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Abstract—The striking growth in cryptocurrencies is revealing
several scalability issues that go beyond the growing size of the
blockchain. Payment channel hubs (PCHs) constitute a promising
scalability solution by performing off-chain payments between
sender and receiver through an intermediary, called the tumbler.
While currently proposed PCHs provide security and privacy
guarantees against a malicious tumbler, they fall short of other
fundamental properties, such as interoperability and fungibility.

In this work, we present A2L, the first secure, privacy-
preserving, interoperable, and fungibility-preserving PCH. A2L
builds on a novel cryptographic primitive that realizes a three-
party protocol for conditional transactions, where the interme-
diary pays the receiver only if the latter solves a cryptographic
challenge with the help of the sender. We prove the security
and privacy guarantees of A2L in the Universal Composability
framework and present two provably secure instantiations based
on Schnorr and ECDSA signatures.

We implemented A2L and our evaluation shows that it
outperforms TumbleBit, the state-of-the-art PCH in terms of
interoperability, which is one of the central goals of this work.
In particular, we show that in a commodity hardware as well
as in a more realistic, distributed setting where sender, receiver
and tumbler sit at different geographical locations worldwide,
our ECDSA-based construction is 3x faster and requires 15x less
bandwidth, while our Schnorr-based construction is 8x faster and
requires 21x less bandwidth. These results demonstrate that A2L
is the most efficient Bitcoin-compatible PCH.

I. INTRODUCTION

The increasing adoption of cryptocurrencies has raised
scalability issues [9] that go beyond the rapidly growing
blockchain size. For instance, the permissionless nature of
the consensus algorithm underlying widely deployed cryp-
tocurrencies such as Bitcoin and Ethereum strictly limits
their transaction throughput to tens of transactions per second
at best [9], which contrasts with throughput of centralized
payment networks such as Visa that supports peaks of up to
47,000 transactions per second [44].

Among the several efforts to mitigate these scalability
issues [25], [37], payment channels have emerged as the
most widely deployed solution in practice. The core idea of
payment channels is to let users lock a certain amount of
coins (called collateral) in a multisig address1 (called channel)
controlled by them, storing the corresponding transaction on-
chain. From now on, these two users can pay each other by
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1A multisig address requires all address owners to agree on the usage

of the coins stored therein, which is achieved by signing the corresponding
transaction.

simply agreeing on a new distribution of the coins locked in
the channel: the corresponding transactions are stored locally,
that is, off-chain. When the two users disagree on the current
redistribution or simply terminate their economical relation,
they submit an on-chain transaction that sends back the coins
to their owners according to the last agreed distribution of
coins, thereby closing the channel. Thus, payment channels
require only two on-chain transactions (i.e., open and close
channel), yet supporting arbitrarily many off-chain payments,
which significantly enhances the scalability of the underlying
blockchain.

The problem with this simple construction is that in order
to pay different people, a user should establish a channel
with each of them, which is computationally and financially
prohibitive, as this party would have to lock an amount of coins
proportional to the number of users she wants to transact with.

A. Payment Channel Hubs (PCHs)
PCHs offer a solution to the aforementioned problem. The

idea is to let each user open a channel with a central party,
called the tumbler, which is in charge of mediating payments
between each pair of users. In particular, if the sender wants
to transfer x coins to the receiver, the sender pays x + fee
to the tumbler, which then forwards x coins to the receiver,
where fee denotes a fee charged by the tumbler to conduct
the transaction. Such a naïve construction, despite being still
deployed in many gateways, suffers from obvious security and
privacy issues: the tumbler could steal coins [45], [5] from
honest users (e.g., by simply not forwarding a payment) as
well as identify who is paying to whom [5], [2].

Security can be seen in terms of transaction atomicity and
should protect the two participants who are sending coins.
Atomicity is thus two-fold: (i) the tumbler should receive the
money from the sender only if the tumbler has forwarded
the corresponding amount to the receiver; (ii) the receiver
should receive money from the tumbler only if the sender
has paid the corresponding amount to the tumbler. Privacy
covers unlinkability (the tumbler should not able to link the
sender and receiver of a given payment) and value privacy
(the tumbler should not learn the transaction value). As these
properties seem contradictory (i.e., how can the tumbler ensure
atomicity without knowing who pays to whom?), designing a
secure and privacy-preserving PCH is a challenge.

Besides security and privacy, another fundamental property
is interoperability: the tumbler should be able to mediate pay-
ments in different cryptocurrencies (e.g., the sender transfering
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TABLE I: Comparison among state-of-the-art PCH.

Atomicity Unlinkability Value Privacy Fungibility Interoperability (Required functionality)
BOLT [18] 3 3 3 3 7 (Zcash)
Perun [13] 3 7 (3) 7 7 (Ethereum)
TumbleBit [19] 3 3 (3) 7 3 (HTLC-based currencies)
A2L 3 3 (3) 3 3 (ECDSA/Schnorr-based currencies)

bitcoins and the receiver getting ethers), thereby enabling
cross-chain applications like exchanges and cross-currency
mixing.

Finally, a desirable property in any currency is fungibility,
which means that all coins should be indistinguishable from
each other: in the specific case of PCHs, payments performed
through the tumbler should look the same as standard pay-
ments, as otherwise, e.g., coins produced by a tumbler might
be considered tainted and not accepted by certain users.

B. State-of-the-art in PCH

BOLT [18] is an off-chain cryptographic protocol for PCHs
that provides strong anonymity and value privacy guarantees
by leveraging the zero-knowledge proofs of the underlying
Zcash cryptocurrency. Moreover, BOLT also inherits the fun-
gibility guarantees provided by Zcash.2 Bolt, however, is
only compatible with ZCash since it requires zero-knowledge
proofs.

Perun [13] is an off-chain channel system that relies on
Turing-complete smart contracts to support payment channels.
Moreover, Perun builds the PCH upon virtual channels, a smart
contract-based construction that intuitively allows to fold two
channels (e.g., Alice→ Tumbler→ Bob) into a single channel
(Alice → Bob). This technique, however, inherently leaks the
sender-receiver relation between Alice and Bob to the tumbler.
Perun achieves a weak value privacy property, since the value
of the individual transactions between Alice and Bob is hidden,
but the aggregated value (over the lifespan of the channel) is
revealed. Additionally, Perun lacks fungibility, as transactions
encode a logic that makes them distinguishable from transac-
tions performed by other contracts; and interoperability, as it
works only in Ethereum.

TumbleBit [19] is a cryptographic protocol for PCHs that
ensures unlinkability guarantees. By fixing the same value for
all transactions, TumbleBit achieves a value privacy property
that is weaker than the one provided by Bolt, called privacy
of the compatible interaction graph: the tumbler learns how
many coins each party sends and receives in aggregated form,
but not how much who is sending to whom. However, due to
the underlying cut-and-choose technique, TumbleBit requires
computation and communication costs that grow binomially
in the security parameter. For instance, enforcing only 80 bits
of security requires messages of size between 250 and 400
KB for a single payment, which implies running times of up
to 10 seconds. Moreover, TumbleBit relies on the hash-time
lock contract (HTLC), a Bitcoin script-based construction that
allows for payments conditioned on solving a cryptographic

2Here we consider only coins held at shielded addresses that have not been
tainted by combining them with unshielded addresses [23].

challenge, that is, obtaining the preimage of a hash function.
This, however, limits the deployment of TumbleBit to those
cryptocurrencies supporting HTLC and hinders fungibility
as multisig HTLC-based payments are clearly distinguish-
able from standard payments. We summarize the properties
achieved by each PCH construction in Table I.

C. Our Contributions
This work presents the first secure, privacy-preserving,

interoperable, and fungibility-preserving cryptographic instan-
tiation of PCHs. Specifically,
• We introduce a novel cryptographic primitive called

anonymous atomic locks (A2L), which intuitively realizes
a three-party protocol for conditional transactions, where
the intermediary pays the receiver only if the latter solves
a cryptographic challenge with the help of the sender.
We model the security and privacy properties offered by
A2L in the UC framework [6], thereby showing that A2L
provides composability guarantees as well. In particular,
A2L achieves unlinkability and privacy of the compatible
interaction graph. We show how A2L can be leveraged
to build a fully-fledged PCH.

• We give two concrete instantiations, one based on Schnorr
and another one based on the ECDSA signature scheme.
While Schnorr provides the most efficient protocol in
terms of communication and computation overhead,
ECDSA is arguably the most widely deployed signature
scheme in practice, thereby achieving a high degree of
interoperability (e.g., we can realize a tumbler receiving
bitcoins and forwarding ethers). Notice also that it is
possible to combine Schnorr and ECDSA-based construc-
tions if they are instantiated over the same group [30].
By dispensing from HTLCs, our instantiation offers the
highest degree of interoperability among the state-of-the-
art PCHs (e.g., Ripple and Stellar support ECDSA and
Schnorr but not HTLCs).

• Our A2L instantiations incur communication and com-
putation costs that are linear in the security parameter.
Additionally, we implemented both of them, showing
that they require a running time of less than 300ms
for ECDSA and 80ms for Schnorr. Furthermore, they
require 21.3KB for ECDSA and less than 15.3KB for
Schnorr. When compared to TumbleBit, the most inter-
operable PCH prior to this work, ECDSA-based A2L is
3x faster and requires 15x less bandwidth while Schnorr-
based A2L is 8x faster and requires 21x less bandwidth.
These results demonstrate that A2L is the most efficient
Bitcoin-compatible PCH. Furthermore, A2L transactions
are indistinguishable from standard transactions in that
they rely on neither multisigs nor HTLCs.
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II. PROBLEM DEFINITION

In this section, we introduce and formalize the notion of
anonymous atomic lock (A2L), along with its underlying
operations.

Key Ideas. An A2L is a three-party cryptographic primitive
composed of five protocols: KGen,Promise,Pay,Open, and
Verify. Their behaviour is illustrated in Figure 1. KGen realizes
the opening of a payment channel between a user and the
tumbler. This (on-chain) protocol is carried out once to open
the channel while the rest of the protocols can be carried
arbitrary many times (off-chain) while the channel is opened.

The overall process starts with the execution of the promise
protocol between the tumbler and the receiver. This protocol
is crucial for security as it allows the tumbler to commit to
a payment Π to the receiver that is only enforceable if the
receiver solves a cryptographic challenge ` (e.g., obtaining
the discrete logarithm of an element), which we call lock in
this paper. Security intuitively stands from the fact that the
tumbler is the only one knowing the solution to this lock ` at
this point. At the same time, this protocol also ensures that as
soon as the receiver knows the solution to the cryptographic
challenge, the promise can be fulfilled and he can get the coins,
incentivizing thereby the receiver to enter in the next phase,
which is triggered by sending the lock ` to the sender.

At this point, the sender can perform the pay operation with
the tumbler to obtain the cryptographic solution. However,
note that if the sender naively inputs ` into the pay operation,
it would trivially leak to the tumbler the link between sender
and receiver. Thus, the sender randomizes it into `′ before
engaging into the pay protocol. The pay protocol ensures that
the tumbler gets a payment from the sender only if it reveals
an opening information %′ to the sender, which encodes the
(blinded) solution to the cryptographic challenge encoded in `.
Here, it is important to note that it is crucial that this invariant
is met by the payment protocol for security, otherwise the
tumbler could get the coins from the sender and release an
invalid opening information.

Finally, the sender sends the randomized opening informa-
tion %′ to the receiver. Upon reception, the receiver unblinds
%′, extracts the opened promise Θ and uses it to finalize Π,
that is, the initially committed payment from the tumbler (i.e.,
the receiver used Θ to get the money from the tumbler).
We remark that here we use blind and unblind operations to
highlight the key ideas about how privacy is preserved, but in
the definition and instantiation of A2L, we let the blind and
unblind operations be internally carried out by the Promise
and Pay protocols, respectively.

Formal definition. Formally, A2L is defined with respect
to an intermediary Pt and a universe of other parties P.

Definition 1 (Anonymous Atomic Lock (A2L)). An A2L L =
(KGen,Promise,Pay,Open,Verify) consists of the following
protocols (for an intermediary Pt and two parties Ps, Pt ∈ P):

• {(skt, pki,t), (ski, pki,t)} ← 〈KGenPt
(1λ),KGenPi

(1λ)〉:
On input the security parameter 1λ, the key generation
protocol returns a shared public key pki,t and a secret key
skt (ski, respectively) to Pt (resp. Pi).

