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Abstract. In a secret sharing scheme, a secret value is encrypted into
several shares, which are distributed among corresponding participants.
It requires that only predefined subsets of participants can reconstruct
the secret with their shares. The general model for secret sharing schemes
is provided in different forms, in order to study the essential properties
of secret sharing schemes. Considering that it is difficult to directly con-
struct secret sharing schemes meeting the requirements of the general
model, most of current theoretic researches always rely on other mathe-
matical tools, such as matriod. However, these models can only handle
with values in a finite field. In this paper, we firstly establish a one-to-one
mapping relationship between Latin squares and 2-threshold secret shar-
ing schemes. Afterwards, we utilize properties of Latin squares to further
give an exact characterization for the general model of 2-threshold ideal
secret sharing schemes. Furthermore, several interesting properties of 2-
threshold ideal schemes are provided, which are not induced by any other
means, especially nolinear schemes in an arbitrary integer domain.

Keywords: Ideal secret sharing · 2-threshold secret sharing · Latin
square · Mutually orthogonal Latin squares.

1 Introduction

A secret sharing scheme consists of a dealer D, a finite set of t participants P and
a collection Γ ∈ 2P of subsets of these participants called the access structure. In
a secret sharing scheme for Γ , D encrypts the secret taken from a finite domain
K, denoted by α ∈ K into shares and distributes shares to the participants. In
the meanwhile, these shares must satisfy two conditions: a) any subset in Γ can
reconstruct α from its shares; b) any subset in 2P −Γ cannot reveal any informa-
tion of α in the information-theoretic sense. Schemes which strictly obey both
conditions are further named as perfect secret sharing schemes, and all secret
sharing schemes we talk in this paper are perfect by default. The first introduced
access structure, proposed by Blakley [3] and Shamir [14] independently, is a spe-
cial case, namely threshold access structure. Γ in k-threshold access structure
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is all the subsets whose cardinality is at least a certain threshold k, denoted by
Γ = {C ∈ 2P | |C| ≥ k}. Specially, the k-threshold scheme with t participants is
always referred as (k, t)-threshold scheme. Another significant aspect of secret
sharing scheme is domains of the secret and shares [1, 4]. Obviously, shares with
smaller size are more efficient for storage and transit. A secret sharing scheme
is ideal in which the domain of each share is equal to that of the secret, both
denoted by K. Capocelli et al. [7] pointed out that the domain of each share is
at least as large as that of the secret for all perfect secret sharing schemes.

The general model for secret sharing schemes is introduced by many re-
searchers in different forms [5, 16, 1]. Stinson [16] represented a secret sharing
scheme by a set F of distribution rules, each of which is a corresponding rela-
tionship between the secret and shares. The general model can be utilized to
represent all secret sharing schemes, and makes it easier to give definitions and
to present proofs. Since the set of distribution rules corresponding to a certain
secret sharing scheme is difficult to directly construct, there exist few or even
no theoretic researches or practical applications directly based on the general
model. Considering that the biggest challenge is to create a set of distribution
rules satisfying Γ in the specified domain of the secret and shares, it is a good
idea to look for mathematical tools equivalent to the general model.

Initially, Brickell and Davenport [5] introduced an abstract mathematical tool
- matroid to give a characterization of ideal secret sharing schemes in a finite field.
All monotone access structures of ideal secret sharing schemes can be represented
by matroids, and further each matroid, which can be representable over a finite
field, is corresponding to an ideal secret sharing scheme. However, researchers
still cannot provide a sufficient and necessary condition to relate all ideal secret
sharing schemes to matroids [2]. In the other hand, they only consider matriods
which are representable in the finite field, that is, in the domain |K| = qm,
where qm is a power of a prime. Therefore, they cannot determine whether
or not an ideal secret sharing scheme exists, if there is a connected matroid F
corresponding to Γ which is not representable over a given domain K. Otherwise,
this kind of ideal secret sharing schemes represented by matroids are linear
schemes, so that the nolinear schemes are not involved. As a result, matroids are
far from the general model.

