4.3) trivially holds
for non-finite fields, but it is also true for finite fields that are sufficiently large.

Relation between partial, quasi-total and total information ratios. We
prove that if the partial and total information ratios are equal for some class of
schemes, the same holds true for the quasi-total and total information ratios. It
remains open if the reverse holds true as well. Our main result on the equality
of quasi-total and total linear information ratios then follows by the previous
observation.

Challenges in extending our result. It remains open if the coincidence of
partial and total information ratios holds for any class which is larger than the
linear one. If they turn out to match for some class, so do the total and quasi-
total information ratios. However, the converse might not necessarily hold true.
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As we will discuss in next subsection, we even expect that the partial and total
information ratios not to match for the class of abelian schemes. However, the
coincidence/separation between total and quasi-total abelian information ratios
is unclear.

1.2 More on partial information ratio

We continue to explore the relation between partial and total information ratios
for the class of abelian schemes and with respect to the Shannon lower bound
(i.e., by merely using the so-called Shannon-type information inequalities). We
find both of the following observations non-trivial and somewhat surprising.

Abelian class. Even though we prove that the partial and total security notions
coincide with respect to the linear upper-bound and the Shannon lower-bound
(to be discussed next), it remains open if the two notions coincide for general
schemes. Recently, an upper-bound on the abelian information ratio of the access
structure F `N—the union of access structures induced by Fano and non-Fano
matroids [4, 37]— has been computed in [28] (maxď 7{6 and averageď 41{36).
Moreover, it has been conjectured that a non-trivial lower-bound (i.e., strictly
greater than one) exists. We show that the partial abelian information ratio of
this access structure is one. Therefore, we would not be surprised if total and
partial information ratios turn out to become separate for abelian schemes. We
remark that even if this turns out to be the case, it neither indicates general
separation between partial and total information ratios nor abelian separation
between quasi-total and total information ratios. See Section 6 for further details.

Shannon lower bound. It is easy to show that the lower-bound achieved for
statistical and quasi-total information ratios, by merely considering Shannon-
type inequalities, is the same as that of total information ratio [30]. We prove
that the same thing happens for partial information ratio. Our proof is non-trivial
and non-intuitive, since it is not a priori clear that the lower bound region (i.e.,
the polymatroidal set) is a polytope for the partial security, let alone being equal
to that of the total security which is a polytope. See Section 7 for details.

It remains open if our result can be strengthened, e.g., by allowing certain
additional non-Shannon type information inequalities [49], e.g., along the lines
of [6, 38]). A corollary of our result is that Csirmaz sub-linear lower bound [17]
also applies to partial security, which is not clear at a first glance.

1.3 Additional results

Some additional results mainly about various security notions are provided. The
proofs are less technical as they mainly follow from standard techniques and
known results in the literature.
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On homomorphic statistical secret sharing. It has been observed in [3]
that statistical and total security notions coincide for linear schemes. We show
that statistical security notion implies total security for a sub-class of group-
characterizable [15] schemes in which the secret group is normal in the main
group. The proof is fairly easy and follows by properties of finite groups. What
makes our result interesting is the following. In a recent work [29], it has been
proved that group-homomorphic secret sharing schemes (those which are ho-
momorphic and whose secret and share spaces are groups) are equivalent to
group-characterizable schemes with normal subgroups. Combining both results,
we conclude that statistical and total information ratios coincide for the class
of group-homomorphic secret sharing schemes (or even maybe a larger class),
which is non-trivial. It remains open if such a coincidence holds for homomor-
phic schemes whose secret and shares are weaker algebraic structures (such as
monoid, magma, semi-group, etc). See Section 8.2 for details.

Relation between statistical and quasi-total notions. We prove that sta-
tistical security implies quasi-total security, using well-known results form in-
formation theory such as Fano’s inequality and a more recent result [40], in a
straightforward way. It is easy to argue that the other direction does not nec-
essarily hold true. Nevertheless, it remains challengingly open if the statistical
and quasi-total information ratios coincide. See Section 8.3 for details.

On length-based and entropy-based information ratios. Two different
flavors of information ratio can be found in the literature [11, 13, 36], based on
the interpretation of the “size” of a random variable, which we refer to as the
“entropy-based” and “length-based” definitions. In the former, the information
ratio is defined as the ratio between the share entropy and the secret entropy,
which is adopted by us throughout this paper. In the latter one, it is defined
as the ratio between the share length and secret length (where the length of
a random variable is defined as the logarithm of the size of its support). We
prove that the two definitions coincide for quasi-total security, due to a well-
known result by Chan-Yeung [14], about characterizability of entropy region by
group-characterizable random variables. Therefore, group-characterizable secret
sharing schemes, which have uniform share and secret distributions, are “com-
plete” for quasi-total security. It remains open if this is true for any other security
notion, and in particular, the total one. See Section 9 for details.

On decomposition techniques. A common approach for finding upper bounds
on the information ratio of access structures is the so-called decomposition tech-
niques. These techniques have mainly been used to find upper-bounds on the
information ratio of concrete access structures on a small number of partici-
pants [11,19,24,25,27,33,35,45,47]. They build on Stinson’s λ-decomposition [45]
by decomposing a given access structure into suitable sub-access structures [48]
or sub-access functions [24,46]. In particular, the decomposition theorems in [24,
46] assume that in the linear partial sub-schemes, every subset of participants
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fully recovers a certain subset of secret elements and nothing more; that is, re-
covering a non-trivial linear combination of the secret elements is not allowed.
Using the notion of partial information ratio and our result on the equality of
partial and total linear information ratios, we show this strong requirement can
be removed. See Section 10 for details.

1.4 Paper organization

In Section 2, we present the required preliminaries and introduce our notation. In
Section 3, the partial and semi-partial security notions are introduced. Section 4
is devoted to the proof of the equality of (semi-) partial and total information
ratios for the class of linear schemes. In Section 5, we study the quasi-total secu-
rity notion and its relation with partial security. Section 6 includes some results
on abelian secret sharing. In Section 7, we prove that the Shannon lower on the
partial and total information ratios coincide. In Section 8, we study the statisti-
cal security notion and study its connection with total and quasi-total security.
Section 9 discusses completeness of group-characterizable schemes for quasi-total
security and equivalence of entropy-based and length-based information ratios.
We conclude the paper in Section 11 by mentioning some problems which remain
open in this paper.

Diagram 1 suggests how to read different sections of the paper after having
read the preliminaries (Section 2).

Section 8
(Statistical security)

Section 9
(Information ratio variants)

Section 5
(Quasi-total security)

Section 4
Linear information ratio

Section 3
(Partial security)

Section 6
(Abelian information ratio)

Section 10
(Decompositions)

Section 7
(Shannon lower bound)

Fig. 1: Suggestion for reading the paper.
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2 Secret sharing schemes

In this section, we provide the basic background along with some notations. We
refer the reader to Beimel’s survey [2] on secret sharing.

General notations. We denote the support of the random variable X by
supppXq. All random variables are discrete in this paper. We assume that the
reader is familiar with the Shannon entropy of a random variable X, denoted
by HpXq, and the mutual information of random variables X,Y , denoted by
IpX : Y q. For a positive integer m, we use rms to represent the set t1, . . . ,mu.
Throughout the paper, P “ tp1, . . . , pnu stands for a finite set of participants.
A distinguished participant p0 R P is called dealer and we notate Q “ P Y tp0u.
Unless otherwise stated, we identify the participant pi with its index i; i.e.,
Q “ t0, 1, . . . , nu. The set of positive integers and real numbers are respectively
denoted by N and R. All logarithms are to the base two. The closure of a topo-
logical set X is denoted by X , defined as the union of X with all its limit points.

Definition 2.1 (Access structure) A non-empty subset Γ Ď 2P , with H R Γ ,
is called an access structure on P if it is monotone; that is, A Ď B Ď P and
A P Γ imply that that B P Γ .

A subset A Ď P is called qualified if A P Γ ; otherwise, it is called unqualified.
A qualified subset is called minimal if none of its proper subsets is qualified.

Definition 2.2 (Access function [21]) A mapping Φ : 2P Ñ r0, 1s is called
an access function if ΦpHq “ 0 and it is monotone; i.e., A Ď B Ď P implies
that ΦpAq ď ΦpBq. An access function is called rational if ΦpAq is rational for
every subset A and called total if ΦpAq P t0, 1u.

Definition 2.3 (Secret sharing scheme) A tuple Π “
`

Si

˘

iPPYt0u
of jointly

distributed random variables, with finite supports, is called a secret sharing
scheme on participant set P when HpS0q ą 0. The random variable S0 is called
the secret random variable and its support is called the secret space. The random
variable Si, for any participant i P P , is called the share random variable of the
participant i and its support is called his share space.

When we say that a secret s P supppS0q is shared using Π, we mean that a
tuple

`

si
˘

iPPYt0u
is sampled according to the distribution Π conditioned on the

event tS0 “ su.
A secret sharing scheme Π is said to be linear if there exists a finite field F

such that the support of every marginal random variable is an F-vector space
of finite dimension; additionally, we require that the joint distribution Π be
uniform. When we want to emphasize the underlaid finite field, we call it an
F-linear scheme. When characteristic of F is p, a prime, we call it a p-linear
scheme.

The most common definition of a linear scheme is based on linear maps. A
secret sharing scheme pSiqiPQ is said to be linear if there are finite dimensional
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vector spaces E and pEiqiPQ, and linear maps µi : E Ñ Ei, i P Q such that
Si “ µipEq, where E is the uniform distribution on E. In this paper, we use the
following equivalent definition (see Appendix C or [28] for justification).