Sender Tumbler Receiver

promise

( , ��)��t
( , ��)��r

(Π, l)

l

pay

( , ��, )��s l′ ( , ��)��t

ϱ
′

ϱ
′
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′
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1
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1
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( , ��)��s ( , ��)��t

KeyGen

1
λ

1
λ

( , ��)��t ( , ��)��r

Θ := Open(Π, ϱ) 

Verify(Π, Θ) 1=
?

Fig. 1: Example of usage of the API provided by A2L.

• {·, (Π, `)} ← 〈PromisePt
(skt, pkr,t),PromisePr

(skr, pkr,t)〉:
On input two secret keys skt, skr, and a public key pkr,t, the
promise protocol is executed between two parties (namely,
Pt and Pr), and it returns a promise Π and a lock ` to Pr.

• {%, ·} ← 〈PayPs
(sks, pks,t, `),PayPt

(skt, pks,t)〉: On input
two secret keys sks and skt, a public key pks,t, and a lock
`, the payment protocol is executed between two parties
(namely, Ps and Pt) and it returns an opening information
% for lock ` to Ps.

• Θ ← Open(Π, %): On input a promise Π and an opening
information %, the opening algorithm returns an opened
promise Θ.

• {0, 1} ← Verify(Π,Θ): On input a promise Π and an
opened promise Θ, the verification algorithm returns a bit
b ∈ {0, 1}.

Correctness. Intuitively, A2Ls is correct if the receiver
gets the money paid by the sender through the tumbler with
overwhelming probability.

Definition 2 (Correctness of A2Ls). Let L be an A2L, λ ∈ N+

and n ∈ poly(λ). Let Pt be the intermediary, (P1, . . . , Pn) ∈
Pn be a vector of parties, (sk1, . . . , skn, skt) be a vector of
secret keys, and (pk1,t, . . . , pkn,t) be a vector of public keys,
such that for all 1 ≤ i ≤ n, it holds that

{(ski, pki,t), (skt, pki,t)} ← 〈KGenPi
(1λ),KGenPt

(1λ)〉.

Furthermore, let (Π1, . . . ,Πn) be a vector of promises,
(`1, . . . , `n) be a vector of locks, and (%1, . . . , %n) be a vector
of opening information, such that for all 1 ≤ i, j ≤ n, it holds
that

{·, (Πi, `i)} ← 〈PromisePt
(skt, pki,t),PromisePi

(ski, pki,t)〉
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and

{%i, ·} ← 〈PayPj
(skj , pkj,t, `i),PayPt

(skt, pkj,t)〉.

We say that L is correct if there exists a negligible function
negl, such that for all 1 ≤ i ≤ n, the following holds

Pr[Verify(Πi,Open(Πi, %i)) = 1] ≥ 1− negl(λ) .

III. SECURITY MODEL

In this section, we formalize security and privacy for A2L.
We resort to the universal composability framework of Canetti
[6] to account for concurrent executions and allow thereby
for the composition of A2L with other application-dependent
protocols.

A. Attacker Model

We model parties as interactive Turing machines (ITMs),
which communicate with a trusted functionality F via secure
and authenticated communication channels. We model the
adversary A as a PPT machine. The adversary can corrupt
a party P through an interface corrupt(·) that takes as input a
party identifier Pi and provides the attacker with the internal
state of P. Furthermore, all subsequent incoming and outgoing
communication of P is routed through A. As commonly done
in the literature [20], [11], [29], [30], we consider the static
corruption model, that is, the adversary is required to commit
to the identifiers of the users he wishes to corrupt ahead of
time.

B. Ideal Functionality

We formalize below the ideal functionality FA2L of our
anonymous atomic lock construction.

Communication Model. Communication happens through
the secure transmission functionality Fsmt, as defined in [6],
which informs the adversary whenever a communication be-
tween any two parties happens, and allows the adversary to
delay the delivery of the messages arbitrarily. However, the
adversary cannot read nor change the content of the messages.

We consider a synchronous communication network, where
communication proceeds in discrete rounds, as defined in [24]
and denoted here as Fsyn. The parties are always aware of the
current round, and if a party P sends a message in round t,
the recipient party receives the message in the beginning of
round t+ 1. The adversary can change the order of messages,
but we assume that the order of messages between honest
parties cannot be changed (which can easily be realized using
message counters). For simplicity, we assume that computation
is instantaneous.

Our Model. The interfaces of FA2L are depicted in Figure
2. As previously described, we use Fsmt and Fsyn and, thus,
our functionality is defined in the (Fsmt,Fsyn)-hybrid model.
FA2L manages a list P , which keeps track of the promises

and their openings. The entries in the list have the format
(Π, `,Θ, %, Pi), where Π is a promise, ` is a lock, Θ is opened
promise, % is the opening information for the lock and Pi
is the party involved in the promise with the intermediary

Pt. Additionally, for clarity of exposition, we denote by rand
and derand a randomization (and the corresponding derandom-
ization) function which given as input a (randomized) entry,
returns the (de-)randomized version of it. These functions are
included in the Promise and Pay interfaces defined in Defini-
tion 1.
FA2L provides 5 interfaces. The KGen interface allows the

intermediary and the other party to establish a link between
themselves. The Promise interface allows a party to obtain a
promise and a lock from the intermediary. The Pay interface
allows a party to acquire the opening information of a given
lock. The Open interface allows a party to open a promise.
Finally, the Verify interface verifies that the promise and the
opened promise match each other.

C. Discussion

We define the security and privacy notions of interest for
our FA2L functionality.

Atomicity. Loosely speaking, the system should ensure that
a lock can only be opened if there has been a payment
for it before. This protects the tumbler from a malicious
receiver. This is enforced by FA2L because it keeps track of the
promises, along with the opening information and the opened
promises. FA2L checks whether the opening information given
to the Open interface corresponds to one of the existing entries
in the list P . Since, a party obtains an opening information
only from a call to the Pay interface and FA2L is trusted, this
ensures that Pay has to be instantiated before Open in order
for Open to succeed.

Additionally, the system should ensure that if payment
can be received by the tumbler then the receiver can open
a matching promise previously issued by the tumbler. This
protects the sender from a malicious tumbler. Assume that the
Pay interface is invoked on a lock ` previously issued by a
Promise. If FA2L does not abort, then FA2L ensures that it
returns the opening information % matching the promise Π.
In other words, if Open is invoked on input Π and %, FA2L

ensures the existence of an entry in P containing both.

Unlinkability. Intuitively, unlinkability means that the tum-
bler does not learn information that allows it to associate the
sender and the receiver of a payment. This property is enforced
by FA2L since the lock ` that is created by the tumbler in the
Promise interface gets randomized by FA2L within the Pay
interface before it is sent back to the tumbler.

Additionally, since we assume the existence of a secure
transmission channel between parties (i.e., the Fsmt function-
ality), the intermediary cannot use the network information to
correlate between sender and receiver.

Ideal functionality for PCH. In Appendix B we show
how to define a fully-fledged PCH ideal functionality based
on FA2L. This is a straightforward task consisting in inter-
facing FA2L with the already existing ideal functionality for
blockchains [13] and the logic for payments [29], which in
turn amounts to the management of balances and timeouts.
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KGen(sid)

Upon invocation by Pi:
send (sid, Pi) to Pt
receive (sid, b) from Pt

if b = 0 then send (sid,⊥) to Pi and abort
else send (sid, Pi, Pt) to Pi

Open(sid,Π, %)

Upon invocation by Pi:
if ∃(Π∗,−,Θ∗, %∗, P ∗i ) ∈ P such that Π∗ = Π
and %∗ = % and P ∗i = Pi, then send (sid,Θ∗)
to Pi
else send (sid,⊥) to Pi and abort

Promise(sid)

Upon invocation by Pi:
send (request−promise, sid) to Pt
receive (sid,Π, `, %,Θ) from Pt

if Π = ⊥ or ` = ⊥ or Θ = ⊥ then abort
insert (Π, `,Θ, %, Pi) into P
send (sid,Π, `) to Pi

Pay(sid, `)

Upon invocation by Pi:

if ` = ⊥ then abort
send (reveal, sid, rand(`)) to Pt
receive (sid, %′) from Pt

set % := derand(%′)

if % = ⊥ then send (sid,⊥) to Pi and abort
else send (sid, %) to Pi

Verify(sid,Π,Θ)

Upon invocation by Pi:
if ∃(Π∗,−,Θ∗, %∗, P ∗i ) ∈ P such that Π∗ = Π
and Θ∗ = Θ and P ∗i = Pi, then send (sid, 1) to
Pi
else send (sid, 0) to Pi

Fig. 2: Ideal functionality for FA2L construction.

D. Universal Composability

We now review the notion of secure realization in the
UC framework [6]. Intuitively, a protocol realizes an ideal
functionality if the adversary has now way to distinguish
between the two, where a simulator is in charge of translating
the messages produced by the ideal functionality for the com-
putational adversary. Here EXECπ,A,E denotes the ensemble
of the outputs of the environment E when interacting with the
adversary A and users running protocol π.

Definition 3 (Universal Composability). A protocol π UC-
realizes an ideal functionality F if for any PPT adversary A
there exists a simulator S, such that for any environment E , the
ensembles EXECπ,A,E and EXECF,S,E are computationally
indistinguishable.

IV. OUR PROTOCOLS

In this section, we present our A2L instantiations. In partic-
ular, we give an overall intuition in Section IV-A, we discuss
the building blocks in Section IV-B, we detail the Schnorr-
based instantiation in Section IV-C and the ECDSA-based
instantiation in Section IV-D.

A. Intuition

We have divided our construction into two main protocols,
promise and payment. The promise protocol is executed be-
tween Tumbler and Bob to create a promise (e.g., a transaction
that sends coins from Tumbler to Bob) and a two-party
signature for such promise that is “almost valid” meaning
that Bob can finish it only if he gets to know a value α.
Additionally, Tumbler sends Bob the value α in a ciphertext
encrypted with Tumbler’s public key. It is important to note
that at this point, Bob cannot yet complete the signature as
he can neither forge the signature nor he can decrypt the
ciphertext because he does not know the Tumbler’s decryption
key. Instead, Bob re-randomizes the ciphertext (and hence the
encrypted value), and sends it to Alice.

This is where the payment protocol comes into play, which
is executed between Alice and Tumbler. Before the start of the
payment protocol, Alice also randomizes the ciphertext on her
side and sends this to Tumbler. If we do not also randomize
at Alice’s side, then Tumbler colluding with Bob can learn
the true identity of Alice. This attack simply requires Bob
revealing his randomized data to Tumbler. We note that this
attack only makes sense in a scenario where Alice wants to
pay without revealing her true identity (e.g., if Alice is a Tor
user).

Once Tumbler receives the re-randomized ciphertext, it de-
crypts the ciphertext to obtain the doubly randomized version
of the value α (i.e., the value required by Bob to compute the
remaining part of the signature of the promise transaction).

In a nutshell, Alice then uses the payment protocol to buy
the aforementioned randomized secret value from the Tumbler.
In a bit more detail, Tumbler and Alice create a new message
(e.g., a transaction that sends coins from Alice to Tumbler)
and compute a two-party signature protocol modified in such
a manner that Tumbler can obtain the signature (and thus the
coins) only if it reveals the randomized secret value to Alice.
After this protocol is finished, Alice can remove her part of the
randomness from the secret, and send it to Bob, who can also
remove his part of the randomness, getting thereby the value
α and completing the signature for the promise transaction.

B. Cryptographic Building Blocks

We denote by 1λ, for λ ∈ N+, the security parameter. We
assume that the security parameter is given as an implicit
input to every function. We review below the cryptographic
primitives used in our protocols.

Commitment Scheme. A commitment scheme COM
consists of a commitment algorithm (com, decom) ←
Commit(m), and a verification algorithm {0, 1} ←
VCOM(com, decom,m). The commitment algorithm allows
a prover to commit to a message m without revealing it.
Whereas the verification algorithm allows a prover to convince
a verifier by confirming that the message m was committed
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previously by revealing the decommitment information decom.
The security of a COM scheme is modeled by the ideal
functionality FCOM [6].