In 1985, W. W. Wu [19] has shown in his book that all secret sharing schemes
known at that time can be described in terms of Reed-Solomon codes, and that
all of them are related to Latin squares. Since he only focused on discussing
the relationship between (2, 2)-threshold ideal secret sharing schemes and Latin
squares, Dénes and Keedwell [9] generalized his result to (2, t)-threshold schemes
with the help of mutually orthogonal Latin squares (MOLS). However, the men-
tioned (2, t)-threshold schemes in their theorem are only based on Karnin et
al.’s matrix-based linear threshold ideal schemes [12]. Afterwards, there exist few
or even no essential researches on the relationship between Latin squares and
threshold ideal secret sharing schemes. In recent years, secret sharing schemes
based on Latin squares are quite another thing [8, 18]: considering that it is
difficult to construct a complete Latin square from partial Latin squares, they
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distribute different partial Latin squares as shares to participants such that only
the partial Latin square constructed by shares from subsets in Γ can determine
the only complete Latin square. It is questionable whether this kind of schemes
are really perfect.

In this paper, we establish a one-to-one mapping between Latin squares and
2-threshold ideal secret sharing schemes, so Latin squares can be regarded as a
corresponding 2-threshold ideal schemes. Furthermore, we obtain some interest-
ing properties of the general model for 2-threshold ideal schemes.

In this paper, we aim to find a mathematical tool to analyze secret sharing
schemes from the view of the general model, by which related researches are not
limited to linear secret sharing schemes in the finite field. Our main contributions
are shown as follows:

1. A new form of the general model for secret sharing schemes, namely the
sharing map, is proposed in order to intuitively illustrate the characteristics
of secret sharing schemes. In addition, the sharing map is beneficial to an-
alyze the relationship of Latin squares and 2-threshold ideal secret sharing
schemes.

2. According to the sharing map, we prove the one-to-one correspondence be-
tween the Latin square and (2, 2)-threshold ideal secret sharing scheme, and
then generalize it to the equivalence between mutually orthogonal Latin
squares and (2, t)-threshold ideal secret sharing schemes. Especially, Latin
squares of order n can be utilized to study all 2-threshold ideal secret sharing
schemes, including both linear and nolinear schemes, in an arbitrary integer
domain,denoted by K = Zn.

3. We extend the properties of Latin squares to interesting characteristics of
2-threshold ideal secret sharing schemes, such as: a) the number of distinct
(2, 2)-threshold ideal secret sharing schemes in Zn, b) the maximum number
of participants in 2-threshold ideal secret sharing schemes in Zn. Especially,
when n is any integer rather than a power of a prime, these properties are
difficult to be studied by other means.

The rest of paper is organized as follows. In Section 2 we introduce the
basic knowledge of Latin squares, while Section 3 proposes a new form of the
general model for secret sharing schemes. The key problem, the equivalence
between Latin squares and 2-threshold ideal secret sharing schemes, are proved
in Section 4. Afterwards, we show some interesting extended properties of 2-
threshold ideal secret sharing schemes in Section 5. Section 6 concludes this
paper and provide our future work.

2 Latin Squares

Let n be a positive integer and let S be a set of n distinct elements. A formal
definition of the Latin square is given as follows: a Latin square of order n, based
on the set S, is an n×n array, each of whose entries is an element of S such that
each of the n elements of S occurs once in each row and once in each column.
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In other word, each of rows and columns of a Latin square is a permutation of
n elements of S. The actual nature of the elements of S is unimportant, so we
always take S to be Zn = {0, 1, · · · , n− 1}. Three examples of Latin squares of
order 2, 3, 4 are listed in Eq. (1).

[
0 1
1 0

]
,

0 1 2
1 2 0
2 0 1

 ,


0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

 . (1)

In Introductory Combinatorics [6], Brualdi provided another definition of the
Latin square from another view. Initially, two n×n arrays based on Zn, namely
Rn and Cn , are created as shown in Eq. (2).

Rn =


0 0 · · · 0
1 1 · · · 1
...

... · · ·
...

n− 1 n− 1 · · · n− 1

 , Cn =


0 1 · · · n− 1
0 1 · · · n− 1
...

... · · ·
...