Definition 2.4 (Linear scheme) A tuple Π “ pT ;T0, T1, . . . , Tnq is called an
F-linear (or simply a linear) secret sharing scheme if T is a finite dimensional
F-vector space, Ti is a subspace of T , for each i P rns, and dimT0 ě 1. When
there is no confusion, we omit T and simply write Π “ pTiqiPPYt0u. If the
characteristic of F is p, we call the scheme p-linear.

Definition 2.5 (Total realization) We say that a secret sharing scheme Π “
`

Si

˘

iPPYt0u
is a (total) scheme for Γ , or it (totally) realizes Γ , if the following

two hold, where SA “ pSiqiPA, for a subset A Ď P :

(Correctness) HpS0|SAq “ 0 for every qualified set A P Γ and,
(Privacy) IpS0 : SBq “ 0 for every unqualified set B P Γ c.

Definition 2.6 (Access function/convec of a scheme) The access function
and the (total) convec of a secret sharing scheme Π “

`

Si

˘

iPPYt0u
are respec-

tively denoted by ΦΠ and cvpΠq and defined as follows:

ΦΠpAq “
IpS0 : SAq

HpS0q
, cvpΠq “

`HpSiq

HpS0q

˘

iPP
.

For a linear scheme Π “ pTiqiPPYt0u, it is easy to verify that

ΦΠpAq “
dimpT0 X TAq

dimpT0q
, cvpΠq “

` dimpTiq

dimpT0q

˘

iPP
.

Information ratio and convec set. Convec is short for contribution vec-
tor [27] and a norm on it can be used as a measure of efficiency of a secret
sharing scheme. The convec set of an access structure can be defined with re-
spect to a class of secret sharing schemes (e.g., linear, group-characterizable,
abelian, etc).

Definition 2.7 (Total convec set) The (total) convec set of an access struc-
ture Γ , denoted by ΣtpΓ q, is defined as the set of all convecs of all secret sharing
schemes that (totally) realize Γ . When we restrict to the class C of secret sharing
schemes, we use the notation ΣC

t pΓ q.

We use the notation ΣL
t (resp. Σp

t ) when the convec set is restricted to the
class of all linear (resp. p-linear) secret sharing schemes and call it the linear
(resp. p-linear) convec set. The maximum and average information ratios of an
access structure Γ on n participants, for the class C of secret sharing schemes,
are respectively defined as:

mintmaxpxq : x P ΣC
t pΓ qu and 1

n mint
řn

i“1 xi : px1, . . . , xnq P ΣC
t pΓ qu .
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The polymatroidal set. Additionally, we introduce the Kt-set, called the
total polymatroidal set, as a generalization of the κ-parameter [34]. The total
polymatroidal set of an access structure Γ on n participants, denoted by KtpΓ q,
is an n-dimensional polytope derived by taking into account all the Shannon
inequalities as well as the correctness and privacy conditions. In Section 7, we
present a precise definition; see Definition 7.5.

3 Partial and semi-partial secret sharing

In this section, we introduce two relaxed security notions for secret sharing
schemes, referred to as semi-partial and partial realizations. A scheme is said to
partially realize an access structure if the amount of information gained on the
secret by every qualified set is strictly larger than that of any unqualified one.
The semi-partial definition is less relaxed since it requires that the secret still
remain information theoretically hidden from unqualified sets.

As it was mentioned in the introduction, our main motivation for introducing
these security notions is to 1) prove that the quasi-total [30] and total convec
sets coincide for linear schemes and 2) relax the requirements of the weighted-
decompositions [24,46].

3.1 Security definition

We begin by giving a formal definition of partial and semi-partial security no-
tions.

Definition 3.1 (Partial and semi-partial realization) We say that a se-
cret sharing scheme Π is a partial scheme for Γ , or it partially realizes Γ ,
if:

δ “ min
APΓ

ΦΠpAq ´ max
BPΓ c

ΦΠpBq ą 0 . (3.1)

We call it a semi-partial scheme, if additionally ΦΠpBq “ 0, for every unqualified
set B P Γ c.

The parameter δ is a normalized measure for quantifying the advantage of the
qualified sets over the unqualified ones with respect to the amount of information
that they gain on the secret. The intuition behind the choice of this factor and
the following definition stems from decomposition constructions [24, 45, 46, 48],
in which a similar scale factor appears. We will revisit decomposition methods
in Section 10.

3.2 Partial convec

We measure the efficiency of a (semi-) partial scheme for an access structure via
a scaled version of its usual (i.e., total) convec, that we call partial convec.
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Definition 3.2 (Partial convec) Let Π be a partial scheme for Γ . The partial
convec of Π (with respect to Γ ) is defined and denoted by

pcvpΠ,Γ q “
1

δ
cvpΠq,

where δ, the (normalized) advantage, is defined as in Equation (3.1). When there
is no confusion, we simply use the notation pcvpΠq.

The notions of partial and semi-partial realization give rise to two new convec
sets.

Definition 3.3 (Partial and semi-partial convec sets) The partial convec
set of an access structure Γ , denoted by ΣppΓ q, is defined as the set of all partial
convecs of all secret sharing schemes that partially realize Γ . The semi-partial
convec set is defined similarly and is denoted by ΣsppΓ q. When we restrict to
the class C of secret sharing schemes, we notate ΣC

p pΓ q and ΣC
sppΓ q.

The Kp, ΣL
p and Σp

p-sets are defined similar to the case of total convec

set. Similar notations are used for semi-partial security. The relation ΣC
t pΓ q Ď

ΣC
sppΓ q Ď ΣC

p pΓ q is immediate for any access structure Γ and any class C of
secret sharing schemes. In Section 4 we prove that for the three security notions,
the linear convec sets are the same (i.e., ΣL

t pΓ q “ ΣL
sppΓ q “ ΣL

p pΓ q). Also, in
Section 7, we prove that the Shannon inequalities give the same lower-bound for
the convec set (i.e., KtpΓ q “ KsppΓ q “ KppΓ q). In Section 6, we provide some
evidence that for the class C of abelian schemes the inclusion ΣC

t pΓ q Ď ΣC
sppΓ q

might be proper. The following proposition then follows.

Proposition 3.4 (Convec set relations) For any access structure Γ , we have

ΣL
t pΓ q Ď ΣtpΓ q Ď ΣsppΓ q Ď ΣppΓ q Ď KtpΓ q .

Separation. Separation result between closures of ΣL
t and Σt has been proved

in a recent work [28]2. Separation between closure of Σt and Kt is also known [5]
(based on an old result by Seymour [41]). It is easy to find examples that separate
between Σp and Kt. Proving or disproving separations between Σt and Σsp and
also between Σsp and Σp remains open.

Convexity. It is easy to show that the total convec set of any access structure
is a set with convex closure. It remains open if this is also the case for the partial
and semi-partial security notions.

2 In this paper, we only focus on amortized definition of information ratio, i.e. the
secret can be arbitrarily long. Refer to [1] for the role of amortization in secret
sharing. In fact our definition of a linear scheme allows arbitrary secret dimension,
whic is usually called multi-linear in the literature. In another variant, which we
call scaler-linear, the secret is allowed to contain only one field element. Separation
between scaler-linear and non-linear secret sharing was first proved by Beimel and
Ishai in [3] under some plausible assumption. Later, such a separation was proved
in [7] without relying on any assumption.
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4 Equality of total and partial linear convec sets

In this section, we prove that the linear convec set is the same for the total,
partial and semi-partial security notions. Two linear algebraic lemmas lie at the
core of our proofs. The first one is used in Proposition 4.4 for transforming a
semi-partial linear secret sharing scheme for a given access structure into a total
one without changing its (partial) convec. But we also need the second lemma
in Proposition 4.5 for proving a similar claim for partial schemes. The following
theorem is then a direct corollary of both propositions.

Theorem 4.1 (Equality of partial and total linear convec sets) Let p be
a prime and Γ be an access structure. Then, Σp

ppΓ q “ Σp
sppΓ q “ Σp

t pΓ q, and in
particular,

ΣL
p pΓ q “ ΣL

sppΓ q “ ΣL
t pΓ q .

It remains open if the claim of Theorem 4.1 holds for other classes of schemes.
In Section 6, we show that they probably become separate for the class of abelian
schemes. However, their separation/coincidence for general secret sharing re-
mains unclear.

4.1 Two linear algebraic lemmas

Our first lemma promises the existence of some linear maps that work for any
subspace over a given finite field. The lemma does not hold if the space is not
defined over a field that is not finite. So the claim is truly a property of finite
fields.

Lemma 4.2 (Linear transformation lemma) Let 1 ď λ ď m be integers.
Let T0 be a vector space over some finite field with dimension m. Then, there
exist m linear maps L1, . . . , Lm : T0 Ñ Tλ

0 such that for any subspace E Ď T0 of
dimension dimE ě λ, the following holds

m
ÿ

i“1

LipEq “ Tλ
0 .

Proof. Without loss of generality we can assume that T0 “ Fm, where F is the
underlying finite field. We show that there exist m linear maps L1, . . . , Lm :
Fm Ñ Fmλ, such that for any λ linearly independent vectors x1, . . . , xλ P Fm,
the mλ vectors Lipxjq P Fmλ, i P rms and j P rλs, are linearly independent. The
construction is explicit and is as follows.

Let |F| “ q and identify Fm with a finite field K with qm elements that is
an extension of F with degree m. Choose a basis w1, ..., wm for K over F and
identify Fmλ with Kλ.

