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Abstract

In this paper, we introduce Polygraph, the first account-
able Byzantine consensus algorithm for partially syn-
chronous systems. If among n users t < n

3 are mali-
cious then it ensures consensus, otherwise it eventu-
ally detects malicious users that cause disagreement.
Polygraph is appealing for blockchain applications as it
allows them, if t < n

3 , to totally order blocks in a chain,
hence avoiding forks and double spending and, oth-
erwise, to punish malicious users when a fork occurs.
We first show that stronger forms of the problem in-
cluding a fixed time detection are impossible to solve
before proving our solution. We also show that Poly-
graph has a bounded justification size so that each of its
asynchronous rounds exchanges only O(n2) messages.
Finally, we use a blockchain application to evaluate Poly-
graph on a geodistributed system of 80 machines and
show that accountability reduces the performance of
the non-accountable baseline by about a third, still com-
mitting thousands of transactions per second.

1 Introduction

Over the last several years we have seen a boom in the
development of new Byzantine agreement protocols, in
large part driven by the excitement over blockchains
and cryptocurrencies. The (virtual) gold rush is on, and
as in the Wild West of yore, the outlaws are ever present.
Byzantine agreement protocols act as the locks on the
bank doors, preventing the gangs from making off with
the loot.

Limitations. Unfortunately, Byzantine agreement pro-
tocols have some inherent limitations: it is impossible
to ensure correct operation when more than 1

3 of the
processing power in the system is controlled by a single
malicious party, unless the network can guarantee per-

fect synchrony in communication.1 And yet, as mining
pools become larger and more centralized, we are in dan-
ger of a single group’s power surpassing the 1

3 threshold.
(For example, the largest Bitcoin mining pool today con-
trols approximately 19% of the hashing power.) This
problem is even more severe in consortium and private
blockchains where a small number of predetermined
parties maintain control over the chain, and hence are
each more likely to control a significant fraction of the
compute power of the network.

At first, one might hope to relax the liveness guaran-
tees, while always ensuring safety. For example, perhaps
we could ensure that on termination, the honest users
would always agree; if the dishonest users have too
much power, then the protocol never terminates. Alas,
in a partially synchronous network, this type of guar-
antee is impossible (see Theorem 1). If the adversary
controls more than 1

3 of the computing power, it can
always force disagreement.
Acountability. Since our Byzantine agreement “locks”
are not good enough by themselves to protect the banks;
we need a new sheriff in town to bring the guilty parties
to justice. What if, instead of preventing bad behavior by
a party that controls too much of the network power, we
guarantee accountability, i.e., we can provide irrefutable
evidence of the bad behavior and the perpetrator of
those illegal actions? Much in the way we prevent crime
in the real world, we can prevent bad blockchain behav-
ior via defense-in-depth: the basic Byzantine agreement
protocol disallows illegal actions if the attacker has < 1

3
of the network under their control, or if the network
infrastructure is working properly and ensuring timely
message delivery; when these guarantees fail, we record
sufficient information to catch the criminal and take re-
medial actions. For example, the offending transactions

1Bitcoin is typically assumed to be correct if at least 50% of the
network is honest. However, this holds only under the assumption
that communication is synchronous and timely. Eclipse attacks [12],
for example, can violate correctness even with a majority honest.
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could be voided or reparations provided to those that
were stolen from; a mining pool that behaves badly
could be banned from the blockchain; or in the case of
a consortium blockchain, the offline legal system could
be used to pursue damages. Alternatively, the threat of
being caught might function as an incentive for good
behavior (e.g., if a certain deposit/stake were at risk).

The idea of accountability in distributed systems was
pioneered by Haeberlen, Kuznetsov, and Druschel [11],
and over the last several years, accountability has
been increasingly discussed as an important goal in
blockchains, especially in proof-of-stake systems; see,
e.g., [5], discussed below, which provides accountabil-
ity for a synchronous blockchain protocol.2 There is an
increasing consensus in the community that blockchain
systems should provide accountability.

Intuition. Technically, there is nothing preventing this
sort of accountability, even in a partially synchronous
system. From an intuitive perspective, the impossibility
of Byzantine agreement depends on a lack of timely
communication. For example, the adversary control-
ling > 1

3 of the network might divide the remaining
honest users into two groups whose communication be-
tween groups is delayed; this would allow the adversary
to convince each of the groups of a different outcome.
However, when communication is eventually restored
between the groups, they can discover the trickery and
generate a proof that can bring the guilty parties to jus-
tice. Thus, in a partially synchronous network in which
communication can be sometimes delayed (whether by
simple network failures or by adversarial attacks), it re-
mains possible to ensure strong forms of accountability
as long as communication can eventually be restored
among the honest parties.

At the same time, however, we must protect the hon-
est users from false accusation. It is not enough for a
small number of users to observe the bad behavior and
report it to the authorities. How do we know whether
those users were themselves honest? Instead, we need
enough participants to observe the bad behavior to
prove irrefutably that the criminal really did perpetrate
the crime.

One may think that any Byzantine consensus can be
extended with an independent detection algorithm ex-
ecuted right before the decision is taken and without
changes to the core of the Byzantine consensus proto-
col itself. Such a generic solution is actually not trivial,
as the Byzantine processes may produce a disagree-
ment and refuse to participate in the detection algorithm
when asked to do so, making it impossible (without syn-
chrony) for honest nodes to prove their guilt.

2An interesting suggestion in Casper is that when a user is caught
cheating, their stake is slashed, incentivizing good behavior.

Results. In this paper, we develop a new Byzantine
agreement algorithm among n nodes out of which t
can be Byzantine, which we refer to as the Polygraph
Protocol, with the following guarantees: (i) if t < n

3 , then
consensus is guaranteed, i.e., every honest device pro-
duces the same valid output; (ii) no matter the number
of Byzantines nodes, if a disagreement occurs between
two honest nodes, every honest node eventually pro-
duces an irrefutable proof as to the identity of some
malicious users.3

Polygraph message and communication complexities
are O(n3) and O(n4), respectively, thanks to a bounded
size justification. Note that the naive detection that ex-
changes signed messages that were broadcast, would
be unpractical. Specifically, consider that every correct
process simply forwards every signed message m from
p to all other processes so that a correct node delivers m
only when he has received b 2n

3 c+ 1 occurrences of the
same correctly signed messages, hence discarding pos-
sible lies. This would multiply the message complexity
of the original consensus protocol by Ω(n) instead of
O(1) in Polygraph.

We also show that stronger forms of accountability
are impossible. For example, we cannot guarantee agree-
ment when t > n

3 , even if we are willing to tolerate a
failure of liveness; and processes cannot detect even
one guilty party by a fixed time limit (e.g., prior to deci-
sion), since (intuitively) that would enable processes to
determine guilt before deciding in a way that leads to
disagreement. Nor can we guarantee detection of more
than n

3 malicious users, since it takes only n
3 malicious

users to cause disagreement and additional malicious
users could simply stay mute to not be detected.

Finally, we describe how Polygraph can be used to
hold participants accountable for their misbehavior
in a blockchain application. First, we explain how to
transform the accountable binary Byzantine consensus
algorithm to accept arbitrary values, like the blocks
of a blockchain. Second, we explain how consensus
nodes can also be held accountable to client nodes
that do not run the consensus as long as t < 2 n

3 . To
evaluate Polygraph we implement it in the Red Belly
Blockchain [9], and deploy it on 80 geodistributed ma-
chines. In particular, we compare the performance of
the Red Belly Blockchain to this new “accountable” Red
Belly Blockchain and observe that the cost associated
with accountability, although largely visible, remains
manageable.
Basic idea. The key observation is as follows: we can
design Byzantine agreement protocols that can be de-
feated only by dissembling, i.e., by a malicious user send-

3While it might seem counterintuitive that Polygraph works re-
gardless of the number of Byzantine nodes, note that when t = n− 1
or t = n, no disagreement can occur by definition.
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ing different messages to different honest users, when
(according to the protocol) it was supposed to send the
same message to every honest user. And if there is dis-
sembling, then the honest users have evidence of the
bad behavior. Unfortunately, the malicious users might
lie and accuse honest nodes of dissembling, and so extra
care is needed before we can prove bad behavior.

The basic algorithm is based on the Byzantine agree-
ment protocol in [8]. The protocol proceeds in (asyn-
chronous) rounds, where processes try to converge on a
single estimate, and try to decide if enough processes
have already adopted that estimate. First, a reliable
broadcast (similar to that described in [3]) is used to
distribute the proposal values. Then, a second phase of
communication is used to determine whether enough
processes have converged on a single value. Finally the
processes decide, if they can; and if not, they update
their estimate in an attempt to converge on a single
value.

The key to accountability is requiring that each of
the messages in the second phase of communication
are signed, and collecting ledgers of signed signatures
that justify the estimate adopted. The exact requirement
of the ledger depends on the situation; the important
aspect is that a ledger guarantees that in a certain round,
at least 2 n

3 processes broadcast a proposal for a single
value. If we have two ledgers showing that in the same
round, 2 n

3 processes broadcast a proposal for ‘1’ and
2 n

3 processes broadcast a proposal for ‘0’, then we can
identify at least n

3 processes that dissembled, proposing
both ‘0’ and ‘1’ in the same round.

We can show that, by propagating the ledgers prop-
erly, we can ensure that any process that decides has
sufficient information to justify their decision. Honest
processes that eventually disagree can exchange suffi-
cient information to ensure that every process can prov-
ably identify at least n

3 users that acted maliciously.