0 1 · · · n− 1

 . (2)

An is also any n × n array based on Zn. Then, An is a Latin square if and
only if the following two conditions are satisfied:

(1) When the array Rn and An are juxtaposed to form an array Rn×An, each
of generated ordered pairs (Rn(i, j),An(i, j)) occurs exactly once.

(2) When the array Cn and An are juxtaposed to form an array Cn ×An, each
of generated ordered pairs (Cn(i, j),An(i, j)) occurs exactly once.

Therefore, there always exist n2 distinct ordered pairs inRn×An and Cn×An,
respectively. An example is given in Example 1.

Example 1 A Latin square of order 3 is provided to illustrate the foregoing
definition. Two groups are corresponding to Rn×An and Cn×An, respectively.0 0 0

1 1 1
2 2 2

×
0 1 2

1 2 0
2 0 1

→
(0, 0) (0, 1) (0, 2)

(1, 1) (1, 2) (1, 0)
(2, 2) (2, 0) (2, 1)

 .
0 1 2

0 1 2
0 1 2

×
0 1 2

1 2 0
2 0 1

→
(0, 0) (1, 1) (2, 2)

(0, 1) (1, 2) (2, 0)
(0, 2) (1, 0) (2, 1)

 .
The preceding idea can also apply to two Latin squares. Let A and B be n×n

Latin squares based on the integers in Zn. Then A and B are named orthogonal,
if in the juxtaposed A×B, each of ordered pairs (A(i, j),B(i, j)) occurs exactly
once. In other word, n2 possible ordered pairs of integers in Zn exist in A× B.
For example, two Latin squares of order 3 are orthogonal in Example 2.
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Example 2 Two orthogonal Latin squares of order 3.2 1 0
1 0 2
0 2 1

×
1 2 0

0 1 2
2 0 1

→
(2, 1) (1, 2) (0, 0)

(1, 0) (0, 1) (2, 2)
(0, 2) (2, 0) (1, 1)

 .
Furthermore, the notion of orthogonality from two Latin squares is easily

extended to any number of Latin squares. Let A1,A2, ...,Am be Latin squares of
order n. Then A1,A2, ...,Am are mutually orthogonal, provided that each pair
Ai,Aj , (i 6= j) of them is orthogonal. We refer to mutually orthogonal Latin
squares as MOLS.

3 The New Form of the General Model for Secret
Sharing Schemes

Instead of restricting researches in some specific secret sharing scheme, the gen-
eral model is beneficial to study the natural characteristics of secret sharing
system. Brickell and Davenport [5] firstly defined a secret sharing scheme to be
a finite matrix, and then proposed the tight relationship between ideal secret
sharing schemes and matriods. Afterwards, Stinson [16] regarded the general
model for secret sharing scheme as a collection of distribution rules and further
provided a formal definition of a perfect secret sharing scheme realizing the ac-
cess structure Γ . Unfortunately, the general model is only utilized as a formal
tool to give definitions and to present proofs, since it is difficult to construct,
store and transmit the collection of distribution rules according to the general
model.

In order to make definitions clearly, we redefine a new form of the general
model for secret sharing schemes as a sharing map, denoted byM, in which each
row consists of a secret and all corresponding ordered arrays of shares. Since we
talk about ideal secret sharing schemes, the set of secret elements is equivalent
to that of share elements, denoted by K.

Let P be the set of participants, each of which is marked with a serial number,
denoted by P = {p1, · · · , p|P |}. We use an ordered array of |P | shares to represent
shares of participants, denoted by g = (β1, · · · , β|P |), βi ∈ K. Let A ⊆ P . Then
the ordered array g(A) is the set of shares of participants in A, e.g., assuming
that A = {pa1 , · · · , pa|A|} and a1 < · · · < a|A|, then g(A) = (βa1 , · · · , βa|A|). We
put the secret, α ∈ K, and the corresponding set of all possible ordered arrays
of shares, denoted by Gα in the same row of M.

For sharing a secret α ∈ K, the dealer just needs to locate the row r indexed
by α in M, to choose an ordered array of shares gα ∈ Gα using the uniform
distribution, and to assign each share βi to the corresponding participant pi. We
assume that M is public knowledge, but the dealer’s choice for gα is private.