Define Li by sending x P K to pwix,wix
q, ..., wix

qλ´1

q P Kλ. Note that the

mappings x ÞÝÑ xq is an F-linear map from K to K and x ÞÝÑ xqi is the
composition of this map with itself i times. Therefore, the mapping Li is F-
linear too, for every i P rms. If there exist coefficients cij , i P rms and j P rλs,
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such that Σλ
j“1Σ

m
i“1cijLipxjq “ 0, then

řλ
j“1p

řm
i“1 cijwiqx

qk´1

j “ 0 for every

k P rλs. Since the λˆλ matrix M “

´

xqk´1

i

¯

iPrλs,kPrλs
is invertible (to be proved

at the end), we have
řm

i“1 cijwi “ 0 for all j P rλs and thus cij “ 0, for every
i P rms and j P rλs, as the vectors w1, ..., wm are linearly independent over F.
Therefore, the vectors Lipxjq, i P rms and j P rλs, are linearly independent over
F.

We complete the proof by showing that the matrixM is invertible. Assume for

a row vector y “ py1, . . . , yλq, we have yM “ 0, hence y1x`y2x
q`. . .`yλx

qλ´1

“

0 for every x “ x1, . . . , xλ. Since this polynomial is linear over the field F,
it vanishes on the span of these independent vectors over F, a space with qλ

elements. However, as the polynomial is of degree qλ´1, it is identically zero;
i.e., y “ 0. This shows that M is invertible. [\

The following lemma is true for finite fields that are sufficiently large. In
Appendix A we present an interesting probabilistic proof, proposed by one the
Eurocrypt reviewers, but with a slightly stronger requirement on the field size.

Lemma 4.3 (Non-intersecting subspace lemma) Let T0 be a vector space
of dimension m over a finite field with q elements and let E1, . . . , EN be subspaces
of T0 of dimension at most ω, 1 ď ω ă m. If N ă

qm´1
qm´1´1 , then there is a

subspace S Ă T0 of dimension m ´ ω such that S X Ei “ 0, for every i P rN s.

Proof. Without loss of generality we can assume that dimEi “ ω. Let F be
the underlying finite field with q elements. We show that if N ă

qm´1
qm´1´1 , then

the required subspace S of dimension m ´ w with zero intersection with Ei’s
exists. We prove this by induction on m ´ w. If m ´ w “ 1, then each Ei has
qm´1 ´ 1 non-zero elements so we have at most Npqm´1 ´ 1q non-zero elements

in their union. If N ă
qm´1

qm´1´1 then there is a non-zero element outside this union
that generates the required subspace S. If Ei’s are of dimension w, then since
N ă

qm´1
qw´1 the above proof shows that there is a non-zero vector u outside their

union. If we add this vector to each Ei we get subspace E1
i of dimension w ` 1.

Therefore, by induction, we have a subspace S1 of dimension m ´ w ´ 1 that
has zero intersection with each E1

i. Now the space generated by S and u is the
required subspace of dimension m ´ w and zero intersection with each Ei. [\

4.2 A convec-preserving total linear scheme from a semi-partial
linear one

The following proposition will be generalized in next section. However, we present
it separately in this section since we will build on its proof in the course of the
proof of Proposition 4.5.

Proposition 4.4 (Σp
sp “ Σp

t ) Let Γ be an access structure and Π 1 be a semi-
partial F-linear secret sharing scheme for it. Then, there exists a total F-linear
secret sharing scheme Π for Γ such that cvpΠq “ pcvpΠ 1q.
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Proof. We first provide an informal proof by using duals of the linear maps
introduced in Lemma 4.2. Identify the secret space of Π 1 by Fm. Since Π 1 is a
semi-partial scheme for Γ , there exists an integer λ, with 1 ď λ ď m, such that
every qualified participant set discovers at least λ independent linear relations
on the secret. With a slight abuse of notation, let L‹

1, . . . , L
‹
m : Fmλ Ñ Fm be the

dual (transpose) of the linear maps of Lemma 4.2. We construct a total linear
scheme Π for Γ with secret space Fmλ such that its convec is the same as the
partial convec of Π 1. To share a secret s P Fmλ, we share each of the m secrets
L‹
1psq, . . . , L‹

mpsq P Fm using an independent instance of Π 1. Each participant
in Π receives a share from each instance of Π 1. Hence, while the secret length
has been multiplied by λ, the share of each participant has increased by a factor
of at most m. By adding dummy shares, one can achieve an exact factor of m.
Therefore, the total convec of Π and semi-partial convec of Π 1 are equal. Note
that since the m different instances of Π 1 use independent randomnesses, any
qualified set gains no information on the secret. By Lemma 4.2, each qualified
set gets mλ independent linear relations on s. We conclude that the scheme Π
is total.

We now prove the lemma more formally by direct use of linear maps of
Lemma 4.2. Let Π 1 “ pT 1;T 1

0, T
1
1, . . . , T

1
nq be the F-linear semi-partial scheme

that satisfies λ “ minAPΓ tdimpT 1
A X T 1

0qu ě 1 and dimpT 1
A X T 1

0q “ 0 for all
A P Γ c. Let m “ dimpT0q ě 1.

Our goal is to build a total F-linear scheme Π “ pT ;T0, T1, . . . , Tnq such that
dimpTiq ď mdimpT 1

i q for every i P rns and dimpT0q “ mλ.

Find an orthogonal complement R1 for T 1
0 inside T 1; hence, T 1 “ T 1

0 ‘R1. Let

T “ T 1λ
0 ‘ R1m.

Let L1, . . . , Lm : T 1
0 Ñ T 1λ

0 be the linear maps of Lemma 4.2 and define
ϕ : T 1m Ñ T by

ϕps1, . . . , sm, r1, . . . , rmq “
`

m
ÿ

i“1

Lipsiq, r1, . . . , rm
˘

,

where s1, . . . , sm P T 1
0 and r1, . . . , rm P R1.

We let T0 “ T 1λ
0 and Ti “ ϕpT 1m

i q. Then, the conditions on dimensions are
clear and consequently cvpΠq ĺ pcvpΠ 1q. It is straightforward to tweak the
scheme such that the claimed vector equality holds. It remains to prove that Π
totally realizes Γ .

For A Ď rns, by linearity of ϕ, we have TA “ ϕpT 1m
A q . Also, we have:

TA X T0 “ ϕpT 1m
A q X T 1λ

0

“ ϕpT 1m
A X T 1m

0 q

“ ϕ
`

pT 1
A X T 1

0qm
˘

“
řm

i“1 LipT
1
A X T 1

0q ,

where the second equality follows from the following fact: ϕpxq P T 1λ
0 if and only

if x P T 1m
0 .
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If A P Γ , then dimpT 1
AXT 1

0q ě λ. Therefore, by Lemma 4.2, we have TAXT0 “

T0. Also, if B P Γ c, then T 1
B X T 1

0 “ 0 and hence TB X T0 “ 0. This shows that
Π is a total scheme for Γ . [\

4.3 A convec-preserving total linear scheme from a partial linear
one

The following proposition is a generalization of Proposition 4.4. The proof ex-
pands on the proof of Proposition 4.4 by appropriately using Lemma 4.2.

Proposition 4.5 (Σp
p “ Σp

t ) Let Γ be an access structure and Π 1 be a partial
F-linear secret sharing scheme for it. Then, there exists a finite extension K of F
and a total K-linear secret sharing scheme Π for Γ such that cvpΠq “ pcvpΠ 1q.
Consequently, Σp

ppΓ q “ Σp
t pΓ q, for every prime p.

Proof. Let Π 1 “ pT 1
0, . . . , T

1
nq and denote

λ “ minAPΓ tdimpT 1
A X T 1

0qu

ω “ maxAPΓ ctdimpT 1
A X T 1

0qu

m “ dimT 1
0

where 1 ď λ ´ ω ď m.
Let N be the number of maximal unqualified subsets in Γ c and K be an

extension of F that satisfies |K| ě N . By the process of extending scalers, we
can turn Π 1 into a K-linear scheme with the same convec, access function and
dimensions. For simplicity, we use the same notation for the new scheme; i.e.,
from now on Π 1 is considered to be a K-linear scheme. In particular, the relations
for λ, ω,m are still valid.

Construct pT0, . . . , Tnq from Π 1 the same way as in the proof of Proposi-
tion 4.4 and recall that dimT0 “ mλ and dimTi ď m dimT 1

i . The same ar-
gument, which was used in the proof of Proposition 4.4, shows that for any
A P Γ , we have TA X T0 “ T0. It is also trivial that for every B P Γ , we have
dim

`

TB X T0

˘

ď mω.
By Lemma 4.3 (Ei is TB XT0 for some maximal unqualified set B, dimEi ď

mω and dimT0 “ mλ), one can choose S Ď T0 of dimension mpλ´ωq such that
TB X S “ 0, for every B P Γ c. Also, it is trivial that TA X S “ S, for every
A P Γ . Now, it is clear that Π “ pS, T1, . . . , Tnq is a total secret sharing scheme
for Γ such that dimS “ mpλ ´ ωq. Therefore, cvpΠq ĺ pcvpΠ 1q. Again, it is
straightforward to tweak the scheme such that the convec equality holds. [\

5 On quasi-total security

In this section, we review the notion of quasi-total security, proposed in [30,31].
What makes quasi-total security especial is that group-characterizable schemes
are “complete” for it and, consequently, “length-based” and “entropy-based”
definitions of information ratio coincide. This issue will be studied in Section 9.
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In this section, we prove that if partial and total information ratios coincide
for any class of secret sharing schemes, the same thing happens for the total and
quasi-total information ratios. As a corollary of Theorem 4.1, the partial, quasi-
total and total information ratios are all equal for the class of linear schemes.

5.1 Definition

We need the following definition before giving a formal definition of the quasi-
total secret sharing and quasi-total convec set.

Definition 5.1 (Convec-converging family of schemes) A sequence F “

tΠkukPN of secret sharing schemes on participants set P is called a convec-
converging family of schemes if i) the entropy of secret does not vanish; i.e.,
HpSk

0q “ Ωp1q and, ii) the sequence tcvpΠkqukPN is converging. The convec of
the convec-converging family F is defined as cvpFq “ limkÑ8 cvpΠkq.

