
Formal Notions of Security for Verifiable
Homomorphic Encryption ?

Jakub Klemsa(�) and Ivana Trummová

Czech Technical University in Prague, Czech Republic
jakub.klemsa@fel.cvut.cz, trummiva@fit.cvut.cz

Abstract. Homomorphic encryption enables computations with encryp-
ted data, however, in its plain form, it does not guarantee that the
computation has been performed honestly. For the Fully Homomorphic
Encryption (FHE), a verifiable variant emerged soon after the intro-
duction of FHE itself, for a single-operation homomorphic encryption
(HE), particular verifiable variant has been introduced recently, called
the VeraGreg Framework. In this paper, we identify a weakness of List
Non-Malleability as defined for the VeraGreg framework—an analogy
to the classical Non-Malleability—and suggest its improvement which we
show not to be extendable any more in certain sense. Next, we suggest
a decomposition of the abstract VeraGreg framework, introduce novel
notions of security for the resulting components and show some reduc-
tions between them and/or their combinations. Finally, we conjecture
that VeraGreg achieves the strongest (and desirable) security guaran-
tee if and only if its building blocks achieve certain, much more tangible
properties, in a specific case together with an assumption on hardness of
particular kind of the famous Shortest Vector Problem for lattices.

Keywords: Verifiable homomorphic encryption · Formal notions of se-
curity · Non-malleability

1 Introduction

In 2009, the first publicly known Fully Homomorphic Encryption (FHE) scheme
was introduced by Gentry [9]. One year later, an improvement of FHE was pub-
lished by Gennaro et al. [8] that allows for verification of a computation that has
been performed with encrypted values. Since then, many improvements and mo-
difications to FHE emerged: theoretical advances [10,5], implementations [12,16]
as well as enhancements of verifiable variants [4,7].

However, to the best of our knowledge, our recent verifiable homomorphic
encryption scheme—the VeraGreg Framework [13]—was the first of its kind,
i.e., a verifiable homomorphic encryption scheme with single operation. Unlike
FHE, there exists a plenty of homomorphic encryption schemes with single ope-
ration (HE), e.g., plain/unpadded RSA [15] (multiplicative), Goldwasser-Micali

? This work was supported by the Grant Agency of the CTU in Prague, grant No.
SGS19/109/OHK3/2T/13. The full version available at http:// http://.

http://

cryptosystem [11] (the first additive), or Paillier cryptosystem [14] (additive)
which was shown by Armknecht et al. [1] to be even IND-CCA1-secure. Neither
of these schemes can verify that a computation has been performed honestly.

Our Contributions

Based on a simple observation, we identify a weakness of the notion of List Non-
Malleability (LNM; an analogy to the classical Non-Malleability, NM) as defined
in [13] and suggest its improvement that takes this obvious vulnerability into
account as well. We show that, in certain sense, it is not possible to further
strengthen our improved definition.

Following the VeraGreg instantiation structure introduced in [13] (referred
to as the VeraGreg Scheme), we suggest a decomposition of the abstract Ve-
raGreg framework into smaller building blocks. For these components, we de-
fine formal notions of security, in particular modifications of non-malleability. In
our theorems, we show some reductions between these notions.

Finally, we conjecture that VeraGreg achieves the strongest security notion
if and only if its underlying constructs achieve our novel notions in combination
with known results. In a specific case, we strengthen the attacker and postulate
a lattice problem to be hard in order to satisfy the strongest security guarantee.
As a result, we suggest a simplification to the VeraGreg scheme.

2 Preliminaries

Notations and Symbols

Definition 1 (Multiset). Let B be a finite set. We call any B ∈ Z|B| =:M(B)
a multiset of elements of B, interpreted as a set with (possibly negative) number
of repetitions of each b ∈ B; number of repetitions written as B[b].

E.g., for B = {α, β, γ, δ}, a “multiset” {α, β, β, β, δ, δ} would be written as
B = (1, 3, 0, 2) where we assume an implicit ordering on B. We further denote:

• b ∈ B : B[b] 6= 0 (6∈ respectively),
• {b} as a multiset B : B[b] = 1, B[·] = 0 otherwise,
• (bi;ni)

N
i=1 as a multiset B : B[bi] = ni, B[·] = 0 otherwise,

• n · B : scalar multiplication in Z|B|,
• B1 ∪ B2 := B1 + B2, i.e., vector addition in Z|B|,
•
∑
b∈B(·)b :=

∑
b∈B B[b] · (·)b,

• |B| :=
∑
b∈B 1, i.e., a sum of B[b], can be negative,

• M(B)
∣∣
b

where b ⊆ B : a set of such B ∈M(B) where B[b] = 0 for b ∈ B\b.
• for a finite set A, let A∗ =

⋃∞
n=0A

n,
• for a function f : N→ R+, we say that f is
◦ negligible if ∀c > 0 ∃kc ∀k > kc it holds f(k) < k−c, also f = negl(k),
◦ overwhelming if 1− f is negligible, f ∈ OW,

• a← A : uniformly random draw from the set A to the variable a,
• a÷ b : integer division,
• N̂ := {1, 2, . . . , N},
• ‖x‖1 : `1-norm of the vector x = (x1, . . . , xn), i.e.,

∑n
i=1|xi|.

2

The VeraGreg Framework

A formal definition of the VeraGreg framework as per [13] is recalled in Ap-
pendix A, however, for a basic understanding, the following is sufficient. We also
recall extended notions of security for VeraGreg which are based on those by
Bellare et al. [2]; in particular we recommend to refresh NM [2, Definition 2.2].

Definition 2 (VeraGreg Scheme; informal). By the VeraGreg Scheme
we mean an instantiation of the VeraGreg framework, in particular, a 5-tuple
of the following algorithms (simplified; see [13] for the full description):

Init. Generate keys for underlying ciphers (additively homomorphic encryption,
AHE, and symmetric encryption, SE) and pick (large) random integers m1,2.
Output public key of AHE as pk and secret keys together with m1,2 as sk.

Grant. Input data d and check its validity. Grant an ID independent on d and
output it as b.

Esk. Encrypt input data d and granted ID b as

cb = Esk(b, d) = AHEpk

(
(SEsk(b) ·m1 + d) ·m2

)
. (1)

Addpk. Employ the homomorphic property and aggregate provided ciphertexts
based on the list of ID’s denoted by B (a multiset),

Addpk
(
B, (cb)b∈B

)
=
⊕
b∈B

cb (2)

where ⊕ denotes the ciphertext addition operation of AHE. Prevent possible
inner overflow of m1,2 or AHE plaintext (cf. (1)) by returning ⊥.

Dsk. Proceed as follows:

1: function Dsk(B, c)
2: if B is not policy-compliant then return ⊥
3: p̃ = AHE−1sk (c)
4: if p̃ mod m2 6= 0 then return ⊥
5: b̃Σ = p̃÷ (m1m2)
6: bΣ =

∑
b∈B SEsk(b)

7: if b̃Σ 6= bΣ then return ⊥
8: d̃ = (p̃÷m2) mod m1

9: return d̃

Here, policy-compliance (line 2) is evaluated with respect to a VeraGreg
policy (see [13] for details) which is a subset of M(B) – a subset of allowed
multisets B.

Remark 1. The VeraGreg scheme by Definition 2 is somewhat homomorphic
in the sense outlined in [9]; here we insist on the possibility of addition of at
least 2ν values before an overflow occurs, see [13] for details.

Definition 3 (LNM; informal). In addition to the definition of Non-Malleabi-
lity by Bellare et al. [2], List Non-Malleability (LNM) further requires that the
output ciphertexts do not include the ID of the challenge within their lists.

3

Definition 4 (LCCA2; informal). In addition to the definition of Adaptive
Chosen Ciphertext Attack by Bellare et al. [2], List Adaptive Chosen Ciphertext
Attack (LCCA2) restricts the decryption oracle during the second phase: it refuses
to decrypt any ciphertext that includes the ID of the challenge within its list.