Let A ⊆ P . After distribution above, each participant pai ∈ A receives a
share βai . For recovery, they pool their shares together to create an ordered
array by their serial numbers, denoted as d(A) = (βa1 , · · · , βa|A|). Let Gα(A) =
{g(A)|g ∈ Gα}, that is, Gα(A) is the set of distinct ordered array of shares
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restricted to participants of A. It is now easy to define the access structure Γ .
A subset A ⊆ P is in Γ , if and only if there exists only one secret α such that
d(A) ∈ Gα(A). That is, the secret is determined with shares of participants in
A.

Let H(Gα, d(A)) = {g ∈ Gα|g(A) = d(A)}. We define that A ⊆ 2P − Γ , if
for all secrets α ∈ K, there is an integer γ such that |H(Gα, d(A))| = γ. That
is, there are the same number of order arrays in Gα for all α ∈ K, each of
which satisfies the constraint from d(A). Therefore, no secret information will
be revealed with shares of participants in A.

For example, the sharing map of (2, 2)-threshold secret sharing scheme in Z3

is shown as follows.

Example 3 A sharing map of a (2, 2)-threshold secret sharing scheme in K =
Z3 is given as follows.

α Gα

0 (0, 0), (1, 1), (2, 2)

1 (0, 1), (1, 2), (2, 0)

2 (0, 2), (1, 0), (2, 1)

In Example 3, when we collect any one of share, such as β1 or β2, there
always exists an ordered pair in each row. Therefore, nothing secret is deduced
with single one share. With the ordered array of two shares, we can exactly
locate it in the map and determine the secret.

As mentioned in Section 2, it is noticeable that the sharing map of (2, 2)-
threshold ideal secret sharing scheme seems quite similar to the juxtaposed ma-
trix by C3 and a Latin square A3, denoted by C3 × A3. Based on the proposed
general model, we can easily relate Latin squares with (2, 2)-threshold ideal se-
cret sharing schemes. Firstly, we provide a theorem about the sufficient and
necessary condition of (2, 2)-threshold ideal secret sharing schemes based on the
new model.

Theorem 1. A sharing map for a (2, 2)-threshold ideal secret sharing scheme
satisfies the following two conditions:

(C1) The share of each participant corresponding to each secret, denoted by βαi ,
follows a uniform distribution in K.

(C2) All ordered pairs of shares in M are distinct.

Proof. Denote the probability of the event A be Pr[A]. The condition (C1)
means that, for all β ∈ K, Pr[βαi = β] = 1

|K| , i ∈ {1, 2}. That is, the probability

that the recovered integer is any integer in K with single one share is the same,
denoted by Pr[α′ = α | β] = Pr[βαi = β] = 1

|K| , (α ∈ K). The attacker cannot
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deduce any secret information from only one share. In addition, the condition
(C1) implies that the number of ordered arrays corresponding to each secret
value is the integer multiple of |K|, symbolically, |Gα(P )| = |K| × i (α ∈ K, i ∈
Z+).

The condition (C2) is relatively straightforward: the original secret can be
located accurately by any ordered pair. In this condition, we do not consider
the possible duplicates of ordered arrays in the same row due to no essential
influence on schemes. Combining (C2) with (C1), it is deduced that each of
|K|2 ordered pairs occurs exactly once in M, and furthermore there exist total
|K| ordered pairs of shares in each row. Symbolically, for α ∈ K, |Gα(P )| = |K|
and |

⋃
α∈KG

α(P )| = |K|2.
In summary, two conditions above are necessary and sufficient for a sharing

map of a (2, 2)-threshold ideal secret sharing scheme.

4 The One-to-one Mapping between Latin Squares and
2-threshold Ideal Secret Sharing Schemes

According to Theorem 1, we prove the equivalence between Latin squares and
(2, 2)-threshold ideal secret sharing schemes. Furthermore, the one-to-one rela-
tionship between mutually orthogonal Latin squares and 2-threshold ideal secret
sharing scheme is also proved.