Non-Interactive Zero-Knowledge. Let R be an NP rela-
tion, and let L be a set of positive instances corresponding to
the relation R (i.e., L = {x | ∃w s.t. R(x,w) = 1}). A non-
interactive zero-knowledge proof scheme NIZK [4] consists
of a prover algorithm π ← PNIZK(x,w) and a verification
algorithm {0, 1} ← VNIZK(x, π). A NIZK scheme allows a
prover to convince a verifier about the existence of a witness
w for a statement x without revealing any information apart
from the fact that it actually knows the witness w. We can
model the security of a NIZK scheme using the following
simple ideal functionality FNIZK: on input (sid, x, w) by the
prover, check if R(x,w) = 1, and if this is the case send
(sid, proof, x) to the verifier.

Homomorphic Encryption. An additive homomorphic
encryption scheme HE is composed of the algorithms
(KGenHE,EncHE, DecHE), where (sk, pk) ← KGenHE(), c ←
EncHE(pk,m), and m ← DecHE(sk, c). In our construction,
we rely on Paillier homomorphic encryption scheme [36]. It
supports homomorphic operations over the ciphertexts of the
form EncHE(pk,m1) · EncHE(pk,m2) = EncHE(pk,m1 +m2)
and EncHE(pk,m1)m2 = EncHE(pk,m1 · m2). As in Lin-
dell’s work[26], we assume Paillier homomorphic encryption
scheme to satisfy ecCPA security.

ECDSA Signature. Let G be an elliptic curve group of
order q with a base point g, and let H : {0, 1}∗ → Zq be
a collision resistant hash function. The ECDSA signature is
composed of the algorithms (KGenECDSA,SigECDSA,VfECDSA),
and is defined as follows (using the multiplicative notation):
(sk, pk) ← KGenECDSA() samples a private key sk = x and
computes the corresponding public key as pk = Q = gx. The
signing algorithm (r, s)← SigECDSA(sk,m) samples a random
k←$Zq and computes e = H(m). Let (rx, ry) := R ← gk,
then the signing algorithm computes the signature as r ←
rx mod q and s← k−1(e+rx) mod q. Lindell [26] proposed
an interactive and efficient two-party protocol ΠECDSA

KGen , which
performs distributed key generation for ECDSA. One party
receives (x1, Q, sk), where sk is the Paillier secret key and
Q = gx1·x2 . The other party receives (x2, Q,EncHE(pk, x1)),
where pk is the corresponding Paillier public key. An ideal
functionality FECDSA

KGen that securely computes the tuples for
both parties is given in Appendix A. After the distributed key
generation is performed, the parties can go on to perform
the distributed ECDSA signing, which is again detailed in
Lindell’s work [26].

Schnorr Signature. Let G be a group of prime order q
with a generator g, and let H : {0, 1}∗ → Zq be a collision
resistant hash function. The Schnorr signature is defined using
the algorithms (KGenSchnorr,SigSchnorr,VfSchnorr) as follows:
(sk, pk) ← KGenSchnorr() samples a private key sk = x and
computes the corresponding public key as pk = Q = gx.
The signing algorithm (e, s) ← SigSchnorr(sk,m), samples
a random k←$Zq and computes e = H(R‖Q‖m), where
R ← gk. Unlike ECDSA, Schnorr has a linear structure,
hence, it is easier to produce a two-party protocol ΠSchnorr

KGen ,

which performs distributed key generation. One party receives
(x1, Q) and the other party receives (x2, Q), where Q =
gx1+x2 . An ideal functionality FSchnorr

KGen that securely computes
the tuples for both parties is given in Appendix A. Due to its
linear structure, it is obvious to see that one can also perform
the distributed signing using the Schnorr signature.

C. Schnorr-based Construction

The Schnorr digital signature scheme has a linear structure
that facilitates distributed key-generation and distributed sign-
ing.

Let G be a group of prime order q with a generator g.
and let H : {0, 1}∗ → Zq be a collision resistant hash
function. Additionally, let COM,NIZK and HE be a com-
mitment scheme, a non-interactive zero-knowledge scheme,
and a Paillier homomorphic encryption scheme, respectively,
as defined in Section IV-B. The Schnorr-based promise and
payment protocols are shown in Figure 3 and 4, respectively.

Each pair of parties (P1, P2) generates a shared Schnorr
public key pk = gx1+x2 via the FSchnorr

KGen ideal functionality,
where we assume that P2 = Tumbler in both protocols, and
P1 = Bob in the promise protocol whereas P1 = Alice
in the payment protocol. The Schnorr-based distributed key
generation functionality FSchnorr

KGen is described in Appendix A.
The promise protocol is run between two parties (P1, P2)

(Bob and Tumbler, respectively). They initially agree on a
message which corresponds to a transaction that is supposed
to transfer coins from Tumbler to Bob. Additionally, Tumbler
chooses a secret value α, encrypts it under its own public
key using Paillier homomorphic encryption, and sends the
ciphertext to Bob. The parties then execute a coin tossing
protocol to agree on a randomness R′ = k′1+k′2+α, where α is
unknown to Bob. The randomness here is composed additively
due to the linear structure of Schnorr. The randomness R′

is computed through a Diffie-Hellman-like protocol, where
the parties exchange gk

′
1 and gk

′
2 , and additionally Tumbler

embeds α in the computed randomness. The computation of
R′ together with the corresponding consistency proof is piggy-
backed in the coin tossing. At this point, Tumbler computes its
side of the two-party Schnorr signature, but does not include
the secret α into the signature. Now, Bob is able to validate
this partial signature that he receives from Tumbler, and also
to compute an "almost valid" signature by performing his part
of the two-party signature. This means that Bob computes a
tuple (e′, s′ := k′1 +k′2− e′ · (x′1 +x′2)), and that the complete
signature is of the form (e′, s′ + α). However, Bob does not
have α, so he cannot complete the signature. Nevertheless,
Bob receives ca = EncHE(pkT , α) and A = gα from Tumbler
at the beginning of the promise protocol, and at the end of
the promise protocol Bob chooses a random value β, and
re-randomizes the values as ca′ = ca · EncHE(pkT , β) =
EncHE(pkT , α + β) and A′ = A · gβ = gα+β using β. This
is possible due to the homomorphic properties of Paillier.
The promise protocol finishes with Bob sending these re-
randomized values to Alice.

The payment protocol is executed between two parties
(P1, P2) (Alice and Tumbler, respectively). At the beginning
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Public parameters: G, g, q, message m′, public key Q′ := gx
′
1+x

′
2 , and proof πT that proves validity of (n, g)

PromiseT (skT := x′2, pk := Q′) PromiseB(skB := x′1, pk := Q′)
α, k′2 ←$Zq
ca ← EncHE(pkT , α);A← gα

πa ← PNIZK({∃α | A = gα}, α)

R′2 ← gk
′
2 ;π′2 ← PNIZK({∃k′2 | R′2 = gk

′
2}, k′2)

(com, decom)← PCOM((R′2, π
′
2))

com, A, πa, ca

If VNIZK(πa, A) 6= 1 then abort

k′1 ←$Zq;R′1 ← gk
′
1

π′1 ← PNIZK({∃k′1 | R′1 = gk
′
1}, k′1)

R′1, π
′
1

If VNIZK(π′1, R
′
1) 6= 1 then abort

R′ ← R′1 ·R′2 ·A; e′ ← H(R′‖Q′‖m′)
s′2 ← k′2 − x′2 · e′ mod q

(decom, R′2, π
′
2), s′2

If VCOM(com, decom, (R′2, π
′
2)) 6= 1 then abort

If VNIZK(π′2, R
′
2) 6= 1 then abort

R′ ← R′1 ·R′2 ·A; e′ ← H(R′‖Q′‖m′)

If gs
′
2 6= R′2 · (Q′/gx

′
1)−e

′
then abort

s′1 ← k′1 − x′1 · e′ mod q

s′ ← s′1 + s′2 mod q

β←$Zq;A′ ← A · gβ

ca′ ← ca · EncHE(pkT , β)

s′

If gs
′
6= R′1 ·R′2 ·Q−e then abort Send ` := (A′, ca′) to Alice

return σ := (R′, s′ + α) return (Π := (β, (pk,m′, σ′ := (R′, s′))), `)

Fig. 3: Promise protocol of Schnorr-based construction

of the protocol, Alice chooses a random value τ , and re-
randomizes the values she received from Bob, as ca′′ = ca′ ·
EncHE(pkT , τ) = EncHE(pkT , α+β+ τ) and A′′ = A′ · gτ =
gα+β+τ . Once this is done, Alice and Tumbler perform a coin
tossing protocol similar to the one performed between Bob and
Tumbler in the promise protocol, but additionally Alice sends
ca′′ to Tumbler. At this point, Tumbler decrypts ca′′ to obtain
the value γ = α + β + τ . The rest of the protocol continues
similar to the promise protocol, where Tumbler and Alice
compute a common randomness, and then perform a two-party
Schnorr signature. This time, however, Tumbler incorporates
the decrypted value γ as part of the randomness. After the two-
party Schnorr signature completes and Tumbler publishes it
(allowing Tumbler to receive the payment from Alice), Alice is
able to extract the γ from the published signature. She removes
her part of the re-randomization from γ as ᾱ = γ − τ , and
sends this value to Bob, who can also remove his side of the
re-randomization and obtain the initial α = ᾱ− β. Once Bob
obtains α, he can use it to complete the "almost" signature

that he computed at the end of the promise protocol, which
allows him to claim the coins that were promised to him by
Tumbler.

Security Analysis. The security of the Schnorr-based con-
struction is established by the following theorem, which we
formally in Appendix A.

Theorem 1. Let COM be a secure commitment scheme and let
NIZK be a non-interactive zero-knowledge scheme. If Schnorr
signature is strongly existentially unforgeable and Paillier
encryption is ecCPA secure, then the construction in Figures
3, 4 and 5, UC-realizes the ideal functionality FA2L in the
(FSchnorr

KGen ,Fsmt,Fsyn)-hybrid model.

D. ECDSA-based Construction

While the Schnorr-based construction can exploit the linear
structure that the signature offers, this linearity is not present
in ECDSA, which makes the design of our protocol more
challenging.
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Public parameters: G, g, q, message m, public key Q := gx1+x2 , and proof πT that proves validity of (n, g)

PayA(skA := x1, pk := Q, ` := (A′, ca′)) PayT (skT := x2, pk := Q)

k2 ←$Zq;R2 ← gk2

π2 ← PNIZK({∃k2 | R2 = gk2}, k2)

(com, decom)← PCOM((R2, π2))

com

τ, k1 ←$Zq; ca′′ ← ca′ · EncHE(pkT , τ)

R1 ← gk1 ;π1 ← PNIZK({∃k1 | R1 = gk1}, k1)

ca′′ , R1, π1

If VNIZK(π1, R1) 6= 1 then abort

γ ← DecHE(ca′′);A
′′ ← gγ

R← R1 ·R2 ·A′′; e← H(R‖Q‖m)

s2 ← k2 − x2 · e mod q

(decom, R2, π2), s2, A
′′

If VCOM(com, decom, (R2, π2)) 6= 1 then abort
If VNIZK(π2, R2) 6= 1 then abort

If A′ · gτ 6= A′′ then abort

R← R1 ·R2 ·A′′; e← H(R‖Q‖m)

If gs2 6= R2 · (Q/gx1)−e then abort
s1 ← k1 − x1 · e mod q

s̄← s1 + s2 mod q

s̄

s← s̄+ γ

If verification of (e, s) fails then abort
Else publish signature (e, s)

γ ← s− s̄
ᾱ← γ − τ
Send ᾱ to Bob
return ᾱ return >

Fig. 4: Payment protocol of Schnorr-based construction

Open(Π, ᾱ)
Parse Π as (β, (pk,m′, σ′ :=
(R′, s′)))

Set α← ᾱ− β
Set s← s′ + α

return (R′, s)

Verify(Π, σ)

Parse Π as (β, (pk,m′, σ′))

return VerifySchnorr(pk,m
′, σ)

Fig. 5: Open and verify algorithms of Schnorr-based construc-
tion.

Let G be an elliptic curve group of order q with a base
point g, and let H : {0, 1}∗ → Zq be a collision resistant hash
function. Additionally, let COM,NIZK, and HE be a com-
mitment scheme, a non-interactive zero-knowledge scheme,
and a Paillier homomorphic encryption scheme, respectively,
as defined in Section IV-B. The ECDSA-based promise and

payment protocols are shown in Figure 6 and 7, respectively.
Our ECDSA-based instatiation shares similar ideas with

our Schnorr-based instantiation. Hence, we only describe the
differences compared to the Schnorr variant here. Each pair
of parties (P1, P2) generates a shared ECDSA public key
pk = gx1·x2 via the FECDSA

KGen ideal functionality, where, as
before, P2 = Tumbler in both protocols, whereas P1 = Bob in
the promise protocol and P1 = Alice in the payment protocol.
Because ECDSA does not have the linear structure of Schnorr,
the distributed key generation is also more complicated, and
it requires additionally exchanging a Paillier encrypted secret
key. More precisely, P1 receives a Paillier secret key sk
and its share x1, whereas P2 receives its share x2 and the
Paillier encryption c of x1. The ECDSA-based distributed
key generation functionality FECDSA

KGen is described in the full
version [15].