Theorem (LNM-LCCA2 ⇐⇒ IND-LCCA2, [13]). A VeraGreg framework is
LNM-LCCA2-secure if and only if it is IND-LCCA2-secure.

Theorem (IND-CCA1AHE ⇒ IND-CCA1V , [13]). Let V be a VeraGreg scheme.
If its AHE is IND-CCA1-secure, V is also IND-CCA1-secure.

3 Weak and Strong List Non-Malleability

In 2013, Armknecht et al. [1] have shown Paillier AHE to be IND-CCA1-secure.
On the one hand, we obtain an IND-CCA1-secure VeraGreg scheme, on the
other hand, IND-CCA1 does not tell anything about the VeraGreg verification
feature—simply because it is already achieved by the underlying AHE. Hence
we insist on stronger notions of security that cannot be achieved by a plain
AHE and that take the verification feature into account. In Definition 2, we
employed some countermeasures—namely secret m1,2 and encryption of ID’s—,
let us discuss their necessity for the (prospective) stronger notions.

Proposition 1. No matter whether m1,2 are private or public, if SE were an
identity mapping, LNM would not be achievable by the VeraGreg scheme.

Proof. For a granting algorithm that grants ID’s starting from 1 and increments
them by 1, the adversary wins any LNM experiment as follows: she submits at
least one encryption query and after obtaining the challenge (b∗, c∗), she answers
with ({1, b∗−1}, c∗) together with an identity relation. Note that such an answer
is accepted as a successful attack: indeed, b∗ is not present in the list, the pair
passes verification and the identity relation clearly holds.

Remark 2. Such a breach works also in the case the adversary knows the (any-
how) modified ID’s, e.g., by a hash function, and is able to combine two distinct
multisets of them to yield the same sum, cf. line 6 and 7 in Dsk in Definition 2.

Proposition 2. If m1,2 were public, it would be possible to modify the data
inside a VeraGreg scheme ciphertext effectively.

Proof. The adversary can encrypt d as c = AHE(d ·m2) and add it by ⊕ to a
VeraGreg ciphertext without being detected by the decryption algorithm.

In the scenario of Proposition 2, there does not appear to be any evidence that
ease of data modification contradicts LNM. Indeed, it still appears to be hard
to extract the data or modify the list, however, even data modification shall be
avoided. This leads us to another and yet stronger notion of security.

4

The weakness of the definition of LNM (Definition 3) is that it does not
accept a ciphertext, where only data has been modified, as a valid attack, al-
though, intuitively, it shall be accepted. Only trivially constructed ciphertexts
(i.e., those combining existing ciphertexts using the addition algorithm) shall not
be accepted while any other (including that one identified in the proof of Propo-
sition 2) shall be accepted as a valid attack. In Table 1, we provide a summary of
differences between the original and the desired version of list non-malleability,
referred to as Weak List Non-Malleability (WLNM, formerly LNM) and Strong
List Non-Malleability (SLNM), respectively. Formal definition of SLNM follows.

Table 1. Comparison of trivial and rejected ciphertexts for different types of non-
malleability. Here c̄1 denotes a malformed ciphertext with modified data part.

Classical NM VeraGreg WLNM VeraGreg SLNM

Trivial c∗ (c∗ ⊕ c1, {b∗, b1}) etc.

Rejected c∗
(c∗ ⊕ c1, {b∗, b1}) etc.

(c∗ ⊕ c1, {b∗, b1}) etc.
(c∗ ⊕ c̄1, {b∗, b1}) etc.

Definition 5 (Trivial Breaches). The set of Trivial Breaches with respect
to a challenge ID-ciphertext pair (b∗, c∗), denoted by T B(b∗, c∗), is a set of all
list-ciphertext pairs which are computable from yet obtained ID-ciphertext pairs
(bi, ci)

n
i=1 3 (b∗, c∗), b = {b1, . . . , bn}, using Add Algorithm or re-randomization

(if applicable), and include b∗ in the list, i.e.,

T B(b∗, c∗) =
{(
B,Addpk

(
B, (ci)ni=1

)) ∣∣∣ B ∈M(B)
∣∣
b
, b∗ ∈ B

}
. (3)

The following definition is given in the format of the definition of NM by Bellare
et al. [2, Definition 2.2] in order to simplify its understanding to the reader.

Definition 6 (Strong List Non-Malleability). Let V = (Init,Grant,E,Add,
D) be a VeraGreg framework and A = (A1, A2) an adversary. For atk ∈ {CPA,
CCA1, LCCA2} and λ ∈ N let

AdvSLNM-atk
V,A (λ) = Pr[ExpSLNM-atk-1

V,A (λ) = 1]− Pr[ExpSLNM-atk-0
V,A (λ) = 1] (4)

where, for q ∈ {0, 1},
1: experiment ExpSLNM-atk-q

V,A (λ)
2: (pk, sk)← Init(λ)

3: (M, s)← AE,D1 (pk)
4: d0, d1 ←M ; b∗ ← Grantλ,b(d1); c∗ ← Esk(b

∗, d1)

5:
(
R, (B(i), c(i))Ni=1

)
← AE,D

∗

2

(
M, s, (b∗, c∗)

)
6: d← Dsk(B(i), c(i))Ni=1

5

7: if ∀i ∈ N̂ : (B(i), c(i)) 6∈ T B(b∗, c∗) ∧ ⊥ 6∈ d ∧R(dq,d) then
8: return 1
9: else

10: return 0

where

E(d) =
(
b← Grantλ,b(d), c← Esk(b, d)

)
and,

if atk = CPA, then D(·) = ε and D∗(·) = ε,
if atk = CCA1, then D(·) = Dsk(·) and D∗(·) = ε,
if atk = LCCA2, then D(·) = Dsk(·) and

D∗(B, c) = Dsk(B, c) if b∗ 6∈ B, and
D∗(B, c) = ⊥ if b∗ ∈ B.

We say that V is SLNM-atk-secure if, for every polynomial p(·), the following
holds: if A runs in time p(λ), outputs M ⊆ D sampleable in time p(λ), and out-
puts a relation R computable in time p(λ) for every λ ∈ N, then AdvSLNM-atk

V,A (·)
is negligible.

Note 1. The differences between the classical NM and SLNM are in the encryp-
tion oracle access that is provided to the SLNM adversary, in the ciphertext for-
mat and, in particular, in the condition on line 7 of Experiment ExpSLNM-atk-q

V,A :

the original y 6∈ y is replaced with (B(i), c(i)) 6∈ T B(b∗, c∗) – both dealing with a
trivial breach. Further recall that respective WLNM condition states

∀i ∈ N̂ : b∗ 6∈ B(i) ∧ ⊥ 6∈ d ∧R(dq,d). (WLNM)

Remark 3. The definition of SLNM (also that of NM by Bellare et al.) requires
certain effort to understand its intended meaning, in particular the meaning of
the condition on line 7. The condition combines

• a non-triviality and validity check, with
• a relation R provided by the adversary.

The goal of the relation R is to distinguish a non-trivial attack that targets the
data in the challenge (i.e., d1 encrypted in c∗) from a trivial attack that blindly
targets an uncontrolled subset of data. Hence the relation should hold for q = 1
since d1 was encrypted as the challenge c∗, cf. line 4, but it should not hold for
q = 0 since d0 was a randomly drawn piece of data intended for this check. It
follows that an attack with Adv = 1 is only possible if the condition

∀i ∈ N̂ : (B(i), c(i)) 6∈ T B(b∗, c∗) ∧ ⊥ 6∈ d (5)

is always true, and the relation

R(dq,d) (6)

only holds for the challenge, i.e., for q = 1. In case of an attack where (5) is
not satisfied or (6) holds always or never, it results in Adv = 0. Hence, Adv
represents the ratio of successful and unsuccessful attacks as outlined above.

