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Abstract. The pairing-based simulation-extractable succinct non-interactive
arguments of knowledge (SE-SNARKs) are attractive since they enable
a prover to generate a proof with the knowledge of the witness to an
instance in a manner which is succinct - proofs are short and the ver-
ifier’s computation is small, zero-knowledge - proofs do not reveal the
witness, and simulation-extractable - it is only possible to prove in-
stances to which a witness is known although a number of simulated
proofs are provided. The state-of-the-art pairing-based SE-SNARK is
based on a square arithmetic program (SAP), instead of a more gener-
alized quadratic arithmetic program (QAP). In order to add simulation
extractability, the SE-SNARK requires to verify an additional equation
compared to the state-of-the-art SNARKs.

In this paper, we propose a QAP-based SE-SNARK which consists of
only 3 group elements for a QAP circuit and a single verification equation
in asymmetric groups (Type III pairing). The proposed scheme is secure
under concrete intractability assumptions in the random oracle model.
Moreover, we propose a scheme with two elements as a proof and a single
verifying equation, based on SAP in a symmetric group (Type I pairing).

Keywords: SNARK, non-interactive zero-knowledge proof, simulation-extractability,
quadratic arithmetic program, square arithmetic program

1 Introduction

As digital privacy becomes more sensitive, the conflict between privacy and le-
gitimacy often sets a barrier for recent real-life applications. One proper example
is privacy-aware blockchain systems, such as an anonymous voting blockchain.
Since the blockchain is well-known to provide robust integrity due to consensus
and distribution, it is often considered as an ideal platform for the voting appli-
cations. The blockchain integrity provided by finalizing contents and distributing
them to all participants, however, raises a privacy issue for the plain data. Al-
ternatively, if the data (votes) is encrypted in a block, then it is hard to know
whether the data provider (voter) is an authorized candidate or whether the
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data itself was created in a legitimate way. The contradiction between privacy
vs. legitimacy leads the privacy-aware blockchain applications to a dead-end3.

A zero-knowledge proof system acts as a problem-solver to resolve the legit-
imacy problem of the private data. If the data provider includes a proof related
to the legitimacy of the data, the public can verify it without knowing the data.
In practice, anonymous blockchain cryptocurrencies such as Zcash [BCG+14],
already deploy the zero-knowledge proof system in their applications. The main
concern is practicality: the proof generation needs to be non-interactive when
the applications target the unlimited, non-specific, public verification and the
proof size/verification time is desired to be scalable regardless of the complexity
of the legitimacy.

In the recent history of zero-knowledge proofs, zk-SNARKs (zero-knowledge
succinct non-interactive arguments of knowledge) have drawn significant atten-
tion for its practicality and theoretical advances. They enable a prover to gen-
erate a proof for NP statements in a manner where the proof is zero-knowledge
about its witness and the proof size and the verification cost are succinct.
For succinctness, it is often accepted if the size and the verifying computation
are logarithmic to the circuit size. Thus the zk-SNARK terminology embraces
various types of zero-knowledge proof systems, such as ZKBoo [GMO16] and
vRAM [ZGK+18] which are an advanced from of traditional interaction-based
proof systems with Fiat-Shamir transformation [FS86].

However, when applied to a massive public infrastructure such as blockchain,
a logarithmic (sublinear) size might not be enough for succinctness. For example
in Zcash [BCG+14], the membership test circuit has 64 hash functions (approx-
imately 29,000 lines for each hash) which leads to a single proof size of 5MB by
rough estimation in ZKBoo [GMO16]4. Considering that innumerable transac-
tions, each including a proof are distributed to the participants, a proof size of
5MB seems inadmissible as practical.

Therefore, for scalability, it is desirable to adopt zk-SNARKs with a constant
size proof and verification, which is constructed in the paring-based elliptic curve
group and Quadratic Arithmetic Program (QAP) [GGPR13]. In the QAP-based
SNARKs such as [Gro16], by utilizing polynomial relations, a proof contains 3
group elements and the verification requires 3 pairings regardless of the circuit
size. When this scheme is applied to the Zcash, the proof size becomes 60 bytes
and verification takes 100ms. Consequently, we focus on the literature of QAP-
based (and pairing-based) zk-SNARKs with constant size proofs and verification
for the rest of the paper. Hereafter, we often use the term zk-SNARK or SNARK
mixed with the ”QAP-based (and pairing-based) zk-SNARK”.

3 There still are alternative solutions, such as setting a trusted manager or delicately
narrowing down the blockchain data contents. However it is often complicated and
does not solve the fundamental controversy.

4 In ZKBoo, the experiment results show that the proof size is 835.91KB for a SHA-
256 hash function. We multiply it by 6 (=log(64)) to estimate the 64 sequential
executions of hash functions.
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Simulation-extractability. Despite the practical functionality, a weakness of
zk-SNARKs is that they are susceptible to man-in-the-middle attacks. Namely,
an adversary who obtains valid proofs could forge a new valid proof without
knowing the witness. In consequence, the zk-SNARK’s implementation often re-
quires an additional protection method against its malleability. The Zcash [BCG+14],
for example, combines one-time signatures within the zk-SNARK circuit.

Groth and Maller [GM17] tackle the malleability problem of existing SNARKs,
define the notion of simulation-extractable-SNARK (SE-SNARK) which indi-
cates non-malleable zk-SNARKs, and propose the corresponding scheme called
SE-SNARK. Briefly, it is possible to generate a new valid proof by performing
point exponentiation and/or multiplication operations given a state-of-the-art
SNARK [Gro16] proof which consists of three group elements (A,B,C) such

that e(A,B) = e(Gα, Hβ) e(G
f(φ)
γ , Hγ) e(C,Hδ). Note that f in the IO state-

ment φ is a known polynomial and α, β, γ, δ are secret values. Without knowing
the witness, the proof modification is possible in two ways as follows:

A′ = Ar;B′ = B
1
r ;C ′ = C

A′ = A;B′ = BHrδ;C ′ = ArC

Note that A = Ga (in group G1), and B = Hb (in group G2) are associated
with the left input a and right input b of a multiplication gate, respectively, and
C = Gc (in G1) is connected with the output c of the gate. Let us simplify the
verification equation for a better delivery of the idea: the verification confirms
the relation a· b = c by evaluating the pairing equation e(A,B) = e(C,H). When
observing these attacks, it is either driven by modifying a, b to satisfy a·r·b·r−1 =
c, or modifying b, c to satisfy a · (b + r) = c + ar. The attacks that adversaries
can deliver are to eliminate the random values r, r−1 by multiplication (r · r−1),
or to add r to elements b and c.

The main reason which makes these attacks possible is that the proof ele-
ments (A,B,C) are related only by the algebraic structure of the pairing func-
tion. Thus to prevent these attacks, it is recommended to bind the elements to
have a tighter relation. Square arithmetic program (SAP) is a circuit where an
arithmetic representation is in a square format, i.e., a ∗ a = c, while a ∗ b = c in
QAP. SE-SNARK [GM17] resolves the malleability issue by 1) adopting SAP to
synchronize the exponent of A = Ga and B = Ha′ , and 2) applying an additional
verification to check them (i.e. a = a′). In this format, the above man-in-the-
middle attack based on eliminations by point exponentiation or multiplication
does not work anymore because the exponents of A and B should keep the same
value. This is why the supported language in [GM17] is degraded into a Squaring
Arithmetic Program (SAP) where the left input and the right input of a mul-
tiplication gate are identical. In order to accomplish non-malleability, [GM17]
pays a price: an increase in CRS size and proof computation/verification.

SNARK in NILP. In the recent works [Gro16,GM17], the authors attuned
existing SNARKs to the non-interactive linear proofs (NILP), renamed after
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the original notion of linear interactive proofs (LIP) [BCI+13]. In the NILP
frame, the proof matrix is a matrix that includes a witness-related vectors; the
matrix is multiplied to the common reference string (CRS) when generating
a proof. The proof matrix is independent of the CRS σ, and it is noted as
Π ← ProofMatrix(R,φ,w) with a function ProofMatrix where R is an relation
and (φ,w) ∈ R is an instance. The proof is then computed by π = Πσ. The
NILP frame efficiently covers all existing SNARKs.

It is proven that any SE-SNARK scheme in NILP necessarily requires at least
3 elements in a proof and 2 equations in the verification [GM17]. The state-of-
the-art [GM17] in pairing-based SE-SNARKs achieves 3 elements for a proof
and 2 equations for verification by using the SAP circuit.

Breaking the boundary. While 3 elements in a proof and 2 equations in
verification are required at least in a pairing-based NILP SE-SNARK, they can
be further optimized if the NILP is not assumed. An interesting observation is
that the usage of hash functions can deviate from the NILP frame, and exploit a
new possibility of breaking the existing boundaries. Given a proof tuple (A,B,C)
as in [Gro16], C includes the hash of A and B in our approach, deviating from
the NILP frame. In this approach, it is possible to achieve better results of 3
proof elements and a single verifying equation. Additionally, a QAP circuit is
allowed in our SE-SNARK while a SAP circuit is necessary in [GM17].

Our contributions. In this paper, we first construct a QAP-based SE-SNARK
with a single verifying equation in an asymmetric group (Type III pairing).
Given three groups with a bilinear map e : G1 × G2 → GT , our proofs consists
of only 3 group elements from the source groups: two from G1 and one from
G2. Additionally, we also propose a SAP-based SE-SNARK with 2 elements for
a proof and a single verifying equation, in a symmetric group (Type I pairing).
We summarize our contributions as follows:

– QAP-based SE-SNARK with 3 elements (Type III)
We propose a first pairing-based SE-SNARK that utilizes QAP circuits, in-
stead of SAP, while maintaining 3 elements for a proof. Note that the SAP
circuit size is theoretically double of the QAP circuit size.