The promise protocol runs similarly to the Schnorr-based
promise protocol, expect that the randomness is composed
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Public parameters: G, g, q, message m′, public key Q′ := gx
′
1·x
′
2 , and proof πT that proves validity of (n, g)

PromiseT (skT := x′2, pk := Q′, c′key = EncHE(pkB , x
′
1)) PromiseB(skB := x′1, pk := Q′)

α, k′2 ←$Zq; ca ← EncHE(pkT , α);A← gα

πa ← PNIZK({∃α | A = gα}, α)

R′2 ← gk
′
2 ;π′2 ← PNIZK({∃k′2 | R′2 = gk

′
2}, k′2)

(com, decom)← PCOM((R′2, π
′
2))

com, A, πa, ca

If VNIZK(πa, A) 6= 1 then abort

k′1 ← Zq;R′1 ← gk
′
1

π′1 ← PNIZK({∃k′1 | R′1 = gk
′
1}, k′1)

R′1, π
′
1

If VNIZK(π′1, R
′
1) 6= 1 then abort

R′c ← (R′2)α

π′c ← PNIZK({∃α | Rc = (R′2)α}, α)

π′a ← PNIZK({∃α | A = gα ∧Rc = (R′2)α}, α)

R′ ← (R′1)k
′
2·α;R′ := (r′x, r

′
y); Set r′ ← r′x mod q

c′ ← EncHE(pkB , (k
′
2)−1 · r′ · x′1 · x′2 + (k′2)−1 ·H(m′) + ρq)

(decom, R′2, π
′
2), c′, R′c, π

′
c, π
′
a

If VCOM(com, decom, (R′2, π
′
2)) 6= 1 then abort

If VNIZK(π′2, R
′
2) 6= 1 ∨ VNIZK(π′c, R

′
c) 6= 1

∨ VNIZK(π′a, (A,R
′
c)) 6= 1 then abort

R′ ← (R′c)
k′1 ;R′ := (r′x, r

′
y); Set r′ ← r′x mod q

s′2 ← DecHE(skB , c
′)

If (R′2)s
′
2 mod q 6= (Q′)r

′
· gH(m′) then abort

s′ ← s′2 · (k′1)−1 mod q;β←$Zq
A′ ← Aβ ; ca′ ← (ca)β

s′

If (R′1)k
′
2·s
′
6= (Q′)r

′·H(m′) then abort Send ` := (A′, ca′) to Alice

return σ := (r′, s′ · α−1) return (Π := (β, (pk,m′, σ′ := (r′, s′))), `)

Fig. 6: Promise protocol of ECDSA-based construction

multiplicately due to the structure of ECDSA. More precisely,
the parties agree on a randomness R′ = k′1 ·k′2 ·α, where α is
unknown to Bob. Once the randomness is computed, Tumbler
performs its side of the two-party ECDSA signature using
c′key (the encryption of x′1) and the homomorphic properties
of Paillier. However, Tumbler does not include the inverse of
α into the signature. Now, Bob is able to compute an "almost
valid" signature by decrypting the ciphertext that it received
from Tumbler and performing his part of the signature. This
means that Bob computes a tuple (r′, s′ :=

r′·x′1·x
′
2+H(m′)
k′1·k′2

),
and that the complete signature is of the form (r′, s′ · α−1).
Since Bob does not have α, he cannot complete the signa-
ture. However, similar to the Schnorr-based construction, Bob
receives ca = EncHE(pkT , α) and A = gα from Tumbler at
the beginning of the promise protocol, and at the end of the
protocol Bob chooses a random value β and re-randomizes
the values as ca′ = cβa and A′ = Aβ using β. The promise
protocol finishes with Bob sending these re-randomized values
to Alice.

At the beginning of the payment protocol, Alice chooses
a random value τ and re-randomizes the values she received
from Bob, as ca′′ = cτa′ and A′′ = (A′)τ . The rest of the
payment protocol continues similar to Schnorr-based payment
protocol, though with Alice and Tumbler computing a two-
party ECDSA signature. When Tumbler completes the signa-
ture and publishes it, Alice extracts the γ from the published
signature. She removes her part of the re-randomization from
γ as ᾱ = γ · (τ)−1, and shares this value with Bob, who can
also remove his side of the re-randomization and obtain the
initial secret as α = ᾱ · (β)−1. All that is left for Bob to claim
the promised coins from Tumbler, is to invert α and use it to
complete the "almost" signature that he computed at the end
of the promise protocol.

Security Analysis. The security of the ECDSA-based con-
struction is established by the following theorem, which we
formally prove in Appendix A.



10

Public parameters: G, g, q, message m, public key Q := gx1·x2 , and proof πT that proves validity of (n, g)

PayA(skA := x1, pk := Q, ` := (A′, ca′)) PayT (skT := x2, pk := Q, ckey = EncHE(pkA, x1))
k2 ←$Zq;R2 ← gk2

π2 ← PNIZK({∃k2 | R2 = gk2}, k2)

(com, decom)← PCOM((R2, π2))

com

τ, k1 ←$Zq; ca′′ ← (ca′)
τ ;R1 ← gk1

π1 ← PNIZK({∃k1 | R1 = gk1}, k1)

ca′′ , R1, π1

If VNIZK(π1, R1) 6= 1 then abort

γ ← DecHE(skT , ca′′);A
′′ ← gγ ;Rc ← (R2)γ

πc ← PNIZK({∃γ | Rc = (R2)γ}, γ)

πγ ← PNIZK({∃γ | A′′ = gγ ∧Rc = (R2)γ}, γ)

R← (R1)k2·γ ;R := (rx, ry); Set r ← rx mod q

m := (k2)−1 · r · x2 · x1 + (k2)−1 ·H(m) + ρq

c← EncHE(pkA,m)

(decom, R2, π2), c, A′′, Rc, πc, πγ

If VCOM(com, decom, (R2, π2)) 6= 1 then abort

b := VNIZK(πc, Rc) 6= 1 ∨ VNIZK(πγ , (A
′′, Rc))

If b 6= 1 abort

If (A′)τ 6= A′′ then abort

R← (Rc)
k1 ;R := (rx, ry)

Set r ← rx mod q; s2 ← DecHE(skA, c)

If (R2)s2 mod q 6= Qr · gH(m) then abort

s̄← s2 · (k1)−1 mod q

s̄

s← (γ)−1 · s̄
If verification of (r, s) fails then abort
Else publish signature (r, s)

γ ← (s · (s1)−1)−1; ᾱ← γ · (τ)−1

Send ᾱ to Bob
return ᾱ return >

Fig. 7: Payment protocol of ECDSA-based construction

Open(Π, ᾱ)
Parse Π as (β, (pk,m′, σ′ :=
(r′, s′)))

Set α← ᾱ · β−1

Set s← s′ · α−1

return (r′, s)

Verify(Π, σ)

Parse Π as (β, (pk,m′, σ′))

return VerifyECDSA(pk,m′, σ)

Fig. 8: Open and verify of ECDSA-based construction.

Theorem 2. Let COM be a secure commitment scheme and let
NIZK be a non-interactive zero-knowledge scheme. If ECDSA
signature is strongly existentially unforgeable and Paillier
encryption is ecCPA secure, then the construction in Figures
6, 7 and 8, UC-realizes the ideal functionality FA2L in the
(FECDSA

KGen ,Fsmt,Fsyn)-hybrid model.

V. PERFORMANCE ANALYSIS

A. Implementation Details

We implemented our protocols in order to evaluate their
performance. The implementation is done in Python and it
relies on the Charm framework [1] for the cryptographic
operations. Both the ECDSA-based and Schnorr-based variants
have been instantiated over the elliptic curve secp256k1, which
is also used in Bitcoin. Paillier encryption is instantiated with
a typical RSA group. Zero-knowledge proofs for discrete log-
arithm and Diffie-Hellman tuple have been implemented using
Σ-protocols [10] and made non-interactive using the Fiat-
Shamir heuristic [14]. Lastly, with regards to the commitment
scheme, we have used the canonical random oracle-based
instantiation, building on SHA-256.
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We did not implement the distributed key generation and
instead assigned random keys to every party. The reason for
this is that we are primary interested on the performance of
our own protocols: key generation is usually done once upon
the establishment of a link between the parties and is fairly
efficient (about half a second [16]).

We note that our implementation is not optimized, and it
does not use any data compression technique to reduce the
communication overhead.

B. Evaluation

Testbed. We used 3 EC2 instances from Amazon AWS,
where Tumbler was a t3.2xlarge instance (2.50GHz Intel Xeon
Platinum 8175M processor with 8 cores, 32GB RAM) in
Frankfurt, whereas Alice and Bob were t3.medium instances
(2.50GHz Intel Xeon Platinum 8175M processor with 2 cores,
4GB RAM) in Ohio and Sydney, respectively. In order to
show that network latency is the biggest bottleneck in running
times, we also measured performance in a LAN network. The
benchmarks for a LAN network were taken on a machine with
2.80GHz Intel Xeon E3-1505M v5 processor with 8 cores, and
32GB RAM. All the machines were running Ubuntu 18.04
LTS.

We measured the average runtimes over 100 runs each. The
results of our performance evaluation are reported in Table II,
where time is given in seconds.

Computation Time. All our protocols complete in < 4
seconds, where the running time is dominated by network la-
tency. The impact of network latency is obvious when we look
at the running time for LAN setting. In that case our ECDSA-
based construction finishes in ∼ 200 milliseconds, whereas
our Schnorr-based construction takes ∼ 70 milliseconds. From
these results we can observe that Schnorr-based construction is
performing better than ECDSA-based construction. The reason
for this is that ECDSA-based two-party signing has a more
complex structure, requiring additional Paillier encryptions.

Next, we compare our constructions with the state-of-the-art
payment hub TumbleBit [19]. In order to have more precise
results, we performed the comparison in a LAN setting without
any network latency. TumbleBit requires ∼ 0.6 seconds to
complete, hence, our ECDSA-based construction is 3x faster,
whereas our Schnorr-based construction is 8x faster.

Communication Overhead. We measured the communica-
tion overhead as the amount of information that parties need
to exchange during the execution of the protocols. Hence, the
bandwidth column in our table corresponds to the combined
total amount of messages exchanged for the specific proto-
col. ECDSA-based construction has a higher communication
overhead compared to the Schnorr-based construction. This is
due to the fact that ECDSA-based two-party signing requires
a Paillier ciphertext, and a single Paillier ciphertext requires
∼ 3KB in our implementation. Since we perform two-party
ECDSA signing in both promise and payment protocols, this
explains the additional ∼ 6KB bandwidth for ECDSA.

TumbleBit requires 326KB of bandwidth, hence, our
ECDSA-based and Schnorr-based constructions incur 15x and
21x less communication, respectively.

In summary, our constructions highly reduce both the com-
munication and computation complexity compared to Tum-
bleBit. Interestingly, while results in TumbleBit are shown for
a security level of 80 bits, we run our experiments with a
security parameter that provides 128 bits of security. Thus, our
construction is more efficient even when providing a higher
level of security.

VI. PAYMENT CHANNEL HUB CONSTRUCTION

We detail here how A2L in combination with a blockchain
B can be used to seamlessly realize a fully-fledged payment
channel hub (PCH).

Assume that users have already carried out the key genera-
tion algorithm and set up the payment channels with Tumbler.
Then, Alice can perform a payment to Bob through the
Tumbler as follows.

First, Tumbler and Bob execute the Promise protocol and
establish the following A2L contract:

A2L-Promise (Tumbler, Bob, Π, x, t):
1) If Bob produces the opened promise data Θ in such a

manner that Verify(Π,Θ) = 1 before time t expires,
Tumbler pays Bob x coins.

2) If timeout t expires, Tumbler gets back x coins.