Definition 5.2 (Quasi-total realization [30]) Let Γ be an access structure
on P and F “ tΠkukPN be a convec-converging family of secret sharing schemes.
We say that F is a quasi-total family for Γ if limkÑ8 ΦΠk

“ ΦΓ , where ΦΓ :
2P Ñ t0, 1u is a (monotone) mapping defined as ΦΓ pAq “ 1 ðñ A P Γ .

Definition 5.3 (Quasi-total convec set) The quasi-total convec set of an ac-
cess structure Γ , denoted by ΣqtpΓ q, is defined as the set of all convecs of all
quasi-total families for Γ . When we restrict ourselves to the class C of secret
sharing schemes, we use the notation ΣC

qt.

Notice that the quasi-total convec sets are closed. It is easy to prove that the
Σqt-set (similar to the Σt-set) is convex, but recall that the closure convexity of
the (semi-) partial convec set was left open.

5.2 Connections with partial and total security notions

We prove that if the partial and total convec sets are equal for some class of
schemes, the same holds true for the quasi-total and total convec sets. It remains
open if the reverse holds true as well.

Proposition 5.4 (ΣC
p “ ΣC

t ùñ ΣC
qt “ ΣC

t ) For any class C of schemes

and any access structure Γ , if ΣC
p “ ΣC

t then ΣC
qt “ ΣC

t .

Proof. It suffices to prove the inclusion ΣC
qtpΓ q Ď ΣC

t pΓ q. Equivalently, we show

that for every σ P ΣC
qtpΓ q we have σ P ΣC

t pΓ q. Let F “ tΠkukPN be a quasi-
total family of class-C schemes for Γ with cvpFq “ σ. We construct a convec-
converging family F 1 “ tΠ 1

kukPN of class-C schemes such that: i) Π 1
k is a total

scheme for Γ for sufficiently large k and ii) cvpF 1q “ σ. This proves that σ P

ΣC
t pΓ q.
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Define λk “ minAPΓ tΦΠk
pAqu and ωk “ maxBRΓ tΦΠk

pBqu. Since λk and ωk

respectively converge to 1 and 0, we have δk “ λk´ωk ą 0 for sufficiently large k.
This shows that Πk is a partial class-C secret sharing scheme for Γ with partial
convec cvpΠkq{δk. By assumption, there exists a convec-converging family of
class-C total schemes tΠ 1

kjujPN for Γ with limjÑ8 cvpΠ 1
kjq “ cvpΠkq{δk. Let

Π 1
k “ Π 1

kk. Clearly, F 1 “ tΠ 1
kukPN is a family of class-C total schemes for Γ with

cvpF 1q “ cvpFq since δk Ñ 1, proving (i) and (ii). [\

5.3 Main result

The main result of our paper, i.e., the equality of total and quasi-total informa-
tion ratios for the class of linear schemes, is a corollary of Proposition 4.5 and
Proposition 5.4.

Theorem 5.5 (ΣL
qt “ ΣL

t ) For any access structure Γ and any prime p, we

have Σp
qtpΓ q “ Σp

t pΓ q and, consequently, ΣL
qtpΓ q “ ΣL

t pΓ q.

It remains open if the claim of Theorem 5.5 holds for a class substantially
larger than linear schemes. Even if it turns out that the partial and total convec
sets do not coincide on some class larger than linear ones (e.g., the abelian ones
which we guess to be the case and will discuss in Section 6), it does not provide
sufficient evidence that this is also the case for total and quasi-total security
notions. Therefore, we believe that proving coincidence/separation for larger
classes demands innovative ideas and more advanced techniques.

6 On abelian information ratio

Equality of the linear information ratio for total and partial information ratios
was proved in Section 5 and equality of Shannon lower bound will be proved
in Section 7. Despite these lower bound and upper bound coincidences, in this
section, we provide some evidence that the abelian information ratios probably
do not match.

W study F ` N , a well-known 12-participant access structure [4, 37] which
has both Fano (F) and non-Fano (N ) access structures as minors. The access
structure F (resp. N ) is the port of Fano (resp. non-Fano) matroid and it is
known [37] to be ideal only on finite fields with even (resp. odd) characteristic.
As a result, their union (i.e., F `N ) is nearly ideal. That is, its information ratio
is one without admitting an ideal scheme. Very recently, in [28], the exact value
of its linear information ratio has been determined (max“ 4{3 and average“

41{36). Also, an upper-bound on its abelian information ratio has been provided
(maxď 7{6 and averageď 41{36). Additionally, it has been conjectured in [28],
that the exact value of its (total) abelian information ratio is strictly greater
than one. Below, we show that the semi-partial abelian ramification ratio of this
access structure is one.
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Abelian schemes. An abelian scheme on a set P of participants is a collection
pGiqiPQ of subgroups of a finite group G. An abelian schemeΠ “ pGiqiPQ realizes
an access structure if 1) for every qualified set A Ď P we have G0XGA “ G0 and
2) for every unqualified set A Ď P we have G0XGA “ t0u, where GA “

ř

iPA Gi.
The convec and access function of an abelian scheme Π “ pGiqiPQ are com-

puted as follows:

ΦΠpAq “
log |G0 X GA|

log |G0|
, cvpΠq “

` log |Gi|

log |G0|

˘

iPP
.

Every linear scheme is abelian. If Π “ pGiqiPQ and Π 1 “ pG1
iqiPQ are abelian

schemes for an access structure Γ , so is their direct sumΠ‘Π 1 “ pGi‘G1
iqiPQ. In

particular, ifΠ andΠ 1 are linear schemes for Γ , thenΠ‘Π 1 is an abelian scheme
for Γ . The following corollary then becomes trivial. We refer to Appendix C
or [28] for further discussion on abelian schemes.

Corollary 6.1 For every even (resp. odd) number m, there exists an ideal abelian
scheme for Fano (resp. non-Fano) access structure such that the order of all sub-
groups are m.

A nearly ideal semi-partial abelian scheme for F ` N . Let k P N be an
integer. Let ΠF

k (resp. ΠN
k ) be an ideal abelian scheme for F (resp. N ) whose

subgroups all have order 2k (resp. 2k ` 1). We construct a nearly ideal semi-
partial family of schemes tΠku for F ` N . Instead of describing the scheme
Πk using formal notation, we describe it informally. The secret space of Πk is
the direct sum of the secret spaces of ΠF

k and ΠN
k , i.e., GF

0 ‘ GN
0 . To share a

secret psF , sN q P GF
0 ‘ GN

0 , we share sF via ΠF
k and share sN via ΠN

k , using
independent randomnesses. It is easy see thatΠk is a semi-partial abelian scheme
for F ` N and its information ratio converges to one as k goes to infinity.

Summary. Table 1 summarizes the known results on the F ` N access struc-
ture. We believe that, for the class of abelian schemes, computing the total (and
consequently statistical by Theorem 8.7) information ratio of F ` N is reach-
able within known techniques (e.g., by manually using the common information
method of [22] in a clever way), but as we discussed in Section 5.3, computing
its quasi-total abelian information ratio probably demands substantially more
advanced ideas and techniques.

7 Shannon lower-bound for partial information ratio

The main result of this section is to prove that the Shannon inequalities give the
same lower-bound for the total and partial security notions. In other words, the
polymatroidal sets of an access structure with respect to all security definitions
are equal. It remains open if our result can be strengthened, e.g., by allowing
certain additional non-Shannon type information inequalities, e.g., along the
lines of [6, 38]). Our result shows that Csirmaz sub-linear lower bound [17] also
applies to partial security.
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total/statistical quasi-total (semi-)partial reference

general
max

1 [4, 37]
average

abelian
max 1 ď ¨ ď 7{6 1 ď ¨ ď 7{6

1
Theorem 8.7

average 1 ď ¨ ď 41{36 1 ď ¨ ď 41{36 [28]

linear
max 4/3 Theorems 4.1, 5.5

average 41/36 [28], [3]

Table 1: Known results on the max/average information ratio of the access
structure F `N w.r.t. different security notions and different classes of schemes.

We define the polymatroidal sets precisely and then prove our claim. We
use the following definition for a polymatroid, first introduced by Edmonds [20]
in 1970. The relation between polymatroids and random variables was realized
by Fujishige [23] in 1978. We refer the reader to Padro’s lecture notes [39] for
a leaner introduction to matroids, polymatroids and their connection to secret
sharing.

Definition 7.1 (Polymatroid) Let Q be a finite set. We say that S “ pQ, rq

is a polymatroid with ground set Q and rank function r : 2Q Ñ R, when:

a) rpHq “ 0,
b) rpXq ď rpY q, for every subsets X Ď Y Ď Q (monotonicity),
c) rpXq ` rpY q ě rpX Y Y q ` rpX X Y q, for every subsets X,Y Ď Q (sub-

modularity).

We simply denote the rank function of a singleton set tpu by rppq. We let Q “

P Y tp0u where P “ tp1, ¨ ¨ ¨ , pnu and assume that rpp0q ą 0. We borrow the
following notation from [21].

Notation 7.2 Let S “ pQ, rq be a polymatroid and A and B be subsets of Q.
We notate

rpA|Bq “ rpABq ´ rpBq,

∆rpA : Bq “ rpAq ` rpBq ´ rpABq.

7.1 Total polymatroidal set

Informally, the total polymatroidal set of an access structure Γ on n participants,
denoted by KtpΓ q, is the n-dimensional polytope derived by taking into account
all the Shannon inequalities as well as the correctness and privacy conditions.