Roadmap. The background is given in Section 2. The
model and the accountable Byzantine consensus prob-
lem are presented in Section 3. In Section 4, we show
that it is impossible to detect Byzantine failures in fixed
time in a consensus algorithm. Section 5 depicts Poly-
graph an algorithm that solves the accountable binary
Byzantine consensus problem. Section 6 analyses em-
pirically Polygraph in a geodistributed blockchain and
Section 7 concludes. Appendices A, B, C and D present
the proof of the impossibility result, the proof of cor-
rectness of Polygraph, the multivalue extension and the
application of Polygraph to blockchains, respectively.

2 Background and Related Work

In this section, we review existing work on accountabil-
ity in distributed systems.

PeerReview. Haeberlen, Kuznetsov, and Druschel [11]
pioneered the idea of accountability in distributed sys-
tems. They developed a system called PeerReview that
implemented accountability as an add-on feature for
any distributed system. Each process in the system
records messages in tamper-evident logs; an authen-
ticator can challenge a process, retrieve its logs, and
simulate the original protocol to ensure that the process
behaved correctly. They show that in doing so, you can
always identify at least one malicious process (if some
process acts in a detectably malicious way). Their tech-
nique is quite powerful, given its general applicability
which can be used in any (deterministic) distributed
system!

A natural alternative to The Polygraph Protocol, then,
would be to take a standard existing consensus protocol
like Paxos [22] and apply the PeerReview technique.
The first issue is that, unlike in PeerReview, we want
to guarantee correct outcomes when t < n

3 , and only
rely on accountability when t is large. Thus our base
protocol must already be a (deterministic) Byzantine
Agreement protocol, such as PBFT [6] or DBFT [8].

A second issue has to do with (partial) synchrony.
The PeerReview approach is challenge-based: to prove
misbehavior, an auditor must receive a response from
the malicious process. If no response is received, the
auditor cannot determine whether the process is ma-
licious, or whether the network has not yet stabilized.
It follows that the malicious coalition will only be sus-
pected forever but not proved guilty. There is no fixed
point at which the auditor can be completely certain that
the sender is malicious; the auditor may never have
definitive proof that the process is malicious; it always
might just be poor network performance.4 The Poly-
graph Protocol, by contrast, produces a concrete proof
of malicious behavior that is completely under the con-
trol of the honest processes.

A third issue has to do with message (and commu-
nication) complexity. The Polygraph Protocol has no
(asymptotic) increase in message complexity over the
base Byzantine Agreement Protocol on which it is based,
and it increases the communication complexity by a
factor of Θ(n). By contrast, PeerReview increases the
message complexity by Θ(n2) per audit interval (or
Θ(n logn) for probabilistic guarantees), while also in-
creasing the communication complexity by a factor of

4To be precise, they refer to this situation as one where a malicious
process is permanently suspected but never exposed; our goal is to
guarantee that at least n

3 malicious processes are exposed, in their
terminology.
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Θ(n). Thus The Polygraph Protocol is more message
efficient, while still preserving deterministic account-
ability guarantees.

As such, The Polygraph Protocol is more suitable for
use in blockchain protocols. The key disadvantage of
The Polygraph Protocol, of course, is that it is not gen-
eral: it is solving a specific problem (Byzantine Agree-
ment), rather than giving a solution for any distributed
system. Moreover, The Polygraph Protocol detects mis-
behavior only when there is disagreement. The Byzan-
tine processes can violate the protocol as much as they
like, without detection, as long as the resulting consen-
sus has no disagreement!

Accountable Blockchains. Recently, accountability has
been an important goal in “proof-of-stake” blockchains,
where users that violate the protocol can be punished
by confiscating their deposited stake. Buterin and Grif-
fith [5] have proposed a blockchain protocol, Casper,
that provides this type of accountability guarantee. Val-
idators try to agree on (or “finalize”) a branch of k hun-
dreds of consecutive blocks, by gathering signatures for
this branch or “link” from validators jointly owning at
least 2 n

3 of the deposited stake. If a validator signs multi-
ple links at the same height, Casper uses its signatures as
proofs to slash its deposited stake. This is very similar in
intent to The Polygraph Protocol’s notion of identifying
n
3 malicious users when there is disagreement.

Like most blockchain protocols, however, Casper im-
plicitly assumes some synchronous underlying (over-
lay) network and allows the blockchain to fork into a
tree until some branch is finalized. To guarantee “plau-
sible liveness” or that Casper does not block when not
enough signatures are collected to finalize a link, valida-
tors are always allowed to sign links that overlap but
extend links they already signed. However, this does
not guarantee that consensus terminates. Consider, for
example, that Byzantine validators always create the
blocks at indices multiple of 100 and sends the block to
less 2 n

3 honest validators.5 Repeating this process guar-
antees that 2 n

3 honest processes can never vote for the
same link, and consensus will never be reached.

Even so, as a result of Casper, there has been much
discussion in and around the blockchain community
about accountability. It is certainly a popular idea today
that accountability would be a desirable property of
blockchains.

Accountability in the context of blockchain fairness
was raised by Herlihy and Moir in a keynote ad-
dress [13], and the idea of “accountable Byzantine fault
tolerance” has been discussed [4]. (The goal in the latter
case was to identify all the malicious nodes, which is

5Note that this requires Byzantine users have a large mining power
if proof-of-work is needed for block creation.

unfortunately impossible.)

Earlier work on accountability. Even before PeerRe-
view, others had suggested the idea of accountability in
distributed systems as an alternate approach to security
(see, e.g., [17,24,25]). Yumerefendi and Chase [25] devel-
oped an accountable system for network storage, and
Repeat and Compare [21] developed an accountable
peer-to-peer content distribution network.

The idea of accountability appeared less explicit in
many earlier systems. For example, Aiyer et al. [1] pro-
posed the BAR model for distributed systems, which
relied on incentives to ensure good behavior; one key
idea was in detecting and punishing bad behaviors. And
Intrusion Detection Systems (e.g., [10, 14, 19] provided
heuristics and techniques for detecting malicious behav-
iors in a variety of different systems.

Failure Detectors. There is a connection between ac-
countability and failure detectors. A failure detector is
designed to provide each process in the system with
some advice, typically a list of processes that are faulty
in some manner. However, failure detectors tend to have
a different set of goals. They are used during an exe-
cution to help make progress, while accountability is
usually about what can be determined post hoc after a
problem occurs. They provide advice to a process, rather
than proofs of culpability that can be shared. They tend
to be designed for use in fully asynchronous systems
(i.e., to capture synchrony assumptions), and protocols
that rely on them tend to assume that t < n

3 .
Most of the work in this area has focused on detecting

crash failures (see, e.g., [7]). There has been some inter-
esting work extending this idea to detecting Byzantine
failures [11,15,19]. Malkhi and Reiter [19] introduced the
concept of an unreliable Byzantine failure detector that
could detect quiet processes, i.e., those that did not send
a message when they were supposed to. They showed
that this was sufficient to solve Byzantine Agreement.

Kihlstrom, Moser, and Melliar-Smith [15] continue
this direction, considering failures of both omission and
commission. Of note, they define the idea of a mutant
message, i.e., a message that was received by multiple
processes and claimed to be identical (e.g., had the same
header), but in fact was not. The Polygraph Protocol is
designed so that only malicious users sending a mutant
message can cause disagreement. In fact, the main task
of accountability in this paper is identifying processes
that were supposed to broadcast a single message to ev-
eryone and instead sent different messages to different
processes.

Maziéres and Shasha propose SUNDR [20] that de-
tects Byzantine behaviors in a network file system if all
clients are honest and can communicate directly. Poly-
graph clients request multiple signatures from servers
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so that they do not need to be honest. Li and Maz-
iéres [18] improves on SUNDR with BFT2F, a weakly
consistent protocol when the number of failures is n

3 ≤
t < 2 n

3 and its BFTx variant that copes with more than
2 n

3 failures but does not guarantee liveness even with
less than t failures.

3 Model and Problem

We first define the problem in the context of a tradi-
tional distributed computing setting. (We later discuss
applications to blockchains.)
System. We consider n processes. A subset C of the
processes are honest, i.e., always follow the protocol;
the remaining t < n are Byzantine, i.e., may maliciously
violate the protocol. We define t0 = max(t ∈N0 : t <
n
3 ), i.e., t0 = d n

3 e − 1, a useful threshold for Byzantine
behavior.

Processes execute one step at a time and are asyn-
chronous, proceeding at their own arbitrary, unknown
speed. We assume local computation time is zero, as it
is negligible with respect to message delays.

We assume that there is an idealized PKI (public-key
infrastructure) so that each process has a public/private
key pair that it can use to sign messages and to verify
signatures.
Partial synchrony. We consider a partially synchronous
network. During some intervals of time, messages are
delivered in a reliable and timely fashion, while in other
intervals of time messages may be arbitrarily delayed.
More specifically, we assume that there is some time
tGST known as the global stabilization time, unknown to
the processes, such that any message sent after time tGST
will be delivered with latency at most d. We say that an
event occurs eventually if there exists an unknown but
finite time when the event occurs.
Verification Algorithm. A verification algorithm V
takes as input the state of a process and returns a set G
of undeniable guilty processes, that is, every process-id
of G is tagged with an unforgeable proof of culpability.
(More formally, this means that for every computation-
ally bounded adversary, for every execution in which a
process pj is honest, for every state s generated during
the execution or constructed by Byzantine users, the
probability that the verification algorithm returns a set
containing pj is negligible. In practice, this will reduce
to the non-forgeability of signatures.)
Accountable Byzantine Agreement. The problem
of Byzantine Agreement, first introduced by Pease,
Shostak, and Lamport [16], assumes that each process
begins with a binary input, i.e., either a 0 or a 1, out-
puts a decision, and requires three properties: agreement,
validity, and termination.