4.1 Latin Squares and (2, 2)-threshold Ideal Secret Sharing Schemes

Considering the sharing map is equivalent to an implementation of a (2, 2)-
threshold ideal secret sharing scheme, our primary goal is equivalent to prove
the equivalence between Latin squares and sharing maps.

Lemma 1. Given a Latin square of ordered n, denoted by An, there exists a
(2, 2)-threshold ideal secret sharing scheme for K = Zn.

Proof. Based onAn, we can easily construct the sharing map of a (2, 2)-threshold
ideal secret sharing scheme by the following steps:

1. Create a n×n array Cn with the same integer in each column, just as shown
in Section 2.

2. Juxtapose Cn and An to form Cn ×An.
3. Use the row number r as the secret α, and use the set of n ordered pairs in

row r as the corresponding set of shares Gα. As a result, a sharing mapMn

is generated.

Obviously, M satisfies two conditions in Theorem 1, so it is regarded as an im-
plementation of a (2, 2)-threshold ideal secret sharing. Therefore, it is concluded
that a Latin square is sufficient to construct a corresponding (2, 2)-threshold
ideal secret sharing scheme.
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Lemma 2. Given a (2, 2)-threshold ideal secret sharing scheme for K = Zn,
there exists a corresponding Latin square of order n An.

Proof. Based on a (2, 2)-threshold ideal secret sharing scheme for K = Zn, we
can create a corresponding sharing mapMn. Furthermore, we can easily obtain
a Latin square An in the following steps:

1. We extract all Gα, α ∈ K from Mn, to construct a n× n array, denoted by
AM .

2. For each row in AM , sort the ordered arrays by the first share β1 from 0 to
n− 1, then we obtain a sorted sharing map, denoted by AM .

Remark 1. In a secret sharing scheme, the order of ordered pairs in Gα is
arbitrary, so AM is equivalent to AM in essence.

3. Pick shares of the second participant p2 from each ordered pair, and put
each of them to the same position in a new n × n array, namely Ap2n . As a
result, a square is generated.

Since all ordered pairs are distinct and the first share in the same column of
AM is the same, the second share in the same column of AM must be distinct.
According to Theorem 1, the second share in each row of AM also follows a
uniform distribution. It is concluded that the square Ap2n is a Latin square.

As a result, example 4 is provided to illustrate the corresponding relation of
a Latin square and a (2, 2)-threshold ideal secret sharing scheme.

Example 4 Given a sharing map of (2, 2)-threshold ideal secret sharing scheme
in Z4 as shown in Table 1.

Table 1. The sharing map of a (2, 2)-threshold ideal secret sharing scheme in Z4.

α Gα

0 (1, 1), (3, 3), (0, 0), (2, 2)

1 (3, 0), (1, 2), (2, 3), (0, 1)

2 (1, 3), (0, 2), (2, 0), (3, 1)

3 (0, 3), (1, 0), (3, 2), (2, 1)

It is converted into a Latin square as shown in Eq. (3). Firstly, we extract all
Gα, α ∈ K from Mn to construct AM , then sort AM by β1 in order to generate
AM , and finally pick out β2 to construct the n×n array as the Latin square Ap2n .
In turn, the given sharing map also can be constructed from the Latin square Ap2n .


(1, 1) (3, 3) (0, 0) (2, 2)
(3, 0) (1, 2) (2, 3) (0, 1)
(1, 3) (0, 2) (2, 0) (3, 1)
(0, 3) (1, 0) (3, 2) (2, 1)

⇔


(0, 0) (1, 1) (2, 2) (3, 3)
(0, 1) (1, 2) (2, 3) (3, 0)
(0, 2) (1, 3) (2, 0) (3, 1)
(0, 3) (1, 0) (2, 1) (3, 2)

⇔


0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

 . (3)
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According to two lemmas above, we can easily assert that a Latin square is
equivalent to an implementation of a (2, 2)-threshold ideal secret sharing scheme,
that is Theorem 2. However, we give the essential proof of Theorem 2, to prove
their necessary and sufficient conditions are equivalent.

Theorem 2. There is a one-to-one mapping between a Latin square of order n
and a (2, 2)-threshold secret sharing scheme for K = Zn.