6

In order to support the definition of SLNM, we show in the following theorem that
it is indeed stronger than the original notion of list non-malleability (WLNM).

Theorem 1 (SLNM-atk ⇒ WLNM-atk). If a VeraGreg framework V re-
sists SLNM in an attack scenario, then it resists WLNM in the same attack
scenario.

Proof. In the sense of Remark 3, we show that any successful WLNM attack
is also a successful SLNM attack, hence AdvSLNM-atk

V,A ≥ AdvWLNM-atk
V,A −negl(λ)

where A is a WLNM adversary and the negligible term is present due to undefined
behavior of VeraGreg in corner cases, cf. Definition 2. Note that WLNM only
differs from SLNM by the set of rejected vectors, cf. Table 1. The WLNM set of
rejected vectors is a superset of that of SLNM, hence it follows that all of the
attack vectors accepted in the WLNM experiment are also accepted in the SLNM
experiment which concludes the proof.

Corollary 1. SLNM-LCCA2⇒WLNM-LCCA2 ⇐⇒ IND-LCCA2.

In particular, we obtained the so far strongest notion of security for the Vera-
Greg framework – SLNM-LCCA2. Note that SLNM cannot be strengthened any
more by the means of rejected breaches treated as trivial.

4 VeraGreg Decomposition

In order to study theoretical guarantees of particular VeraGreg instantia-
tions, we suggest how the abstract VeraGreg framework may internally work.
We decompose the encryption algorithm into components for which we define
novel notions. By this approach, we delegate the “global” guarantees towards the
components whose novel notions will appear to be more tangible. We begin the
decomposition of VeraGreg encryption by encapsulating an encoding of the
ID-data pair into an additively homomorphic ciphertext, cf. (1) in Definition 2.

Definition 7 (VeraGreg Encoding Framework). Let (Init,Grant,E,Add,D)
be a VeraGreg framework, AHE: PA → C an additively homomorphic encryp-
tion scheme where ⊕ denotes its ciphertext addition operation, Enc : KS × B ×
D → PA an encoding algorithm and Dec : KS × M(B) × PA → D ∪ {⊥} a
decoding algorithm. Let these algorithms satisfy

• Init further inits AHE with a key pair (pkA, skA) while it stores pkA into pk
and sk, and skA into sk,
• Esk(b, d) = AHEpkA

(
Encsk(b, d)

)
,

• Addpk
(
B, (cb)b∈B

)
=
⊕

b∈B cb ,

• Dsk(B, c) = Decsk
(
B,AHE−1skA

(c)
)
.

We call the 6-tuple (Init,Grant,AHE,Enc,Add,Dec) the VeraGreg Encoding
Framework (VGE).

7

Lemma 1. Let (Init,Grant,AHE,Enc,Add,Dec) be a VGE. Then for any valid
set of ID-data pairs (b, db)b∈b, b ⊆ B, any policy-compliant B ∈M(B)

∣∣
b

and a
key pair (pk, sk)← Initλ, it holds

Decsk
(
B,
∑
b∈B

Encsk(b, db)
)

=
∑
b∈B

db. (7)

Proof. By Definition 14 (in Appendix A) and Definition 7 we have

Decsk
(
B,
∑
b∈B

Encsk(b, db)
)

= Dsk

(
B,AHEpkA

(∑
b∈B

Encsk(b, db)
))

=

= Dsk

(
B,
⊕
b∈B

AHEpkA

(
Encsk(b, db)

))
= Dsk

(
B,
⊕
b∈B

Esk(b, db)
)

=

= Dsk

(
B,Addpk

(
B,Esk(b, db)b∈B

))
=
∑
b∈B

db.

Definition 8. Let (Init,Grant,AHE,Enc,Add,Dec) be a VGE. Then for any va-
lid set of ID-data pairs (b, db)b∈b, b ⊆ B, any policy-compliant B ∈ M(B)

∣∣
b

,
dΣ :=

∑
b∈B db and a key pair (pk, sk)← Initλ, we define Augmented Encoding

Enc′sk(B, dΣ) :=
∑
b∈B

Encsk(b, db). (8)

In the following lemma, we show that Enc′ is well defined.

Lemma 2. Under the assumptions of Definition 8, it holds

Enc′sk({b}, db) = Encsk(b, db), (9)

and

Decsk
(
B,Enc′sk

(
B,
∑
b∈B

db
))

= Decsk
(
B,
∑
b∈B

Enc′sk({b}, db)
)

=
∑
b∈B

db, (10)

i.e., Enc′ is an augmentation of Enc and it is homomorphic in the sense of
Equation (10): Enc′sk

(
B,
∑
b∈B db

)
decodes the same as

∑
b∈B Enc

′
sk({b}, db).

Proof. Equation (9) holds by Definition 8. Equation (10) holds by Definition 8
and Equations (9) and (7).

In the following definition, we introduce a non-malleability notion for Enc which
aims to serve as a prospective guarantee of SLNM of a VGE.

Definition 9 (Encoding Non-Malleability). Let Init, Enc, Dec be respective
algorithms of a VGE V, Grant a granting algorithm and let A = (A1, A2) be an
adversary. For atk ∈ {CEA0,CEA1,CEA2} and λ ∈ N let

AdvENM-atk
V,A (λ) = Pr[ExpENM-atk-1

V,A (λ) = 1]− Pr[ExpENM-atk-0
V,A (λ) = 1] (11)

where, for q ∈ {0, 1},

8

1: experiment ExpENM-atk-q
V,A (λ)

2: (pk, sk)← Init(λ)

3: (M, s)← AE,D1 (pk)
4: d0, d1 ←M ; b∗ ← Grantλ,b(d1); e∗ ← Encsk(b

∗, d1)

5:
(
R, (B(i),B(i)Σ , e(i))Ni=1

)
← AE,D

∗

2 (M, s, b∗)

6: d← Decsk
(
B(i),

∑
b∈B(i)

Σ

eb + e(i)
)N
i=1

7: if ∀i ∈ N̂ : (e(i) 6= 0 ∨ B(i) 6= B(i)Σ) ∧ ⊥ 6∈ d ∧R(dq,d) then
8: return 1
9: else

10: return 0

where
E(d) = Grantλ,b(d)→ b
while it computes and keeps respective eb = Encsk(b, d)

and,

if atk = CEA0, then D(·) = ε and D∗(·) = ε,
if atk = CEA1, then D(B,BΣ , e) = Decsk(B,

∑
b∈BΣ eb + e) and D∗(·) = ε,

if atk = CEA2, then D(B,BΣ , e) = Decsk(B,
∑
b∈BΣ eb + e) and

D∗(B,BΣ , e) = Decsk(B,
∑
b∈BΣ eb + e) if b∗ 6∈ B, and

D∗(B,BΣ , e) = ⊥ if b∗ ∈ B.

We say that V’s encoding is ENM-atk-secure if, for every polynomial p(·),
the following holds: if A runs in time p(λ), outputs M ⊆ D sampleable in time
p(λ), and outputs a relation R computable in time p(λ) for every λ ∈ N, then
AdvENM-atk

V,A (·) is negligible

Note 2. In the previous definition, CEA stands for Chosen Encoding Attack.

Remark 4. In the ENM experiment, the adversary gets absolutely no information
related to actual encodings or data – she only gets ID’s which are required to
be independent on actual data, cf. Definition 2. Hence, from the point of view
of the adversary, it appears like she were given black boxes labelled by ID’s.

Theorem 2 (SLNM-atk ⇒ ENM-atk′). If a VGE is SLNM-atk-secure, then
its encoding is ENM-atk’-secure, for CPA–CEA0, CCA1–CEA1 and LCCA2–CEA2
pairs of atk–atk’.

Proof. Find the proof in Appendix B.1.

Before we state a restricted variant of the opposite implication, we define an
AHE scheme which can be perceived to operate with black boxes, cf. Remark 4.