Here, Π is the output (along with `) of the Promise protocol
in A2L where the message is set as a transaction that sends x
coins from Tumbler to Bob. t is an expiration time (validity
period) of the promise, which is properly set to give Bob the
time he needs to reveal the opening information %. In case
this does not happen, then Tumbler gets back the money,
thereby avoiding an indefinite locking of money in the channel.
Notice that we require that B supports the Verify algorithm
and time management in its scripting language. This is the
case in practice as Verify is implemented as the unmodified
verification algorithm from either Schnorr or ECDSA digital
signature scheme, and virtually all cryptocurrencies natively
implement a time management system where time is measured
as the number of blocks included in the blockchain.

Second, Bob sends the lock l (as output by the Promise
protocol) to Alice. Then, Alice and Tumbler execute the Pay
protocol and establish the following A2L contract:

A2L-Pay (Alice, Tumbler, `, x):
1) If Tumbler sends Alice the solution % to the cryptographic

challenge encoded in `, then Alice pays Tumbler x coins.
2) Otherwise, Alice gets back x coins.

Finally, Alice gets the solution % to the cryptographic
challenge encoded in the lock `. Alice then sends % to Bob
who can then complete the A2L-Promise contract with the
opened promise data Θ := Open(Π, %).

VII. RELATED WORK

On-Chain Tumblers. Several prior works exist where
a centralized tumbler assists users to mix their coins [5],
[45], [2], [46], [41], [42], [40], [43], [3], [31], [34], [21],
[40]. However, all these constructions heavily rely on on-
chain transactions to operate, hindering thus the scalability
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TABLE II: Performance of ECDSA- and Schnorr-based construction. Time is shown in seconds.

Payment Hub (Ohio-
Frankfurt-Sydney) LAN Bandwidth

Schnorr ECDSA Schnorr ECDSA Schnorr ECDSA
Promise 1.714 1.768 0.032 0.087 6.25KB 10.92KB
Payment 0.615 0.655 0.034 0.139 8.75KB 10.06KB
Open 1.357 1.357 0.006 0.006 0.28KB 0.28KB
Total 3.686 3.780 0.072 0.232 15.28KB 21.27KB

of cryptocurrencies. A2L instead is by definition operating
with off-chain payments, aiding thus to the scalability of
current blockchains. Moreover, while mentioned systems are
restricted to one (or few) cryptocurrencies, A2L rely only
on widely deployed cryptographic primitives such as digital
signatures schemes, paving the way to interoperable cross-
chain applications.

Payment Channel Hubs. BOLT [18] is a PCH construc-
tion that builds upon cryptographic operations available on
Zcash to build a tumbler with security, privacy and scalability
guarantees. Perun [13] is an alternative PCH construction that
leverages the Turing-complete scripting language available in
Ethereum to implement the tumbler functionality with security
guarantees. However, both of these approaches lack inter-
operability as their required functionality is not available in
virtually any cryptocurrency other than Zcash and Ethereum.

TumbleBit [20], [22] is the closest to our work on the
setting and that they provide security and privacy guaran-
tees. However, TumbleBit is compatible only with those
cryptocurrencies supporting the hash-time lock contract and
requires several rounds of communication where (some of the)
messages are of size linear in the security parameter. A2L
provides (at least) the same security and privacy guarantees, it
is compatible with virtually all cryptocurrencies and reduces
the communication overhead to 3 rounds of communication
where messages are of constant size, improving thus by several
orders of magnitude. A2L effectively reduces not only the
communication overhead from 300KB to 20KB but also the
computation time to about 200ms if instantiated with ECDSA
and to 72ms if instantiated with Schnorr.

Payment-Channel Networks. A scalability approach based
on payment channels is payment-channel networks [37], where
users performs payments through a path of opened channels
between sender and receiver. Few research works have stud-
ied their security, privacy, routing and concurrency guaran-
tees [29], [30], [39] and for similar payment systems such as
credit networks [32], [35], [28], [33]. Although interesting, we
consider this research line orthogonal to our work. It is worth
noting that Malavolta et al. [30] propose anonymous multi-
hop locks (AMHL), a cryptographic construction to ensure the
security and privacy of multi-hop locks also based on scriptless
payments (i.e., payments where conditions are embedded in
the signature itself). While interesting, this work is orthogonal
to A2L: A multi-hop payment inherenty requires to reveal the
predecessor and successor nodes in the path to intermediaries,
which is exactly the privacy notion in a PCH, where only one
intermediary (tumbler) exists.

VIII. CONCLUSION

This paper presents A2L, a new cryptographic primitive
for realizing secure, privacy-preserving, interoperable, and
fungibility-preserving PCHs. We develop two instantiations,
based on ECDSA and Schnorr signatures, which makes our
constructions compatible with the vast majority of today’s
cryptocurrencies. We defined and proved security and privacy
for A2L in the UC framework. We further demonstrated that
A2L is the most efficient BitCoin-compatible PCH, showing
that our ECDSA instantiation is 3x faster and requires 15x less
bandwidth than the state-of-the-art TumbleBit protocol, even
when providing a higher level of security.

As a future work, we intend to further enhance the inter-
operability of A2L, devising a cryptographic instantiation for
ring signatures in order to support Monero. It would also be
interesting to generalize our construction to multi-hop payment
hubs and, ultimately, to interface PCHs with payment channel
networks. Finally, we intend to explore techniques to achieve
stronger value privacy guarantees and, possibly, the inherent
trade-offs between interoperability and value privacy.
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APPENDIX

A. Security Analysis

Throughout this section we denote by poly(λ) any function
that is bounded by a polynomial in λ. We denote any function
that is negligible in the security parameter by negl(λ). We say
an algorithm is PPT if it is modeled as a probabilistic Turing
machine whose running time is bounded by some function
poly(λ).

We prove security according to the UC framework [6],
and in the presence of malicious adversaries with static
corruptions. Since both our promise and payment protocols
are two party protocols, we are in the setting of no honest
majority. As is standard in this setting, we consider security
with abort, meaning that a corrupted party can learn output
while the honest party does not.
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Proof of Knowledge for Factoring. In our protocols we
assume existence of a proof πT , which is a non-interactive
zero-knowledge proof that Paillier parameters (n, g) are valid,
and a proof of knowledge of the associated Paillier secret
key. This zero-knowledge proof of knowledge can be realized
using the Poupard-Stern protocol [38] that proves knowledge
of the factorization of the modulus n. Another alternative
is to use the proof of [17], which certifies that RSA is a
permutation by proving that gcd(N,φ(N)) = 1. This proof
can be adapted to fit our needs, and this adaptation is explained
in [27, Section 6.2.3].

Key Generation Functionalities. Our protocols build on
key generation funtionalities for both Schnorr and ECDSA.
The key generation functionalities below are taken from
[29]. Ideal functionality for key generation of Schnorr
signature FSchnorr

KGen is defined below (it models a distributed
key generation for discrete logarithm-based schemes).

KeyGen(G, g, q)

Upon invocation by both P1 and P2 on input (G, g, q) :

sample x←$Zq and compute Q = gx

set skP1,P2
= x

sample x1, x2 ←$Zq and a hash function H : {0, 1}∗ → Zq
send (x1, Q,H) to P1 and (x2, Q,H) to P2

ignore future calls by (P1, P2)

The ideal functionality for key generation of ECDSA
signature FECDSA

KGen is defined as follows:

KeyGen(G, g, q)

Upon invocation by both P1 and P2 on input (G, g, q) :

sample x←$Zq and compute Q = gx

sample x1, x2 ←$Zq and a hash function H : {0, 1}∗ → Zq
sample a key pair (skP1,P2

, pkP1,P2
)← KGenHE()

compute c← EncHE(pk, r̄) for a random r̄

send (x1, Q,H, sk) to P1 and (x2, Q,H, c) to P2

ignore future calls by (P1, P2)

We stress that the copies of these functionalities that are
invoked as subroutines are fresh independent instances, and
hence, the composition theorem [6] directly applies to our
settings.

Schnorr-based Construction. Here we prove Theorem 1.

Proof. The proof is composed of a series of hybrids, where
we gradually modify the initial experiment.

H0: Is identical to the construction as described in Section
IV-C.

H1: All the calls to the commitment scheme COM are
replaced with calls to the ideal functionality FCOM, which is
defined as follows.

Commit(sid,m)

Upon invocation by Pi, where i ∈ {1, 2} :

if some (sid, ·, ·) is already recorded, then ignore the message
else record (sid, i,m) and send (com, sid) to P3−i

Decommit(sid)

Upon invocation by Pi, where i ∈ {1, 2} :

if (sid, i,m) is recorded, then send (decom, sid,m) to P3−i

else ignore the message

Instead of calling the commitment algorithm COM with
a message m, the parties send a message of the form
Commit(sid, m) to the ideal functionality FCOM. Similarly,
the decommitment is replaced with a message of the form
Decommit(sid). The verifying party records the messages
from FCOM.

H2: All the calls to the non-interactive zero-knowledge
scheme NIZK are replaced with calls to the ideal functionality
FNIZK, which is defined as follows.

Prove(sid, x, w)

Upon invocation by Pi, where i ∈ {1, 2} :

if R(x,w) = 1, then send (proof, sid, x) to P3−i

else ignore the message

Instead of calling the non-interactive zero-knowledge
scheme NIZK with input (x,w), the proving party queries
the ideal functionality FNIZK with message Prove(sid, x, w).
The verifier records the messages from FNIZK.

H3: Consider the following ensemble of variables in the
interaction with A: key pairs (skA, pkA,T ) and (skB , pkB,T ),
a pair (ᾱ, (Π := (β, ·), `)) such that

{·, (Π, `)} ← 〈PromiseB(skB , pkB,T ),PromiseT (skT , pkB,T )〉

and

{ᾱ, ·} ← 〈PayA(skA, pkA,T , `),PayT (skT , pkA,T )〉.

If for any set of these variables, the adversary returns
some σ := (R, s), such that Verify(Π, σ) = 1, but
s 6= Open(Π, ᾱ)[s], then the experiment aborts.

H4: Consider the following ensemble of variables in the
interaction with A: key pairs (skA, pkA,T ) and (skB , pkB,T ),
a pair (ᾱ, (Π, `)) such that

{·, (Π, `)} ← 〈PromiseB(skB , pkB,T ),PromiseT (skT , pkB,T )〉

and

{ᾱ, ·} ← 〈PayA(skA, pkA,T , `),PayT (skT , pkA,T )〉.

If for any set of these variables, the adversary returns some
σ := (R, s), such that Verify(Π, σ) = 1, before Alice outputs
ᾱ, such that Verify(Π,Open(Π, ᾱ)) = 1 then the experiment
aborts.

S : The actions of the simulator S are dictated by interacting
with F . If A interacts with an honest user, then the simulator
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queries the corresponding interface of F . More precisely, it is
queried by F on the following set of inputs:
• Promise: The simulator initiates the promise procedure

with the adversary and replies with ⊥ if the execution
is not successful, otherwise replies with a valid promise
and lock.

• Pay: The simulator initiates the pay procedure with the
adversary and replies with ⊥ and if the execution is not
successful, otherwise it releases the opening information
of the corresponding lock.

• Open: The simulator returns the opened lock data.
Additionally, S obtains the pair (n, g), (λ, µ), by extracting

them from the proof πT , where (n, g) is the Paillier public
key of Tumbler, and (λ, µ) is the corresponding secret key of
Tumbler.

Next, we prove the indistinguishability of the neighboring
experiments for the environment E .

Lemma 1. For all PPT distinguisher E it holds that

EXECH0,A,E ≈ EXECH1,A,E .

Proof. The proof follows directly from the security of the
commitment scheme COM.

Lemma 2. For all PPT distinguisher E it holds that

EXECH1,A,E ≈ EXECH2,A,E .

Proof. The proof follows directly from the security of the non-
interactive zero-knowledge scheme NIZK.

Lemma 3. For all PPT distinguisher E it holds that

EXECH2,A,E ≈ EXECH3,A,E .

Proof. In order to show this claim, we introduce two
intermediate hybrids.

H∗2: All the calls to the promise protocol are replaced with
calls to the FPromise ideal functionality, which is defined as
follows.

PromiseSign(sid,m, α)

Upon invocation by both Tumbler and Bob on input (sid, pk,m, α) :

if some (sid, ·, ·, ·) is already recorded, then ignore the message
else record (sid, pk,m, α)

compute (R, s)← SigSchnorr(skB,T ,m)

return (R, s− α)

We note that the key skB,T refers to the previously estab-
lished key between Bob and Tumbler in the call to the FSchnorr

KGen .