– SAP-based SE-SNARK with 2 elements (Type I)
We show that our construction can reduce the number of proof elements to
2 (with utilizing SAP) in symmetric pairing (Type I). Note that this result
surpasses the theoretical boundary for SE-SNARKs proven in [GM17].

– Single verifying equation
Our SE-SNARK construction verifies the proof with a single verifying equa-
tion. By utilizing the hash function to bind the unique proof tuple (A,B,C),
we eliminate the additional equation for the malleability check.
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Table 1 summarizes and compares the overall size and performance of our
QAP-based SE-SNARK with the state-of-the-art schemes of zk-SNARK [Gro16]
and SE-SNARK [GM17].

Table 1: Comparison for arithmetic circuit satisfiability with l element instance, m
wires, n multiplication gates. Since SE-SNARK uses squaring gates, 2n squaring gates
and 2m wires are considered instead of n multiplication gates and m wires; Units: G
stands for group elements, E stands for exponentiations and P stands for pairings.

zk-
SNARK [Gro16]

SE-
SNARK [GM17]

Our SE-SNARK

Circuit base QAP SAP QAP

CRS size
(m+2n+3)G1 + (n+
3)G2

(2m + 4n + 5)G1 +
(2n + 3)G2

(m+3n+6)G1 + (n+
3)G2

Proof size 2G1 + G2 2G1 + G2 2G1 + G2

Prover computation
(m + 3n− l + 3)E1 +
(n + 1)E2

(2m + 4n − l)E1 +
2nE2

(m + 4n− l + 3)E1 +
(n + 1)E2

Verifier computation lE1 + 3P lE1 + 5P lE1 + 3P

Verifying equation 1 2 1

Related work. In the history of proof systems and verifiable computations,
there are various NIZK arguments with different types which do not leverage
QSP (Quadratic Span Program) or QAP (Quadratic Arithmetic Program) cir-
cuits [GKR08,CMT12,WJB+17,WTTW18,BBB+18,ZGK+18,BSCTV14]. A well-
known branch comes from the sum-check protocol [GKR08], which gains a sub-
linear proof from the fiat-shamir transform [FS86]. Nonetheless, they do not
support the constant time verification; the verification time is sublinear to the
size of the circuits.

Since Gennaro et al. [GGPR13] introduced the Quadratic Span Program(QSP)
and Quadratic Arithmetic Program(QAP), zk-SNARK gained a constant proof
size and verification. In 2013, Parno et al. [PHGR13] proposed a zk-SNARK
scheme called Pinocchio and provided a first practical implementation of zk-
SNARK. After Pinocchio, many works added and enhanced some functional-
ities, such as multiple-function control, additional anonymity for the I/O, or
proof scalability [CFH+15,DLFKP16,KPP+14,FFG+16,BBFR15,BSCTV17].

Later, Groth [Gro16] proposed a more efficient zk-SNARK scheme. Compared
with Pinocchio [PHGR13], the proof size was reduced from 8 group elements to
3 group elements. Also the number of pairing operations required to verify the
proof was reduced from 11 to 3. Recently these SNARK protocols are imple-
mented as an open source [KPS18,BSCG+13] to be used in real applications.
By exploiting the short proof sizes and the short verification times, zk-SNARKs
can be used as a key component in various cryptographic applications such as
anonymous cryptocurrencies [BCG+14,KMS+16,GGM16].
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The Zcash [BCG+14], one of the anonymous cryptocurrencies based on blockchain
technology, utilized a zk-SNARK to hide transaction information and to provide
an efficient verification process. However, since zk-SNARKs [Gro16,PHGR13]
do not provide simulation-extractability, Zcash has to add extra cryptographic
primitives such as one-time signatures to avoid malleability attacks.

The SE-SNARK scheme [GM17] defines and provides the simulation-extractable
SNARK (SE-SNARK), with a similar notion to the Signatures of knowledge [CL06].
While maintaining an efficient proof size of [Gro16], it can prevent the malleabil-
ity attacks due to the simulation-extractability.

Recently, Bowe and Gabizon [BG18] put an effort to make Groth’s scheme [Gro16]
simulation-extractable by utilizing random oracle model, with additional hash
in proofs and verification. However, unlike their intentions, the proof in their
scheme is still malleable (i.e. not simulation-extractable); we show the concrete
malleability attack in Appendix B.

Orthogonal to the simulation-extractability, a zk-SNARK with updatable
CRS solves the trust issue of CRS by letting the users independently update the
CRS [GKM+18]. The traditional limitation of SNARKs is that they all require
trusted CRS generation. Through the updating approach, users who distrust a
CRS can rely on self-updating.

In this paper, we focus on the simulation-extractable SNARK, specifically
pairing-based SE-SNARK. The rest of the paper proceeds as follows: Section 2
provides some necessary notions and backgrounds; Section 3 defines a bilinear
group and assumptions; in Section 4, we present our QAP-based SE-SNARK
with a single verification; in Section 5, we propose a symmetric SAP-based SE-
SNARK with 2 proof elements; Section 6 draws a conclusion.

2 Preliminaries

2.1 Notation

We denote the security parameter with λ ∈ N. For functions f, g : N→ [0; 1] we
write f(λ) ≈ g(λ) if |f(λ)− g(λ)| = λ−ω(1). We say a function f is negligible if
f(λ) ≈ 0, and overwhelming if f(λ) ≈ 1. We implicitly assume all participants
and the adversary know the security parameter. If S is a set, x← S denotes the
process of selecting x uniformly at random in S. If A is a probabilistic algorithm,
x← A(·) denotes the process of running A on some proper input and returning
output x. For an algorithm A we define transA to be a list containing all of A’s
inputs and outputs, including random coins. We use games in security definitions
and proofs. A game G has a main procedure whose output is the output of the
game. The notation Pr[G] denotes the probability that the output is 1.

2.2 Relations

Given a security parameter 1λ, a relation generator R returns a polynomial
time decidable relation R← R(1λ). For (φ,w) ∈ R we say w is a witness to the
instant φ being in the relation. We denote with Rλ the set of possible relations
that R(1λ) might output.
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2.3 Zero-Knowledge Succinct Non-interactive Arguments of
Knowledge

Definition 1. A zero-knowledge succinct non-interactive arguments of knowl-
edge (zk-SNARK) for R is a set of four algorithms Arg = (Setup,Prove,Vfy,SimProve)
working as follows:

– (crs, τ )← Setup(R): the setup algorithm is a PPT algorithm which takes a
relation R ∈ Rλ as input and returns a common reference string crs and a
simulation trapdoor τ .

– π ← Prove(crs,φ,w): the prover algorithm is a PPT algorithm which takes
a common reference string crs as input for a relation R and (φ,w) ∈ R and
returns a proof π.

– 0/1 ← Vfy(crs,φ,π): the verifier algorithm is a deterministic polynomial
time algorithm which takes a common reference string crs, an instance φ
and a proof π as input and returns 0 (reject) or 1 (accept).

– π ← SimProve(crs, τ ,φ): the simulator is a PPT algorithm which takes a
common reference string crs, a simulation trapdoor τ and an instance φ as
input and returns a proof π.

It satisfies completeness, knowledge soundness, zero-knowledge, and succinctness
as described below:

Perfect Completeness: Perfect completeness states that given a true state-
ment, a prover with a witness can convince the verifier. For all λ ∈ N, for all
R ∈ Rλ and for all (φ,w) ∈ R : Pr[(crs, τ )← Setup(R);π ← Prove(crs,φ,w) :
Vfy(crs,φ,π) = 1] = 1.

Computational Knowledge Soundness: Computational knowledge sound-
ness says that the prover must know a witness and such knowledge can be effi-
ciently extracted from the prover by a knowledge extractor. Proof of knowledge
requires that for every adversarial prover A generating an accepting proof, there
must be an extractor χA that, given the same input of A, outputs a valid wit-
ness. Formally, we define AdvsoundArg,A,χA(λ) = Pr[GsoundArg,A,χA(λ)] where the game

GsoundArg,A,χA is defined as follows.

MAIN GsoundArg,A,χA(λ)

R← R(1λ)

(crs, τ)← Setup(R)

(φ, π)← A(crs)

ω ← χA(transA)

assert (φ, ω) /∈ R
return Vfy(crs, φ, π)

An argument system Arg is computationally considered as knowledge sound if for
any PPT adversaryA, there exists a PPT extractor χA, such that AdvsoundArg,A,χA(λ) ≈
0.



8 Jihye Kim, Jiwon Lee, and Hyunok Oh

Perfect Zero-Knowledge: Perfect zero-knowledge states that the system does
not leak any information besides the truth of the instance. This is modelled
by a simulator that does not know the witness but has some trapdoor infor-
mation that enables it to simulate proofs. Formally, we define AdvzkArg,A(λ) =

2Pr[GzkArg,A(λ)]− 1 where the game GzkArg,A is defined as follows:

MAIN GzkArg,A(λ)

R← R(1λ)

(crs, τ)← Setup(R)

b← {0, 1}

b′ ← AP
b
crs,τ (crs)

return 1 if b = b′ and

return 0 otherwise

P bcrs,τ (φi, wi)

assert(φi, wi) ∈ R
πi ← Prove(crs, φ, w) if b = 0

πi ← SimProve(crs, τ, φ) if b = 1

return πi

The argument system is perfectly zero knowledge if for all PPT adversaries A,
AdvzkArg,A(λ) = 0.