We define the Accountable Byzantine Agreement
problem in a similar way, with the additional require-
ment that there exists a verification algorithm that can
identify at least t0 + 1 Byzantine users whenever there is
disagreement. (Recall that t0 = d n

3 e − 1.) More precisely:

Definition 1 (Accountable Byzantine Agreement). We
say that an algorithm solves Accountable Byzantine Agree-
ment if each process takes an input value, possibly produces a
decision, and satisfies the following properties:

• Agreement: If t ≤ t0, then every honest process that
decides outputs the same decision value.

• Validity: If all processes are honest and begin with the
same value, then that is the only decision value.

• Termination: If t ≤ t0, every honest process eventually
outputs a decision value.

• Accountability: There exists a verification algorithm V
such that: if two processes output disagreeing decision
values, then eventually for every process pj, for every
state sj reached by pj from that point onwards, the veri-
fication V(sj) outputs a guilty set of size at least t0 + 1.

Our validity definition is sometimes called weak va-
lidity [23], but Lemma 8 shows that our accountable
binary Byzantine consensus protocol ensures even a
stronger validity property.

4 Impossibility Results

A couple of natural questions arise regarding account-
able algorithms:

• Can we design an algorithm that always guarantees
agreement, and simply fails to terminate if there are
too many Byzantine users? If so, we would trivially
get accountability!

• Can we design an algorithm that provides earlier
evidence of Byzantine behavior, even before the de-
cision is possible? If so, we could provide stronger
guarantees than are provided in this paper.

Alas, neither is possible. The details of the following
theorems are deferred to Appendix A (and follow from
standard partitioning arguments).

Theorem 1. In a partially synchronous system, no algorithm
solves both the Byzantine consensus problem when t < n

3
and the agreement and validity of the Byzantine consensus
problem when t0 < t ≤ T.

We say that a verification algorithm V is swift if it pro-
vides the following guarantee: assume pi has already
decided some value v, and that pj is in a state s wherein
it will decide w 6= v in its next step; then V(s) 6= ∅. No-
tice that a swift verification algorithm may only detect
one Byzantine process (i.e., it is not sufficient evidence
for pj to decide never to decide).
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Theorem 2. For a consensus solved while t < n
3 , there does

not exist a swift verification algorithm for t0 < t ≤ T.

The result follows directly from the impossibility of
devising the needed swift verification algorithm.

5 Polygraph, an Accountable Byzantine
Consensus Algorithm

In this section, we introduce Polygraph, a Byzantine
agreement protocol that is accountable. We begin by
giving the basic outline of the protocol for ensuring
agreement when t < n

3 (which is derived from the Byzan-
tine agreement protocol in [8]). Then, we focus on the
key aspects that lead to accountability, specifically, the
“ledgers” and “certificates.” In this section, we focus on
binary agreement; in Section C, we show how to sup-
port arbitrary values. In Appendix B, we prove that the
algorithm is correct.

As a notational issue, we indicate that a pro-
cess pi sends a message to every other process by:
broadcast(TAG,m)→ messages, where TAG is the type
of the message, m is the message content, and messages
is the location to store any messages received.

Throughout we assume that every message is signed
by the sender so the receiver can authenticate who sent
it. (Any improperly signed message is discarded.) Thus
we can identify messages sent by distinct processes. Sim-
ilarly, the protocol will at times include cryptographi-
cally signed “ledgers” in messages; again, any message
that is missing a required ledger or has an improperly
formed ledger is discarded. (See the discussion below
regarding ledgers.)
Protocol Overview. The basic protocol operates in two
phases, after which a possible decision is taken. Each
process maintains an estimate. In the first phase, each
process broadcasts its estimate to all other users using
a reliable broadcast service, bv-broadcast (discussed be-
low). The protocol also uses a rotating coordinator; who-
ever is the assigned coordinator for the round broad-
casts its estimate with a special designation.

All processes then wait until they receive at least one
message, and until a timer expires. (The timeout is in-
creased with each iteration, so that eventually once the
network stabilizes it is long enough.) If a process re-
ceives a message from the coordinator, then it chooses
the coordinator’s value to “echo”, i.e., to rebroadcast
to everyone in the second phase. Otherwise, it simply
echoes all the messages received in the first phase.

At this point, each process pi waits until it receives
enough compatible ECHO messages. Specifically, it waits
to receive at least (n − t0) messages sent by distinct
processes where every value in those messages was also
received by pi in the first phase. In this case, it adopts

the collection of values in those (n− t0) messages as its
candidate set. In fact, if a process pi receives a set of (n−
t0) messages that all contain exactly the coordinator’s
value, then it chooses only that value as the candidate
value.

Finally, the processes try to come to a decision. If
process pi has only one candidate value v, then pi adopts
that value v as its estimate. In that case, it can decide v if
it matches the parity of the round, i.e., if v = ri mod 2.
Otherwise, if pi has more than one candidate value,
then it adopts as its estimate ri mod 2, the parity of the
round.

To see that this ensures agreement (when t < n
3 ), con-

sider a round in which some process pi decides value
v = ri mod 2. Since pi receives (n− t0) echo messages
containing only the value v, we know that every hon-
est process must have value v in every possible set of
(n− t0) echo messages, and hence every honest process
included v in its candidate set. Every honest process that
only had v as a candidate also decided v. The remaining
honest processes must have adopted v = ri mod 2 as
their estimate when they adopted the parity bit of the
round. And if all the honest processes begin a round
with estimate v, then that is the only possible decision
due to the reliable broadcast bv-broadcast in Phase 1 (see
below).

Processes always continue to make progress, if t < n
3 .

Termination is a consequence of the coordinator: even-
tually, after GST when the network stabilizes, there is a
round where the coordinator is honest and the timeout
is larger than the message delay. At this point, every
honest process receives the coordinator’s Phase 1 mes-
sage and echoes the coordinator’s value. In that round,
every honest process adopts the coordinator’s estimate,
and the decision follows either in that round or the next
one (if t < n

3 ).
BV-Broadcast. The protocol relies in Phase 1 on a re-
liable broadcast routine bv-broadcast, which is used to
ensure validity, i.e., any estimate adopted (and later de-
cided) must have been proposed by some honest pro-
cess. Moreover, it guarantees that if every honest process
begins a round with the same value, then that is the only
possible estimate for the remainder of the execution (if
t < n

3 ). Specifically, bv-broadcast guarantees the follow-
ing critical properties while t < n

3 : (i) every message
broadcast by t0 + 1 honest processes is eventually deliv-
ered to every honest process (see Lemma 2); (ii) every
message delivered to an honest process was broadcast
by at least t + 1 processes (see Lemma 1).

These properties are ensured by a simple echo pro-
cedure. When a process first tries to bv-broadcast a mes-
sage, it broadcasts it to everyone. When a process re-
ceives t0 + 1 copies of a message, then it echoes it. When
a process receives n− t0 copies of a message, then it de-

6



Algorithm 1 The Polygraph Protocol
1: bin-propose(vi):
2: esti = vi
3: ri = 0
4: timeouti = 0
5: ledgeri[0] = ∅
6: repeat:
7: ri ← ri + 1; B Increment the round number and the timeout.
8: timeouti ← timeouti + 1
9: coordi ← ((ri − 1) mod n) + 1 B Rotate the coordinator.

. Phase 1:
10: bv-broadcast(EST[ri ],esti , ledgeri [ri − 1], i,bin_valuesi) B Binary value broadcast the current estimate.
11: if i = coordi then B Coordinator rebroadcasts first value received.
12: wait until (bin_valuesi[ri] = {w}) B bin_values stores messages received by binary value broadcast.

13: broadcast(COORD[ri ],w)→ messagesi

14: StartTimer(timeouti)
15: wait until (bin_valuesi[ri] 6= ∅ ∧ timeri expired)

. Phase 2:
16: timeri ← timeouti B Reset the timer.
17: if ((COORD[ri ],w) ∈ messagesi from pcoordi

∧ w ∈ bin_valuesi [ri ]) then B Prioritize the coordinator.
18: auxi ← {w}
19: else auxi ← bin_valuesi [ri ] B Otherwise, use any value received.

20: signaturei = sign(auxi ,ri , i) B Sign the messages.
21: broadcast(ECHO[ri ],auxi [ri ],signaturei)→ messagesi B Broadcast second phase message.
22: wait until valuesi = ComputeValues(messagesi ,bin_valuesi ,auxi) 6= ∅

. Decision phase:
23: if valuesi = {v} then B If there is only one value, then adopt it.
24: esti ← v
25: if v = (ri mod 2) then B Decide if value matches parity.
26: if no previous decision by pi then decide(v)
27: else
28: esti ← (ri mod 2) B Otherwise, adopt the current parity bit.

29: ledgeri [ri ] = ComputeJustification(valuesi,esti,ri,bin_valuesi,messagesi) B Broadcast certificate if decision.

Rules:
1. Every message that is not properly signed by the sender is discarded.
2. Every message that is sent by bv-broadcast without a valid ledger after Round 1, except for messages containing value 1 in Round 2, are

discarded.
3. On first discovering a ledger ` that conflicts with a certificate, send ledger ` to all processes.

livers it. Notice that if a message is not bv-broadcast by
at least t0 + 1 processes, then it is never echoed and
hence never delivered. And if a message is bv-broadcast
by t0 + 1 (honest) processes is echoed by every honest
process and hence delivered to every honest process.