Lemma 4. For all PPT distinguisher E it holds that

EXECH2,A,E ≈ EXECH∗2 ,A,E .

Proof. The proof consists of the description of the simulator
for the interactive promise protocol. Since the promise proto-
col is executed between Tumbler and Bob, we describe two
simulators depending on whether the adversary is playing the
role of Tumbler or Bob.

1) Bob corrupted: After agreeing on a message m, the
simulator S samples a random α∗←$Zq , and queries
PromiseSign on input (sid,m, α∗), for a random sid, and
obtains σ′ := (R′, s′). S computes A∗ = gα

∗
and c∗ =

EncHE(pkT ,m), where pkT is the Paillier public key of
Tumbler. S sends ((com, sid), A∗, c∗, (proof, sid, {∃α∗ |
A∗ = gα

∗})) to A. At some point of the execution A
sends (R′1, (prove, {∃k′1 | R′1 = gk

′
1}, k′1)). S verifies

that R′1 = gk
′
1 , and if this is not the case S simulates

Tumbler aborting. S replies with decom, sid,

 R∗ = R′/(R′1 ·A∗),
proof, sid,
{∃k∗ | R∗ = gk

∗}

 ,

(s′ − k′1 + e · x′1)


where e = H(pk‖R∗‖m), and x′1 is the value returned
by the key generation to A. The rest of the execution is
unchanged.
The distribution induced by simulator is identical to the
real execution except for the way c∗ is computed (which
corresponds to c in the real protocol). However, α is sam-
ple uniformly randomly from Zq both in the real execu-
tion and the simulation. Hence, by the indistinguishability
of Paillier the distributions are indistinguishable.

2) Tumbler corrupted: After agreeing on a message m, the
simulator S is givencom, sid,

(
R′2,

prove, sid,

{∃k′2 | R′2 = gk
′
2}, k′2

)
,(

A,
prove, sid,
{∃α | A = gα}, α

)
, c


by A. S verifies that R′2 = gk

′
2 and A = gα. If the

verification fails, S simulates Bob aborting. S queries
PromiseSign on input (sid,m, α), and obtains σ′ :=
(R′, s′). S sends (R∗ = R′/(R′2 · A), (proof, sid, {∃k∗ |
R∗ = gk

∗})) to A, and receives ((decom, sid), s′2 =
k′2 − e′ · x′2), where e′ = H(pk‖R∗‖m), and x′2 is the
value returned by the key generation to A. The rest of
the execution is unchanged.
Simulator is efficient and the distribution induced by the
simulated view is identical to the one of the original
protocol.

Next, we define the second intermediate hybrid.

H†2: All the calls to the payment protocol are replaced
with calls to the FPay ideal functionality, which is defined as
follows.

PaymentSign(sid,m, γ)

Upon invocation by both Tumbler and Alice on input (sid,m, γ) :

if some (sid, ·, ·) is already recorded, then ignore the message
else record (sid,m, γ)

and compute (R, s)← SigSchnorr(skA,T ,m)

return (R, s− γ)
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We note that skA,T refers to the previously established key
between Alice and Tumbler in the call to the FSchnorr

KGen .

Lemma 5. For all PPT distinguisher E it holds that

EXECH∗2 ,A,E ≈ EXECH†2,A,E
.

Proof. Similar to the proof of Lemma 4, we define two
simulators. The payment protocol is run between Tumbler and
Alice, hence, we define simulators for when one or the other
is corrupted.

1) Alice corrupted: Prior to the interaction the simulator S
is given πT . After agreeing on a message m, S sends
(com, sid) to A, for a random sid. At some point of
the execution A sends (c′′, R1, (prove, {∃k1 | R1 =
gk1}, k1)). If R1 6= gk1 , then S simulates Tumbler
aborting. S extracts the Paillier secret key skT of Tumbler
from πT , decrypts c′′ to obtain γ ← DecHE(skT , c

′′), and
computes A∗ = gγ . S queries PaymentSign on input
(sid,m, γ), and receives σ := (R, s). S sends decom, sid,

 R∗ = R/(R1 ·A∗),
proof, sid,
{∃k∗ | R∗ = gk

∗}

 ,

(s− k1 + e · x1), A∗


to A, where e = H(pk‖R∗‖m), and x1 is the value
returned by the key generation to A. The rest of the
execution is unchanged.
Simulator is efficient and the distribution induced by the
simulated view is identical to the one of the original
protocol.

2) Tumbler corrupted: After agreeing on a message m, the
simulator S is given(

com, sid,

(
R2,

prove, sid,
{∃k2 | R2 = gk2}, k2

))
by A. If R2 6= gk2 , then S simulates Bob aborting. S
samples γ∗←$Zq , computes A∗ = gγ

∗
, encrypts γ∗ as

c∗ = EncHE(pkT , γ
∗), and it queries PaymentSign on

input (sid,m, γ∗). The simulator receives σ := (R, s),
and sends (c∗, R∗ = R/(R2 · A∗), (proof, sid, {∃k∗ |
R∗ = gk

∗})) to A. S receives ((decom, sid), s2 =
k2 − e · x2, A∗), where e′ = H(pk‖R∗‖m), and x2 is
the value returned by the key generation to A. S replies
with s. The rest of the execution is unchanged.
The distribution induced by simulator is identical to the
real execution except for the way c∗ is computed (which
corresponds to c in the real protocol). However, the same
argument about the indistinguishability from Lemma 4
applies here.

Both simulators are efficient and the distributions induced
by the simulated views are identical to the ones of the original
protocol.

Next, we continue with the proof of Lemma 3. Let cheat
be the event that triggers an abort of the experiment in H3.
Assume towards contradiction that Pr[cheat | H†2] ≥ 1

poly(λ) ,
then we can construct the following reduction against the

strong existential unforgeability of Schnorr signature. The
reduction receives as input a public key pk, and samples an
index j ∈ [1, q], where q ∈ poly(λ) is a bound on the total
number of interactions. Let Q be the key generated in the j-th
interaction, the reduction sets Q = pk. All the calls to the
signing algorithm are redirected to the signing oracle. If the
event cheat happens, the reduction returns the corresponding
(pk∗,m∗, σ∗ := (R∗, s∗)), otherwise it aborts.

The reduction is clearly efficient. Assume that j is the
index of the interaction where cheat happens. Note that
in the case the guess of the reduction is correct we have
that pk∗ = pkB,T . Since cheat happens we have that
VerifySchnorr(pk

∗,m∗, σ∗) = 1, but s∗ 6= Open(Π, ᾱ)[s],
where Π and ᾱ are returned from the promise and pay
protocols, respectively. Recall that ᾱ = α + β and Open
parses Π as (R′, s′), where s′ = sj − α, for some α ∈ Zq ,
where sj is the answer of the oracle on the j-th session on
input mj .

Substituting we get

s∗ 6= Open(Π, ᾱ)[s]

6= s′ + (ᾱ− β)

6= sj − α+ α+ β − β
6= sj

as expected. Since each message uniquely identifies a session,
this implies that (pk∗,m∗, σ∗) is a valid forgery. By assump-
tion this happens with probability at least 1

q·poly(λ) , which is a
contradiction and proves that Pr[cheat | H†2] ≤ negl(λ).

Lemma 6. For all PPT distinguisher E it holds that

EXECH3,A,E ≈ EXECH4,A,E .

Proof. Let q ∈ poly(λ) be a bound on the total number of
interactions. Let cheat denote an event that triggers an abort in
H4, but not inH3. We prove the indistinguishability ofH3 and
H4 by showing that Pr[cheat | H3] ≤ negl(λ). Assume that
the converse is true, then we can construct the following re-
duction against the discrete logarithm problem: On input some
A∗ ∈ G and a public key pk, the reduction guesses a session
j ∈ [1, q]. The reduction replaces A from the first message
of the promise protocol with A∗. If Alice is requested to call
the payment protocol, the reduction aborts. At some point of
the execution A outputs some (pk∗,m∗, σ∗ := (R∗, s∗)). The
reduction returns gs

∗−s′ , where s′ is part of the output of the
promise protocol.

The reduction is clearly efficient, and whenever j is guessed
correctly, the reduction does not abort, and we also have that
pk∗ = pkB,T . The event cheat happens only in the case where
VerifySchnorr(pk

∗,m∗, σ∗) = 1, but payment protocol has not
been executed. Recall that s′ = sj −α and A = gα, for some
α ∈ Zq , where sj is the answer of the oracle on the j-th
session on input mj . We note that we replaced A with the
input A∗ of the reduction, hence A = A∗ in this case. As
argued in the proof of Lemma 3, if s∗ 6= sj , then we have
an attacker against the strong unforgeability of the signature
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scheme. Hence, it follows that s∗ = sj with all but negligible
probability. Substituting we have

gs
∗−s′ = gs

∗−(sj−α)

= gα

= A

as expected. Since, by assumption this happens with probabil-
ity at least 1

q·n·poly(λ) , we have a successful attacker against
the discrete logarithm problem. This proves our lemma.

This concludes the proof.

ECDSA-based Construction. Here we prove Theorem 2.

Proof. The sequence of hybrids that we need are identical to
the ones used in the proof of the Schnorr-based construction.
Hence, here we only prove the indistinguishability of the
neighboring experiments which require modifications in the
argument. If the argument is the same, then the proof is
omitted.

Next, we prove the indistinguishability of the neighboring
hybrids.

Lemma 7. For all PPT distinguisher E it holds that

EXECH2,A,E ≈ EXECH3,A,E .

Proof. Similar to the proof of the Schnorr-based construction,
we defined two intermediate hybrids.

H∗2: The promise protocol is substituted with the FPromise

ideal functionality, defined as follows.

PromiseSign(sid,m, α)

Upon invocation by both Tumbler and Bob on input (sid, pk,m, α) :

if some (sid, ·, ·, ·) is already recorded, then ignore the message
else record (sid, pk,m, α)

compute (r, s)← SigECDSA(skB,T ,m)

return (r,min(s · α,−s · α))

Recall that the key skB,T refers to the key established be-
tween Bob and Tumbler in the call to the FECDSA

KGen functionality.

Lemma 8. For all PPT distinguisher E it holds that

EXECH2,A,E ≈ EXECH∗2 ,A,E .

Proof. We define two simulators since the promise protocol
is executed between two parties (namely, Tumbler and Bob).

1) Bob corrupted: After agreeing on a message m, the
simulator S samples a random α∗←$Zq , and queries
PromiseSign on input (sid,m, α∗), for a random sid, ob-
tains σ′ := (r′, s′) and sets R′ = gH(m)·(s′)−1 ·Qr′·(s′)−1

.
S computes A∗ = gα

∗
and c∗ = EncHE(pkT ,m),

where pkT is the Paillier public key of Tumbler.
S sends ((com, sid), A∗, c∗, (proof, sid, {∃α | A∗ =
gα
∗})) to A. At some point of the execution A sends

(R′1, (prove, {∃k′1 | R′1 = gk
′
1}, k′1)). S verifies that

R′1 = gk
′
1 , and if this is not the case S simulates Tumbler

aborting. S samples a random ρ←$Zq2 and computes

c′ ← EncHE(pkT , k
′
1 · s′ + ρq). S provides the attacker

with
decom, sid,



R∗ = (R′)(k
′
1)
−1

,

R2 = (R∗)(α
∗)−1

,
(proof, sid,
{∃k∗ | R2 = gk

∗}),
(proof, sid,
{∃α∗ | R∗ = (R2)α

∗}),
(proof, sid,
{∃α∗ | A∗ = gα

∗∧
R∗ = (R2)α

∗})


, c′


.

The rest of the execution is unchanged.
The distribution induced by the simulator is identical to the

real execution except for the way c∗ and c′ are computed.
The same argument from the proof of Lemma 4 apply about
the distribution of c∗. Whereas, for the distribution of c′ we
can prove the statistical proximity using the following lemma
(proved in [26]):

Lemma 9. [26] For all (k, s, t) ∈ Zq and for a random
ρ ∈ Zq2 , the distributions EncHE(pk, k · s mod q + tq + ρq)
and EncHE(pk, k · s mod q + ρq) are statistically close.

In the real world c′ is computed as EncHE(pk, k ·s mod q+
tq+ρq), for some t that is bound by q. The reason t is bound
between 0 and q is that the only operations performed without
modular reduction are one multiplication and one addition,
which cannot increase the result more than q2. Since the
distributions are identical, the indistinguishability follows.