Definition 10 (Perfect AHE). Perfect Additively Homomorphic Encryption
scheme (AHE∗) is an AHE scheme where let λ, δ ∈ N be the security and
data space parameter, respectively, 2δ � 2λ, D = {0, 1}δ the plaintext space,
C = M({0, 1}λ) the ciphertext space (multisets of λ-bit strings) and DB a
database/mapping, DB : {0, 1}λ → D ∪ {⊥} initialized as DB(·) = ⊥. We de-
scribe the encryption and decryption oracles E, D, respectively, and the ciphertext
addition operation

⊕
.

9

Encryption Oracle.

1: function EDB(d)
2: c← {0, 1}λ
3: DB(c)← d
4: return C ← {c}

Addition
⊕

.

1: function
⊕

((Ci)Ni=1, (ni)
N
i=1)

2: return C ←
⋃N
i=1 ni · Ci

Decryption Oracle.

1: function DDB(C)
2: if ∃c ∈ C, c 6∈ DB then return ⊥
3: decompose the multiset C into (ci, ni)

N
i=1

4: d← 0
5: for i = 1 . . . N do
6: di ← DB(ci)
7: if di = ⊥ then return ⊥
8: d← d + ni · di
9: return d

Theorem 3 (ENM-atk′ ⇒ SLNM-atkAHE∗). Let a VGE V use the perfect
AHE. If its encoding is ENM-atk’-secure, then it is SLNM-atk-secure for CEA0–
CPA, CEA1–CCA1 and CEA2–LCCA2 pairs of atk’–atk.

Proof. Find the proof in Appendix B.2.

Corollary 2. If a VGE employs AHE∗, it is SLNM-atk-secure if and only if its
encoding is ENM-atk’-secure, for respective pairs of atk–atk’.

In order to get the definitions of ENM and SLNM yet closer to each other, we
define a variant of the ENM experiment where the adversary has an access to
actual ciphertexts, in addition to ID’s, i.e., similar to the SLNM experiment.

Definition 11 (ENM-atkAHE). Let AHE be an additively homomorphic en-
cryption scheme and (pkA, skA) its keypair. If in an ENM-atk experiment (as
per Definition 9), atk ∈ {CEA0,CEA1,CEA2}, the adversary is further given
pkA (or AHE encryption and addition oracles), the encryption oracle E returns
in addition cb = AHE(eb), and the decryption oracle D works instead as follows:

D(B, c) = Decsk
(
B,AHE−1skA

(c)
)
, (12)

we denote this experiment as ENM-atkAHE.

Lemma 3 (ENM-atkAHE ⇒ ENM-atk ⇐⇒ ENM-atkAHE∗). Let AHE be
an additively homomorphic encryption scheme, AHE∗ the perfect additively ho-
momorphic encryption and atk ∈ {CEA0,CEA1,CEA2}. ENM-atkAHE security
implies ENM-atk security, which is equivalent to ENM-atkAHE∗ security.

Proof. ⇒: In the ENM-atkAHE experiment, the adversary has additional infor-
mation, as opposed to the original ENM-atk experiment.
⇔: In the ENM-atkAHE∗ experiment, the adversary only has an access to

AHE∗ ciphertexts in addition to the ENM-atk experiment. However, these are
effectively random values, hence she cannot make any advantage of it.

10

To conclude the first VeraGreg decomposition step, we conjecture that,
providing the adversary with IND-CCA1-secure AHE ciphertexts instead of AHE∗

“black boxes”, the opposite implication in Lemma 3 and a variant of Theorem 3
hold. Note that such ciphertexts should also only allow for encryption of custom
plain data and ciphertext addition, cf. Definition 9 and 10, hence we consider
these conjectures reasonable. As a result, this leads to a conjecture on an equi-
valence of SLNM and ENM of a VGE that employs an IND-CCA1-secure AHE.

Conjecture 1 (ENM-atkAHE∗ ⇒ ENM-atkIND-CCA1). Let AHE be IND-CCA1-se-
cure. If a VGE encoding is ENM-atkAHE∗ -secure, then it is ENM-atkAHE-secure,
for atk ∈ {CEA0,CEA1,CEA2}.

Conjecture 2 (ENM-atk′IND-CCA1 ⇒ SLNM-atk). Let AHE be IND-CCA1-secure.
If a VGE using AHE has an ENM-atk′AHE-secure encoding, then it is SLNM-atk-
secure, for respective pairs of atk’–atk.

Conjecture 3 (SLNM-atk ⇐⇒ ENM-atk′). Let AHE be IND-CCA1-secure. A
VGE using AHE is SLNM-atk-secure if and only if it has an ENM-atk’-secure
encoding, for respective pairs of atk–atk’.

5 Verification using Sum Comparison

In the previous section, we decomposed VeraGreg encryption into encoding
encapsulated by AHE. In this section, we focus on encoding, in particular, we
specify the verification procedure. First, we suggest to aggregate the ID-related
information by addition. Remind Proposition 1 which (in certain sense) calls
for an unpredictable modification of ID’s. In the following, we will model the
unpredictable modification by a Random Oracle (RO). Recall that a random
oracle RO: X → Y is basically a randomly drawn function f : X → Y , originally
formulated by Bellare et al. [3].

Definition 12 (VeraGreg Internal Encoding Framework). Let (Init,Grant,
AHE,Enc,Add,Dec) be a VeraGreg encoding framework, RO: B → (R,+) a
random oracle, Inc : KS × R × D → PA an internal encoding algorithm and
Idc : KS × PA → R × D ∪ {⊥} an internal decoding algorithm. Let these algo-
rithms satisfy

• Encsk(b, d) = Incsk
(
RO(b), d

)
, and

• Decsk
(
B, e

)
proceeds as follows:

1: function Decsk(B, e)
2: if B is not policy-compliant then return ⊥
3: if Idcsk(e) = ⊥ then return ⊥
4: (r, d)← Idcsk(e)
5: if r 6=

∑
b∈B RO(b) then return ⊥

6: return d

We call the 7-tuple (Init,Grant,AHE,RO, Inc,Add, Idc) the VeraGreg Internal
Encoding Framework (VGIE).

11

Lemma 4. Let (Init,Grant,AHE,RO, Inc,Add, Idc) be a VGIE. Then for any
valid set of ID-data pairs (b, db)b∈b, b ⊆ B, rb := RO(b), any B ∈ M(B)

∣∣
b

and
a key pair (pk, sk)← Initλ, it holds

Idcsk
(∑
b∈B

Incsk(rb, db)
)

=
(∑
b∈B

rb,
∑
b∈B

db

)
. (13)

Proof. By Definition 12 and Lemma 1 we have

Idcsk
(∑
b∈B

Incsk(rb, db)
)

= Idcsk
(∑
b∈B

Encsk(b, db)
)

=

=
(∑
b∈B

RO(b),Decsk
(
B,
∑
b∈B

Encsk(b, db)
))

=
(∑
b∈B

rb,
∑
b∈B

db

)
.

Corollary 3. Inc is homomorphic in the sense of

Idcsk
(∑
b∈B

Incsk(rb, db)
)

=
(∑
b∈B

rb,
∑
b∈B

db

)
= Idcsk

(
Incsk

(∑
b∈B

rb,
∑
b∈B

db
))
, (14)

i.e., a sum of Inc’s decodes the same as Inc of respective sums.

Proof. Let bΣ be a valid ID, let us enforce RO(bΣ) =
∑
b∈B rb =: rΣ and let

dΣ =
∑
b∈B db. The claim follows by Lemma 4 with (bΣ , dΣ) and B = {bΣ}.

Note that in our definition of the VeraGreg internal encoding framework, the
Inc/Idc algorithms still implement a portion of VeraGreg security. Indeed, it
should be still impossible to compute a valid encoding of any piece of data. Let
us formulate this property in the following definition (cf. Definition 9).