Succinctness: Succinctness states that the argument generates the proof of
polynomial size in the security parameter, and of the verifier’s computation time
is polynomial in the security parameter and in instance size.

Definition 2. A simulation-extractable SNARK system (SE-SNARK) for R is
a zk-SNARK system (Setup, Prove, Vfy, SimProve) with simulation-extractability
described below:

Simulation-Extractability [GM17]: Simulation-extractability states that for
any adversary A that sees a simulated proof for a false instance should not al-
lowed to modify the proof into another proof for a false instance. Non-malleability
of proofs prevents cheating in the presence of simulated proofs. Formally, we de-
fine Advproof−extArg,A,χA (λ) = Pr[Gproof−extArg,A,χA (λ)] where the game Gproof−extArg,A,χA is defined
as follows:

MAIN Gproof−extArg,A,χA (λ)

R← R(1λ);Q = ∅
(crs, τ)← Setup(R)

(φ, π)← ASimProvecrs,τ (crs)

ω ← χA(transA)

assert (φ, π) /∈ Q
assert (φ, ω) /∈ R
return Vfy(crs, φ, π)

SimProvecrs,τ (φi)

πi ← SimProve(crs, τ, φi)

Q = Q ∪ {(φi, πi)}
return πi

An argument is simulation-extractable if for any PPT adversary A, there exists
a PPT extractor χA such that Advproof−extArg,A,χA (λ) ≈ 0.
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We note that simulation-extractability implies knowledge soundness, since
simulation-extractability corresponds to knowledge soundness where the adver-
sary is allowed to use the simulation oracle SimProve.

When knowledge soundness and simulation-extractability are applied for a
succinct argument, extractors are inherently non-black-box. As in [GM17] we
assume the relationship generator is benign5, such that the relation (and the
potential auxiliary inputs included in it) are distributed in such a way that the
SNARKs we construct can be simulation-extractable.

2.4 Forking Lemma

In our SE-SNARK, we leverage the hash function within the random oracle
model. Thus we make use of the following version of the forking lemma [BN06],
which is specifically analyzed at NIZKs in a random oracle model [FKMV12].

Lemma 1. (General forking lemma). Fix an integer Q and a set H of size h ≥ 2.
Let P be a randomized program that on input y, h1, · · · , hQ returns a pair, the
first element of which is an integer in the range 0, · · · , Q and the second element
of which we refer to as a side output. Let IG be a randomized algorithm that
we call the input generator. The accepting probability of P, denoted as acc, is
defined as the probability that J ≥ 1 in the experiment y ← IG;h1, · · · , hQ ←
H; (J, s)← P(y, h1, · · · , hQ).

The forking algorithm FP associated to P is a randomized algorithm that on
input y proceeds as follows:

Algorithm FP(y)
Pick coins ρ for P at random
h1, · · · , hQ ← H
(I, s)← P(y, h1, · · · , hQ; ρ)
If I = 0 return (0,⊥,⊥)
h′I , · · · , h′Q ← H
(I ′, s′)← P(y, h1, · · · , hI−1, h′I , · · · , h′Q; ρ)
If (I = I ′) ∧ (hI 6= h′I) return (1, s, s′) else return (0,⊥,⊥)

Let ext = Prob[b = 1 : y ← IG; (b, s, s′)← FP(y)], then ext ≥ acc(accQ −
1
h ).

3 Bilinear Groups and Assumptions

In this section, we present the basic bilinear groups and intractability assump-
tions required for our SE-SNARK, which are adopted from [GM17].

5 The non-falsifiable knowledge of exponent assumption is a necessary ingre-
dient in building a SNARK with witness extraction. In Bitansky’s analy-
sis [BCI+13,BCPR16], there are some counter examples and observations; auxiliary
inputs may affect the extraction of the witness in extractable one-way functions.
However they also observe that the extractability still holds with respect to common
auxiliary input that is taken from specific distributions that may be conjectured to
be “benign”, e.g. the uniform distribution.
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Definition 3. A bilinear group generator BG takes a security parameter as input
in unary and returns a bilinear group (p,G1,G2,GT , e, aux) consisting of cyclic
groups G1, G2, GT of prime order p and a bilinear map e : G1 × G2 → GT
possibly together with some auxiliary information (aux) such that:

– there are efficient algorithms for computing group operations, evaluating the
bilinear map, deciding membership of the groups, and for sampling the gen-
erators of the groups;

– the map is bilinear, i.e., for all G ∈ G1 and H ∈ G2 and for all a, b ∈ Z we
have

e(Ga, Hb) = e(G,H)ab;

– and the map is non-degenerate (i.e., if e(G,H) = 1 then G = 1 or H = 1).

Usually bilinear groups are constructed from elliptic curves equipped with
a pairing, which can be tweaked to yield a non-degenerate bilinear map. There
are many ways to set up bilinear groups, both as symmetric bilinear groups,
where G1 = G2, and as asymmetric bilinear groups, where G1 6= G2. We will
be working in the asymmetric setting, in what Galbraith, Paterson, and Smart
[GPS08] call the Type III setting where there is no efficiently computable non-
trivial homomorphism in either direction between G1 and G2. Type III bilinear
groups are the most efficient type of bilinear groups and hence the most relevant
for practical applications.

3.1 Intractability Assumptions

We will now specify the intractability assumptions used later to prove our
pairing-based SE-SNARK as secure. While variant Power Knowledge of Expo-
nent (PKE) assumptions in a symmetric group are adopted in many SNARK
systems [PHGR13], a generalized PKE assumption in asymmetric groups called
eXtended PKE has been proposed and utilized in [GM17]. In this paper, we adopt
both XPKE assumptions in a symmetric group and in asymmetric groups.

We consider an adversary that gets access to source group elements that have
discrete logarithms that are polynomials evaluated on secret random variables.
The assumption then says that the only way the adversary can produce group
elements in the two source groups for asymmetric groups or type III pairing
with matching discrete logarithms. Ga ∈ G1 and Hb ∈ G2 with a = b, is if it
knows that b is the evaluation of a known linear combination of the polynomi-
als. Similarly in the symmetric group assumption, the adversary can produce
group elements of different generators in the same source group with matching
discrete logarithms (i.e. for unknown δ, Ga, Gbδ ∈ G1 with a = b) if it knows
that b is the evaluation of a known linear combination of the polynomials. We
denote an asymmetric XPKE assumption as XPKEa and a symmetric XPKE
assumption as XPKEs.

Assumption 1. Let A be an adversary and let χA be an extractor. Define in the
asymmetric group the advantage AdvXPKEaBG,d(λ),q(λ),A,χA(λ) = Pr[GXPKEaBG,d(λ),q(λ),A,χA(λ)]
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where GXPKEaBG,d(λ),q(λ),A,χA is defined as shown below and Q2 is the set of polyno-

mials hj(X1, . . . , Xq) queried to O2
H,xxx.

MAIN GXPKEaBG,d(λ),q(λ),A,χA(λ)
(p,G1,G2,GT , e, aux)← BG(1λ);

G← G∗1;H ← G∗2;xxx← (Z∗p)q

(Ga, Hb)← AO
1
G,xxx,O

2
H,xxx(p,G1,G2,GT , e, aux)

ηηη ∈ (Zp)|Q2| ← χA(transA);

return 1 if a = b and b 6=
∑
hj∈Q2

ηjhj(xxx)

else return 0

Define in the symmetric group the advantage AdvXPKEsBG,d(λ),q(λ),A,χA(λ) =

Pr[GXPKEsBG,d(λ),q(λ),A,χA(λ)] where GXPKEsBG,d(λ),q(λ),A,χA is defined as below and Q2 is

the set of polynomials hj(X1, . . . , Xq) queried to O2
H,xxx.

MAIN GXPKEsBG,d(λ),q(λ),A,χA(λ)
(p,G1,G2,GT , e, aux)← BG(1λ);

G← G∗1; δ ← Zp;H = Gδ;xxx← (Z∗p)q

(Ga, Hb)← AO
1
G,xxx,O

2
H,xxx(p,G1,G2,GT , e, aux)

ηηη ∈ (Zp)|Q2| ← χA(transA);

return 1 if a = b and b 6=
∑
hj∈Q2

ηjhj(xxx)

else return 0

O1
G,xxx(gi)

assert gi ∈ Zp[X1, . . . , Xq]

assert deg(gi) ≤ d
return Ggi(xxx)

O2
H,xxx(hj)

assert hj ∈ Zp[X1, . . . , Xq]

assert deg(hj) ≤ d
return Hhj(xxx)

The (d(λ), q(λ)) − XPKEa and (d(λ), q(λ)) − XPKEs assumptions hold
relative to BG if for all PPT adversaries A, there exists a PPT algorithm χA
such that AdvXPKEaBG,d(λ),q(λ),A,χA(λ) and AdvXPKEsBG,d(λ),q(λ),A,χA(λ) are negligible in

λ.

The computational polynomial (Poly) assumption is also adopted in [GM17].
In the univariate case, the Poly assumption states that for any G ∈ G∗1, given
Gg1(xxx), . . . , GgI(xxx), an adversary cannot compute Gg(xxx) for a polynomial g that
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is linearly independent from g1, . . . , gI - even if it knows Hg(xxx) for H ∈ G∗2. In
this paper, we also adopt two Poly assumptions in asymmetric and symmetric
groups where Polya and Polys denote each assumption, respectively.