2) Tumbler corrupted: After agreeing on a message m, the
simulator S is givencom, sid,

(
R′2,

prove, sid,

{∃k′2 | R′2 = gk
′
2}, k′2

)
,(

A,
prove, sid,
{∃α | A = gα}, α

)
, c


by A. S verifies that R′2 = gk

′
2 and A = gα. If the

verification fails, S simulates Bob aborting. S queries
PromiseSign on input (sid,m, α), obtains σ′ := (r′, s′)
and sets R′ = gH(m)·(s′)−1 · Qr′·(s′)−1

. S sends (R∗ =
(R′)(k

′
2)
−1·α−1

, (proof, sid,
{∃k∗ | R∗ = gk

∗})) to A, and receives decom, sid,

(
R′c,

prove, sid,
{∃α | R′c = (R′2)α}, α

)
,A,R′c, prove, sid,

{∃α | A = gα∧
R′c = (R′2)α}, α

 , c′

 .

S verifies that R′c = (R′2)α and A = gα. If the
verification fails S simulates Bob aborting. S checks

DecHE(sk, c′) = r̄ · r′ · (k′2)−1 +H(m) · (k′2)−1 mod q,

where r̄ was sampled in the key generation algorithm. If
the check holds, then the rest of the execution proceeds
unchanged, else S simulates Bob aborting.

The distribution induced by the simulator is identical to the
real execution except for the way c′ is computed. However,
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we can show indistinguishability using the a modified
simulator, which is given the oracle O(c′, a, b) as is defined
in the following security experiment of the Paillier encryption
scheme [26]:

Exp−ecCPAAHE(λ)

(sk, pk)← KGenHE(1λ)

(w0, w1)←$Zq
Q = gw0

b←$ {0, 1}
c← EncHE(pk, wb)

b′ ← A(pk, c, Q)O(·,·,·)

where O
(
c′, a, b

)
returns 1 iff DecHE(sk, c′) = a+ b · wb

return 1 iff b = b′

The modified simulator queries the oracle on input (c′, a =
H(m) · (k′2)−1, b = r′ · (k′2)−1). It is apparent that the mod-
ified simulator accepts only if the original simulator accepts.
Assume towards contradiction that the modified simulator can
be efficiently distinguished form the real world experiment.
Then, we can give the following reduction to the security of
Paillier encryption scheme: On input (pk, c,Q), the reduction
simulates the inputs of A as described in the modified simula-
tor using the input pk, Q, and c as the corresponding variables.
The reduction is clearly efficient. We note that if b = 0,
then c = EncHE(pk, w0) and Q = gw0 , which is identical
to the real world execution by setting w0 = x1. In contrast, if
b = 1, then we have that c = EncHE(pk, w1) and Q = gw0 ,
where w1 is uniformly distributed in Zq , which is identical
to the modified simulated experiment. This means that the
modified simulation is computationally indistinguishable from
the real world experiment. This concludes the proof of Lemma
8, while the modified simulation and the original simulation
are identical to the eyes of the adversary.

Next, we define the second intermediate hybrid.

H†2: The payment protocol is substituted with the FPay

ideal functionality, which is defined as follows.

PaymentSign(sid,m, γ)

Upon invocation by both Tumbler and Alice on input (sid,m, γ) :

if some (sid, ·, ·) is already recorded, then ignore the message
else record (sid,m, γ)

and compute (R, s)← SigECDSA(skA,T ,m)

return (r,min(s · γ,−s · γ))

We note that skA,T refers to the previously established key
between Alice and Tumbler in the call to the FSchnorr

KGen .

Lemma 10. For all PPT distinguisher E it holds that

EXECH∗2 ,A,E ≈ EXECH†2,A,E
.

Proof. We define two simulators, one when Alice is corrupted,
and the other one when Tumbler is corrupted.

1) Alice corrupted: Prior to the interaction the simulator S
is given πT . After agreeing on a message m, S sends

(com, sid) to A, for a random sid. At some point of
the execution A sends (c′′, R1, (prove, {∃k1 | R1 =
gk1}, k1)). If R1 6= gk1 , then S simulates Tumbler
aborting. S extracts the Paillier secret key skT of Tumbler
from πT , decrypts c′′ to obtain γ ← DecHE(skT , c

′′),
and computes A∗ = gγ . S queries PaymentSign on
input (sid,m, γ), receives σ := (r, s), and sets R =
gH(m)·s−1 ·Qr·s−1

. S samples a random ρ←$Zq2 , com-
putes c← EncHE(pkT , k1 · s+ ρq), and sends

decom, sid,



Rc = R(k1)
−1

,

R2 = (Rc)
α−1

,
(proof, sid,
{∃k∗ | R2 = gk

∗}),
(proof, sid,
{∃α | Rc = (R2)α}),
(proof, sid,
{∃α | A = gα∧

Rc = (R2)α})


, c


.

to A. The rest of the execution is unchanged.
The distribution induced by the simulator is identical to the

real execution except for the way c is computed. However, the
same argument about the statistical proximity as is given in
Lemma 9 applies here too.

2) Tumbler corrupted: After agreeing on a message m, the
simulator S is given(

com, sid,

(
R2,

prove, sid,
{∃k2 | R2 = gk2}, k2

))
by A. If R2 6= gk2 , then S simulates Bob aborting. S
samples γ∗←$Zq , computes A∗ = gγ

∗
, encrypts γ∗

as c∗ = EncHE(pkT , γ
∗), and it queries PaymentSign

on input (sid,m, γ∗). S receives σ := (r, s), and
sets R = gH(m)·s−1 · Qr·s−1

. S sends (c∗, R∗ =
R(k2)

−1·(γ∗)−1

, (proof, sid, {∃k∗ | R∗ = gk
∗})) to A. S

receives decom, sid,

(
Rc,

prove, sid,
{∃γ | Rc = (R2)γ

∗}, γ∗
)
,A∗, Rc, prove, sid,

{∃γ∗ | A∗ = gγ∧
Rc = (R2)γ

∗}, γ∗

 , c

 .

The rest of the execution is unchanged.
The distribution induced by the simulator is identical to

the real execution except for the way c and c∗ are computed.
However, the indistinguishability argument from the proof of
Lemma 8 applies here for c, and the argument from the proof
of Lemma 5 applies for c∗. This concludes the proof of Lemma
10.

Next, we continue with the proof of Lemma 7. Let cheat
be the event that triggers an abort of the experiment in H3.
Assume towards contradiction that Pr[cheat | H†2] ≥ 1

poly(λ) ,
then we can construct the following reduction against the
strong existential unforgeability of ECDSA signature. The
reduction receives as input a public key pk, and samples an
index j ∈ [1, q], where q ∈ poly(λ) is a bound on the total
number of interactions. Let Q be the key generated in the j-th



19

interaction, the reduction sets Q = pk. All the calls to the
signing algorithm are redirected to the signing oracle. If the
event cheat happens, the reduction returns the corresponding
(pk∗,m∗, σ∗ := (r∗, s∗)), otherwise it aborts.

The reduction is clearly runs in polynomial time. Assume
that j is the index of the interaction where cheat happens.
Note that in the case the guess of the reduction is correct
we have that pk∗ = pkB,T . Since cheat happens we have
that VerifyECDSA(pk∗,m∗, σ∗) = 1, but s∗ 6= Open(Π, ᾱ)[s],
where Π and ᾱ are returned from the promise and pay
protocols, respectively. Recall that ᾱ = α ·β and Open parses
Π as (r′, s′), where s′ = sj ·α, for some α ∈ Zq , where sj is
the answer of the oracle on the j-th session on input mj .

Substituting we get

s∗ 6= Open(Π, ᾱ)[s]

6= s′ · (ᾱ · β−1)−1

6= sj · α · (α · β · β−1)−1

6= sj · α · α−1

6= sj

as expected. Since each message uniquely identifies a session,
this implies that (pk∗,m∗, σ∗) is a valid forgery. By assump-
tion this happens with probability at least 1

q·poly(λ) , which is a
contradiction and proves that Pr[cheat | H†2] ≤ negl(λ).

Lemma 11. For all PPT distinguisher E it holds that

EXECH3,A,E ≈ EXECH4,A,E .

Proof. Let q ∈ poly(λ) be a bound on the total number of
interactions. Let cheat denote an event that triggers an abort in
H4, but not inH3. We prove the indistinguishability ofH3 and
H4 by showing that Pr[cheat | H3] ≤ negl(λ). Assume that
the converse is true, then we can construct the following re-
duction against the discrete logarithm problem: On input some
A∗ ∈ G and a public key pk, the reduction guesses a session
j ∈ [1, q]. The reduction replaces A from the first message
of the promise protocol with A∗. If Alice is requested to call
the payment protocol, the reduction aborts. At some point of
the execution A outputs some (pk∗,m∗, σ∗ := (R∗, s∗)). The
reduction returns g(s

∗)−1·s′ , where s′ is part of the output of
the promise protocol.

The reduction is clearly efficient, and whenever j is guessed
correctly, the reduction does not abort, and we also have that
pk∗ = pkB,T . The event cheat happens only in the case where
VerifyECDSA(pk∗,m∗, σ∗) = 1, but payment protocol has not
been executed. Recall that s′ = sj · α and A = gα, for some
α ∈ Zq , where sj is the answer of the oracle on the j-th
session on input mj . We note that we replaced A with the
input A∗ of the reduction, hence A = A∗ in this case. As
argued in the proof of Lemma 7, if s∗ 6= sj , then we have
an attacker against the strong unforgeability of the signature
scheme. Hence, it follows that s∗ = sj with all but negligible
probability. Substituting we have

gs
∗−s′ = g(s

∗)−1·(sj ·α)

= gα

= A

as expected. Since, by assumption this happens with probabil-
ity at least 1

q·n·poly(λ) , we have a successful attacker against
the discrete logarithm problem. This proves our lemma.

This concludes the proof.

B. PCH from Anonymous Atomic Locks

In this section, we show that A2L are sufficient to construct
a full-fledged PCH. In order to do that, we first define the ideal
functionality for PCH. We then detail the PCH construction
sketched in Section VI. Finally, we analyze the security of the
PCH construction.

1) Ideal Functionalities: We require the ideal functionality
for anonymous atomic locks FA2L as described in Figure 2.
That is, all parties have oracle access to FA2L through the
specified interfaces.

Furthermore, we require the existence of a blockchain B
modeled as a trusted append-only bulletin board. The corre-
sponding ideal functionality FB, as defined in [12], is used to
store and update the balance of every party. It is defined in
the global UC (GUC) model [7], since it provides values that
should be globally accessible, and it can be updated by mul-
tiple instances of our ideal functionality or by other protocols
simultaneously. In order to update the balance of a party P , FB

processes the messages (add, P, x) and (remove, P, x), which
allow to add/remove x coins to/from a party P ’s account,
respectively. For readability we write the balance of a party
P in B as B[P ]. The state of FB is available to all parties,
that is, at any point in the execution, a party P can send a
distinguished message read to FB, which sends the whole
transcript of B to P . Moreover, we denote the number of
entries in B as |B|, and we model time as the number of
entries of the blockchain B (i.e., time ∆ = |B|). Note that it is
possible to elapse time by adding dummy entries to B and that
the time is available to all parties by simply reading B. Lastly,
for readability, we assume that users can specify arbitrary
contracts, that is, validity of transactions from users can be
associated with arbitrary conditions that must be satisfied in
order to make the transaction effective. FB is then assumed to
enforce that contract clauses are fulfilled before the transaction
is added to B.

As defined in Section III, here we assume synchronous
communication between users, modeled by the functional-
ity Fsyn, and secure message transmission channels between
users, modeled by Fsmt.

Multi-session Extension. Composition theorem requires
that each call of every ideal functionality spawns an inde-
pendent instance of the corresponding functionality. However,
our FA2L functionality formally requires a joint state between
sessions. More precisely, the KGen protocols that are used
for establishing pairwise links are shared between multiple
promise/payment instances, which might potentially result in
shared keys between the different instances of A2L that realize
payment channels. Therefore, we need to rely on composition
with joint state (as discussed in [8]), where the authors state
a stronger version of the composition theorem, called JUC,
which accounts for joint state and randomness across protocol
sessions.
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For brevity we write F for FPCH, and denote Tumbler as T. We assume that the channel and promise identifiers are unique
and generated at random by the ideal functionality. Additionally, there exists a lock randomizer function rand, and all the
promises use a constant amount (amt).