Definition 13 (Internal Encoding Non-Malleability). Let Init, Inc, Idc be
respective algorithms of a VGIE V, RO its random oracle, Grant a granting
algorithm and let A = (A1, A2) be an adversary. For atk ∈ {CIA0,CIA1,CIA2}
and λ ∈ N let

AdvINM-atk
V,A (λ) = Pr[ExpINM-atk-1

V,A (λ) = 1]− Pr[ExpINM-atk-0
V,A (λ) = 1] (15)

where, for q ∈ {0, 1},
1: experiment ExpINM-atk-q

V,A (λ)
2: (pk, sk)← Init(λ)

3: (M, s)← AE,D1 (pk)
4: d0, d1 ←M ; b∗ ← Grantλ,b(d1); r∗ ← RO(b∗); e∗ ← Incsk(r

∗, d1)

5:
(
R, (B(i)Σ , e(i))Ni=1

)
← AE,D

∗

2 (M, s, b∗)

6: (r,d)← Idcsk
(∑

b∈B(i)
Σ

eb + e(i)
)N
i=1

7: if ∀i ∈ N̂ : e(i) 6= 0 ∧ ⊥ 6∈ (r,d) ∧R(dq,d) then
8: return 1

12

9: else
10: return 0

where
E(d) = b← Grantλ,b(d)
while it computes and keeps r = RO(b) and respective eb = Incsk(r, d)

and,

if atk = CIA0, then D(·) = ε and D∗(·) = ε,
if atk = CIA1, then D(BΣ , e) = Idcsk(

∑
b∈BΣ eb + e) and D∗(·) = ε,

if atk = CIA2, then D(BΣ , e) = Idcsk(
∑
b∈BΣ eb + e) and

D∗(BΣ , e) = Idcsk(
∑
b∈BΣ eb + e) if b∗ 6∈ BΣ , and

D∗(BΣ , e) = ⊥ otherwise.

We say that V’s internal encoding is INM-atk-secure if, for every polynomial
p(·), the following holds: if A runs in time p(λ), outputs M ⊆ D sampleable in
time p(λ), and outputs a relation R computable in time p(λ) for every λ ∈ N,
then AdvINM-atk

V,A (·) is negligible

Note 3. In the definition above, CIA stands for Chosen Internal Encoding Attack.

Before we put INM into context with ENM, we study a combination of the
somewhat homomorphic property (cf. Remark 1) with possible INM adversary’s
access to the RO. First, let us formulate a problem to be hard in order to prevent
the situation outlined in Remark 2, i.e., distinct multisets of known modified ID’s
result in equal control sums.

Problem 1 (Sum of Randoms, SoR). Let λ be a security parameter and ν such
that poly(λ) � 2ν � 2λ. Given a random oracle ROλ : B → (R,+), |R| ≥ 2λ,
with answers stored in a vector r, either find an integer vector w 6= 0 (referred
to as the vector solution) such that w · r = 0 and ‖w‖1 < 2ν , or answer that
such a vector does not exist. We refer to this problem as the Sum of Randoms,
denoted as SoRROλ . We say it is intractable if it only has a vector solution with
negligible probability or it is computationally infeasible to find a vector solution.

Note 4. In order SoR to be tractable, w must be of a polynomial dimension. The
condition ‖w‖1 < 2ν is present due to the somewhat restriction, cf. Remark 1.

Proposition 3. Let there exist a polynomial p such that the SoRROλ problem
has a non-empty set of vector solutions of dimension at most p(λ), with non-
negligible probability. Let further S be an oracle with an access to ROλ that either,
with non-negligible probability and after at most p(λ) queries to ROλ, returns a
vector solution, or answers ⊥. Given an access to S and ROλ, no VGIE (even
a somewhat homomorphic) can satisfy any kind of WLNM- or LCCA2-security.

Proof. Let (Init,Grant,AHE,ROλ, Inc,Add, Idc) be a VGIE and Exp a WLNM-
or LCCA2-type experiment. Since we do not control the granting algorithm, we
cannot provide S with a direct access to ROλ. Instead, with each query bS of S,
we either look it up in our database (in case it has already been asked), or query
the E oracle in Exp on, e.g., d = 0, to obtain fresh b, reply with r ← ROλ(b)

13

and store (bS , r) in the database. Note that due to the uniformly random nature
of the random oracle, this setup is equivalent to the case where S has a direct
access to ROλ, up to a polynomial slowdown.

With non-negligible probability and after at most p(λ) queries, S returns a
vector solution w, clearly dim w ≤ p(λ). Note that for such w, it occurs w[b∗] 6= 0
with at least 1

p(λ) probability which keeps the overall probability non-negligible.

It follows that with non-negligible probability, we can exploit w to replace the
challenge ID b∗ in the list B and answer trivially what we are supposed to; cf.
the idea of the proof of Proposition 1.

Remark 5. Due to the claim of Proposition 3, we insist on the assumption that
SoR is intractable. Below we summarize a couple of related ideas and thoughts:

• if we omit ‖w‖1 < 2ν , we have the following solutions

w(k) = (0, . . . , 0,
rk+1

GCD(rk, rk+1)
,− rk

GCD(rk, rk+1)
, 0, . . . , 0)

which form a basis of a lattice W where it holds w · r = 0, ∀w ∈W,
• W is a sublattice of the lattice of all integer solutions to w · r = 0, however,

there is no guarantee that they are equal,
• in modular lattices (typically in Zp, p prime), the problem of finding the

shortest vector is believed to be hard on average (aka. the Shortest Vector
Problem, SVP).

In the following theorem and its corollary, we finally put INM and ENM into
context. We also cover the case of a somewhat homomorphic VGIE with an INM
adversary with an access to the RO.

Theorem 4 (INM-atk ⇒ ENM-atk′). Let V = (Init,Grant,AHE,RO, Inc,Add,
Idc) be a VGIE. If the internal encoding of V is INM-atk-secure, then its encoding
is ENM-atk’-secure, for CIA0–CEA0, CIA1–CEA1 and CIA2–CEA2 pairs of atk–
atk’.

Proof. Find the proof in Appendix B.3.

Corollary 4. Assuming that SoR is intractable, Theorem 4 holds also for a
somewhat homomorphic VGIE where the INM-atk adversary has, in addition,
an access to the RO.

Proof. Find the proof in Appendix B.4.

Finally, we conjecture that the opposite implication in Theorem 4 holds, too.
As a result of previous theorems and conjectures, this leads to a conjecture on
an equivalence of SLNM and INM of a VGIE that employs an IND-CCA1-secure
AHE, or, by Corollary 4, under the assumption of SoR intractability and the
somewhat homomorphic property, even if RO is available to the adversary. This
equivalence poses the ultimate goal of our decomposition effort – the Vera-
Greg security would rely solely on the security of underlying constructs. We
summarize our theorems, lemmas and conjectures in Figure 1.

14

Conjecture 4 (ENM-atk′ ⇒ INM-atk). If Enc of a VGIE is ENM-atk’-secure, then
its Inc is INM-atk-secure for respective pairs of atk–atk’.

Conjecture 5 (SLNM-atk ⇐⇒ INM-atk′). Let AHE be IND-CCA1-secure. A
VGIE using AHE is SLNM-atk-secure if and only if its Inc is INM-atk’-secure for
respective pairs of atk–atk’.

SLNM ENM

ENMAHE∗SLNMAHE∗

ENMIND-CCA1

INM
Thm. 4

Lemma 3

Lemma 3

Thm. 3

Thm. 2

Conj. 2
Conj. 1

Conj. 4

Fig. 1. A simplified summary of our results. Proven implications are drawn with solid
lines, conjectures with dotted lines.