Proof. A Latin square of order n An is a n× n array, which satisfies that:

(L1) Each element in Zn occurs exactly once in each row of An.
(L2) Each element in Zn occurs exactly once in each column of An.

Reviewing Theorem 1, the condition (C1) means that, for the second share,
each element in Zn occurs exactly once for all secrets α ∈ K. That is, (L1) can
be deduced from (C1).

In the other hand, considering the n × n array MG after sorted by β1, for
the second share, each element in Zn also occurs exactly once in each column.
Considering that (C2) requires that each ordered pair are distinct, so all the
items corresponding to β2 in the same column must be different due to the same
item corresponding to β1.

It is concluded that two essential conditions of a Latin square are equivalent
to those of a (2, 2)-threshold ideal secret sharing scheme. Theorem 2 now follows.

4.2 Mutually Orthogonal Latin Squares and 2-threshold Ideal
Secret Sharing Schemes

Based on Theorem 2, the following equivalence between MOLS and 2-threshold
ideal secret sharing scheme is easier to prove. However, the maximum number
of Latin squares in MOLS is limited by order n, denoted by L(n). Similarly, the
maximum number of participants in 2-threshold ideal scheme, denoted by m, is
also limited by n, and it is proved in this section that m = L(n) + 1.

Lemma 3. Let MOLSmn be mutually orthogonal Latin squares of order n, which
consist of m Latin squares, m ≤ L(n). Then there exists a (2,m + 1)-threshold
ideal secret sharing scheme corresponding to MOLSmn .

Proof. Obviously, the definition of MOLS means that a distinct (2, 2)-threshold
ideal secret sharing scheme is constructed based on each pair of Latin squares
in MOLS, denoted by Ain and Ajn, i 6= j: juxtapose Ain and Ajn to form an array
Ain ×Ajn, and pick up the ordered pairs in each row α ∈ Zn of Ain ×Ajn as the
corresponding set Gα in the sharing map Mn. Mn is an implementation of a
(2, 2)-threshold ideal secret sharing scheme. We can deduce no secret information
from one share, but the original secret is exactly determined by the ordered pair
of two shares. Therefore, the MOLS with m ≤ L(n) Latin squares is equivalent
to a (2,m)-threshold secret sharing scheme.

Reviewing Theorem 2, Cn and any Latin square An can be used to create a
sharing map Mn. Therefore, a (2,m+ 1)-threshold ideal secret sharing scheme
can be created based on Cn and m ≤ L(n) mutually orthogonal Latin squares.
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Lemma 4. If m > L(n), there does not exist any (2,m + 1)-threshold ideal
secret sharing scheme.

Proof. Assuming there exists a (2,m+ 1)-threshold ideal secret sharing scheme
for K = Zn, when m > L(n). The (2,m + 1)-threshold ideal secret sharing
scheme consists of

(
m+1
2

)
(2, 2)-threshold ideal secret sharing schemes, and each

participant pi ∈ P participates m (2, 2)-threshold ideal secret sharing schemes.
We choose m (2, 2)-threshold ideal secret sharing schemes with p1, and sort the
sharing map of each schemes by β1. As a result, we obtain m distinct Latin
squares. Since m distinct Latin squares is sufficient to create a (2,m)-threshold
ideal secret sharing scheme, they must be mutually orthogonal. Therefore, there
must be m mutually orthogonal Latin squares, m > L(n). It contradicts that
the maximum number of MOLS is L(n). Therefore, Lemma 4 now follows.

Based on Lemma 3 and Lemma 4, the equivalence between MOLSmn and
(2,m + 1)-threshold ideal secret sharing scheme is obvious, so Theorem 3 is
provided as follows.

Theorem 3. There is a one-to-one mapping between MOLSmn of order n with
m Latin squares and a (2,m + 1)-threshold secret sharing scheme in K, where
|K| = n for any integer n.

According to Theorem 3, every 2-threshold ideal secret sharing schemes in
any finite integer domain can be uniquely represented by MOLS. In compari-
son with previous ideal schemes restricted in the finite field, future researches
based on Latin squares of order n will produce more interesting properties of
2-threshold ideal schemes.