Assumption 2. Let A be an adversary and define the advantage AdvPolyaBG,d(λ),q(λ),A(λ) =

Pr[GPolyaBG,d(λ),q(λ),A(λ)] where GPolyaBG,d(λ),q(λ),A is defined as below and Q1 is the set

of polynomials gj(X1, . . . , Xq) queried to O1
H,xxx.

MAIN GPolyaBG,d(λ),q(λ),A(λ)

(p,G1,G2,GT , e, aux)← BG(1λ);

G← G∗1;H ← G∗2;xxx← (Z∗p)q

(Ga, g(X1, . . . , Xq))← AO
1
G,xxx,O

2
H,xxx(p,G1,G2,GT , e, aux)

return 1 if a = g(xxx) and g 6∈ span{Q1}
else return 0

Define the advantage AdvPolysBG,d(λ),q(λ),A(λ) = Pr[GPolysBG,d(λ),q(λ),A(λ)] where

GPolysBG,d(λ),q(λ),A is defined as below and Q1 is the set of polynomials gj(X1, . . . , Xq)

queried to O1
H,xxx.

MAIN GPolysBG,d(λ),q(λ),A(λ)

(p,G1,G2,GT , e, aux)← BG(1λ);

G← G∗1; δ ← Zp;H = Gδ;xxx← (Z∗p)q

(Ga, g(X1, . . . , Xq))← AO
1
G,xxx,O

2
H,xxx(p,G1,G2,GT , e, aux)

return 1 if a = g(xxx) and g 6∈ span{Q1}
else return 0

O1
G,xxx(gi)

assert gi ∈ Zp[X1, . . . , Xq]

assert deg(gi) ≤ d
return Ggi(xxx)

O2
H,xxx(hj)

assert hj ∈ Zp[X1, . . . , Xq]

assert deg(hj) ≤ d
return Hhj(xxx)

The (d(λ), q(λ)) − Polya and (d(λ), q(λ)) − Polys assumptions hold rela-

tive to BG if for all PPT adversaries A, we have AdvPolyaBG,d(λ),q(λ),A(λ) and

AdvPolysBG,d(λ),q(λ),A(λ) are negligible in λ.
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4 QAP-based SE-SNARK Scheme

4.1 Main Idea

As an example of how standard zk-SNARKs can be modified, suppose for a
statement φ that (A,B,C) (= (Ga, Hb, Gc)) are three group elements in a proof
that satisfies the verification equations of Groth’s zk-SNARK in [Gro16]. Then

e(A,B) = e(Gα, Hβ)e(G
f(φ)
γ , Hγ)e(C,Hδ) (1)

for a known polynomial f in φ and some secret α, β, γ, δ.
There are two methods to generically randomize a proof A,B,C that satisfies

(1). An adversary can either set

A′ = Ar;B′ = B
1
r ;C ′ = C

or they can set

A′ = A;B′ = BHrδ;C ′ = ArC

In the proposed approach, we devise a new way to neutralize the two attacks
using the hash of A and B in C. The verification equation is required to detect
the changes of A and B. If A or B changes, it should be possible to extract the
exponent values a and b from the revised proof. Therefore, the scheme includes
two hash functions attached with a and b, respectively. As a result, C is revised
as follows:

C∗ = C ·G
aH2(A,B)

δ +bH1(A,B)+H1(A,B)H2(A,B)

where A = Ga, B = Hb, and H1 and H2 are hash functions.
According to the revised C∗, the verification is revised by adding proper

additional terms to A and B as follows:

e(A ·GδH1(A,B), B ·HH2(A,B)) = e(Gα, Hβ)e(G
f(φ)
γ , Hγ)e(C∗, Hδ)

Let h1 = H1(A,B), h2 = H2(A,B), h′1 = H1(A′, B′), h′2 = H2(A′, B′). If

A,B changeA′, B′ then C∗ should be revised to C∗·G
a(h′2−h2)

δ +b(h′1−h1)+h
′
1h
′
2−h1h2 .

However, since G
a
δ and Gb are only computable if a witness is known, an ad-

versary cannot forge the proof. Note that if A or B changes then hash results
h′1 = H1(A,B) and h′2 = H2(A,B) change. Hence, G

a
b and Gb should be known

to compute a valid C∗ according to h′1 and h′2.

4.2 Quadratic Arithmetic Programs

In our SE-SNARK, we will formally adopt the quadratic arithmetic programs
(QAP) [GGPR13,Gro16] in a relation R, which is as follows:

R = (p,G1,G2,GT , e, l, {ui(X), vi(X), wi(X)}mi=0, t(X))
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The bilinear group (p,G1,G2,GT , e) defines the finite field Zp, 1 ≤ l ≤ m,
and the polynomials ui(X), vi(X), wi(X) represent each linearly independent
polynomial set in the QAP with the definition below:

m∑
i=0

siui(X) ·
m∑
i=0

sivi(X) ≡
m∑
i=0

siwi(X) + h(X)t(X)

where ui(X), vi(X), wi(X) have a strictly lower degree than n, which is the
degree of t(X). By defining s0 as 1, the following definition describes the relation
R.

R =


(φ,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ = (s1, · · · , sl) ∈ Zlp
w = (sl+1, · · · , sm) ∈ Zm−lp

∃h(X) ∈ Zp[X], deg(h) ≤ n− 2 :
m∑
i=0

siui(X) ·
m∑
i=0

sivi(X) ≡
m∑
i=0

siwi(X) + h(X)t(X)


We say R is a relation generator for the QAP, given the relation R with field

size larger than 2λ−1.

4.3 Construction

– (crs, τ) ← Setup(R): Select generators G ← G∗1, H ← G∗2, hash functions
H1 : {0, 1}∗ → Z∗p, H2 : {0, 1}∗ → Z∗p and parameters α, β, γ, δ, x ← Z∗p,
such that t(x) 6= 0, and set

τ = (G,H,α, β, γ, δ, x)

crs =


R,H1, H2, G,G

α, Gβ , Gδ, Gαδ, H,Hβ , Hδ

{Gγx
i

, Hγxi , Gγ
2t(x)xi , Gγδx

i

}n−1i=0 , {G
γwi(x)+βui(x)+αvi(x)}li=0,

{Gγ
2wi(x)+βγui(x)+αγvi(x)}mi=l+1



– π ← Prove(crs, φ, w) : Set s0 = 1 and parse φ as (s1, . . . , sl) ∈ Zlp and w

as (sl+1, . . . , sm) ∈ Zm−lp . Use the witness to compute h(X) from the QAP,
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choose r, s← Zp and compute π = (A,B,C) = (Ga, Hb, Gc) such that

a =α+ γ

m∑
i=0

siui(x) + r

b =β + γ

m∑
i=0

sivi(x) + s

c =

m∑
i=l+1

si(γ
2wi(x) + βγui(x) + αγvi(x)) + γ2t(x)h(x) + sa+ rb− rs

+ δah2 + bh1 + δh1h2

where h1 = H1(A,B) and h2 = H2(A,B).

– 0/1 ← Vfy(crs, φ, π) : Parse φ as (s1, . . . , sl) ∈ Zlp and π as (A,B,C) ∈
G1 × G2 × G1. Set s0 = 1 and accept the proof if and only if the following
equation is satisfied:

e(AGh1 , BHδh2) = e(Gα, Hβ)e(G
∑l
i=0 si(γwi(x)+βui(x)+αvi(x)), Hγ)e(C,H)

where h1 = H1(A,B) and h2 = H2(A,B).

– π ← SimProve(crs, τ, φ) : Choose µ, ν ← Zp and compute π = (A,B,C)
such that

A = Gµ, B = Hν , C = Gµν−αβ−γ
∑l
i=0 si(γwi(x)+βui(x)+αvi(x))+δµh2+νh1+δh1h2

where h1 = H1(A,B) and h2 = H2(A,B).

4.4 Security Proof

Theorem 1. The protocol given above is a non-interactive zero-knowledge ar-
gument of knowledge with perfect completeness and perfect zero-knowledge. It is
simulation-extractable (implying it also has knowledge soundness) provided that
the XPKEa, XPKEs, Polya, and Polys assumptions hold in the random oracle
model.

Proof. Perfect Completeness:

We demonstrate that the prover can compute the proof (A,B,C) as described
from the common reference string. The prover can compute the coefficients of

h(X) =
(
∑m
i=0 siui(X))(

∑m
i=0 sivi(X))− (

∑m
i=0 siwi(X))

t(X)
=

n−2∑
j=0

hjX
j .



16 Jihye Kim, Jiwon Lee, and Hyunok Oh

Now, the proof elements can be computed as follows:

A = Gα
n−1∏
j=0

(Gγx
j

)uj ·Gr

B = Hβ
n−1∏
j=0

(Hγxj )vj ·Hs

C =

m∏
i=l+1

Gsi(γ
2wi(x)+βγui(x)+αγvi(x)) ·AsA′h2B′(r+h1) ·G−rs ·Gδh1h2 ·

n−1∏
j=0

(Gγ
2t(x)xj )hj

where A′ = Aδ = Gαδ
∏n−1
j=0 (Gδγx

j

)uj ·Gδr and B′ = Gβ
∏n−1
j=0 (Gγx

j

)vj ·Gs.
This computation provides us the proof elements specified in the construction

A = Gα+γ
∑m
i=0 siui(x)+r

B = Hβ+γ
∑m
i=0 sivi(x)+s

C = G
∑m
i=l+1 si(γ

2wi(x)+βγui(x)+αγvi(x))+γ
2t(x)h(x)+sa+rb−rs+δah2+bh1+δh1h2 .