Open Channel: On input (pc−open, sid, ς), from a party P with ς.balance(P ) coins, where ς is the channel, P ∈ {A,B},
P ∈ ς.parties, and ς.other−party(P ) = T , F checks whether (sid, ς) is present in C. If it is present, then F sends
(pc−exists, sid,⊥) to P , otherwise it sends (pc−request, sid, ς) to T , who can either abort or authorize the operation.
In the latter case, F receives (pc−open, sid, ς ′) from T with ς ′.balance(T ) coins, and checks whether ς = ς ′, and
∀P ′ ∈ ς.parties, such that B[P ′] ≥ ς.balance(P ′) using FB. If the checks pass, F sends (remove, ς.P1, ς.balance(ς.P1)) and
(remove, ς.P2, ς.balance(ς.P2)) to FB. Lastly, F sends (pc−opened, sid, ς) to ς.P1 and ς.P2. Otherwise, channel opening
fails and F sends (pc−failed, sid,⊥) to parties in ς.parties.

Promise: On input (promise−request, sid, ς) from a party P , such that P ∈ ς.parties and ς.other−party(P ) = T , F sends
(create−promise, sid, ς) to T , who can either abort or authorize the operation. In the former case, F receives (promise, sid,⊥)
from T , and sends (promise−failed, sid,⊥) to P . In the latter case, F receives (promise, sid,>) from T , and checks whether
ς.balance(T ) ≥ amt. If the condition is not satisfied it sends (promise−failed, sid,⊥) to both parties in ς.parties. Otherwise,
it stores Π = (pid, lid, cid, ν, P ) in P , for a random but unique Π.pid and Π.lid, a channel identifier Π.cid = ς.cid, a validity
period Π.ν, and sends (promise−created, sid,Π) to P .

Payment: On input (pay−request, sid′, lid, ς ′) from P ′, such that P ′ ∈ ς ′.parties, and ς ′.other−party(P ′) = T , F sends
(receive−payment, sid′, P ′, rand(lid), ς ′) to T , who can either abort or authorize the operation. In the former case, F receives
(pay, sid′,⊥) from T and sends (pay−failed, sid′,⊥) to P ′. In the latter case, F receives (pay, sid′, %) from T . At this point,
F checks the following conditions: 1) there is an entry Π ∈ P , such that Π.lid = lid and Π.ν ≥ ∆ (i.e., promise has not
expired), 2) % is a valid opening of Π.lid, and 3) ς ′.(P ′) ≥ amt. If the conditions are satisfied, then F updates the balances
of P ′ and T in channel ς ′ as ς ′.(P ′) −= amt and ς ′.(T ) += amt, respectively. Also, updates the balance of Π.P and T
in channel ς as ς.(P ) += amt and ς.(T ) −= amt, respectively, where ς.cid = Π.cid. Lastly, F removes the entry Π from
P , and sends (paid, sid′,>) to P ′. Otherwise, if any of the conditions fails, then F sends (pay−failed, sid′,⊥) to parties in
ς ′.parties.

Close Channel: On input (pc−close, sid, cid′) from a party P , F checks whether there exists a payment channel ς ∈ C, such
that ς.cid = cid′ and P ∈ ς.parties. If no such channel exists, F ignores the message. Otherwise, F checks whether there
exists a Π ∈ P , such that Π.cid = ς.cid and Π.ν ≥ ∆ (i.e., a promise has not expired). If such a Π exists, then F removes
Π from P . Then, F sends (add, ς.P1, ς.balance(P1)) and (add, ς.P2, ς.balance(P2)) to FB. Lastly, F removes ς from C, and
sends (pc−closed,>) to parties in ς.parties.

Fig. 9: Ideal functionality FPCH in the (FB,Fsmt,Fsyn)-hybrid model

In order to satisfy the conditions for the JUC theorem to
apply, we must first argue that our protocol realizes a stronger
ideal functionality F̃A2L, that makes only independent calls to
the underlying interfaces. More precisely, we need to argue
for each of the previously presented concrete realizations of
FA2L that a parallel composition of those protocols realizes the
functionality F̃A2L (with all instances of the protocols sharing
the same KGen, but running independently otherwise). We
show this in the following lemmas.

Lemma 12. Let COM be a secure commitment scheme, let
NIZK be a non-interactive zero-knowledge scheme, and let

L̂Schnorr

KGen
be the multi-session extension of the protocol

described in Figures 3, 4 and 5, using a shared KGen algo-
rithm that realizes FSchnorr

KGen . If Schnorr signatures are strongly
existentially unforgeable and Paillier encryption is ecCPA

secure, then L̂Schnorr

KGen
, UC-realizes the ideal functionality

F̃A2L in the (FSchnorr
KGen ,Fsmt,Fsyn)-hybrid model.

Proof. It is trivial to see that the FSchnorr
KGen functionality itself

is stateless, and therefore, consecutive invocations of FSchnorr
KGen

are indistinguishable from the invocations of fresh instances
of the functionality. Thus, for multiple protocols, it is identical
to query the same FSchnorr

KGen instance or to work on independent
copies (note that the same property carries over to protocols

realizing this functionality). Consequently, L̂Schnorr

KGen
is in-

distinguishable from the multi-session extension of LSchnorr

using independent KGen copies that realize FSchnorr
KGen . Hence,

the claim follows from the composition theorem [6] and
Theorem 1.

Lemma 13. Let COM be a secure commitment scheme, let
NIZK be a non-interactive zero-knowledge scheme, and let

L̂ECDSA

KGen
be the multi-session extension of the protocol

described in Figures 6, 7 and 8, using a shared KGen algo-
rithm that realizes FECDSA

KGen . If ECDSA signatures are strongly
existentially unforgeable and Paillier encryption is ecCPA

secure, then L̂ECDSA

KGen
, UC-realizes the ideal functionality

F̃A2L in the (FECDSA
KGen ,Fsmt,Fsyn)-hybrid model.

Proof. FECDSA
KGen satisfies the same independence properties as
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FSchnorr
KGen , hence, the same argument as for Lemma 12 applies.

2) PCH Ideal Functionality: Next, we define an ideal
functionality for a PCH, called FPCH, which can be seen in
Figure 9. For simplicity, we do not consider any transaction
fees, however, our construction can be trivially extended to
include fees.

Data Structures. In order to simplify the exposition, we
define a few data structures. Additionally, to ease the notation,
we use attributes to access the values of tuples. For example,
γ.cid denotes the cid attribute of the tuple γ. The data
structures that we require are the following:
• List of promises P , which keeps track of the currently

existing promises. The entries in the list have the format
(pid, lid,
cid, ν, Pi), where pid is a promise identifier, lid is a lock
identifier, cid is the channel identifier, ν is a validity
period (expiration time) of the promise, and Pi is the
party to whom the promise and lock are given. We note
that pid and lid are unique identifiers, and each promise
has a validity period defined as ν = ∆ +υ for a constant
value υ.

• List of open channels C, which keeps track of the
currently open channels. A channel ς is a tuple defined
as (cid, P1, P2), where cid is the channel identifier, and
P1 and P2 are the parties between whom the channel is
established. We consider bidirectional payment channels
and, for simplicity, we assume that at any moment there
can only be a single open channel between the two parties
P1 and P2, and one of these parties is always the Tumbler.
Hence, we do not consider the payment channels for
which Tumbler is not one of the parties involved. This is
a natural assumption as PCH involves an intermediary.
Apart from the actual tuple values, the channel addi-
tionally has the following attributes (as defined in [12]):
ς.parties = {ς.P1, ς.P2}, which defines the two endpoints
(parties) of the channel, ς.balance : ς.parties → R≥0,
which returns the balance of the specified party within
the channel, and ς.other−party : ς.parties → ς.parties,
which is defined as ς.other−party(ς.P1) = ς.P2 and
ς.other−party(ς.P2) = ς.P1.

3) Discussion: We define here the security and privacy
notions of interest for payment hubs.

Balance Security. The system should not be exploited to
print new money or steal existing money, even when parties
collude. This property was defined in [19]. FPCH provides
balance security as the only place where the balances are
updated is inside the payment operation, and it makes sure
that either all the balances are updated or none. Additionally,
it assures that the balances are updated only if the correct
opening information for a lock is provided by the Tumbler.
The atomicity and correctness properties are enough to ensure
balance security.

Unlinkability. The intermediary should not learn informa-
tion that allows it to associate the sender and the receiver
of a payment. This is the same property that was previously
defined in Section III-C. FPCH achieves unlinkability while

it uses constant amounts and random but unique identifiers
locks, which gets rerandomized before reaching the Tumbler.

C. Trilero: Our System

In the following, we describe the four operations (open
channel, close channel, promise and payment) that constitute
the core of our system for PCH, which can be seen in Figure
10. Although, we describe open channel and close channel
operations here, we do not formally call them in Figure 10,
and instead assume that the parties have already established
payment channels between themselves before the start of the
protocol

Open Channel. The open channel operation generates a
new payment channel between the Tumbler and another party
P (in our case P is either Alice or Bob). The parties create an
initial blockchain deposit with the amount they want to invest
for the channel. If the parties have sufficient balance in the
blockchain, and the channel opening is mutually authorized,
then the operation successfully creates a new payment channel,
adds it to a list of open channels, and returns the channel
information ς to both parties. Otherwise, it returns ⊥.

Close Channel. The close channel operation is run by
parties that share an open payment channel. The operation
checks whether the specified channel is still open, and whether
there are still unexpired promises tied to this channel. In case
such promises exist, it removes them from the list of currently
valid promises. Next, it updates the blockchain balance of each
party according to their channel balance, and sends > to both
parties.

Promise. The promise operation returns a promise Π from
Tumbler to Bob, conditioned that Tumbler and Bob share an
open payment channel, and Tumbler has sufficient balance to
fulfill the promise. If the conditions are not satisfied it returns
⊥.

Payment. The payment operation transfers amt coins from
Tumbler to Bob, and from a party Alice to Tumbler. The
operation makes sure that the promise has not expired, the
parties have enough balance to fulfill the transactions, and that
Tumbler provides a valid opening to the lock corresponding to
the given promise. If all these conditions are satisfied, then it
updates the balances of the parties, and returns >. Otherwise,
the balances are not modified, and it returns ⊥.

1) Security Analysis: In the following we argue that the
system as described in Figure 10, UC-realizes the functionality
FPCH as defined in Figure 9.

Theorem 3. The system described in Figure 10, UC-realizes
FPCH (as defined in Figure 9) in the (FA2L,FB,Fsmt,Fsyn)-
hybrid model.

Proof. The proof consists of the observation that the ideal
functionality FA2L enforces balance security and unlinkability
properties of a PCH (as defined in Appendix B3). Balance
security is guaranteed due to the atomicity of FA2L, meaning
either all the balances are updated or none of them. This
ensures that no party loses or gains more than it should. As
was discussed in Section III-C, FA2L satisfies the unlinkability
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Public parameters: constant amount (amt) of coins, a validity period (υ) of a promise, and current time (∆)

Alice(ς ′) Tumbler(ς ′, ς) Bob(ς)
If ς.balance(T ) < amt then abort
Query FA2L on Promise()

FA2L returns (Π, `)

If Π = ⊥ or ` = ⊥ then abort
Set t := ∆ + υ

A2L−Promise(Tumbler,Bob,Π,amt,t)←−−−−−−−−−−−−−−−−−−−→
`

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

If ς ′.balance(A) < amt or t < ∆ then abort
A2L−Pay(Alice,Tumbler,`,amt)←−−−−−−−−−−−−−−−−→

Query FA2L on Pay(`)

FA2L returns %
If % = ⊥ then abort

%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Query FA2L on Open(Π, %)

FA2L returns Θ

If Θ = ⊥ then abort
Query FA2L on Verify(Π,Θ)

FA2L returns b

Check b ?
= 1

Fig. 10: Trilero protocol in the (FA2L,FB,Fsmt,Fsyn)-hybrid model.

property, hence, the same argument for unlinkability applies
here too. Also, note that the only information that is sent
outside of FA2L consists of amounts and timeouts, and these
values are chosen exactly as described in FPCH. Furthermore,
it is sufficient to argue about the individual copies of FA2L in

isolation by the JUC theorem [8]. As was shown in Lemmas 12
and 13, the multi-session extended ideal functionality F̃A2L is
realized by our instantiations, and therefore, the JUC theorem
allows us to complete the analysis assuming independent
copies of FA2L running in parallel.
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