5 Novel Properties of 2-threshold Ideal Schemes

After proofs of equivalences, we can utilize related researches on Latin squares
to extend the characteristics of 2-threshold ideal secret sharing schemes. In this
section, we focus on providing some properties of 2-threshold ideal schemes for
K = Zn is any finite integer domain, rather than only a finite field. Finally, some
extensions are provided to illustrate the possible generalization to k-threshold
ideal scheme, and some open questions of 2-threshold ideal schemes are also
given.

5.1 How Many Distinct (2, 2)-threshold Ideal Schemes in Zn?

The number of Latin squares of order n is related with n, denoted as N (n). One
classic result of N is that [15]:

n∏
i=1

(i!)n/i ≥ N (n) ≥ (n!)2n

nn2 .

In Table 2 (from the sequence A002860 in the OEIS), it can be seen thatN (n)
grows extremely quickly with n increasing. Furthermore, the accurate number
of N (n) is not easily provided when n ≥ 12.
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Table 2. The number of Latin squares of order n (n ∈ [1, 12])

n N (n)

1 1

2 2

3 12

4 576

5 161,280

6 812,851,200

7 61,479,419,904,000

8 108,776,032,459,082,956,800

9 5,524,751,496,156,892,842,531,225,600

10 9,982,437,658,213,039,871,725,064,756,920,320,000

11 776,966,836,171,770,144,107,444,346,734,230,682,311,065,600,000

12 · · ·

Because the equivalence between a Latin square and a (2, 2)-threshold ideal
secret sharing scheme, we make a conclusion about the number of (2, 2)-threshold
ideal secret sharing schemes in Zn in Theorem 4.

Theorem 4. The number of (2, 2)-threshold ideal secret sharing schemes in Zn
is equal to the number of Latin squares of order n, denoted by N (n).

Proof. In Theorem 2, it is proved that each of Latin squares of order n has a
corresponding (2, 2)-threshold ideal secret sharing schemes in Zn. Therefore, the
number of them is equal.

Theorem 4 can be utilized to judge whether a so-called general construction
of (2, 2)-threshold ideal schemes is just a special subset of all schemes repre-
sentable by the proposed general model. In the other hand, the sharing map
of a secret sharing scheme is always public in classic applications. Since there
exist innumerable schemes when n is large, sharing maps of (2, 2)-threshold ideal
schemes also can be kept private as the key for the dealer or the leader. Without
the private sharing map, the secret is difficult to crack even if two shares are
intercepted by attacker.

5.2 The Maximum Number of Participants in 2-threshold Ideal
Schemes?

In 1983, Karnin et al. [12] provided a theorem for the maximum number of par-
ticipants in k-threshold ideal secret sharing schemes for Zn, denoted by S(n, k),
as shown in Theorem 5.

Theorem 5. [12] Given the number of all elements is a power of a prime, de-
noted by K = Zqm . The maximum number of participants of k-threshold ideal
secret sharing scheme is:
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qm ≤ S(qm, k) ≤ qm + k − 2, qm > k, (4)

However, Theorem 5 is only restricted in threshold schemes in a Galois field
GF(qm), qm is a power of a prime. In the more general situation, let n be
a positive integer rather than qm, and K = Zn. S(n, k) can not be solved by
Karnin et al.’s theorem. Since there are some results about the maximum number
of MOLS of order n, denoted by W(n), we can easily induce that S(n, 2) =
W(n) + 1, as proved in Theorem 3.

Let n ≥ 2 and n = qm. It is known that W(n) = qm − 1 [6]. Therefore, we
obtain the same result as Theorem 5.

Theorem 6. Let n ≥ 2 and n = qm. The maximum number of participants of
2-threshold ideal secret sharing schemes is qm, denoted as

S(qm, 2) = qm.

It is known that W(n) ≤ n − 1 for all n ∈ Z+ [6]. Therefore, Theorem 7 is
provided to give the upper bound of S(n, 2).

Theorem 7. Let K = Zn. The number of participants in 2-threshold ideal secret
sharing schemes is less than n, denoted as

S(n, 2) ≤ n.