Remark 6. A cryptographic hash function (CHF) or a pseudorandom function
(PRF) can be modelled as a random oracle and vice versa, for a comprehensive
reading we refer to Canetti et al. [6]. In the definition of the VeraGreg scheme
(Definition 2), we employed a symmetric encryption SE for an unpredictable
modification of ID’s, cf. (1). Here, SE is instantiated with a secret key, i.e., it is
a private PRF which can be modelled as a random oracle that is not available to
the adversary. However, with the assumptions of Corollary 4 (the VeraGreg
scheme is indeed somewhat homomorphic), we can provide the random oracle to
the adversary, i.e., it can be instantiated as a CHF instead. Hence we suggest

Esk(b, d) = AHE
(
(h(b) ·m1 + d) ·m2

)
(16)

where h(·) is a CHF. In other cases, PRF must be still employed.

Conclusion

As the major output of this paper, we consider the novel notions of security,
in particular the “global” strong list non-malleability—for the abstract Vera-
Greg framework—and the “local” internal encoding non-malleability—for the
structured VeraGreg internal encoding framework. Based on our theorems, we
conjectured their equivalence under reasonable assumptions on the components
of the structured framework. Finally, we identified a lattice problem to be hard
in order to simplify the original somewhat homomorphic VeraGreg scheme.

15

Future Directions

We aim to prove the conjectures stated in this paper – 5 conjectures in total, two
of them only as prospective corollaries. Although in some cases they are similar
to finished proofs, these resisted our effort.

As another research topic, the SoR problem attracts our attention, in parti-
cular its relation to the famous Shortest Vector Problem (SVP) in lattice theory.

Finally, we focus on another instantiations of the Inc mapping – at the mo-
ment we work with Inc based on the encryption algorithm introduced in [13],
i.e., Incm1,2(r, d) =

(
r · m1 + d

)
· m2 where m1,2 are secret constants. For any

future Inc mapping, we will particularly focus on its prospective INM security as
introduced in this paper.

Acknowledgment

We would like to thank to Pascal Paillier for a brief yet very useful feedback.

Appendix

A Definition of the VeraGreg Framework

Definition 14 (VeraGreg Framework). Let D denote an additive Abelian
group—the data space—, λ ∈ N the security parameter, B the set of ID’s, C the
ciphertext space, KP , KS the public and secret key space, respectively. Vera-
Greg Framework is a 5-tuple of PPT algorithms (Init,Grant,E,Add,D),

• Init : {1}∗ → KP ×KS,
• Grant : {1}∗ ×B∗ ×D → B∗ ×B ∪ {⊥},
• E : KS ×B ×D → C,
• Add : KP × Z|B| × C∗ → C,
• D : KS × Z|B| × C → D ∪ {⊥},

for which it holds: ∀n ∈ N, ∀(di)ni=1 ∈ Dn and respective valid (bi)
n
i=1 =: b

granted by Grantλ, ∀B ∈ M(B)
∣∣
b

and a key pair (pk, sk)← Initλ,

1. if B is policy-compliant,

Pr

[
Dsk

(
B,Addpk

(
B,Esk(bi, di)

n
i=1

))
=

n∑
i=1

B[bi] · di
]
∈ OWλ, (17)

i.e., the encryption is additively homomorphic,
2. if B is not policy-compliant,

Pr

[
Dsk

(
B,Addpk

(
B,Esk(bi, di)

n
i=1

))
= ⊥

]
∈ OWλ, (18)

i.e., policy-incompliant list is discarded,

16

3. ∀B′ ∈ Z|B|, B′ 6= B,

Pr

[
Dsk

(
B′,Addpk

(
B,Esk(bi, di)

n
i=1

))
= ⊥

]
∈ OWλ, (19)

i.e., the framework detects any list forgery,
4. otherwise,

Pr
[
Dsk(·, ·) = ⊥

]
∈ OWλ, (20)

i.e., any invalid ciphertext is detected.

B Security Reductions

In the following proofs, we omit the negligible term that is present due to unde-
fined behavior of VeraGreg in corner cases, cf. the proof of Theorem 1.

B.1 Proof of Theorem 2

Theorem 2 (SLNM-atk ⇒ ENM-atk′). If a VGE is SLNM-atk-secure, then
its encoding is ENM-atk’-secure, for CPA–CEA0, CCA1–CEA1 and LCCA2–CEA2
pairs of atk–atk’.

Proof. We show that AdvSLNM-atk
V,A ≥ 1/2AdvENM-atk

V,B , where A = (A1, A2) and
B = (B1, B2) is an SLNM-atk and an ENM-atk’ adversary, respectively, which
concludes the proof. The overall idea is that we construct the SLNM-atk ad-
versary A who, provided an oracle access to the ENM-atk’ adversary B, aims
to succeed in an SLNM-atk experiment. Note that A has to provide B with an

access to ENM-atk’ oracles denoted by EB and D(∗)
B while she has an access to

SLNM-atk oracles denoted by EA and D(∗)
A where D(∗)

X stands for DX and D∗X ,
respectively. See Figure 2 for reference. Finally we show that in a half of cases,
A succeeds if B succeeds (following Remark 3).

B

Aims to break

ExpSLNM-atk.

Simulated
ENM-atk’

experiment
←−−−−−−−−−→ A

Simulates oracles

EB and D(∗)
B

for B.

Employs B

to break ExpSLNM-atk.

Actual
SLNM-atk

experiment
←−−−−−−−−−→ ExpSLNM-atk

Provides oracles

EA and D(∗)
A

for A.

Fig. 2. An overview of the interaction of adversaries A and B.

First, let us describe the simulated oracles EB and D(∗)
B that employ the

oracles EA and D(∗)
A , respectively, and share a database DB of ID-ciphertext

17

pairs. Note that EB and D(∗)
B are constructed to allow for modification of the

plain data in order to succeed in particular cases that will be explained later.
Nevertheless, the output b is not affected by this change since the Grant algorithm
is required to output b that is independent of the input data.

1: function E(p)B (d)
2: (b, cb)← EA(d+ p)
3: DB(b)← cb
4: return b

1: function D(∗)(p)
B (B,BΣ , e)

2: if ∃b ∈ BΣ , b 6∈ DB then return ⊥
3: for b ∈ BΣ do
4: cb ← DB(b)

5: return d← D(∗)
A

(
B,
⊕

b∈BΣ cb⊕AHE(e)
)
−

− p · |BΣ |

Next, we describe the SLNM-atk adversary A. Note that B is provided with an

access to the oracles EB and D(∗)
B .

1: function AEA,DA1 (pk)
2: p← {0, 1}
3: (M, s)← B

E(p)B ,D(p)
B

1 (pk)
4: return

(
M, (s, p)

)
1: function A

EA,D∗A
2 (M, (s, p), (b∗, c∗))

2:
(
R, (B(i),B(i)Σ , e(i))Ni=1

)
← B

E(p)B ,D∗(p)B
2 (M, s, b∗)

3: for i = 1 . . . N do
4: c(i) ←

⊕
b∈B(i)

Σ

cb ⊕AHE(e(i))

5: if p = 1 then modify R accordingly (described later)
6: return

(
R, (B(i), c(i))Ni=1

)

Let us inspect the key condition of SLNM (line 7 in Definition 6) and that of
ENM (line 7 in Definition 9) for p = 0 (the case p = 1 will be resolved later):

∀i ∈ N̂ : (B(i), c(i)) 6∈ T B(b∗, c∗) ∧ ⊥ 6∈ d ∧R(dq,d), and (SLNM)

∀i ∈ N̂ : (e(i) 6= 0 ∨ B(i) 6= B(i)Σ) ∧ ⊥ 6∈ d ∧R(dq,d), (ENM)

respectively1. Let us focus on their relation in the scenario of this proof. By the

construction of A2, it holds NSLNM = NENM and B(i)SLNM = B(i)ENM. In particular,
dq is common for both experiments, let us show that also dSLNM = dENM. We

1 We will distinguish the variables from Equations (SLNM) and (ENM) by a subscript.

18

show that element-wise and omit indexes (i):

dSLNM = Dsk(B, c) = Decsk
(
B,AHE−1(c)

)
=

= Decsk
(
B,AHE−1

(⊕
b∈BΣ

cb ⊕AHE(e)
))

=

= Decsk
(
B,
∑
b∈BΣ

AHE−1
(
Esk(b, db)

)
+ e
)

=

= Decsk
(
B,
∑
b∈BΣ

Encsk(b, db) + e
)

=

= Decsk
(
B,
∑
b∈BΣ

eb + e
)

= dENM

where db is a piece of data relative to b. The equations hold subsequently by:

1. line 6 in experiment ExpSLNM-atk-q
V,A in Definition 6,

2. Dsk in Definition 7,
3. line 4 in adversary A2,
4. oracles EB and EA, respectively, and the AHE homomorphic property,
5. Esk in Definition 7,
6. encoding oracle E in Definition 9, and
7. line 6 in experiment ExpENM-atk-q

V,B in Definition 9.