Here we show that the verification equation holds.

e(AGh1 , BHδh2) = e(Gα, Hβ)e(G
∑l
i=0 si(γwi(x)+βui(x)+αvi(x)), Hγ)e(C,H)

Taking discrete logarithms, checking the verification equation is equivalent to
showing that

(a+h1) · (b+ δh2) = ab+ δah2 + bh1 + δh1h2

=(α+ γ

m∑
i=0

siui(x) + r) · (β + γ

m∑
i=0

sivi(x) + s) + δah2 + bh1 + δh1h2

=αβ + γ2(

m∑
i=0

siui(x))(

m∑
i=0

sivi(x)) +

m∑
i=0

si(βγui(x) + αγvi(x))

+ rb+ sa− rs+ δah2 + bh1 + δh1h2

=αβ +

m∑
i=0

si(γ
2wi(x) + βγui(x) + αγvi(x)) + γ2t(x)h(x)

+ rb+ sa− rs+ δah2 + bh1 + δh1h2

=αβ + γ

l∑
i=0

si(γwi(x) + βui(x) + αvi(x)) +

m∑
i=l+1

si(γ
2wi(x) + βγui(x) + αγvi(x))

+ γ2t(x)h(x) + rb+ sa− rs+ δah2 + bh1 + δh1h2

=αβ + γ

l∑
i=0

si(γwi(x) + βui(x) + αvi(x)) + c

where A = Ga, B = Hb and C = Gc.
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Note that since the vector (sl+1, . . . , sm) is a valid witness for the instance
(s1, . . . , sl), (

∑m
i=0 siui(X))(

∑m
i=0 sivi(X)) =

∑m
i=0 siwi(X) + h(X)t(X) for all

X ∈ Zp.

Zero Knowledge:
For the zero knowledge, notice that the construction already provides the

simulation SimProve which always produces verifying proofs. It can be observed
that we get the same distribution over the real proof and the simulated proof,
with the choice of random r, s in real proofs and the choice of random µ, ν in
simulated proofs.

simulation-extractability:
Assume that adversary A succeeds to forge a proof (A,B,C). In the ROM,

hash queries must exist on input (A,B) to hash functionsH1 andH2 respectively.
Then we rewind the random tape before the hash query of H1(A,B) and return
a new hash value h′1. Then, by the forking lemma, a new proof (A,B,C ′) is

obtained. Since C′

C = Gb(h
′
1−h1)+h2(h

′
1−h1)δ, and (h′1−h1), h2, and Gδ are known,

we can compute Gb. Similarly, we can compute Gδa by rewinding the random
tape and changing the hash query response for H2(A,B).

To show simulation-extractability, we will show that if there exists any ad-
versary that breaks simulation-extractability for our scheme we can construct
an adversary to break (2n + 2, q + 4) − XPKEa, (2n + 2, q + 4) − XPKEs,
(2n + 2, q + 4) − Polya, or (2n + 2, q + 4) − Polys assumptions, where n is the
degree of t(x) defined in the relations, and q is a polynomial upper bound on
the number of simulation queries the adversary asks. To put this formally in
terms of the games Gprove−ext, GXPKEa , GXPKEs , GPolya and GPolys , we observe
that the relation generator R corresponds to a bilinear group generator where
the values l, {ui(X), vi(X), wi(X)}mi=0, t(X) are auxiliary information. Assum-
ing the maximum number of hash queries to H1 (in G1) is Q1 and the maximum
number of hash queries to H2 (in G2) is Q2, we will show (in the ROM) that for
all PPT adversaries A there exists a PPT algorithm B1 (or B2), and for all PPT
extractors χB1

(or χB2
) there exist PPT algorithms C1, C2, D, χA, such that

acc(
acc

Q1
− 1

h
)(
acc

Q2
− 1

h
) ≤ AdvXPKEaR,2n+2,q+4,B1,χB1

(λ) + AdvXPKEsR,2n+2,q+4,B2,χB2
(λ)

+ AdvPolyaR,2n+2,q+4,C1(λ) + AdvPolysR,2n+2,q+4,C2(λ) + AdvPolysR,2n+2,q+4,D(λ)

where Advprove−extArg,A,χA (λ) ≤ acc
(2)

According to the XPKEa and XPKEs assumptions, we can choose χB1

and χB2 such that AdvXPKEaR,2n+2,q+4,B1,χB1
(λ) and AdvXPKEsR,2n+2,q+4,B2,χB2

(λ) are

negligible. Combining these with the Poly assumptions makes the latter three
advantages negligible. Then the probability of acc(accQ1

− 1
h )(accQ2

− 1
h ) becomes

negligible. Hence, acc is negligible since the number of hash queries Q1 and Q2

are polynomial size and 1/h is negligible. We then have that Advprove−extArg,A,χA (λ)
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is negligible. We will now show how to get the inequality in (2). Consider an
execution of the game Gproof−ext with PPT algorithms A,χA, which defines
Advproof−ext(λ), using our construction. Our common reference string consists
of group generators G, H raised to exponents that are polynomials in Xα, Xβ ,
Xγ , Xδ, Xx evaluated on secret values α, β, γ, δ, x. Moreover, whenever A queries
the simulation oracle, it gets back a simulated proof, which is a set of three group
elements that can be computed by raising G,H to polynomials in indeterminates
Xα, Xβ , Xγ , Xδ, Xx, Xµ1

, Xν1 , . . . , Xµq , Xνq where we plug in randomly gen-
erated µ1, ν1, . . . , µq, νq for the latter ones. Let us therefore define a PPT algo-
rithm E that emulates the execution of A using access to the oracles described in
GXPKEa , GXPKEs , GPolya , and GPolys for exponentiating G, H to polynomials
in secret values.

EO
1
G,xxx,O

2
H,xxx,H1(·),H2(·)(R)

G← O1
G,xxx(X1);Gα ← O1

G,xxx(Xα);Gβ ← O1
G,xxx(Xβ); . . .

H ← O2
H,xxx(X1);Hβ ← O2

H,xxx(Xβ); . . .

crs = (R,G,Gα, Gβ , . . . )

Q← ∅
(φ, (Ga, Hb, Gc))← AZSimProvecrs,τ ,H1(·),H2(·)(crs)

assert ZVfy(crs, φ, (Ga, Hb, Gc)) = 1

assert (φ, (Ga, Hb, Gc)) 6∈ Q
return (φ, (Ga, Hb, Gc), transA)

ZSimProve
O1
G,xxx,O

2
H,xxx

crs,τ (φj)
parse φj = (s1, . . . , sl)

Aj = Gµj ← O1
G,xxx(Xµj )

Bj = Hνj ← O2
H,xxx(Xνj )

h1,j = H1(Aj , Bj)

h2,j = H2(Aj , Bj)

Cj = Gµjνj−αβ−γ
∑l
i=0 si(γwi(x)+βui(x)+αvi(x))+δµjh2,j+νjh1,j+δh1,jh2,j)

φ← O1
G,xxx(XµjXνj −XαXβ + . . . )

Q = Q ∪ {(φ, (Aj , Bj , Cj))}
return(Aj , Bj , Cj)

For the hash queries, the oracle proceeds as follows: if H1(A,B) is already
available in a hash table then return the value. Otherwise, choose a random h←
Z∗p and set H1(A,B) as h in the hash table and return h. For query H2(A,B),
the same simulation is applied.
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With this definition of E we have

Advproof−extArg,A,χA (λ) =

Pr


R← R(1λ);G← G∗1;H ← G∗2;

xxx = (α, β, γ, δ, x, µ1, . . . , µq, ν1, . . . , νq)← (Z∗p)2q+5;

(φ, (Ga, Hb, Gc), transA ← EO
1
G,xxx,O

2
H,xxx,H1(·),H2(·)(R));w ← χA(transA)

: (φ,w) 6∈ R



Given E and the PPT algorithms χB1
and χB2

we now define algorithms
B1,B2, C1, C2, D, χA below using the same oracles O1

G,xxx,O2
H,xxx as before. Observe

that E and A see exactly the same group elements, so it is possible to convert a
transcript from one to a transcript from the other. Moreover, since the algorithms
B1 and B2 just delete some information from the output of E , the transcripts of A
can be transformed into transcripts of B1 and B2. We write the transformations
as transB1

= T1(transA, trans
′
A) and transB2

= T2(transA, trans
′
A).

In the following equations, we note that h1 = H1(A,B), and h2 = H2(A,B).
Similarly, h′1 = H ′1(A,B), and h′2 = H ′2(A,B). Note that H1(·) (resp. H2(·)) and
H ′1(·) (resp. H ′2(·)) return the same hash results for every input except input
A,B.