Let n ≥ 2 be an integer and let n = pe11 × p
e2
2 × · · · × p

ek
k be the factorization

of n into distinct prime numbers p1, p2, · · · , pk. Then, W(n) ≥ min{peii − 1 : i =
1, 2, · · · , k} [6]. Based on this conclusion, Theorem 8 is given as follows.

Theorem 8. Let n ≥ 2 and n = pe11 × p
e2
2 × · · · × p

ek
k be the factorization of

n into distinct prime numbers p1, p2, · · · , pk. Then, the maximum number of
participants in 2-threshold ideal secret sharing schemes is greater than min{peii :
i = 1, 2, · · · , k}, denoted as

S(n, 2) ≥ min{peii : i = 1, 2, · · · , k}.

Although it is quite difficult to compute the accurate value of W(n) when n
is not a power of a prime, there exists at least a pair of MOLS when n 6= 2 and 6.
When n = 2 or 6, it is proved that there does not exist any MOLS [6]. Therefore,
Theorem 9 is provided to describe the existence of (2, 3)-threshold ideal secret
sharing scheme.

Theorem 9. Let n ∈ Z+ and n 6= 2 and 6. There exist (2, 3)-threshold ideal
secret sharing schemes for Zn.

In 1994, Beimel and Chor introduced an interesting concept, named univer-
sally ideal access structure, which relates the access structure Γ with the finite
domain K. An access structure is universally ideal if there exists an ideal secret
sharing scheme for it over any finite domain of secrets. A sufficient and necessary
condition of an universally ideal access structure is to be ideal over the binary
and ternary domains of secrets. According to Theorem 9, we can easily come to
Corollary 1.
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Corollary 1. Only (2, 2)-threshold out of 2-threshold access structure is univer-
sally ideal.

In this paper, we just collect a little part of properties of Latin squares and
MOLS, and convert them into the corresponding theorems of 2-threshold ideal
schemes. With the help of the proven equivalence, we are able to induce more
valuable properties from existing researches of Latin squares.

5.3 Extensions and Open Questions

There are a few generalization of the concept of a Latin square to the multi-
dimensional case. Similarly, a k-dimensional Latin square of order n, denoted by
Akn = ||ai1···ik ||, is a k-dimensional matrix of order n including the first n natural
numbers, which is such that for any j the set of n items is the permutation of
the first n natural numbers, denoted by

ai1···ij−11ij+1···ik , ai1···ij−12ij+1···ik , · · · , ai1···ij−1nij+1···ik .

If Akn exists, can we relate Akn to a (k, k)-threshold secret sharing scheme in
Zn. That is, the equivalence between m-dimensional Latin square of order n and
(k, k)-threshold secret sharing scheme in Zn needs to be proven. Furthermore, it
is a question whether the concept of k-dimensional MOLS of order n still exists. If
it exists, how about the one-to-one mapping relationship between k-dimensional
MOLS of order n and k-threshold ideal schemes in Zn. External direct products
may be utilized to realize the extension to k-threshold ideal schemes [10].

In spite of many valuable researches on Latin squares [15, 13, 17, 11], there
are still many open questions, especially with large order n, including: a) the
exact number of Latin squares of order n; b) the exact maximum number of
Latin squares in MOLS of order n. Since there do not exist deterministic com-
putational formulas for them, it is difficult to further find exact solutions of the
corresponding problems in 2-threshold ideal schemes, especially for any K = Zn,
which is not a finite field.

6 Conclusion

In this paper, the essential equivalence between Latin squares and 2-threshold
ideal secret sharing schemes is introduced and proved. With the help of related
researches on Latin squares, we can better understand the general model for
2-threshold ideal secret sharing schemes, and further deduce two categories of
properties of 2-threshold ideal secret sharing schemes in any finite integer do-
main, such as a) the number of distinct (2, 2)-threshold ideal schemes, b) the
maximum number of participants in 2-threshold ideal schemes. In the mean-
while, we realize that it is difficult to solve some problems of the general model
for secret sharing schemes, because there still exist many open questions about
Latin squares. Our future work is to further extend properties of threshold ideal
secret sharing schemes based on the existing knowledge of Latin squares.
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