This reliable broadcast routine ensures validity, since
a Phase 1 message that is echoed in Phase 2 must have
been delivered by bv-broadcast, and hence must have
been bv-broadcast by at least one honest process.

Ledgers and Certificates. In order to ensure account-
ability, we need to record enough information during
the execution to justify any decision that is made, and
hence to allow processes to determine accountability.
For this purpose, we define two types of justifications:
ledgers and certificates. A ledger is designed to justify
adopting a specific value. A certificate justifies a deci-
sion. We will attach ledgers to certain messages; any
message containing an invalid or malformed ledger is
discarded.

We define a ledger for round r and value v as fol-
lows. If v 6= r mod2, then the ledger consists of the
(n− t0) ECHO messages, each properly signed, received
in Phase 2 of round r that contain only value v (and no
other value). If v = r mod2, then the ledger is simply a
copy of any other ledger from the previous round r− 1
justifying value v. (The asymmetry may seem strange,
but is useful in finding the guilty parties!)

We define a certificate for a decision of value v in
round r to consist of (n− t0) echo messages, each prop-
erly signed, received in Phase 2 of round r that contain
only value v (and no other value).

Accountability. We now explain how the ledgers and
certificates are used. In every round, when a process
uses bv-broadcast to send a message containing a value,
it attaches a ledger from the previous round justifying
why that value was adopted. (There is one exception: in
Round 1, no ledger will be available to justify value 1,
and so no ledger is generated in that case.)
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Algorithm 2 Helper Components
1: bv-broadcast(MSG,val, ledger, i,bin_values):
2: broadcast(BVAL, 〈val, ledger, i〉)→ msgs B Broadcast message.
3: After round 2, and in round 1 if val = 0, discard all messages received without a proper ledger.
4: upon receipt of (BVAL, 〈v, ·, j〉)
5: if (BVAL, 〈v, ·, ·〉) received from (t0 + 1) distinct processes and (BVAL, 〈v, ·, ·〉) not yet broadcast then
6: Let ` be any non-empty ledger received in these messages. B Picking one of the received ledgers is enough.
7: broadcast(BVAL, 〈v,`, j〉) B Echo after receiving (t0 + 1) copies.

8: if (BVAL, 〈v, ·, ·〉) received from (2t0 + 1) distinct processes then
9: Let ` be any non-empty ledger received in these messages. B Picking one of the received ledgers is enough.

10: bin_values← bin_values∪ {〈v,`, j〉} B Deliver after receiving (2t0 + 1) copies.

11: ComputeValues(messages,b_set,aux_set): B Check if there are n− t0 compatible messages.
12: if ∃S ⊆ messages where the following conditions hold:
13: (i) |S| contains (n− t0) distinct ECHO[ri ] messages
14: (ii) aux_set is equal to the set of values in S.
15: then return(aux_set)
16: if ∃S ⊆ messages where the following conditions hold:
17: (i) |S| contains (n− t0) distinct ECHO[ri ] messages
18: (ii) Every value in S is in b_set.
19: then return(V = the set of values in S)
20: else return(∅)

21: ComputeJustification(valuesi,esti,ri,bin_valuesi,messagesi): B Compute ledger and broadcast certificate if decision.
22: if esti = (ri mod 2) then
23: if ri > 1 then
24: return ledger[ri ]i = ledger ` where (EST[ri ], 〈v,`, ·〉) ∈ bin_valuesi
25: else return ledger[ri ]i = ∅
26: else return ledger[ri ]i = (n− t0) signed messages from messagesi containing only value esti

27: if valuesi = {(ri mod 2)}∧ no previous decision by pi in previous round then
28: certificatei = (n− t0) signed messages from messagesi containing only value esti
29: broadcast(esti ,ri , i,certificatei) B Transmit certificate to everyone.

The bv-broadcast ignores the ledger for the purpose
of deciding when to echo a message. When it echoes a
message m, it chooses any arbitrary non-empty ledger
that was attached to a message containing m (if any
such ledgers are available). However, every message
that does not contain a valid ledger justifying its value
is discarded, with the following exception: in Round
2, messages containing the value 1 can be delivered
without a ledger (since no justification is available for
adopting the value 1 in Round 1).

Whenever there is only one candidate value received
in Phase 2, a process adopts that value and either: (i) de-
cides and constructs a certificate, or (ii) does not decide
and constructs a ledger. In both cases, this construction
simply relies on the signed messages received in Phase
2 of that round (and hence is always feasible).

If a process decides a value v in round r > 1, or adopts
v because it is the parity bit for round r > 1, then it also
constructs a ledger justifying why it adopted that value
v. It accomplishes this by examining all the bv-broadcast
messages received for value v and copying a round r− 1
ledger. Again, this is always possible since any message
that is not accompanied by a valid ledger is ignored.
(The only possible problem occurs in Round 2 where
messages for value 1 are not accompanied by a ledger;

however ledgers for value 1 in round 2 do not require
copying old ledgers.)
Proving Culpability. How do disagreeing processes de-
cide which processes were malicious? When a process
decides in round r, it sends its certificate to all the other
processes. Any process that decides a different value
in a round > r can prove the culpability of at least d n

3 e
Byzantine processes by comparing this certificate to its
logged ledgers. (It can then broadcast the proper logged
ledgers to ensure that everyone can identify the mali-
cious processes.)

We will say that a certificate (e.g., from p1) and a
ledger (e.g., from p2) conflict if they are constructed in
the same round r, but for different values v and w. That
is, both the certificate and the ledger attest to (n− t0)
ECHO messages from round r sent to p1 and p2 (respec-
tively) that contain only value v and only value w, re-
spectively. Since every two sets of size (n − t0) inter-
sect in at least (t0 + 1) locations, this conflict identifies
(n− t0) processes that sent different Phase 2 messages
in round r to p1 and p2 and hence they are malicious.

We now discuss how to find conflicting certificates
and ledgers. Assume that process pi decides value v in
round r, and that process pj decides a different value w
in a round > r. (Recall that v is the only possible value
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that can be decided in round r.) There are two cases to
consider, depending on whether pj decides in round
r + 1 or later.

• Round r + 1: If pj decides in round r + 1, then value
w was the only candidate value after Phase 2. This
implies that w was received by some bv-broadcast
message. Since r > 1, we know that the message
must have contained a valid ledger ` from round
r for value w 6= v. This ledger ` conflicts with the
decision certificate of pi.

• Round ≥ r + 2: Since pj decides w 6= v, it does not
decide v in round r + 2. This means that pj has w as
a candidate value, which implies that pj received
w in a bv-broadcast. Since r > 1, we know that the
message must have contained a valid ledger ` from
round r + 1 for value w 6= v. This ledger ` consists
of a copy of a ledger from round r for value w which
conflicts with the decision certificate of pi.

In either case, if pj does not decide v, then, by looking
at the messages received in round r + 1 and r + 2, it
can identify a ledger that conflicts with the decision
certificate of pi and hence can prove the culpability of
at least t0 + 1 malicious processes.
Analysis. In Appendix B.1, we show that the the BV-
broadcast routine provides the requisite properties. This
then allows us to prove the main correctness theorem,
which follows immediately from Lemma 7, Corollary 1,
and Lemma 9 in Appendix B.2:

Theorem 3. The Polygraph Protocol is a correct Byzantine
agreement protocol guaranteeing agreement, validity, and
termination.

Accountability follows from Lemma 10, which shows
that disagreement leads to every honest process even-
tually receiving a certificate and a ledger that conflict:

Theorem 4. The Polygraph Protocol is accountable.

Finally, we show in Lemma 11 that each round has
a message complexity of O(n2) and a communication
complexity of O(n3). If all the processes are honest, or if
the Byzantine corruptions are oblivious to the processor
identities, then the protocol terminates in O(1) rounds
after GST. Otherwise, it may take t + 1 rounds after GST
to terminate.

In Appendix C, we show that the multivalue gener-
alization of The Polygraph Protocol is also correct and
accountable.

6 Experimenting Polygraph with a
Blockchain Application

To understand the overhead of Polygraph over a non-
accountable consensus, we compare the throughput of

the original Red Belly Blockchain [9] based on DBFT [8]
and the “Accountable Red Belly Blockchain” based on
Polygraph as described in Appendices C and D. We
deploy both blockchains on up to n = 80 AWS virtual
machines located in 5 availability zones on two conti-
nents: California, Oregon, Ohio, Germany and Ireland.
All machines issue transactions, insert transactions in
their “mempool” or memory pool, propose blocks of
10,000 transactions, verify transaction signatures and
account integrity, and run their respective consensus
algorithm with t = t0 = d n

3 e − 1, before storing decided
blocks to non-volatile storage.

Figure 1

Figure 1: Accountability cost on a geodistributed
system.

repre-
sents the
throughput
while in-
creasing the
number of
consensus
partici-
pants from
10 (2 ma-
chines per
zone) to 80
(16 machines per zone). We observe that Red Belly
Blockchain is about a third faster than the Accountable
Red Belly Blockchain. We also observe that performance
decreases for both blockchains while the Red Belly
Blockchain is known to be scalable [9] but we attribute
this difference to the size of the blocks, ours contain 10×
more transactions which can create network congestion.
Finally, the Accountable Red Belly Blockchain commits
several thousands of transactions per second at 80
nodes, which indicates that the cost of accountability
remains practical.