The difference between (SLNM) and (ENM) hence remains in the conditions

(B, c) 6∈ T B(b∗, c∗), and (21)

e 6= 0 ∨ B 6= BΣ . (22)

Aiming to show AdvSLNM-atk
V,A ≥ 1/2AdvENM-atk

V,B (the coefficient 1/2 will be resolved
later) and following the ideas identified in Remark 3, we only need to discuss
the case when a non-trivial ENM breach results in a trivial SLNM breach, i.e.,
when (21) does not hold while (22) holds. For the ciphertext part at the output
of A2, it holds by (3) in Definition 5 that it equals to a plain sum of ciphertexts⊕

b∈BΣ

cb ⊕AHE(e) =
⊕
b∈B

cb, hence (23)

e =
∑

b∈B\BΣ

eb. (24)

In order (22) to hold, it must be B 6= BΣ , and e encodes actual values. We
distinguish two cases based on the presence of b∗ in B \ BΣ .

Case b∗ ∈ B \ BΣ. By (24), e shall encode a portion of the absolutely unknown
challenge data d1. Indeed, B only learns b∗ which is independent of actual d1.
It follows that such a case may happen only accidentally, hence, by Remark 3,
this is an uncontrolled type of attack which results in AdvENM-atk

V,B = 0.

19

Case b∗ 6∈ B \ BΣ. Here, e only encodes known values and poses a non-trivial
valid ENM attack. However, it cannot be directly used for SLNM since it
results in a trivial attack. Here comes the option p = 1. The idea is as follows:
since B does not have any information about what data has been indeed
encrypted, A can modify it before submitting it to the encryption oracle EA in
the construction of EB oracle. When the attack is evaluated, trivial breaches
are considered with respect to the modified data (i.e., d + 1), however, B
returns e that encodes the original data, i.e., the difference emerges in B\BΣ .
It follows that after respective modification, the relation R holds for the
modified data while posing a non-trivial SLNM attack (modified data).

Since A1 begins with a “coin toss” (line 2 in A1 in this proof), the success of each
branch halves, no matter which case of B2 output occurs, hence AdvSLNM-atk

V,A ≥
1/2AdvENM-atk

V,B .

B.2 Proof of Theorem 3

The proof follows an idea and language similar to the proof of Theorem 2 in
Section B.1. In particular cf. Figure 2 since an analogous figure is omitted here.

Theorem 3 (ENM-atk′ ⇒ SLNM-atkAHE∗). Let a VGE V use the perfect AHE.
If its encoding is ENM-atk’-secure, then it is SLNM-atk-secure for CEA0–CPA,
CEA1–CCA1 and CEA2–LCCA2 pairs of atk’–atk.

Proof. We show that AdvENM-atk′

V,B ≥ Adv
SLNM-atk(AHE∗)
V,A , where B = (B1, B2)

and A = (A1, A2) is an ENM-atk’ and an SLNM-atkAHE∗ adversary, respectively,
which concludes the proof. We construct the ENM-atk’ adversary B who, pro-
vided an oracle access to the SLNM-atkAHE∗ adversary A, aims to succeed in an
ENM-atk’ experiment. Note that B has to provide A with an access to SLNM-atk

oracles denoted by EA and D(∗)
A and to an AHE∗ encryption oracle EAHE∗ while

she has an access to ENM-atk’ oracles denoted by EB and D(∗)
B where D(∗)

X stands
for DX and D∗X , respectively. Finally we show that B succeeds if A succeeds.

First, we describe the oracles EA and D(∗)
A , that employ the oracles EB and

D(∗)
B , respectively, together with the EAHE∗ oracle. All oracles share a database

DB that implements two kinds of AHE∗: an internal AHE∗ that serves for data
encryption in EA and an instance that encrypts encodings inside EAHE∗ . Note
that these instances are distinguished in DB by 0 and 1, respectively.

1: function EA(d)
2: b← EB(d)
3: c← {0, 1}λ
4: DB(c)← (b, 0)
5: return (b, {c})

1: function EAHE∗(e)
2: c← {0, 1}λ
3: DB(c)← (e, 1)
4: return {c}

20

1: function D(∗)
A (B, C)

2: if ∃c ∈ C, c 6∈ DB then return ⊥
3:

(
BΣ , (ej , nj)nj=1

)
← decompose C and look up in DB

(employ the 0 or 1 marker)

4: return d← D(∗)
B (B,BΣ ,

∑n
j=1 nj · ej)

Next, we describe the ENM-atk’ adversary B who provides A with an access to

the oracles EA, EAHE∗ and D(∗)
A .

1: function BEB ,DB1 (pk)
2: init an empty DB
3: (M, s)← AEA,DA1 (pk)
4: return

(
(M,DB), s

)
1: function B

EB ,D∗B
2 ((M,DB), s, b∗)

2: c∗ ← {0, 1}λ
3: DB(c∗)← (b∗, 0)

4:
(
R, (B(i), C(i))Ni=1

)
← A

EA, EAHE∗ ,D∗A
2

(
M, s, (b∗, {c∗})

)
5: for i = 1 . . . N do
6: if ∃c ∈ C(i), c 6∈ DB then return

(
R, (∅, ∅, 0)Ni=1

)
// something trivial

7:
(
B(i)Σ , (e

(i)
j , n

(i)
j)nj=1

)
← decompose C(i) and look up in DB

8: e(i) ←
∑n
j=1 n

(i)
j · e

(i)
j

9: return
(
R, (B(i),B(i)Σ , e(i))Ni=1

)
The conditions of ENM (line 7 in Definition 9) and SLNM (line 7 in Definition 6)
state:

∀i ∈ N̂ : (e(i) 6= 0 ∨ B(i) 6= B(i)Σ) ∧ ⊥ 6∈ d ∧R(dq,d), and (ENM)

∀i ∈ N̂ : (B(i), C(i)) 6∈ T B(b∗, {c∗}) ∧ ⊥ 6∈ d ∧R(dq,d), (SLNM)

respectively. By the construction of B2, it holds NENM = NSLNM and B(i)ENM =

B(i)SLNM. In particular, dq is common for both experiments, let us show that also
dENM = dSLNM. We show that element-wise and omit indexes (i):

dENM = Decsk
(
B,
∑
b∈BΣ

eb + e
)

=

= Decsk
(
B,
∑
b∈BΣ

eb +

n∑
j=1

nj · ej
)

=

= Decsk
(
B,AHE−1(C)

)
=

= Dsk(B, C) = dSLNM.

21

The equations hold subsequently by:

1. line 6 in experiment ExpENM-atk-q
V,B (in Definition 9),

2. adversary B2 from this proof (line 8),
3. decomposition of C in adversary B2 (line 7),
4. Dsk in Definition 7, and
5. line 6 in experiment ExpSLNM-atk-q

V,A (in Definition 6).