Definition 7.3 (Total polymatroid) Let Γ be an access structure on P and
S “ pQ, rq be a polymatroid. We say that S is a total polymatroid for Γ when:

a) ∆rptp0u : Aq “ rpp0q, for every qualified set A P Γ and,
b) ∆rptp0u : Bq “ 0, for every unqualified set B P Γ c.
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Definition 7.4 (Total convec of a polymatroid) The total convec of a poly-
matroid S “ pQ, rq is defined and denoted by cvpSq “ 1

rpp0q
prppqqpPP .

Definition 7.5 (Total polymatroidal set) The Kt-set or total polymatroidal
set of an access structure Γ , denoted by KtpΓ q, is defined as the set of all total
convecs of all polymatroids for Γ .

The following proposition is an extention of the inequality κpΓ q ď σpΓ q [34].

Proposition 7.6 (ΣtpΓ q Ď KtpΓ q) For any access structure Γ , it holds that
ΣtpΓ q Ď KtpΓ q.

7.2 Partial and semi-partial polymatroidal sets

Definition 7.7 (Partial and semi-partial polymatroid) Let Γ be an ac-
cess structure on P and S “ pQ, rq be a polymatroid. We say that S is a partial
polymatroid for Γ when:

δ “ min
APΓ

∆rptp0u : Aq ´ max
BPΓ c

∆rptp0u : Bq ą 0 . (7.1)

If for every unqualified set B P Γ c it additionally holds that ∆rptp0u : Bq “ 0,
we call it a semi-partial polymatroid for Γ .

Definition 7.8 (Partial and semi-partial convec of a polymatroid) Let Γ
be an access structure on P and S “ pQ, rq be a partial polymatroid for Γ . The
partial convec of S (with respect to Γ ) is defined and denoted by

pcvpS, Γ q “
1

δ
prppqqpPP .

where δ, the advantage, is defined as in Equation (7.1). When there is no con-
fusion, we simply use the notation pcvpSq.

Definition 7.9 (Partial and semi-partial polymatroidal convec sets) The
partial polymatroidal convec set of an access structure Γ , denoted by KppΓ q, is
defined as the set of all partial convecs of all polymatroids that partially realize
Γ . The semi-partial polymatroidal convec set is defined similarly and is denoted
by KsppΓ q.

Proposition 7.6 also holds for the partial security; that is, for any access
structure Γ , it holds that ΣppΓ q Ď KppΓ q and ΣsppΓ q Ď KsppΓ q. The relation
KtpΓ q Ď KsppΓ q Ď KppΓ q is immediate for any access structure Γ . In next
section we prove that these sets are indeed the same.
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7.3 Main claim

Even though the Kt-set is trivially a polytope, it is not trivial that so are the
other two sets, let alone being identical to the Kt-set.

Theorem 7.10 (Kp “ Ksp “ Kt) For any access structure, the total, partial
and semi-partial polymatroidal sets are identical.

Proof. We know that KtpΓ q Ď KsppΓ q Ď KppΓ q for any access structure Γ .
It is sufficient to prove that KppΓ q Ď KtpΓ q. Suppose that a1 P KppΓ q. Then,
there exists a partial polymatroid S 1 “ pP Y tp0u, r1q for Γ and a1 “ pcvpS 1q.
We construct a total polymatroid S “ pP Y tp0u, rq from S 1 for Γ such that
cvpSq “ pcvpS 1q. Let δ be as in Definition 7.1 and define α, β as follows,

α “ min
APΓ

∆rptp0u : Aq{r1pp0q , β “ max
BPΓ c

∆rptp0u : Bq{r1pp0q.

Define the function r : 2PYtp0u Ñ r0,8q as follows:

rpAq “ r1pAq{α for A P Γ c,
rpAq “ r1pA|tp0uq{α ` r1pp0q for A P Γ ,
rpA Y tp0uq “ rpAq for A P Γ ,
rpA Y tp0uq “ rpAq `

α´β
α r1pp0q for A P Γ c;

Note that we have rpHq “ 0 and rpp0q “
α´β
α r1pp0q.

We claim that r is a rank function of a polymatroid with ground set P Ytp0u.
First, we show that r has the monotonicity property. We check the monotonicity
property only for the following nontrivial case: A Y tp0u Ď B Y tp0u where A is
a unqualified set and B is qualified. Checking the monotonicity property for the
other cases is easier and left to the reader. Since AY tp0u Ď BY tp0u, the mono-
tonicity of r1 implies that r1pA Y tp0uq ď r1pB Y tp0uq. Therefore r1pA|tp0uq ď

r1pB|tp0uq. Since A is unqualified we have r1pAq ď r1pA|tp0uq ` βr1ptp0uq. Thus

rpA Y tp0uq “ rpAq `
α ´ β

α
r1ptp0uq

“
r1pAq

α
` r1ptp0uq ´

β

α
r1ptp0uq

ď
r1pA|tp0uq

α
`

β

α
r1ptp0uq ` r1ptp0uq ´

β

α
r1ptp0uq

ď
r1pB|tp0uq

α
` r1ptp0uq

“ rpBq

“ rpB Y tp0uq.

For the sub-modularity property, we only check the sets A,B Ď P where A,
B and A X B are unqualified and A Y B is qualified and other cases which are
simpler are left to the reader. Since r1 is sub-modular, we have r1pAq ` r1pBq ě
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r1pA Y Bq ` r1pA X Bq. Since A Y B is qualified, by definition of α we have α ď

∆r1 ptp0u : AYBq{r1ptp0uq, or equivalently, r1pAYBq ě r1pAYB|tp0uq `αrpp0q.
We observe that

rpAq ` rpBq “ r1pAq{α ` r1pBq{α

“
1

α
rr1pAq ` r1pBqs

ě
1

α
rr1pA Y Bq ` r1pA X Bqs

ě
1

α
rr1pA Y B|tp0uq ` αr1pp0q ` r1pA X Bqs

“
`

r1pA Y B|tp0uq{α ` r1pp0q
˘

`
`

r1pA X Bq{α
˘

“ rpA Y Bq ` rpA X Bq.

Now, we show that S is a total polymatroid for Γ . For every qualified set A P Γ ,
we have rpA Y tp0uq “ rpAq by definition of r. Also, for every unqualified set
B P Γ c, we have rpB Y tp0uq “ rpBq ` rpp0q. Therefore S “ pP Y tp0u, rq is total
for Γ .

It remains to show that cvpSq “ pcvpS 1q. Therefore, by definition of r, we
have rppq “ r1ppq{α for any participant p P P (we have assumed that no singleton
set is qualified, but it is easy to remove this assumption). Thus,

cvpSq “
1

rptp0uq

`

rptpuq
˘

pPP

“
1

α´β
α r1ptp0uq

`

r1ptpuq{α
˘

pPP

“
1

pα ´ βqr1pp0q
pr1ppqqpPP

“
1

δ
pr1ppqqpPP

“ pcvpS 1q

Consequently, KppΓ q Ď KtpΓ q. l

8 On statistical security

In this section, we study a standard cryptographic relaxation of secret sharing,
called statistical security. See [3] for probably the oldest modern definition and [8]
for an old construction.

We prove that 1) statistical security coincides with total security for a class of
secret sharing schemes that includes group-homomorphic secret sharing schemes
and 2) statistical security implies quasi-total security. The convexity of the sta-
tistical convec set is more technical than that of the total and quasi-total security
notions and is given in Appendix B.
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8.1 Definition

We provide some definitions that simplify the exposition of this section.

Definition 8.1 (Negligible and polynomial functions) A function f : N Ñ

R is called negligible if fpkq “ k´ωp1q. It is called polynomial if fpkq “ kOp1q.

Definition 8.2 (Statistical distance) The statistical distance between two ran-
dom variables X0 and X1 is defined by SDpX0,X1q “ 1

2

ř

x |PrrX0 “ xs ´

PrrX1 “ xs|.

Definition 8.3 (Maximum Reconstruction Error) Let pX,Y q be jointly dis-
tributed random variables. The Maximum Reconstruction Error (MRE) of X
from Y is defined as below, where max is taken over all x P supppXq and min
is taken over all reconstruction functions Recon : supppY q Ñ supppXq,

MREpX|Y q “ min
Recon

max
x

PrrReconpY q ‰ x|X “ xs .

Definition 8.4 (Maximum Conditional Statistical Distance) Let pX,Y q

be jointly distributed random variables. The Maximum Conditional Statistical
Distance (MCSD) of Y with respect to X is defined as follows, where max is
taken over all pairs x0, x1 P supppXq,

MCSDpY |Xq “ max
x0,x1

SDpY |tX “ x0u,Y |tX “ x1us .

The notion of statistical secret sharing and statistical convec set can be de-
fined as follows. The reader may recall the definition of a convec-converging
family of schemes (Definition 5.1).

Definition 8.5 (Statistical realization) Let Γ be an access structure on P
and F “ tΠkukPN be a convec-converging family of secret sharing schemes.
Denote Πk “ pSk

i qiPPYt0u. We say that F is a statistical family for Γ if the
following three hold:

– (Polynomial secret length) log2 |supppSk
0q| is polynomial in k,

– (Statistical correctness) For every qualified set A P Γ , MREpSk
0 |Sk

Aq is
negligible,

– (Statistical privacy) For every unqualified set A P Γ , MCSDpSk
A|Sk

0q is
negligible.

We remark that the conditions on polynomial growth of the secret size and
negligibility of the correctness and privacy errors are required for technical rea-
sons. In particular, these conditions are critical in the proof of Proposition 8.9.

Definition 8.6 (Statistical convec set) The statistical convec set of an ac-
cess structure Γ , denoted by ΣspΓ q, is defined as the set of all convecs of all
statistical families for Γ . When we restrict ourselves to the class C of secret
sharing schemes, we use the notation ΣC

s .
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The statistical convec set is closed too and similar to the Σqt and Σt-sets,
it is convex. However, because of our requirements, i.e., polynomial growth of
secret length and negligibility of the correctness/privacy errors, the convexity
proof becomes more technical than the case of total and quasi-total security
notions. We refer the reader to Appendix B for a proof.