7 Conclusion

We introduced Polygraph, the first accountable Byzan-
tine consensus algorithm for partially synchronous sys-
tems. If t < n

3 , it ensures consensus, otherwise it even-
tually detects malicious users that cause disagreement.
Polygraph is practical thanks to its bounded justification
size that does not increase with the number of rounds.
As future work, we could extend Polygraph to detect
malicious users even when there is agreement and de-
tect all malicious “active” users [15] instead of simply
up to n

3 .
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A Proofs of the Impossibility Result

Process. More formally, a process pi, i ∈ [1,n] is seen as
a Mealy machine (S,S0,Σ,Λ,δ,ω) where S is a set of
states, S0 a set of initial states, Σ an input alphabet of
receivable message, Λ an output alphabet of messages
to send, δ : Σn× S→ S a transition function and ω : Σn×
S→ Λn an output function. The absence of message is
denoted by {ε}, {ε} ∈ Σ and {ε} ∈ Λ . The process is
fitted with a clock which allows it to take a transition
after a certain timeout with {ε} as argument for δ.

The agreement according to a local view. A node pro-
cessing an agreement protocol follows an ordered suc-
cession of states p(sk) = s0, ..., sk called a path. On the
path, the node has received messages which constitutes
an history h(p(sk)). The set S is a partition of the set
of states before decision Sbd and the set of states after
decision Sad. The image of the restriction of δ on Sad
is Sad, which means a decision is irrevocable. Among
the attribute of s ∈ S, we note s.r the associated round
number and s.dec the decided value.

To show that it is impossible to devise a swift T-
Accountability algorithm, we show that no consen-
sus algorithm can be safe when t ≥ n

3 and that it is
impossible given a consensus algorithm to design a
swift verification algorithm for it when t0 < t ≤ T. Let
n ∈ {3t0 + 1,3t0 + 2,3t0 + 3} and T > t0. Let P, Q and
R be three sets of n processes such that |P| ≤ t0, |R| ≤ t0
and |Q| = n− |P| − |R|. The proofs rely on the indistin-
guishability between pairs of distinct scenarios A, B and
C such that processes in P cannot distinguish A from C
and R cannot distinguish B from C.

• Scenario A: All initial values are 0 and the pro-
cesses in R are inactive. The messages sent from
P ∪ Q to P ∪ Q are delivered in time 1. By t-
resiliency, processes in P reach a decision (0 by
validity) within a certain time, noted TA. To take
this decision, every node i of P followed a path
si

0, ..., si
bd, si

ad where si
bd ∈ Sbd and si

ad.dec = 0.
• Scenario B: All initial values are 1 and the processes

in P are inactive. The messages sent from R ∪Q to
R ∪Q are delivered in time 1. By t-resiliency, pro-
cesses in R reach a decision (1 by validity) within
a certain time, noted TB. To take this decision, ev-
ery node j of R followed a path sj

0, ..., sj
bd, sj

ad where

sj
bd ∈ Sbd and sj

ad.dec = 1
• Scenario C: All initial values in P are 0, all initial

values in R are 1 and processes of Q are Byzantine.
These Byzantine processes behave with respect to
those in P exactly as they do in Scenario A and with
respect to those in R exactly as they do in Scenario
B. Messages sent from P∪Q to P∪Q are delivered
in time 1, as well as the ones from R ∪Q to R ∪Q,
while the ones from P ∪ R to P ∪ R are delivered in
a time greater than max(TA, TB).

Theorem 5 (Theorem 1). In a partially synchronous sys-
tem, no algorithm solves both the Byzantine consensus prob-
lem when t < n

3 and the agreement and validity of the Byzan-
tine consensus problem when t0 < t ≤ T.

Proof. Assume for the sake of contradiction that it exists
an algorithm preserving the agreement for t0 < t ≤ T.
Because scenarios A and B are indistinguishable from
P’s standpoint while scenarios B and C are indistin-
guishable for R’s standpoint, P must decide 0 while R
must decide 1 in scenario C. This yields a contradic-
tion.

Theorem 6 (Theorem 2). For a consensus solved while
t < n

3 , it does not exist a swift verification algorithm for
t0 < t ≤ T.

Proof. Assume for the sake of contradiction that such a
swift verification algorithm exists. The paths followed
by the honest processes are the same in the scenario C,
than in the scenarios A and B. Because no comission
message has been sent in A and B, ∀i ∈ P,V(si

bd) = ∅

and ∀j ∈ R,V(sj
bd) = ∅. But in scenario C, we should

have ∃i ∈ PV(si
bd) 6= ∅ or ∃j ∈ R,V(sj

bd) 6= ∅ which
yields a contradiction.

B Proof of Correctness of Polygraph

In this section, we provide the complete proofs that the
binary consensus protocol presented in Section 5 is a cor-
rect, accountable Byzantine agreement protocol. First, in
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Section B.1, we focus on the properties satisfied by the
accountable BV-Broadcast algorithm. Then we return
to show the correctness of the consensus algorithm, as
well as prove that it ensures accountability.

B.1 Acccountable BV-Broadcast

The BV-broadcast algorithm is presented in lines 1–9
of Algorithm 2. The protocol and proof presented here
are quite similar to that in [8], with small changes to
accomodate ledgers.

First, we prove that it satisfies certain useful proper-
ties when t ≤ t0. (These properties will not necessarily
hold when there are more than t0 Byzantine processes.)
We begin with a simple structural property (that is later
useful for ensuring validity of consensus): a value is
only delivered if at least one honest process sends it.

Lemma 1 (BV-Justification). If t ≤ t0 and if pi is honest
and v ∈ bin_values, then v has been BV-broadcast by some
honest process.

Proof. By contraposition, assume v has been BV-
broadcast only by faulty processes, i.e., by at most t0
processes. Then no process ever receives t0 + 1 distinct
BVAL messages for v, and hence the conditions on lines
4 and 7 are never met. Thus, no process ever adds v to
bin_values.

We next show that BV-broadcast satisfies some typi-
cal properties of reliable broadcast, i.e., if at least t0 + 1
process BV-broadcast the same value, then every honest
process delivers it; and if pi is honest and delivers a
value, then every honest process also delivers it.

Lemma 2 (BV-Obligation). If t ≤ t0 and at least (t0 + 1)
honest processes BV-Broadcast the same value v, then v is
eventually added to the set bin_values of each non-faulty
process pi.

Proof. Let v be a value such that (t0 + 1) honest pro-
cesses invoke BV-broadcast(MSG,v, ·, ·, ·). Each of these
processes then sends a BVAL message with value v and
a valid ledger, and consequently each honest process
receives at least t0 + 1 BVAL messages for value v along
with valid ledgers for v. Therefore each honest process
(i.e., at least 2t0 + 1≤ n− t0) broadcasts a BVAL message
for v with a valid ledger, and consequently eventually
every honest process receives receives at least 2t0 + 1
BVAL messages for v. Thus every honest process adds
value v to bin_values.

Lemma 3 (BV-Uniformity). If t≤ t0 and a value v is added
to the set bin_values of an honest process pi, eventually v ∈
bin_values at every honest process pj.

Proof. If a value v is added to the set bin_values of an
honest process pi, then this process has received at least
(2t0 + 1) distinct BVAL messages for v with valid ledgers
(line 7). This implies that at least (t0 + 1) different hon-
est processes sent BVAL messages with valid ledgers.
So every non-faulty process receives at least (t0 + 1)
BVAL messages with the value v. Therefore every hon-
est process eventually broadcasts a BVAL message for
v, and so eventually every honest process receives re-
ceives at least 2t0 + 1≤ n− t0 BVAL messages for v with
valid ledgers. Thus every honest process adds value v
to bin_values.

Finally, we show termination:

Lemma 4 (BV-Termination). If t ≤ t0 and if every honest
process BV-broadcasts some value, then eventually, every
honest process has at least one value in bin_values.

Proof. As there are at least (n − t0) honest processes,
each of them BV-broadcasts some value, and ‘0’ and
‘1’ are the only possible values, it follows that there
is a value v ∈ {0,1} that is BV-broadcast by at least
(n− t0)/2≥ t0 + 1 processes (since one of the two val-
ues must be BV-broadcast by at least half the honest
processes). The claim then follows by Lemma 2.

Finally, we observe the straightforward fact that mes-
sages are only delivered with valid ledgers (with the
exception of messages in Round 1, and message contain-
ing value 1 in Round 2):

Lemma 5 (BV-Accountability). If a value v is added to the
set bin_values of a non-faulty process pi in round r (with the
exception of messages in Round 1, and message containing
value 1 in Round 2), then associated with the value v is a
valid ledger from round r− 1.

Proof. Since every BVAL message without a valid ledger
is discarded (aside from above mentioned exceptions),
it follows immediately that when the conditions on lines
4 and 7 are met, then the process has access to a valid
ledger, which is then included when the value is added
to bin_values.

B.2 Accountable Byzantine Agreement

Here, we prove that The Polygraph Protocol is a correct
accountable Byzantine agreement protocol. We begin
with the standard properties of consensus, which hold
when t≤ t0, and then continue to discuss accountability.
First, we observe that if every honest process begins
a round r with the same estimate, then that value is
decided either in round r or round r + 1. This follows
immediately from the fact that if every honest process
BV-broadcasts the same value, then that is the only value
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delivered, and so it is the only value that remains in the
system.

Lemma 6. Assume that each honest process begins round
r with the estimate v. Then every honest process decides v
either at the end of round r or round r + 1.

Proof. Since every honest process BV-broadcasts the
value v, we know from Lemma 2 that v is eventually
delivered to every honest process, and from Lemma 1
that v is the only value delivered to each honest process.
Since v is the only value in bin_valuesi for each honest
pi, it is also the only value echoed via auxi messages,
and eventually it is the only value in valuesi.

There are now two cases. If v = r mod 2, every hon-
est process decides v. Otherwise, every honest process
continues to the next round with its estimate equal to v.
In the next round, v = (r + 1) mod 2, and by the same
argument, every process will then decide v in round
r + 1.