BO
1
G,xxx,O

2
H,xxx

1 (R)

(φ, (Ga, Hb, Gc), transA)← EO
1
G,xxx,O

2
H,xxx,H1(·),H2(·)(R)

(φ, (Ga, Hb, Gc
′
), trans′A)← EO

1
G,xxx,O

2
H,xxx,H

′
1(·),H2(·)(R)

Gb = (Gc
′
/Gc)(h

′
1−h1)

−1

G−h2δ

return (Gb, Hb)

BO
1
G,xxx,O

2
H,xxx

2 (R)

(φ, (Ga, Hb, Gc), transA)← EO
1
G,xxx,O

2
H,xxx,H1(·),H2(·)(R)

(φ, (Ga, Hb, Gc
′
), trans′A)← EO

1
G,xxx,O

2
H,xxx,H1(·),H′2(·)(R)

Gδa = (Gc
′
/Gc)(h

′
2−h2)

−1

G−h1δ

return (Ga, Gδa)
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CO
1
G,xxx,O

2
H,xxx

1 (R)

(φ, (Ga, Hb, Gc), transA)← EO
1
G,xxx,O

2
H,xxx,H1(·),H2(·)(R)

(φ, (Ga, Hb, Gc
′
), trans′A)← EO

1
G,xxx,O

2
H,xxx,H

′
1(·),H2(·)(R)

Gb = (Gc
′
/Gc)(h

′
1−h1)

−1

G−h2δ

transB1
= T1(transA, trans

′
A)

ηηη ← χB1
(transB1

)

parse ηηη = (η1, . . . , ηn+3+q) ∈ Zn+3+q
p

assert Hb =
∏

hj∈Q2

(Hhj(xxx))ηj

let b(X) =
∑
hj∈Q2

ηjhj(X)

return (Gb, b(X))

CO
1
G,xxx,O

2
H,xxx

2 (R)

(φ, (Ga, Hb, Gc), transA)← EO
1
G,xxx,O

2
H,xxx,H1(·),H2(·)(R)

(φ, (Ga, Hb, Gc
′
), transA)← EO

1
G,xxx,O

2
H,xxx,H1(·),H′2(·)(R)

Gδa = (Gc
′
/Gc)(h

′
2−h2)

−1

G−h1δ

transB2
= T2(transA, trans

′
A)

ηηη ← χB2
(transB2

)

parse ηηη = (η1, . . . , ηn+3+q) ∈ Zn+3+q
p

assert Ga =
∏
gj∈Q1

(Ggj(xxx))ηj

let a(X) =
∑
gj∈Q1

ηjgj(X)

return (Ga, a(X))
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DO
1
G,xxx,O

2
H,xxx(R)

(φ, (Ga, Hb, Gc), transA)← EO
1
G,xxx,O

2
H,xxx,H1(·),H2(·)(R)

(φ, (Ga, Hb, Gc
′
), trans′A)← EO

1
G,xxx,O

2
H,xxx,H

′
1(·),H2(·)(R)

Gb = (Gc
′
/Gc)(h

′
1−h1)

−1

G−h2δ

transB1
= T1(transA, trans

′
A)

ηηη ← χB1
(transB1

)

parse ηηη = (η1, . . . , ηn+3+q) ∈ Zn+3+q
p

assert Hb =
∏

hj∈Q2

(Hhj(xxx))ηj

let b(X) =
∑
hj∈Q2

ηjhj(X)

(φ, (Ga, Hb, Gc
′′
), trans′′A)← EO

1
G,xxx,O

2
H,xxx,H1(·),H′2(·)(R)

Gδa = (Gc
′′
/Gc)(h

′
2−h2)

−1

G−h1δ

transB2 = T2(transA, trans
′′
A)

η′η′η′ ← χB2(transB2)

parse η′η′η′ = (η′1, . . . , η
′
n+3+q) ∈ Zn+3+q

p

assert Ga =
∏
gj∈Q1

(Ggj(xxx))η
′
j

let a(X) =
∑
gj∈Q1

η′jgj(X)

let c(X) = a(X) · b(X)−XαXβ +Xδa(X)h2 + b(X)h1 +Xδh1 · h2

−
l∑
i=0

si(X
2
γwi(Xx) +XαXγvi(Xx) +XβXγui(Xx))

return(Gc, c(X))

χA(transA)
transB1

= T1(transA)

ηηη ← χB1
(transB1

)

parse ηηη = (η1, . . . , ηn+3+q) ∈ Zn+3+q
p

let a(X) =
∑
hj∈Q2

ηjhj(X)

assert a(X) ∈ span{Xα, Xγu0(Xx), . . . , Xγum(Xx), X1}

write a(X) = Xα +Xγ

m∑
i=0

siui(Xx) + r

return (sl+1, . . . , sm)
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Now, let us evaluate Advprove−extArg,A,χA (λ) using the probability with E given
above. Since E checks the proof is valid and is not coming from a previous query,
the adversary wins exactly when the extractor χA fails to extract a valid wit-
ness. We will show that this probability is bounded by AdvXPKEaR,2n+2,q+4,B1,χB1

(λ)

+ AdvXPKEsR,2n+2,q+4,B2,χB2
(λ) + AdvPolyaR,2n+2,q+4,C1(λ) + AdvPolysR,2n+2,q+4,C2(λ) +

AdvPolysR,2n+2,q+4,D(λ).

First, consider the possibility that χA gets an invalid witness. It is the same
as AdvXPKEaR,2n+2,q+4,B1,χB1

(λ) + AdvXPKEsR,2n+2,q+4,B2,χB2
.

Second, consider the possibility that χA gets the correct ηηη, but the polyno-
mial b(X) or a(X) are not the span. This probability is AdvPolyaR,2n+2,q+4,C1(λ) +

AdvPolysR,2n+2,q+4,C2(λ).

Third, there is a possibility that χA gets the correct ηηη and a(X) and b(X) are
the span of Q1 and Q2, respectively. However, c(X) 6∈ span{Q1}. The probability

is AdvPolysR,2n+2,q+4,D(λ).

Finally, there is a possibility that ηηη defines polynomials a(X), c(X) ∈ span{Q1}
and b(X) ∈ span{Q2} as satisfying

(a(X) + h1)(b(X) + h2Xδ) = XαXβ +Xγ

l∑
i=0

asi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx)) + c(X)

(3)

a(X) = a0 + aαXα + aβXβ + aδXδ + aαδXαXδ +
∑n−1

i=0
aγxiXγX

i
x

+
∑n−1

i=0
aγ2txiX

2
γt(Xx)Xi

x +
n−1∑
i=0

aγδxiXγXδX
i
x

+

l∑
i=0

asi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+

m∑
i=l+1

asi(X
2
γwi(Xx) +XβXγui(Xx) +XαXγvi(Xx)) +

q∑
j=0

aAjXµj

+

q∑
j=0

aCj (XµjXνj −XαXβ −Xγ

l∑
i=0

sj,i(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+ h2XδXµj + h1Xν1 + h1h2Xδ)
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b(X) = b0 + bβXβ + bδXδ +
∑n−1

i=0
bγxiXγX

i
x +

q∑
j=0

bBjXνj

c(X) = c0 + cαXα + cβXβ + cδXδ + cαδXαXδ +
∑n−1

i=0
cγxiXγX

i
x

+
∑n−1

i=0
cγ2txiX

2
γt(Xx)Xi

x +

n−1∑
i=0

cγδxiXγXδX
i
x

+

l∑
i=0

csi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+

m∑
i=l+1

csi(X
2
γwi(Xx) +XβXγui(Xx) +XαXγvi(Xx)) +

q∑
j=0

cAjXµj

+

q∑
j=0

cCj (XµjXνj −XαXβ −Xγ

l∑
i=0

sj,i(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+ h2XδXµj + h1Xνj + h1h2Xδ)

We will now show that in order to satisfy the formal polynomials equations
above, either the adversary must recycle an instance and a proof, or alternatively
χA manages to extract a witness. First, suppose we have some aAk 6= 0. Since
there are only Xµk , XµkXδ, and XµkXνk related with Xµk in the right form,
b(X) = b0 + bδXδ + bBkXvk . Similarly, since there are only Xνk and XµkXνk in
the right form, a(X) = a0 + aAkXµk . Plugging this into (3) gives us,

(a0 + aAkXµk + h′1)(b0 + bδXδ + bBkXvk + h′2Xδ)

= XαXβ +Xγ

l∑
i=0

asi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx)) + c(X)

The only way this is possible is by setting

c(X) = c0 + cCk(XµkXνk −XαXβ −Xγ

l∑
i=0

sk,i(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+ h2XδXµk + h1Xνk + h1h2Xδ) + cAkXµk

This implies cCk = 1 due to XαXβ . aAk(bδ + h′2) = h2 and (a0 + h′1)bBk = h1
due to Xµk and Xνk . Since h′2 depends on A and B, it is hard to find h′2 such
that h′2 6= h2 to satisfy aAk(bδ +h′2) = h2. Similarly, it is hard to find a0 and bBk
such that (a0 + h′1)bBk = h1 except that h1 = h′1 (i.e., A = Gµk and B = Hνk).
Therefore, a0 = 0, aAk = 1, b0 = 0, bδ = 0 and bBk=1 to meet that h1 = h′1 and

h2 = h′2. Hence, c0 = 0 and cAk = 0. Since ui(Xx)
l
i=1 are linearly independent,

we see for i = 1, . . . , l that si = sk,i. In other words, the adversary has recycled
the k-th instance π = πk and the proof (A,B,C) = (Ak, Bk, Ck). The same
conclusion is obtained if bBk 6= 0.
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Next, suppose for all j = 1, . . . , q that aAj = bBj = 0. If bβ = 0 then∑q
j=0−aCjXαXβ = XαXβ −

∑q
j=0 cCjXαXβ . However since aCjXµjXνj =

cCjXµjXνj ,
∑q
j=0−aCjXαXβ 6= XαXβ −

∑q
j=0 cCjXαXβ . Hence bβ 6= 0. In

the right form, there are only Xβ , XβXγ , XβXα, and Xβui(Xx) related with

Xβ , a(X) = a0 + aαXα +
∑n−1
i=0 aγxiXγX

i
x. Since cCj = 0, aαbβ = 1 and aα 6= 0.