8.2 On group-homomorphic schemes

In [3], it has been mentioned that the notions of total and statistical secret
sharing coincide in the case of linear schemes. Here we extend this observation
to the sub-class N0 of all group-characterizable schemes (recall Definition 9.1)
whose secret subgroup is normal in the main group (i.e. G0 Ĳ G). In a recent
work [29], it has been shown that group-characterizable secret sharing schemes
with normal subgroups (i.e., Gi Ĳ G for every i P P Y t0u) are equivalent to
group-homomorphic secret sharing schemes. A homomorphic scheme is called
group-homomorphic if the secret and share spaces are all groups. It then follows
that group-homomorphic statistical secret sharing schemes coincide with total
security.

Theorem 8.7 (Statistical
N0
ùñ Total) Let Γ be an access structure and F “

tΠkukPN be a statistical family of group-characterizable secret sharing schemes
for Γ such that the secret group is normal in the main group (call this class
N0). Then, for every sufficiently large k, Πk totally realizes Γ . Consequently,

ΣN0
s pΓ q “ ΣN0

t pΓ q.

Proof. The proof follows by the following observation. Let Π “ pS0,S1, . . . ,Snq

be a group-characterizable secret sharing scheme (not necessarily form the class
N0) induced by groups pG : G0, G1, . . . , Gnq. We know that for every non-empty

subset A Ď t0, 1, . . . , nu, we have HpSAq “ log |G|

|GA|
, where SA “ pSiqiPA and

GA “
Ş

iPA Gi. It then follows that HpSA|SBq “ log |GB |

|GAXB |
and IpSA : SBq “

log |G|

|GA˚GB |
, for non-empty subsets A,B Ď t0, 1, . . . , nu. This implies that if

HpSA|SBq ą 0, then the quantity must be at least 1. The reason is that GAXB

is a (proper) subgroup of GB and, hence, its order divides |GB |; i.e., the ratio
|GB |

|GAXB |
is at least two. However, in general, the analogous statement is not true

for the mutual information since GA ˚ GB is not necessarily a subgroup of GB

to ensure that its size divides |GB |. Nevertheless, if one of these subgroups is
a normal subgroup in G, then GA ˚ GB is a subgroup of GB and, therefore,
IpSA : SBq must be at least one if it is positive. We conclude that if an access
structure is realizable by some group-characterizable family from the class N0

statistically, then it is so totally. [\

Technical discussion. As we discussed in the proof, our argument does not
go through for the (general) class of group-characterizable schemes. In general,
one can construct an example where the ratio between the order of G and the
order (size) of GA ˚ GB is arbitrarily close to 1. Let G be the group of order
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ppp ` 1q generated by two elements a of order p and b of order p ` 1 where p
is a given prime number. The only relation between a and b is ab “ bpa. Then
it is easy to check that if we take GA and GB to be the subgroups of order p
generated by a and bab´1, respectively, then GA ˚ GB will be a subset of order
p2 and hence the ratio is 1 ` 1{p which can be made arbitrarily close to 1.
Nevertheless, this does not show that the theorem may not be true for general
group-characterizable schemes. Therefore, it remains open if Theorem 8.7 holds
for a class substantially larger than N0. In particular, it remains open if any

of the inclusions ΣG
t pΓ q Ď ΣG

s pΓ q or ΣtpΓ q Ď ΣspΓ q is proper for some access
structure.

The following then follows from [29].

Proposition 8.8 (Group-homomorphic schemes) Let Γ be an access struc-
ture and F “ tΠkukPN be a statistical family of group-homomorphic secret shar-
ing schemes for Γ . Then, for every sufficiently large k, Πk totally realizes Γ .

8.3 Relation with quasi-total security

Notice that by Theorem 5.5 and Theorem 8.7, the equality ΣL
s pΓ q “ ΣL

qtpΓ q

holds. It remains open if the equality holds for any larger class. We close this
section by proving the following proposition on the relation between the quasi-
total and statistical convec sets.

Proposition 8.9 (Statistical ùñ Quasi-total) Let F be a statistical family
of schemes for an access structure Γ . Then it is a quasi-total family for Γ too.
Consequently, ΣC

s pΓ q Ď ΣC
qtpΓ q, for every class C of secret sharing schemes.

Proof. It is easy to see that the proof follows from the following claim.
Claim. Let tpXk,Y kqukPN be a family of jointly distributed random variables

and assume that log |supppXkq| is polynomial in k. Then:

(i) If MREpXk|Y kq is negligible in k, then limkÑ8 HpXk|Y kq “ 0.
(ii) If MCSDpY k|Xkq is negligible in k, then limkÑ8 IpXk : Y kq “ 0.

Part (i) follows by Fano’s inequality [16] which is stated as follows. Suppose
that we wish to estimate the random variable X, with support X , by an es-
timator Y , and furthermore, assume that ϵ “ PrrX ‰ Y s. Then, HpX|Y q ď

Hpϵq ` ϵ logp|X | ´ 1q, where Hpϵq is the entropy of a Bernoulli random variable
with parameter ϵ. Denote npkq “ |supppXkq| and ϵpkq “ MREpY k|Xkq. By
Fano’s inequality and definition of MRE, we have HpXk | Y kq ď Hpϵpkqq `

ϵpkq logpnpkq ´ 1q. This proves that limkÑ8 HpXk | Y kq “ 0 since log npkq is
polynomial and ϵpkq is negligible. Part (ii) has been implicitly proved in [40]. [\

The reverse of the above proposition is not true, however.

Proposition 8.10 (Quasi-total ­ùñ Statistical) A quasi-total family for an
access structure does not necessarily realize it statistically.
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Proof. Let P “ tp1u and Γ be the trivial access structure on P . For every k P N,
let T k be a vector space on F2 with dimension k. Let T k

0 “ T k and T k
1 be a

subspace of T k of dimension k´1. Then Πk “ pT k;T k
0 , T

k
1 q quasi-totally realizes

Γ but not statistically. The reason is that while the amount of information that
the only qualified set gains on the secret converges to the entropy of the secret,
the secret can only be guessed with probability at most 1{2. [\

We remark that, nevertheless, the above proposition does not refute the
coincidence of the quasi-total and statistical convec sets, i.e., if the inclusion
ΣC

qtpΓ q Ď ΣC
s pΓ q is proper for some access structure Γ and any class C of

schemes.

9 On length-based and entropy-based efficiency measures

Two different flavors of information ratio can be found in the literature [11,13,36].
One is defined based on the ratio between the share entropy and the secret
entropy, also adopted by us in the course of this paper. The other one is defined
as the ratio between the share length (i.e., the logarithm of the share space size)
and the secret length. Consequently, the information ratio of an access structure
can be defined in two different ways, with respect to every security notion.

In this section, we show that the two definitions coincide for the quasi-total
security notion. The key observation is that group-characterizable schemes are
“complete” for this security notion. It remains an open problem if these claims
are true for other security notion, and in particular, the total one3.

Definition 9.1 (Group-characterizable scheme [15]) A tuple Π “ pG :
G0, G1, . . . , Gnq is called a group-characterizable secret sharing scheme if G is a
finite group, Gi is a subgroup of G, for each i P rns, and |G|{|G0| ě 2.

A group-characterizable scheme Π “ pG : G0, G1, . . . , Gnq induces a secret
sharing scheme pS0,S1, . . . ,Snq by letting Si “ XGi, where X is a uniform
random variable on G; hence, the support of Si is the left cosets of Gi.

For a group-characterizable scheme Π “ pG : G0, G1, . . . , Gnq, it is easy to
verify that

ΦΠpAq “
log

`

|G|{|GA ˚ G0|
˘

log
`

|G|{|G0|
˘ , cvpΠq “

´ log
`

|G|{|Gi|
˘

log
`

|G|{|G0|
˘

¯

iPrns
,

where GA “
Ş

iPA Gi.
Let G denote the class of group-characterizable schemes. In the case of total

security (as well as all other security notions in this paper), it remains open

if the inclusion ΣG
t pΓ q Ď ΣtpΓ q is proper for some access structure Γ . The

3 In the case of total security, it is known that the size-based and length-based
definitions are the same for ideal access structures [12]. But it is open if group-
characterizable schemes are complete for ideal access structures.
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following theorem, whose proof follows by a well-known theorem by Chan and
Yeung in [15], asserts that the answer is negative for quasi-total security; that
is group-characterizable schemes are “complete” for this security notion.

Theorem 9.2 (ΣG
qt “ Σqt) The class of group-characterizable schemes, G, is

complete for quasi-total security; that is, for every access structure Γ , it holds
that ΣG

qtpΓ q “ ΣqtpΓ q.

Proof. The Chan-Yeung’s theorem [15, Theorem 4.1] is about random variables
and can be stated for secret sharing schemes as follows: for every scheme Π “

pSiqiPPYtp0u, there exists a sequence tΠku of group-characterizable schemes,

with Πk “ pSk
i qiPPYtp0u, such that for every A Ď P Y tp0u it holds that

limkÑ8
1
kHpSk

Aq “ HpSAq. It then follows that limkÑ8 cvpΠkq “ cvpΠq and
limkÑ8 ΦpΠkq “ ΦpΠq.