We can now observe that if t ≤ t0, we get agreement,
because after the first round in which some process de-
cides v, then every process adopts value v as its estimate.

Lemma 7 (Agreement). If t≤ t0 and some honest processes
pi and pj decide v and w, respectively, then v = w.

Proof. Without loss of generality, assume that pi decides
no later than pj. Assume for the sake of contradiction
that v 6= w. Assume that pi decides v in round r. If pro-
cess pj also decides in round r, then v = w = r mod 2.
Thus, we conclude that pj decides in some round > r.

In round r, we know that valuesi = {v}. This im-
plies that i received at least n− t0 distinct ECHO mes-
sages containing only value v. Consider now the ECHO
messages received by some other honest process pk.
If valuesk = {v} or valuesk = {v,w}, then process pk
adopts estimate v. Otherwise, process pk has valuesk =
{w}, which implies that it received at least n− t0 distinct
ECHO messages containing only value w.

Thus there are at least t0 + 1 processes that sent an
ECHO message to pi containing only v and an ECHO
message to pk containing only w. That, however, is ille-
gal (see line 21), as a process must send the same ECHO
message to all. Since only t ≤ t0 processes are Byzan-
tine, this is impossible, so we conclude that every honest
process adopts estimate v by the end of round r.

We then conclude, by Lemma 6, that every honest
process decides value v in either round r + 1 or round
r + 2. (In this case, of course, it will be round r + 2.)

It is immediate from BV-broadcast that Polygraph
guarantees a stronger form of validity (Lemma 8) than
the one required (Corollary 1). (The General Polygraph

Protocol stated in Appendix C that applies to arbitrary
values only ensures the required validity.)

Lemma 8 (Strong validity). If t≤ t0 and an honest process
decides v, then some honest process proposed v.

Proof. Let round r be the first round where a process pi
adopts a value v that was not initially proposed by an
honest process at the beginning of round 1. There are
two possibilities depending on whether pi adopts v in
line 24 or line 28.

Assume that honest process pi in round r adopts
value v in line 24. Then valuesi = {v} in round
r. This can only happen if bin_valuesi = {v},
since ComputeValues only returns values that are in
bin_valuesi or auxi, and auxi only includes values in
bin_valuesi. However, bin_valuesi only includes values
delivered by BV-broadcast, and Lemma 1 implies that
every value delivered value was BV-broadcast by an
honest process. So value v was the estimate of an honest
process pj at the beginning of round r. If r = 1 then we
are done. If r > 1, then we conclude that v was adopted
as an estimate in round r− 1 by process pj, and hence
by induction, we conclude that v was initially proposed
by an honest process at the beginning of round 1.

Assume that honest process pi executes line 28, adopt-
ing the parity of the round number as its estimate. This
implies that valuesi = {0,1} in round r. This can only
happen if bin_valuesi = {0,1} also, since ComputeValues
only returns values that are in bin_valuesi or auxi,
and auxi only includes values in bin_valuesi. How-
ever, bin_valuesi only includes values delivered by BV-
broadcast, and Lemma 1 implies that every value deliv-
ered value was BV-broadcast by an honest process. So
at least one honest process pj began round r with value
‘0’ and at least one honest process pk began round r with
‘1’. If r = 1, then we are done. Otherwise, we conclude
that pj adopted ‘0’ in round r − 1 and pk adopted ‘1’
in round r − 1, and hence by induction we conclude
that both ‘0’ and ‘1’ were initially proposed by honest
processes at the beginning of round 0.

Corollary 1 (Validity). If all processes are honest and begin
with the same value, then that is the only decision value.

Finally, we argue that the protocol terminates:

Lemma 9 (Termination). If t ≤ t0, every honest process
decides.

Proof. First, we observe that processes continue execut-
ing increasing rounds (i.e., no process gets stuck in some
round). Assume, for the sake of contradiction, that r is
the first round where some process gets stuck forever,
and pi is the process that gets stuck.

A process cannot get stuck in line 12 or line 15 waiting
for a BV-broadcast, since every honest process performs
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a BV-broadcast and so by Lemma 4, every honest pro-
cess eventually delivers a value. (And a process cannot
get stuck waiting on a timer, since the timer will always
eventually expire.)

A process also cannot get stuck waiting on line 22:
Eventually process pi will receive ECHO messages from
each of the n− t0 honest processes. And by Lemma 3, ev-
ery value that is delivered by BV-broadcast to an honest
process will eventually be delivered to pi. Specifically,
every value that is included in an ECHO message from
an honest process is eventually delivered to bin_valuesi.
Thus, eventually a set of n− t0 messages is identified,
and the waiting condition on line 22 is satisfied.

The last issue that might prevent progress is if process
pi, or some other process, cannot transmit a proper mes-
sage due to missing ledgers. This can only be a problem
with messages being BV-broadcast. If a process com-
pleted round r− 1 and its estimate was 6= r− 1 mod 2,
then it could always construct a proper ledger in round
r− 1 from the estimates received. If a process completed
round r− 1 and its estimate was = r− 1 mod 2, then it
must have received a valid ledger for the value in round
r− 1 as part of the BV-broadcast; otherwise, it could not
have completed round r− 1.

Thus we conclude that every process executes an
infinite number of rounds. The remaining question is
whether processes ever decide. Consider the first round
r after GST where the timer is sufficiently large that (i)
every BV-broadcast message is delivered, and (ii) the co-
ordinators message is delivered before the timer expires.
In this case, every honest process will prioritize the co-
ordinator’s value, adopting it as their aux message in
line 18, echoing it in line 21, and adding only that value
to values in line 22. Thus at the end of round r, every
process adopts the same value, and hence decides either
in round r or round r + 1 by Lemma 6.

Thus we conclude (see Theorem 3) that when t ≤
t0, the binary agreement protocol is correct. We now
consider the case where t > t0 and show that it still
provides accountability.

Lemma 10 (Accountability). If t > t0 and two honest pro-
cesses pi and pj decide different values v and w, then eventu-
ally every honest process receives a ledger and a certificate that
conflict (providing irrefutable proof that a specific collection
of t0 + 1 processes are Byzantine).

Proof. Assume that pi decided v in round r and pj de-
cided w in the round r′ where w = not(v) = 1− v and
r ≤ r′. It is undeniable (by construction, line 25–26) that
v = r mod 2. There are only four possible cases to con-
sider:

1. Case 1: valuesr
j 6= {0,1}

2. Case 2: valuesr
j = {0,1} and valuesr+1

j 6= {v}

3. Case 3: valuesr
j = {0,1} and valuesr+1

j = {v} and

valuesr+2
j 6= {v}

4. Case 4: valuesr
j = {0,1} and valuesr+1

j = {v} and

valuesr+2
j = {v}

We now consider each of the cases in turn.

Case 1. If valuesr
j = {v}, then process pj would

have decided v 6= w in round r. So we conclude that
valuesr

j = {w}. In that case, ledger[r]j and certi f icate[r]i
conflict.

Case 2. Assume valuesr
j = {0,1} and w ∈ valuesr+1

j .
This implies that w ∈ bin_valuesj in round r + 1.
Notice that round r + 1 cannot be round 1, and if it
is round 2, then the value v = 1 and so w 6= 1. Thus,
BV-Accountability (Lemma 5 indicates that pj receives
a valid ledger for w from round r. That ledger conflicts
with the certificate for v from r (and consists of n− t0
distinct ECHO messages containing only value w in
round r).

Case 3. Assume valuesr
j = {0,1}, valuesr+1

j = {v},
and w ∈ valuesr+2

j . This implies that w ∈ bin_valuesj in
round r + 2. Since round r + 2 > 2, BV-Accountability
(Lemma 5 indicates that pj receives a valid ledger for
w from round r + 1. Since w = r + 1 mod 2, the ledger
for w from round r + 1 is a copy of a ledger for w from
round r, which therefore conflicts with the certificate
for v for round r (and consists of n− t0 distinct ECHO
messages containing only value w in round r).

Case 4. Assume valuesr
j = {0,1}, valuesr+1

j = {v},
and valuesr+2

j = {v}. Then process pj decides v in round
r + 2 and there is agreement.

All the cases have been examined, and in each case,
process pj has a ledger constructed in round r conflict-
ing with the certificate delivered from process pi. The
conflicting ledger/certificate each contain n− t0 signed,
distinct ECHO messages containing only value v and
only value w respectively. Since any two sets of size
n− t0 have an intersection of size t0 + 1, the signatures
in the conflicting ledgers prove the existence of a set G
of t0 + 1 Byzantine processes.

Lastly, we bound the message and communication
complexity of the protocol. The number of rounds de-
pends on when the network stabilizes (i.e., we cannot
guarantee a decision for any consensus protocol prior
to GST). However, we can bound the communication
costs of each round:
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Lemma 11 (Complexity). Each round of The Polygraph
Protocol has message complexity O(n2) and communication
complexity O(n3).

Proof. The BV-broadcast has message complexity O(n3),
as each of the n processes echoes up to 2 (binary) BVAL
messages, each of which is re-transmitted to all n pro-
cesses. The communication complexity is at most O(n3),
since each message may contain a ledger which con-
tains O(n) signatures. The remainder of the protocol
involves only O(n2) messages and only O(n3) commu-
nication complexity (e.g., for the coordinator to broad-
cast its message, and for processes to send their ECHO
messages).