Finally, b(X) = b0 + bβXβ + bδXδ +
∑n−1
i=0 bγxiXγX

i
x. We are now left with

c(X) = c0 + cαXα + cβXβ + cδXδ + cαδXαXδ +

n−1∑
i=0

cγxiXγX
i
x

+

n−1∑
i=0

cγ2txiX
2
γt(Xx)Xi

x +

n−1∑
i=0

cγδxiXγXδX
i
x

+

l∑
i=0

csi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+

m∑
i=l+1

csi(X
2
γwi(Xx) +XβXγui(Xx) +XαXγvi(Xx))

In (3),

(a0 + aαXα +

n−1∑
i=0

aγxiXγX
i
x + h′1)(b0 + bβXβ +

n−1∑
i=0

bγxiXγX
i
x + (bδ + h′2)Xδ)

= XαXβ +Xγ

l∑
i=0

asi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+ c0 + cαXα + cβXβ + cδXδ + cαδXαXδ +

n−1∑
i=0

cγxiXγX
i
x

+

n−1∑
i=0

cγ2txiX
2
γt(Xx)Xi

x +

n−1∑
i=0

cγδxiXγXδX
i
x

+

l∑
i=0

csi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+

m∑
i=l+1

csi(X
2
γwi(Xx) +XβXγui(Xx) +XαXγvi(Xx))

Define for i = l + 1, . . . ,m that si = csi . The terms involving XβXγX
i
x

now give us bβ
∑n−1
i=0 aγxiX

i
x =

∑m
i=0 siui(Xx). In addition, the terms involving

XαXγX
i
x provide aα

∑n−1
i=0 bγxiX

i
x =

∑m
i=0 sivi(Xx). Note that aαbβ = 1. Finally,
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the terms involving X2
γ produce

Xγ

m∑
i=0

siui(Xx) ·Xγ

m∑
i=0

sivi(Xx) = X2
γaαbβ

n−1∑
i=0

aγxiX
i
x

n−1∑
i=0

bγxiX
i
x

= X2
γ(

m∑
i=0

siwi(Xx) + t(Xx)

n−1∑
i=0

cγ2txiX
i
x)

Defining h(Xx) =
∑n−1
i=0 cγ2txiX

i
x we see that this means (sl+1, . . . , sm) is a

witness for the instance (s1, . . . , sl) (the extracted witness may be one of many
possible valid witnesses).

5 QAP-based SE-SNARKs with Two Group Elements as
a Proof

5.1 Hardness of Two Group Elements SE-SNARKs

In the previous section, we propose an efficient SE-SNARKs scheme with three
group elements as a proof. Now it is interesting to observe whether it is possible
to build a similar SE-SNARK scheme with two group elements if adopting Type
I pairing instead of Type III pairing. Since each multiplication gate a · b = c can
be transformed to (a+b)2−(a−b)2 = 4c as a square arithmetic program (SAP),
it is possible to get a 2-element for boolean circuit satisfiability by changing a
multiplication gate to two squaring gates. If we assume a generic group model
like [Gro16], then it is possible to build a scheme with two group elements.
However, if concrete intractability assumptions such as XPKEa and XPKEs
are considered instead of relying on the full generic group model, it is not a
simple problem to construct a scheme with two elements even in a symmetric
group.

Consider the SE-SNARK from SE-SNARK [GM17]. Since it is defined in
asymmetric groups, if it is redefined in a symmetric group then the scheme may
require two group elements as proof. Unfortunately, security cannot be proven in
the symmetric group version of [GM17]. The scheme utilizes an SAP to guarantee
that two elements have equivalent exponents or A = Gb and B = Hb. By using
the XPKEa assumption and an extractor, it is possible to extract coefficients to
compute b which is the evaluation of a known linear combination of polynomials.
In a symmetric group, for a two group elements scheme, the XPKEs assumption
should be used instead of an XPKEa assumption. However, we cannot use
XPKEs assumption for a proof of (A,C) (= (Ga, Gc)) since c includes the
square (or quadratic) of a while c should be a linear (or δ times) of a to use the
XPKEs assumption.

5.2 Square Arithmetic Programs

In the SE-SNARK with two group elements, we will work with square arithmetic
programs (SAP) R, with the definitions adopted from [GM17].
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R = (p,G1,G2,GT , e, l, {ui(X), wi(X)}mi=0, t(X))

The bilinear group (p,G1,G2,GT , e) defines the finite field Zp, 1 ≤ l ≤ m, and
the polynomials ui(X), wi(X) represent each linearly independent polynomial
set in the SAP with the definition below:

(

m∑
i=0

siui(X))2 ≡
m∑
i=0

siwi(X) + h(X)t(X)

where ui(X), wi(X) have a strictly lower degree than n, which is the degree
of t(X). By defining s0 as 1, the following definition describes the relation R.

R =


(φ,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ = (s1, · · · , sl) ∈ Zlp
w = (sl+1, · · · , sm) ∈ Zm−lp

∃h(X) ∈ Zp[X], deg(h) ≤ n− 2 :

(

m∑
i=0

siui(X))2 ≡
m∑
i=0

siwi(X) + h(X)t(X)


We say R is a relation generator for the SAP, given the relation R with a

field size larger than 2λ−1.

5.3 Proposed SE-SNARKs with Two Group Elements

In this section, we propose a scheme with two group elements as a proof in a
symmetric group using SAP. In the proposed scheme using a hash function, it
is possible to compute (Ga, Gδa) from (A,C) in ROM, since the square of the
exponent of A in the exponent of C can be removed by rewinding the adver-
sary (i.e., forking lemma). Consequently, we can apply the XPKEs and Polys
assumptions.

– (crs, τ)← Setup(R): Select a generatorG← G, hash functionsH : {0, 1}∗ → Z∗p,
and parameters α, γ, δ, x← Z∗p, such that t(x) 6= 0, and set

τ = (G,α, γ, δ, x)

crs =


R,H,G,Gα, Gδ, Gαδ

{Gγx
i

, Gγ
2t(x)xi , Gγδx

i

}n−1i=0 , {G
γwi(x)+2αui(x)}li=0,

{Gγ
2wi(x)+2αγui(x)}mi=l+1


– π ← Prove(crs, φ, w) : Set s0 = 1 and parse φ as (s1, . . . , sl) ∈ Zlp and w

as (sl+1, . . . , sm) ∈ Zm−lp . Use the witness to compute h(X) from the SAP,
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pick r ← Zp and compute π = (A,C) = (Ga, Gc) such that

a =α+ γ

m∑
i=0

siui(x) + r

c =

m∑
i=l+1

si(γ
2wi(x) + 2αγui(x)) + γ2t(x)h(x) + 2ra− r2 + δaH(A)

– 0/1 ← Vfy(crs, φ, π) : Parse φ as (s1, . . . , sl) ∈ Zlp and π as (A,C) ∈ G×G.
Set s0 = 1 and check that

e(AGδH(A), A) = e(Gα, Gα)e(G
∑l
i=0 si(γwi(x)+2αui(x)), Gγ)e(C,G)

Accept the proof if and only if the test passes.
– π ← SimProve(crs, τ, φ) : Pick µ← Zp and compute π = (A,C) such that

A = Gµ, C = Gµ
2−α2−γ

∑l
i=0 si(γwi(x)+2αui(x))+δµH(A)

Theorem 2. The protocol given above is a non-interactive zero-knowledge ar-
gument of knowledge with perfect completeness and perfect zero-knowledge. It is
simulation-extractable (implying it also has knowledge soundness) provided that
the XPKEs and Polys assumptions hold in the random oracle model.

6 Conclusion

In this paper, we propose the first quadratic arithmetic program based simulation-
extractable succinct non-interactive arguments of knowledge (QAP-based SE-
SNARK) with 3 group elements, which requires a single equation for verifica-
tion. Our scheme is constructed beyond the existing non-interactive linear proofs
(NILP), by utilizing random oracles. The proposed scheme is proven under con-
crete intractability assumptions (not generic group model), even with leveraging
QAP. We also propose an SE-SNARK scheme with 2 elements as proof with the
SAP representation in a symmetric group, although it is difficult to construct a
scheme with 2 elements as proof from existing SE-SNARKs.
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Appendix

A Security Proof for SAP-based SE-SNARK

We show the security proof of our proposed SE-SNARK with two group elements
in section 5.3.

Theorem 2. The protocol given above is a non-interactive zero-knowledge ar-
gument of knowledge with perfect completeness and perfect zero-knowledge. It is
simulation-extractable (implying it also has knowledge soundness) provided that
the XPKEs and Polys assumptions hold in the random oracle model.

Proof. Perfect Completeness:

First, we state that the prover can compute the proof (A,C) as described
from the common reference string. The prover can compute the coefficients of

h(X) =
(
∑m
i=0 siui(X))2 − (

∑m
i=0 siwi(X))

t(X)
=

n−2∑
j=0

hjX
j .