Now we return to the proof of our theorem. Let Γ be an access structure and
σ P ΣqtpΓ q. We need to show that σ P ΣG

qtpΓ q. Let F “ tΠmumPN be a quasi-
total family for Γ with cvpFq “ σ. Therefore, by Chan-Yeung’s theorem, for each
scheme Πm, there exists a a sequence tΠk,mu of group-characterizable schemes
such that limkÑ8 cvpΠk,mq “ cvpΠmq and limkÑ8 ΦpΠk,mq “ ΦpΠmq. It is
then easy to see that the family F 1 “ tΠj,ju of group-characterizable schemes
satisfies cvpF 1q “ limjÑ8 cvpΠj,jq “ cvpFq and limkÑ8 ΦΠj,j “ ΦΓ ; that is,
σ P ΣG

qtpΓ q. [\

The following corollary is then immediate since the secret and shares of a
group-characterizable scheme are all uniform.

Corollary 9.3 (Equivalence of entropy-based and length-based ratios)
Assume that in the definition of convec of a scheme (Definition 2.6), one replaces
HpSiq with log |supppSiq|. Then, the quasi-total convec set remains invariant.

10 On decomposition theorems

The pλ, ωq-weighted-decomposition theorem of [24] (as well as its predecessor
[46]) has the following limitation. They require that in the linear sub-schemes
every subset of participants fully recovers a certain subset of the secret elements
and nothing more; in other words, recovering a non-trivial linear combination of
the secret elements is not allowed.

In Section 10.1, we show that the above strong requirement on the pλ, ωq-
weighted-decomposition can be removed. The main tool that allows us to do this
is the notion of partial secret sharing and the result of Section 4 on the equality
of partial and total linear information ratios.

In Section 10.2, we present a unified decomposition theorem, that we re-
fer to as the δ-decomposition, which captures the advantages of the pλ, ωq-
decomposition [18, 48] and the pλ, ωq-weighted-decomposition [24] at one place.
The theorem is essentially a restatement of known and folklore results. We in-
troduce the notion of δ-decomposition, first, for the sake of completeness and,
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second, to provide the intuition behind the definition of partial security (Defi-
nition 3.1) and partial convec (Definition 3.2). The reader may compare those
definitions with Definition 10.3.

Notation. In this section, we use the simplified notation Σ for total convec
set and Λ (resp. Λp) for its restrictions to the class of all linear (resp. p-linear)
schemes. We remark that the linear convec set of a (rational-valued) access
function Φ is defined as the set of all convecs of all linear secret sharing schemes
whose access function is Φ.

10.1 pλ, ωq-weighted-decomposition revisited

The following definition is a restatement of Definition 3.4 in [24].

Definition 10.1 ((λ, ωq–weighted decomposition) Let λ, ω,N,m1, ¨ ¨ ¨ ,mN ,
be non-negative integers, with 0 ď ω ă λ. Let Γ be an access structure and
Φ1, . . . , ΦN be (rational) access functions all defined on the same participants set
and further assume that mjΦj is an integer-valued function for every j P rN s.
We call pm1, Φ1q, . . . , pmN , ΦN q a pλ, ωq-weighted-decomposition for Γ if the fol-
lowing two hold:

–
řN

j“1 mjΦjpAq ě λ, for every qualified set A P Γ ,

–
řN

j“1 mjΦjpBq ď ω, for every unqualified set B P Γ c.

The following decomposition theorem is an extension of Theorem 3.2 in [24],
which was stated for a subclass of linear schemes. The proof essentially relies on
Proposition 4.5

Theorem 10.2 ((λ, ωq–weighted decomposition) Let p be a prime. Con-
sider a pλ, ωq-weighted-decomposition pm1, Φ1q, . . . , pmN , ΦN q for an access struc-

ture Γ and let σj P ΛppΦjq, j P rN s. Then, 1
λ´ω

řN
j“1 mjσj P ΛppΓ q.

Proof. Let Πj “ pTijqiPP be a p-linear secret sharing scheme for Φj with convec
σj , for j P rN s. Without loss of generality, we assume that all sub-schemes are
F-linear for a common finite field F with characteristic p. Let T 1

i “ ‘jPrNsTij ,
for every i P P . For every i P P , we have dimT 1

i “
ř

jPrNs dimTij which implies
that

`

dimT 1
i

˘

iPP
“

řN
j“1 mjσj .

Also, for every subset A of participants, it holds that:

dimpT 1
A X T 1

0q “
ř

jPrNs dimpTA X T0q

“
ř

jPrNs mjΦΠj pAq

“
ř

jPrNs mjΦjpAq .

By definition of the (λ, ωq–weighted decomposition, we have
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∆ “ min
APΓ

dimpT 1
A X T 1

0q ´ max
BPΓ c

dimpT 1
B X T 1

0q ě λ ´ ω .

Consequently, Π 1 “ pT 1
i qiPP is an F-linear partial secret sharing scheme for

Γ with the following partial convec:

pcvpΠ 1q “
1

∆

N
ÿ

j“1

mjσj .

Then, by Proposition 4.5, there exists a finite extension K of F, such that Γ
has a total K-linear scheme Π with the above convec. It is straightforward to
modify the scheme to have a scheme with the convec 1

λ´ω

řN
j“1 mjσj . [\

10.2 δ-decomposition

We present the notion of δ-decomposition, which captures all the weighted [24,46]
and non-weighted [18, 44] decompositions simultaneously, and even in a more
general form. It also justifies the intuition behind the definition of partial security
(Definition 3.1) and partial convec (Definition 3.2).

Definition 10.3 (δ-decomposition) Let N be an integer and δ, h1, . . . , hN be
positive real numbers. Let Γ be an access structure and Φ1, . . . , ΦN be access
functions all on participants set P . We say that ph1, Φ1q, . . . , phN , ΦN q is a δ–
decomposition for Γ if

δ “ min
APΓ

N
ÿ

j“1

hjΦjpAq ´ max
BPΓ c

N
ÿ

j“1

hjΦjpBq .

The proof of the following theorem is easy and we leave it to the reader.

Theorem 10.4 (δ-decomposition) Let Γ be an access structure and consider
a δ–decomposition ph1, Φ1q, . . . , phN , ΦN q for it. Then, the followings hold:

(i) (Rational sub-access functions) Let p be a prime, Φj be rational and

σj P ΛppΦjq, for every j P rN s. Then σ “ 1
δ

řN
j“1 hjσj P ΛppΓ q.

(ii) (Total sub-access functions) Let Φj be total and σj P ΣpΦjq, for every

j P rN s. Then, σ “ 1
δ

řN
j“1 hjσj P ΣpΓ q.

11 Conclusion

We studied some questions about secret sharing schemes with respect to different
security notions. Some questions were answered but several ones remained open,
listed below.

1. The closures of Σt, Σs and Σqt-sets are all convex. What about the Σp and
Σsp-sets?
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2. Ignoring closures, the equalities ΣL
t “ ΣL

sp “ ΣL
p “ ΣL

qt hold. Do they hold
for any class larger than the linear one, L?

3. Ignoring closures, the equality ΣN0
s “ ΣN0

t holds, where N0 is the class
of group-characterizable schemes whose secret group is normal in the main
group? Does it hold for any larger class?

4. While statistical security implies the quasi-total security (and consequently
Σs Ď Σqt), the reverse implication does not necessarily hold true. However,
it remains open if their corresponding convec sets coincide, i.e., if Σqt “ Σs.

5. The class of group-characterizable schemes, G, are complete for quasi-total
security (i.e., ΣG

qt “ Σqt). Is this also true for other security notions?
6. The length-based and entropy-based definitions of information ratio coincide

for quasi-total security. What about other notions?
7. The Shannon lower bound on partial and total information ratio coincide. Do

they coincide for a larger class of information inequalities (e.g., by allowing
certain additional non-Shannon type information inequalities, along the lines
of [6, 38])?

8. Compute the abelian information ratio of access structure F`N with respect
to the total and quasi-total information security notions.

Acknowledgment. We would like to thank Reza Kaboli for his proof of The-
orem 7.10.
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Hungary, May 24-28, 1992, Proceedings. pp. 1–24 (1992), http://dx.doi.org/10.
1007/3-540-47555-9_1

12. Blundo, C., Santis, A.D., Vaccaro, U.: On secret sharing schemes. Inf. Process.
Lett. 65(1), 25–32 (1998), http://dx.doi.org/10.1016/S0020-0190(97)00194-4

13. Brickell, E.F., Stinson, D.R.: Some improved bounds on the information rate of
perfect secret sharing schemes. J. Cryptology 5(3), 153–166 (1992), http://dx.
doi.org/10.1007/BF02451112

14. Chan, T.H.: Group characterizable entropy functions. In: IEEE International Sym-
posium on Information Theory, ISIT 2007, Nice, France, June 24-29, 2007. pp.
506–510 (2007), https://doi.org/10.1109/ISIT.2007.4557275

15. Chan, T.H., Yeung, R.W.: On a relation between information inequalities and
group theory. IEEE Trans. Information Theory 48(7), 1992–1995 (2002), https:
//doi.org/10.1109/TIT.2002.1013138

16. Cover, T.M., Thomas, J.A.: Elements of information theory (2. ed.). Wiley (2006)
17. Csirmaz, L.: The size of a share must be large. J. Cryptology 10(4), 223–231 (1997),

https://doi.org/10.1007/s001459900029
18. van Dijk, M., Jackson, W., Martin, K.M.: A general decomposition construction

for incomplete secret sharing schemes. Des. Codes Cryptography 15(3), 301–321
(1998), https://doi.org/10.1023/A:1008381427667

19. van Dijk, M., Kevenaar, T.A.M., Schrijen, G.J., Tuyls, P.: Improved construc-
tions of secret sharing schemes by applying (lambda, omega)-decompositions. Inf.
Process. Lett. 99(4), 154–157 (2006). https://doi.org/10.1016/j.ipl.2006.01.016,
https://doi.org/10.1016/j.ipl.2006.01.016

20. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. Combina-
torial structures and their applications pp. 69–87 (1970)
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35. Mart́ı-Farré, J., Padró, C., Vázquez, L.: Optimal complexity of secret sharing
schemes with four minimal qualified subsets. Designs, Codes and Cryptography
61(2), 167–186 (2011)

36. Martin, K.M.: New secret sharing schemes from old. J. Combin. Math. Combin.
Comput 14, 65–77 (1993)
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of Lemma 4.3 is better in general, the difference is negligible (the maximum
happens at w “ m{2).