C Multivalue Consensus

In this section, we discuss how to generalize the binary
consensus to ensure accountable Byzantine agreement
for arbitrary values. We follow the approach from [8]:
First, all n processes use a reliable broadcast service to
send their proposed value to all the other n processes.
Then, all the process participate in parallel in n binary
agreement instances, where each instance is associated
with one of the processes. Lastly, if j is the smallest
binary consensus instance to decide 1, then all the pro-
cesses decide the value received from process pj.

The key to making this work is that we need the re-
liable broadcast service to be accountable, that is, if it
violates the reliable delivery guarantees, then each hon-
est process has irrefutable proof of the culpability of
t + 1 processes. Specifically, we want a single-use reli-
able broadcast service that allows each process to send
one message, delivers at most one message from each
process, and guarantees the following properties:

• RB-Validity: If an honest process RB-delivers a
message m from an honest process pj, then pj
RB-broadcasts m.

• RB-Send: If t≤ t0 and pj is honest and RB-broadcasts
a message m, then all honest processes eventually
RB-deliver m from pj.

• RB-Receive: If t ≤ t0 and an honest process
RB-delivers a message m from pj (possibly faulty)
then all honest processes eventually RB-deliver the
same message m from pj.

• RB-Accountability: If an honest process pi
RB-delivers a message m from pj and some
other honest process pj RB-delivers m′ from pj,
and if m 6= m′, then eventually every process
has irrefutable proof of the culpability of t0 + 1
processes.

The resulting algorithm provides a weaker notion of
validity: if all processes are honest, then the decision
value is one of the values proposed. (A stronger version

of validity could be achieved with a little more care, but
is not needed for blockchain applications, which depend
on an external validity condition.)

We first, in Section C.1, present the general multivalue
algorithm, and prove that it is correct—assuming the
existing of a reliable broadcast service satisfying the
above properties. Then, in Section C.2, we describe the
reliable broadcast service and prove that it is correct.

C.1 Accountable Byzantine Agreement

We now present the algorithm in more detail. The gen-
eral algorithm has three phases.

• First, in lines 1–8, each process uses reliable broad-
cast to transmit its value to all the others. Then,
whenever a process receives a reliable broadcast
message from a process pk, it proposes ‘1’ in binary
consensus instance k. The first phase ends when
there is at least one decision of ‘1’.

• Second, in lines 10–12, each process proposes ‘0’
in every remaining binary consensus instance for
which it has not yet proposed a value. The second
phase ends when every consensus instance decides.

• Third, in lines 14–16, each process identifies the
smallest consensus instance j that has decided ‘1’.
(If there is no such consensus instance, then it does
not decide at all.) It then waits until it has received
the reliable broadcast message from pj and outputs
that value.

First, we argue that it solves the consensus problem
as long as t ≤ t0:

Lemma 12 (Agreement). If t ≤ t0, then every honest pro-
cess eventually decides the same value. If all processes are
honest and propose the same value, that is the only possible
decision.

Proof. First we focus on termination. Since t≤ t0, by the
RB-Send property, we know that every honest process
eventually delivers every value that was proposed by
an honest process. Assume for the sake of contradic-
tion that no binary consensus instance every decides ‘1’.
Then eventually, every honest process proposes ‘1’ for
every binary consensus instance associated with an hon-
est process. By the validity and termination properties
of binary consensus (and since t≤ t0), we conclude that
these instances all decide ‘1’, which is a contradiction.
Thus eventually every honest process executes line 10.

Since every honest process eventually proposes a
value to every binary consensus instance, we conclude
(since t ≤ t0) that eventually every binary consensus
instance decides and every honest process reaches line
15. Let j be the minimum binary consensus instance that
decides ‘0’. Assume (for the sake of contradiction) that
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Algorithm 3 The General Polygraph Protocol
1: gen-propose(vi):
2: RB-broadcast(EST, 〈vi , i〉)→ messagesi B Reliable broadcast value to all.
3:
4: repeat: B When you recieve a value from pk , begin consensus instance k with a proposal of 1.
5: if ∃ v,k : (EST, 〈v,k〉) ∈ messagesi then
6: if BIN-CONSENSUS[k] not yet invoked then
7: BIN-CONSENSUS[k].bin-propose(1)→ bin-decisions[k]i
8: until ∃k : bin-decisions[k] = 1 B Wait until the first decision.
9:

10: for all k such that BIN-CONSENSUS[k] not yet invoked do B Now begin consensus on the remaining instances.
11: BIN-CONSENSUS[k].bin-propose(0)→ bin-decisions[k]i B For these, propose 0.

12: wait until for all k, bin-decisions[k] 6= ⊥ B Wait until all the instances decide.

13:
14: j = min{k : bin-decisions[k] = 1} B Choose the smallest instance that decides 1.
15: wait until ∃ v : (EST, 〈v, j〉) ∈ messagesi B Wait until you receive that value.

16: decide v B Return that value.

no honest process received the value from pj. Then ev-
ery honest process proposed ‘0’ to the binary consensus
instance for j, and hence by the validity property, the
decision would have been ‘0’, i.e., a contradiction. Thus
we know that at least one honest process received the
value that was reliably broadcast by pj.

Finally, by the RB-Receive property, we know that
every honest process must eventually deliver the value
that was reliably broadcast by pj, and hence every pro-
cess eventually returns a value, i.e., we satisfy the ter-
mination property.

Next, we argue agreement. Since t ≤ t0, by the guar-
antees of the binary consensus instances, every honest
process decides the same thing for each of the instances.
Therefore, all honest processes will choose the same j
that is the minimum binary consensus instance that
decides 1. As we have already argued, every honest pro-
cess must eventually deliver the value reliably broadcast
by pj, and that must be the same value. This guarantees
agreement.

Finally, we argue validity: if all the processes are hon-
est, then every value received by reliable broadcast is
from an honest value, and hence validity is immedi-
ate.

Next, we prove that if there is any disagreement, then
the algorithm guarantees accountability:

Lemma 13 (Accountability). If two honest process pi and
pj decide different values, then honest processes eventually
receive irrefutable proof of at least t0 + 1 Byzantine processes.

Proof. First, assume that pi and pj decide different val-
ues for some binary consensus instance. Then, by the
accountability of binary consensus, we know that ev-
ery process eventually receives the desired irrefutable
proof. Alternatively, if pi and pj agree for every instance
of binary consensus, then they choose the same value

k that is the minimum binary consensus instance to
decide ‘1’, and they output the value delivered by the
reliable broadcast service from pk. (Recall that the re-
liable broadcast service delivers only one value from
each process, and pi and pj do not decide until they
receive that value.) However, by the RB-accountability
property, we conclude that eventually every process
receives irrefutable proof of at least t0 + 1 Byzantine
processes.

C.2 Reliable Broadcast

We now describe the reliable broadcast service, which
is a straightforward extension of the broadcast protocol
proposed by Bracha [3]. A process begins by broadcast-
ing its message to everyone. Every process that receives
the message directly, echoes it, along with a signature.
Every process that receives n− t0 distinct ECHO mes-
sages, sends a READY message. And if a process re-
ceives t0 + 1 distinct READY messages, it also sends
a READY message. Finally, if a process receives n− t0
distinct READY messages, then it delivers it.

The key difference from [3] is that, as in the binary
value consensus protocol, we construct ledgers to jus-
tify the messages we send. Specifically, when a process
sends a READY message, if it has received n− t0 distinct
ECHO messages, each of which is signed, it packages
them into a ledger, and forwards that with its READY
message. Alternatively, if a process sends a READY mes-
sage because it received t0 + 1 distinct READY messages,
then it simply copies an existing (valid) ledger. Either
way, if a process pi sends a READY message for value v
which was sent by process pj, then it has stored a ledger
containing n− t0 signed ECHO messages for v, and it
has sent that ledger to everyone.

As before, two ledgers conflict if they justify two dif-
ferent values v and v′, both supposedly sent by the same
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process pj. In that case, one ledger contains n− t0 signed
ECHO message for v and the other contains n− t0 signed
ECHO message for v′. Since any two sets of size n− t0
have an intersection of size t0 + 1, this immediately iden-
tifies at least t0 + 1 processes that illegally sent ECHO
messages for both v and v′. These process can by ir-
refutably proved to be Byzantine.

We now prove that the reliable broadcast protocol
satisfies the desired properties. First, we show that it
delivers only one value from each process, and that if
t ≤ t0, then it only delivers a value if it was previously
RB-broadcast by that process:

Lemma 14 (RB-Unicity). At most one value (v, j) is deliv-
ered from process pj.

Proof. Follows immediately by inspection: only one
message from pj is every delivered to each process..

Lemma 15. (RB-Validity) If t≤ t0, and if an honest process
RB-delivers a value v from an honest process pj, then pj
RB-broadcasts m.

Proof. A process only delivers a value v for pj if it re-
ceived (READY,v, ·, j) messages from n− t0 processes,
implying that at least one honest process sent a READY
message for v. Let pi be the first honest process to send
a (READY,v, ·, j). In that case, we know that pi must
have received n− t0 distinct (ECHO,v, j), implying that
at least one honest process sent an ECHO message for v.
An honest process only sends an (ECHO,v, j) message
if it received v directly from pj. And if pj is honest, it
onlys sends v if the value was RB-broadcast.

Next, we prove a key lemma, showing that either
all honest process send READY messages only for one
value, or two conflicting ledgers are eventually received
by all honest processes.

Lemma 16. Assume that pi is an honest process that sends a
READY message for value v and that pj is an honest process
that sends a READY message for value v′. Then either v = v′

or the ledgers `i and `j constructed by pi and pj, respectively,
conflict.