It can now compute the proof elements as

A = Gα
n−1∏
j=0

(Gγx
j

)uj ·Gr

C =

m∏
i=l+1

Gsi(γ
2wi(x)+2αγui(x)) ·A′H(A) ·G−r

2

·
n−1∏
j=0

(Gγ
2t(x)xj )hj

where A′ = Aδ = Gαδ
∏n−1
j=0 (Gδγx

j

)uj ·Gδr.
This computation provides us the proof elements specified in the construction

A = Gα+γ
∑m
i=0 siui(x)+r

C = G
∑m
i=l+1 si(γ

2wi(x)+2αγui(x))+γ
2t(x)h(x)+2ra−r2+δaH(A)

Here we show that the verification equation holds.

e(AGδH(A), A) = e(Gα, Gα)e(G
∑l
i=0 si(γwi(x)+2αui(x)), Gγ)e(C,G)
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Taking discrete logarithms, this is equivalent to showing that

(a+δH(A)) · a = a2 + δaH(A)

=(α+ γ

m∑
i=0

siui(x) + r)2 + δaH(A)

=α2 + γ2(

m∑
i=0

siui(x))2 + 2αγ

m∑
i=0

siui(x) + 2ra− r2 + δaH(A)

=α2 +

m∑
i=0

si(γ
2wi(x) + 2αγui(x)) + γ2t(x)h(x) + 2ra− r2 + δaH(A)

=α2 + γ

l∑
i=0

si(γwi(x) + 2αui(x))

+

m∑
i=l+1

si(γ
2wi(x) + 2αγui(x)) + γ2t(x)h(x) + 2ra− r2 + δaH(A)

=α2 + γ

l∑
i=0

si(γwi(x) + 2αui(x)) + c

where A = Ga, and C = Gc.

Note that since the vector (sl+1, . . . , sm) is a valid witness for the instance
(s1, . . . , sl), (

∑m
i=0 siui(X))2 =

∑m
i=0 siwi(X) + h(X)t(X) for all X ∈ Zp.

simulation-extractability:

Finally, there is a possibility that ηηη defines polynomials a(X), c(X) ∈ span{Q1}
as satisfying

(a(X)+δH(A)) · a(X) = X2
α +Xγ

l∑
i=0

si(Xγwi(Xx) + 2Xαui(Xx)) + c(X)

(4)
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a(X) = a0 + aαXα + aδXδ + aαδXαXδ +
∑n−1

i=0
aγxiXγX

i
x

+
∑n−1

i=0
aγ2txiX

2
γt(Xx)Xi

x +

n−1∑
i=0

aγδxiXγXδX
i
x

+

l∑
i=0

asi(Xγwi(Xx) + 2Xαui(Xx))

+

m∑
i=l+1

asi(X
2
γwi(Xx) + 2XαXγui(Xx)) +

q∑
j=0

aAjXµj

+

q∑
j=0

aCj (X
2
µj −X

2
α −Xγ

l∑
i=0

sj,i(Xγwi(Xx) + 2Xαui(Xx)) +H(GXµj )XδXµj )

c(X) = c0 + cαXα + cδXδ + cαδXαXδ +
∑n−1

i=0
cγxiXγX

i
x

+
∑n−1

i=0
cγ2txiX

2
γt(Xx)Xi

x +

n−1∑
i=0

cγδxiXγXδX
i
x

+

l∑
i=0

csi(Xγwi(Xx) + 2Xαui(Xx))

+

m∑
i=l+1

csi(X
2
γwi(Xx) + 2XαXγui(Xx)) +

q∑
j=0

cAjXµj

+

q∑
j=0

cCj (X
2
µj −X

2
α −Xγ

l∑
i=0

sj,i(Xγwi(Xx) + 2Xαui(Xx)) +H(GXµj )XδXµj )

We will now show that in order to satisfy the formal polynomials equations
above, either the adversary must recycle an instance and a proof, or alternatively
χA manages to extract a witness. First, suppose we have some aAk 6= 0. Since
there are only Xµk , XµkXδ, and X2

µk
related with Xµk and there is no X2

δ in
the right form, a(X) = a0 + aAkXµk . Plugging this into (4) gives us,

(a0 + aAkXµk + δH(A))(a0 + aAkXµk)

= X2
α +Xγ

l∑
i=0

asi(Xγwi(Xx) + 2Xαui(Xx)) + c(X)

The only way this is possible is by setting

c(X) = c0 + cAkXµk + cCk(X2
µk
−X2

α −Xγ

l∑
i=0

sk,i(Xγwi(Xx) + 2Xαui(Xx))

+H(GXµk )XδXµk)
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This implies cCk = 1 due toX2
α. aAkH(A) = H(GXµk ) whereA = Ga0+AkXµk .

Since it is hard to find a0 and Ak to satisfy aAkH(A) = H(GXµk ) in hash H ex-
cept queried hash value for A = Gµk , a0 = 0 and aAk = 1. Therefore, c0 = 0 and

cAk = 0. Since ui(Xx)
l
i=1 are linearly independent, we see for i = 1, . . . , l that

si = sk,i. In other words, the adversary has recycled the k-th instance π = πk
and proof (A,C) = (Ak, Ck).

Next, suppose for all j = 1, . . . , q that aAj = 0. Since there is X2
α in the

right form, a2α = 1. In the right form, there are only Xα, X2
α, XαXγ , XαXδ,

and Xαui(Xx) related with Xα and there is no X2
δ , a(X) = a0 + aαXα +∑n−1

i=0 aγxiXγX
i
x. We are now left with

c(X) = c0 + cαXα + cδXδ + cαδXαXδ +

n−1∑
i=0

cγxiXγX
i
x

+

n−1∑
i=0

cγ2txiX
2
γt(Xx)Xi

x +

n−1∑
i=0

cγδxiXγXδX
i
x

+

l∑
i=0

csi(Xγwi(Xx) + 2Xαui(Xx))

+

m∑
i=l+1

csi(X
2
γwi(Xx) + 2XαXγui(Xx))

In (4),

(a0 + aαXα +
∑n−1

i=0
aγxiXγX

i
x +H(A)Xδ)(a0 + aαXα +

∑n−1

i=0
aγxiXγX

i
x)

= X2
α +Xγ

l∑
i=0

asi(Xγwi(Xx) + 2Xαui(Xx))

+ c0 + cαXα + cδXδ + cαδXαXδ +

n−1∑
i=0

cγxiXγX
i
x

+

n−1∑
i=0

cγ2txiX
2
γt(Xx)Xi

x +

n−1∑
i=0

cγδxiXγXδX
i
x

+

l∑
i=0

csi(Xγwi(Xx) + 2Xαui(Xx))

+

m∑
i=l+1

csi(X
2
γwi(Xx) + 2XαXγui(Xx))

Define for i = l + 1, . . . ,m that si = csi . The terms involving XαXγX
i
x

now give us aα
∑n−1
i=0 aγxiX

i
x =

∑m
i=0 siui(Xx). Finally, the terms involving X2

γ
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produce

(Xγ

m∑
i=0

siui(Xx))2 = X2
γa

2
α(

n−1∑
i=0

aγxiX
i
x)2

= X2
γ(

m∑
i=0

siwi(Xx) + t(Xx)

n−1∑
i=0

cγ2txiX
i
x)

Defining h(Xx) =
∑n−1
i=0 cγ2txiX

i
x we see that this means that (sl+1, . . . , sm)

is a witness for the instance (s1, . . . , sl) (the extracted witness may be one of
many possible valid witnesses).

B Malleability attacks on [BG18]

Recently, Bowe and Gabizon [BG18] made an effort to make Groth’s SNARK
scheme [Gro16] simulation-extractable, by utilizing random oracle model. How-
ever, unlike their intention, the scheme is still vulnerable to the malleability
attack, i.e., not simulation-extractable.

Below, we will show that a new valid proof can be forged from an existing
proof, which denotes that [BG18] is malleable.

In [BG18], the construction is as follows:

Prove: Choose d randomly and compute δ′ = d · δ. Compute the proof A,B,C
similar to [Gro16], except that δ′ is used instead of δ. Then set z = H(GA, HB , GC , Hδ′)·
d. The prover outputs the proof as π1 = (GA, GC , Gz), π2 = (HB , Hδ′).

Verify: Given GA, HB , GC , Gδ
′
, Gz, check that:

1. e(GA, HB) = e(Gα, Hβ) · e(Gic, Hγ) · e(GC , Hδ′)

2. e(G,Hδ′·H(GA,HB ,GC ,Hδ
′
)) = e(Gz, Hδ)

where ic =
∑l
i=0 ai(βui(x)+αvi(x)+wi(x))

γ , which is the element relating to the

primary QAP inputs (a0 = 1, a1, · · · , al).

Forge: We can generate a new valid proof π′ = (GA·r, HB·r−1

, GC , Hδ′ , Gz·y
−1
s ·y

′
s)

with a random r, from an existing proof (GA, HB , GC , Hδ′ , Gz) where ys =

H(GA, HB , GC , Hδ′) and y′s = H(GA·r, HB·r−1

, GC , Hδ′).

The forged proof π′ can also pass the verification as below:

1. e(G(A · r), H(B · r−1)) = e(GA, HB) = e(Gα, Hβ) · e(Gic, Hγ) · e(GC , Hδ′)

2. e(GH(A·r,B·r−1,C,δ′), Hδ′) = e(Gy
′
s , Hδ′) = e(Gy

′
s , H

z·δ
ys ) = e(Gy

′
s·y
−1
s ·z, Hδ)

since δ′ = z · δ
H(A,B,C,δ′) .

Therefore, since a forged π′ can pass the verification, [BG18] is still malleable
(not simulation-extractable). In fact, this is a good example to show that it is
not trivial to construct a non-malleable SNARK scheme even if a random oracle
is adopted.