B Convexity of statistical convec sets

We need to take some care when proving the convexity of the statistical convec
set. The subtleties are due to the requirements of statistical secret sharing on
polynomial growth of the secret length and negligibility of the correctness and
privacy errors. First, we present some preliminaries before getting to the main
proof.

Definition B.1 (pϵ, δq-statistical scheme/family) Let Γ be an access struc-
ture on P and ϵ, δ be non-negative real numbers. We say that the scheme Π “

pSiqiPPYtp0u is an pϵ, δq-statistical scheme for Γ if the following two hold:

– (Statistical correctness) MREpS0|SAq ď ϵ, for every qualified set A P Γ ,

– (Statistical privacy) MCSDpSA|S0q ď δ, for every unqualified set B P Γ .

Now let ϵ, δ : N Ñ R be two functions. We say that a family F “ tΠkukPN
is an pϵ, δq–statistical family for Γ , if for every integer k the scheme Πk is an
`

ϵpkq, δpkq
˘

-statistical scheme for Γ .

The proof of the following lemma is an easy exercise and is left to the reader.

Notation B.2 (
Â

j Π
mj

j ) Let m be an integer. For secret sharing schemes
Π1, . . . ,Πm, where Πj “ pSpjqpPPYtp0u, notate Π1 b . . . b Πm “ pSpqpPPYtp0u,
where Sp “ pSp1, . . . ,Spmq for every p P P Y tp0u. We use the notation Πm for
the m-fold product Π b . . . b Π.

Lemma B.3 (Properties of
Â

j Π
mj

j ) Let Π1, . . . ,Πm be secret sharing scheme,
m1, . . . ,mk be positive integers, Γ be an access structure, F be a finite field and
p be a prime. Then:

1. If every Πj realizes Γ , then so does
Âm

j“1 Π
mj

j .

2. If every Πj is F-linear (resp. p-linear, abelian, or group-characterizable),
then so is

Âm
j“1 Π

mj

j .

3. If every Πj is linear, then
Âm

i“j Π
mj

j is abelian.

Lemma B.4 Let α, β be a real numbers with α P r0, 1s. Let αk “ tkαu{k and
βk “ tkβu{k for every integer k P N. Then, for every integer k ě 1{β,

ˇ

ˇ

αk

αk ` p1 ´ αkqβk{β
´ α

ˇ

ˇ ď p1 `
1

β
q
1

k
.

The inequality still holds if we replace βk{β with β{βk.
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Lemma B.5 (Convex combination lemma) Let α P r0, 1s be a real num-
ber and Π 1,Π2 be secret sharing schemes on participants set P . Denote the

secret random variables of Π 1 and Π2 by S
1

0 and S
2

0, respectively, and let β “

HpS
1

0q{HpS
2

0q.
Then, there exists a sequence tΠkukPN of secret sharing schemes such that:

1. Πk “
`

Π 1
˘m1pkq

b
`

Π2
˘m2pkq

, where m1,m2 : N Ñ N are respectively Opk2q

and Opβk2q functions,
2. For every integer k ě 1{β, it holds that

}cvpΠkq´αcvpΠ 1q´p1´αqcvpΠ2q} ď
`

|cvpΠ 1q|`|cvpΠ2q|
˘

p1`
1

β
q
1

k
. (B.1)

Proof. LetΠ 1 “
`

S
1

0

˘

pPPYtp0u
andΠ2 “

`

S
2

p

˘

pPPYtp0u
. Denote β “ HpS

1

0q{HpS
2

0q

and let tαku, tβku be two sequences of positive rational numbers respectively
converging to α and β. Let αk “ ck{dk and βk “ ek{fk where ck, dk, ek, fk are
positive integers. Define

Πk “
`

Sk
p

˘

pPPYtp0u
“

`

Π 1
˘m1pkq

b
`

Π2
˘m2pkq

,

where m1pkq “ fkck and m2pkq “ ekpdk ´ckq. For proving the claimed quadratic
orders of m1,m2 in Part 1, it is sufficient to choose

ck “ tkαu, ek “ tkβu, dk “ fk “ k ,

which proves Part (1).
For every A Ď P and p P P Y tp0u, by independence of the random variables,

we have:

HpSk
i q “ fkckHpS

1

iq ` ekpdk ´ ckqHpS
2

i q .

Therefore,

HpSk
pq

HpSk
0q

“
fkckHpS

1

pq ` ekpdk ´ ckqHpS
2

pq

fkckHpS
1

0q ` ekpdk ´ ckqHpS
2

0q

“
αk

αk ` p1 ´ αkqβk{β

HpS
1

pq

HpS
1

0q
`

p1 ´ αkq

αkβ{βk ` p1 ´ αkq

HpS
2

pq

HpS
2

0q
,

which can be compactly written as follows:

cvpΠkq “
αk

αk ` p1 ´ αkqβk{β
cvpΠ 1q `

p1 ´ αkq

αkβ{βk ` p1 ´ αkq
cvpΠ2q . (B.2)

Part 2 then follows by Lemma B.4. [\
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Proposition B.6 (Convexity of statistical convec sets) The statistical con-
vec set of any access structure Γ (i.e., ΣspΓ q) is a set with convex closure.

Proof. Let F 1 “ tΠ 1
jujPN and F2 “ tΠ2

j ujPN be, respectively, pϵ1, δ1q and pϵ2, δ2q–
statistical families for Γ , where ϵ1, δ1, ϵ2, δ2 are all negligible functions. We con-
struct a statistical family F for Γ with:

cvpFq “ αcvpF 1q ` p1 ´ αqcvpF2q .

Denote the secret random variables of Π 1
j and Π2

j by S
1

0,j and S
2

0,j , respec-

tively, and let βj “ HpS
1

0,jq{HpS
2

0,jq. For each j P N, plug in Π 1 “ Π 1
j and Π2 “

Π2
j in Lemma B.5. Let Πj,k “

`

Π 1
j

˘m1
jpkq

b
`

Π2
j

˘m2
j pkq

where m1
jpkq “ Opk2q

and m2
j pkq “ Opβjk

2q. Note that since the secret size of both Π 1
j and Π2

j grows
polynomially in j, so does βj . Without loss of generality we may assume that
βj “ Ωp1q.

By Part 2, for every integer k ě βj , it holds that

|cvpΠj,kq ´ αcvpΠ 1
jq ´ p1 ´ αqcvpΠ2

j q| ď
`

|cvpΠ 1
jq| ` |cvpΠ2

j q|
˘

p1 `
1

βj
q
1

k
.

We let F “ tΠj,βj ujPN (we ignore using βj instead of rβjs). The claim on the
convec of F is clear. Notice that the scheme Πj,βj is an

`

ϵpjq, δpjq
˘

-statistical
scheme for Γ with the following parameters:

`

ϵpjq, δpjq
˘

“
`

m1
jpβjqϵ1pjq ` m2

j pβjqϵ2pjq,m1
jpβjqδ1pjq ` m2

j pβjqδ2pjq
˘

.

Since βj ,m
1
jpβjq,m2

j pβjq all grow polynomially in j and ϵ1, δ1, ϵ2, δ2 are all
negligible functions, it follows that ϵ and δ are both negligible. It is also easy to
see that the secret length of Πj,βj grows polynomially in j. We conclude that
F “ tΠj,jujPN is a statistical family for Γ with the required convec. [\

C Abelian and linear secret sharing

Recall the definition of a group-characterizable scheme (Definition 9.1). A group-
characterizable scheme Π “ pG : G0, G1, . . . , Gnq is called abelian if its main
group G is abelian.

It is easy to show that (e.g., see [28]) every abelian scheme Π “ pG :
G0, G1, . . . , Gnq, with respect to this definition induces an abelian scheme Π 1 “

pG1;G1
0, G1, . . . , G

1
nq, with respect to the following definition, and vice versa,

with the same access function and convec.

Definition C.1 (Abelian scheme) A tuple Π “ pG;G0, G1, . . . , Gnq is called
an abelian secret sharing scheme if G is a finite abelian group, Gi is a subgroup
of G, for each i P rns, and |G0| ě 2. When there is no confusion, we simply
write Π “ pGiqiPPYt0u.
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Definition C.2 (Linear scheme) When T is a finite dimensional vector space
on some finite field and T0, T1, . . . , Tn are sup-spaces of T , the abelian secret
sharing scheme Π “ pT ;T0, T1, . . . , Tnq is called linear.

Table 2 shows the simplified access functions and convecs for different types
of schemes.

type Π ΦΠpAq cvpΠq notation

group
char.

pG : G0, G1, . . . , Gnq
log

`

|G|{|GA ˚ G0|
˘

log
`

|G|{|G0|
˘

´ log
`

|G|{|Gi|
˘

log
`

|G|{|G0|
˘

¯

iPrns
GA “

Ş

iPA Gi

abelian pG;G0, G1, . . . , Gnq
log |G0 X GA|

log |G0|

´ log |Gi|

log |G0|

¯

iPrns
GA “

ř

iPA Gi

linear pT ;T0, T1, . . . , Tnq
dimpT0 X TAq

dimpT0q

´ dimpTiq

dimpT0q

¯

iPrns
TA “

ř

iPA Ti

Table 2: The access function and convec of different scheme types.
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