Proof. Process pi sends the READY message for v ei-
ther because (i) it has received n− t0 distinct messages
(ECHO,v, ·) and has constructed a ledger `i containing
those signed messages, or (ii) it has received t0 + 1 dis-
tinct READY messages (ECHO,v, ·, j), each containing a
valid ledger for v, one of which it copies as `i. Either
way, process pi has a valid ledger `i containing n− t0
signed echo messages for v. Similarly, by the same logic,
process pj has a valid ledger `j containing n− t0 signed
echo message for v′.

Since any two sets of size n− t0 must have an inter-
section of size at least t0 + 1, we conclude that if v 6= v′,

then the ledgers `i and `j conflict, i.e., prove that at least
t0 + 1 processes illegally sent ECHO messages for both
v and v′.

We can now show that if an honest process performs
a RB-broadcast, then as long as t ≤ t0, every honest pro-
cess delivers its message:

Lemma 17. (RB-Send) If t ≤ t0, and if pj is honest and
RB-broadcasts a value v, then all honest processes eventually
RB-deliver v from pj.

Proof. If pj is honest, then it broadcasts its value v, prop-
erly signed, to all processes. All honest processes re-
ceive it directly from pj and immediately broadcast an
ECHO message. (Moreover, there is no other message
they could echo, because there is no other message they
could have received directly from pj.)

Since t≤ t0, we know that there are at least n− t0 hon-
est processes that perform the ECHO, and hence every
honest process receives at least n− t0 ECHO messages,
and hence every honest process broadcasts a READY
message. (Of course there is no other message that an
honest process could send a READY message for, since
the first honest process to send a READY message for
some other value must have received at least n− t0 dis-
tinct ECHO messages for that value; at least one of those
ECHO messages must have been sent by an honest pro-
cess which received it directly from pj, which—being
honest—only sent value v.)

Since t ≤ t0, there are at least n− t0 honest processes
that send READY messages, and so every honest process
receives n− t0 READY messages and delivers the value
v from pj. (Of course pj cannot have delivered any other
values v′ from pj earlier, since pj is honest there is no
other value v′ that it RB-broadcast.)

Next, we can show that if any honest process delivers
a value v, then every honest process also delivers value
v—as long as t ≤ t0.

Lemma 18. (RB-Receive) If t ≤ t0 and an honest process
pk RB-delivers a value v from pj (possibly faulty), then all
honest processes eventually RB-deliver the same message v
from pj.

Proof. Assume pk delivers v from pj. In this case, pk
must have received at least n − t0 valid READY mes-
sages for (v, j). Therefore, there must have been at least
t0 + 1 honest processes that broadcast valid READY mes-
sages. This implies that every honest process receives at
least t0 + 1 valid READY messages for (v, j), and hence
also sends a READY message for (v, j). (Since t ≤ t0,
we know that an honest process cannot send a READY
message for any other value v′ 6= v for process j, by
Lemma 16.) Therefore everyone honest process receives
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Algorithm 4 Reliable Broadcast
1: RB-broadcast(vi): B Only executed by the source
2: broadcast(INITIAL,vi) B Broadcast value vi to all.

3: upon receiving a message (INITIAL,v) from pj:
4: broadcast(ECHO,v, j) B Echo value v to all.

5: upon receiving n− t0 distinct messages (ECHO,v, j) and not having sent a READY message:
6: Construct a ledger `i containing the n− t0 signed messages (ECHO,v, j).
7: broadcast(READY,v,`i , j) B Send READY message and ledger for v to all.

8: upon receiving t0 + 1 distinct messages (READY,v, ·, j) and not having sent a READY message:
9: Set `i to be one of the (valid) ledgers received (READY,v`, j).

10: broadcast(READY,v,`, j) B Send READY message for v to all.

11: upon receiving n− t0 distinct messages (READY,v, ·, j) and not having delivered a message from j:
12: Let ` be one of the (valid) ledgers received (READY,v,`, j).
13: deliver(v, j) B Send READY message for v to all.

at least 2t0 + 1 valid READY message for value v for
process j, and hence delivers value v from pj.

Finally, we show the accountability property: either
all honest processes deliver the same value, or two con-
flicting ledgers are received by every honest process:

Lemma 19. RB-Accountability: If an honest process pi
RB-delivers value v from pj and some other honest process pj
RB-delivers v′ from pj, and if v 6= v′, then eventually every
honest process receives two ledgers ` and `′ that conflict.

Proof. If process pi delivers v from pj, then it received
at least n− t0 READY messages for value v, which im-
plies that at least one honest process pu sent a READY
message for v. Similarly, since pj delivers v′ from pj, we
know that at least one honest process pw sent a READY
message for v′. By Lemma 16, we know that if v 6= v′,
then the ledgers `u and `w conflict. Moreover, since both
pu and pw are honest, they sent their respective READY
messages to all processes, and hence every honest pro-
cess receives the conflicting ledgers.

D Application to Blockchain

In this section we explain how the General Polygraph
Protocol can held blockchain service providers account-
able to blockchain client nodes that do not run the con-
sensus as long as t < 2 n

3 . Note that a blockchain service
can be implemented with a replicated state machine to
which separate clients send requests. A predetermined
set of n nodes, called a consortium, can propose and de-
cide valid blocks that they append to their local view
of the blockchain through the General Polygraph Protocol
that accepts arbitrary values. A client can send a get
requests to the members of the consortium and if it re-
ceives the same view of the blockchain from a certain
number m of members (m = (n− t0) by default), it con-
siders the transactions of this common view as valid.

In case of disagreement (t > t0), the blockchain forks in
that multiple blocks get appended to the same index
of the chain, which could lead to double spending if the
resulting branches have conflicting transactions.

Preliminaries. We now restate the existing blockchain
formalism by Anceaume et al. [2]. A blockchain is a
chain of blocks whose score() function takes as input a
blockchain and returns its score s as a natural number,
which can be its height, its weight, etc. A blocktree is a
Mealy’s machine whose states are countable, with an
input alphabet comprising operation append(block) to
append a block to the blocktree and operation read()
that returns a blockchain, and an oracle Θ distributing
permission tokens to processes for them to include a
new block. The blocktree strong (resp. eventual) consistency
is the conjunction of the following properties:

• block validity: each block in a blockchain returned
by a read() operation is valid and has been inserted
in the blocktree with the append() operation.

• local monotonic read: given a sequence of read() oper-
ations at the same process, the score of the returned
blockchains never decreases.

• ever growing tree: given an infinite sequence of
append() and read() operations, the score of the re-
turned blockchains eventually grows.

• strong (resp. eventual) prefix property: for each
blockchain returned by a read() operation with
score s, then (resp. eventually) all the read() op-
erations return blockchains sharing the same maxi-
mum common prefix of at least s blocks.

Now we consider three cases depending on the num-
ber of Byzantine processes, namely the nominal case, the
degrading case and the zombie case when respectively
t ≤ t0, t0 < t < (n− t0) and (n− t0) ≤ t ≤ n.

Nominal case (t≤ t0). In this case the strong consistency
is preserved. To read the state of a blockchain, a client
asks the n members of the consortium (read() invoca-
tion) and waits for m = n− t0 identical answers (read()
response events). Indeed, if the assumption t≤ t0 holds,
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the consensus will finish (the ever growing tree prop-
erty is ensured) and the client will eventually receive
at least n− t0 identical answers. But nothing prevents
the Byzantine processes to stay mute forever or give
false answers, that is why a client does not expect (a
priori) more than n− t0 answers. While t ≤ t0, the fru-
gal ΘF,k=1 oracle manages tokens in a controlled way
to guarantee that no more than k = 1 forks can occur on
a given block (k-fork coherence), thus the consortium
blockchain implements the blocktree strong consistency.
Degraded case (t0 < t < (n− t0)). In this case the ever-
growing tree is violated but not the eventual prefix prop-
erty. Moreover, if the threat of punishment (allowed by
the accountability) disincentivizes a malicious coalition
from attacking, then the strong prefix property is en-
sured. Let t0 < t < n− t0. A malicious coalition can do
either one of these actions:

• Follow the protocol.
• Stay mute to violate the liveness property of the

consensus and so the ever growing tree property of
the blockchain (and so the (even eventual) consis-
tency of the blockchain).

• Attempt an attack to create a disagreement among
the consortium. Whatever the result of the bid, a
proof of guilt will eventually be spread among all
the honest processes (consortium members and
clients). Then, regardless the sentence applied to
the malicious nodes, a special fork can be created
to drop the illegitimate forks (labelled in conse-

quence) due to the attack. The selection function
returns then the unique blockchain which does not
pass by a fork labelled illegitimate. The eventual
prefix property is then satisfied. Moreover, if the
potential punishment discourages any attempt of
disagreement-attack (for example with a negative
utility function in game theory approach), then the
strong prefix property is ensured.

So, as long t < (n− t0), the eventual prefix property is
ensured, but the ever-growing tree property is violated
if t > t0.

Zombie case ((n− t0)≤ t≤ n). In this case a super coali-
tion of t > 2 n

3 Byzantine nodes can override the General
Polygraph Protocol by proposing directly two conflict-
ing views to two different clients to then perform a
double-spending attack. The coalition does not partic-
ipate to the consensus in order to violate the liveness
property. It follows that the ever growing tree prop-
erty is violated. Note that safety is also violated: When
a client invokes the read() primitive, the coalition can
answer arbitrary values, despite the non-termination
of the legitimate consensus. The client is supposed to
trust the coalition, like all the other clients who can for-
ever receive a different output for the read() primitive.
Hence, for t ≥ n − t0, the eventual prefix property is
violated. This makes the blockchain vulnerable to a
double-spending attack.
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