The difference between (ENM) and (SLNM) hence remains in the conditions

e 6= 0 ∨ B 6= BΣ , and (25)

(B, C) 6∈ T B(b∗, {c∗}). (26)

Aiming to show AdvENM-atk′

V,B ≥ Adv
SLNM-atk(AHE∗)
V,A and following Remark 3, we

only need to discuss the case when a non-trivial SLNM breach results in a trivial
ENM breach, i.e., when (25) does not hold while (26) holds. In such a case, both
e = 0 and B = BΣ , hence the only option for (B, C) 6∈ T B(b∗, {c∗}) is that
b∗ 6∈ B, cf. (3) in Definition 5. However, such an SLNM breach is not related to
the challenge data d1 at all, hence contributes by zero to the SLNM advantage.

AdvENM-atk′

V,B ≥ Adv
SLNM-atk(AHE∗)
V,A follows.

B.3 Proof of Theorem 4

The proof follows an idea and language similar to the proof of Theorem 2 in
Section B.1. In particular cf. Figure 2 since an analogous figure is omitted here.

Theorem 4 (INM-atk ⇒ ENM-atk′). Let V = (Init,Grant,AHE,RO, Inc,Add,
Idc) be a VGIE. If the internal encoding of V is INM-atk-secure, then its encoding
is ENM-atk’-secure, for CIA0–CEA0, CIA1–CEA1 and CIA2–CEA2 pairs of atk–
atk’.

Proof. We show that AdvINM-atk
V,C (λ) ≥ AdvENM-atk′

V,B (λ) − negl(λ), where C =
(C1, C2) and B = (B1, B2) is an INM-atk and an ENM-atk’ adversary, respec-
tively, which concludes the proof. We construct the INM-atk adversary C who,
provided an oracle access to the ENM-atk’ adversary B, aims to succeed in an
INM-atk experiment. Note that C has to provide B with an access to ENM-atk’

oracles denoted by EB and D(∗)
B while she has an access to INM-atk oracles de-

noted by EC and D(∗)
C where D(∗)

X stands for DX and D∗X , respectively. Finally
we show that C succeeds if B succeeds.

First, we describe the oracles EB and D(∗)
B , that employ the oracles EC and

D(∗)
C , respectively.

22

1: function EB(d)
2: return b← EC(d)

1: function D(∗)
B (B,BΣ , e)

2: if D(∗)
C (BΣ , e) = ⊥ then return ⊥

3: (r, d)← D(∗)
C (BΣ , e)

4: if r 6=
∑
b∈B RO(b) then return ⊥

5: return d

Next, we describe the INM-atk’ adversary C who provides B with an access to

the oracles EB and D(∗)
B .

1: function CEC ,DC1 (pk)

2: (M, s)← BEB ,DB1 (pk)
3: return (M, s)

1: function C
EC ,D∗C
2 (M, s, b∗)

2:
(
R, (B(i),B(i)Σ , e(i))Ni=1

)
← B

EB ,D∗B
2 (M, s, b∗)

3: return
(
R, (B(i)Σ , e(i))Ni=1

)
The conditions of INM (line 7 in Definition 13) and ENM (line 7 in Definition 9)
state:

∀i ∈ N̂ : e(i) 6= 0 ∧ ⊥ 6∈ (r,d) ∧R(dq,d), and (INM)

∀i ∈ N̂ : (e(i) 6= 0 ∨ B(i) 6= B(i)Σ) ∧ ⊥ 6∈ d ∧R(dq,d), (ENM)

respectively. By the construction of C2, it holds NINM = NENM and B(i)INM = B(i)ENM.
In particular, dq is common for both experiments, let us show that also dINM =
dENM. We show that element-wise and omit indexes (i):

dINM = Idcsk(
∑
b∈BΣ

eb + e)[1] =

= Decsk
(
B,
∑
b∈BΣ

eb + e
)

= dENM.

The equations follow from line 6 in experiment ExpINM-atk-q
V,C (in Definition 13),

Decsk in Definition 12, and line 6 in experiment ExpENM-atk-q
V,B (in Definition 9),

respectively. The difference between (INM) and (ENM) hence remains in the
conditions

e 6= 0, and (27)

e 6= 0 ∨ B 6= BΣ . (28)

Aiming to show AdvINM-atk
V,C (λ) ≥ AdvENM-atk′

V,B (λ)− negl(λ) (the negligible term
negl(λ) will be resolved later) and following Remark 3, we only need to discuss

23

the case when a non-trivial ENM breach results in a trivial INM breach, i.e., when
(27) does not hold while (28) holds. In such a case when e = 0 while B 6= BΣ , it
holds by line 5 in Definition 12, line 6 in Definition 9 and (13) in Lemma 4 that

r =
∑
b∈B

RO(b) =
∑
b∈BΣ

RO(b). (29)

Since the terms RO(b) are random and unknown to B, this may happen only
with negligible probability. It follows AdvINM-atk

V,C (λ) ≥ AdvENM-atk
V,B (λ)− negl(λ)

which concludes the proof.

B.4 Proof of Corollary 4

Corollary 4. Assuming that SoR is intractable, Theorem 4 holds also for a
somewhat homomorphic VGIE where the INM-atk adversary has, in addition,
an access to the RO.

Proof. Following the proof of Theorem 4, the difference occurs at the very end
where we argue that the terms RO(b) are unknown to the adversary – in this
case, we assume that these terms are known to the adversary. Hence, the (too
large) solution w(k) = (0, . . . , 0, rk+1

GCD(rk,rk+1)
,− rk

GCD(rk,rk+1)
, 0, . . . , 0) to the SoR

problem identified in Remark 5 would work in a VGIE without a restriction.
However and for this particular reason, we assumed a somewhat homomorphic
VGIE which restricts the SoR solutions by ‖w‖1 < 2ν . It follows that if (29) is
satisfied for a valid VeraGreg list-ciphertext pair, it must be the case that the
vector representation of B \ BΣ represents a vector solution to the SoR problem
which we assumed to be intractable. It follows AdvINM-atk

V,C (λ) ≥ AdvENM-atk
V,B (λ)−

negl(λ) which concludes the proof.

References

1. Armknecht, F., Katzenbeisser, S., Peter, A.: Group homomorphic encryption: char-
acterizations, impossibility results, and applications. Designs, codes and cryptog-
raphy 67(2), 209–232 (2013)

2. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Annual International Cryptology
Conference. pp. 26–45. Springer (1998)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM conference on Computer and
communications security. pp. 62–73. ACM (1993)

4. Boneh, D., Segev, G., Waters, B.: Targeted malleability: homomorphic encryption
for restricted computations. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference. pp. 350–366. ACM (2012)

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (TOCT)
6(3), 13 (2014)

6. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
Journal of the ACM (JACM) 51(4), 557–594 (2004)

24

7. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted
data. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. pp. 844–855. ACM (2014)

8. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In: Annual Cryptology Conference.
pp. 465–482. Springer (2010)

9. Gentry, C., Boneh, D.: A fully homomorphic encryption scheme, vol. 20. Stanford
University (2009)

10. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Annual
Cryptology Conference. pp. 75–92. Springer (2013)

11. Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker
keeping secret all partial information. In: Proceedings of the fourteenth annual
ACM symposium on Theory of computing. pp. 365–377. ACM (1982)

12. Halevi, S., Shoup, V.: Algorithms in HElib. In: Annual Cryptology Conference. pp.
554–571. Springer (2014)

13. Klemsa, J., Kencl, L., Vaněk, T.: VeraGreg: A Framework for Verifiable Privacy-
Preserving Data Aggregation. In: 2018 17th IEEE International Conference
On Trust, Security And Privacy In Computing And Communications/12th
IEEE International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE). pp. 1820–1825. IEEE (2018)

14. Paillier, P., et al.: Public-key cryptosystems based on composite degree residuosity
classes. In: Eurocrypt. vol. 99, pp. 223–238. Springer (1999)

15. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

16. Microsoft SEAL (release 3.2). https://github.com/Microsoft/SEAL (Feb 2019),
microsoft Research, Redmond, WA.

25

https://github.com/Microsoft/SEAL

	 Formal Notions of Security for Verifiable Homomorphic Encryption

