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Abstract—Payment channel hubs (PCHs) constitute a promis-
ing solution to the inherent scalability problem of blockchain
technologies, allowing for off-chain payments between sender and
receiver through an intermediary, called the tumbler. While state-
of-the-art PCHs provide security and privacy guarantees against
a malicious tumbler, they do so by relying on the scripting-based
functionality available only at few cryptocurrencies, and they
thus fall short of fundamental properties such as backwards
compatibility and efficiency.

In this work, we present the first PCH protocol to achieve all
aforementioned properties. Our PCH builds upon A2L, a novel
cryptographic primitive that realizes a three-party protocol for
conditional transactions, where the tumbler pays the receiver
only if the latter solves a cryptographic challenge with the help
of the sender, which implies the sender has paid the tumbler. We
prove the security and privacy guarantees of A2L (which carry
over to our PCH construction) in the Universal Composability
framework and present a provably secure instantiation based on
adaptor signatures and randomizable puzzles. We implemented
A2L and compared it to TumbleBit, the state-of-the-art Bitcoin-
compatible PCH. Asymptotically, A2L has a communication
complexity that is constant, as opposed to linear in the security
parameter like in TumbleBit. In practice, A2L requires ~33x less
bandwidth than TumleBit, while retaining the computational cost
(or providing 2x speedup with a preprocessing technique). This
demonstrates that A2L (and thus our PCH construction) is ready
to be deployed today.

In theory, we demonstrate for the first time that it is possible
to design a secure and privacy-preserving PCH while requiring
only digital signatures and timelock functionality from the
underlying scripting language. In practice, this result makes our
PCH backwards compatible with virtually all cryptocurrencies
available today, even those offering a highly restricted form
of scripting language such as Ripple or Stellar. The practical
appealing of our construction has resulted in a proof-of-concept
implementation in the COMIT Network, a blockchain technology
focused on cross-currency payments.

I. INTRODUCTION

The user base of cryptocurrencies, and more in general
blockchain technologies, is rapidly increasing, embracing not
only enthusiasts in decentralized payments like in the early
days but also banks and leading IT companies (e.g., Facebook
and PayPal), which are interested in providing services to
connect users and enable secure and efficient payments, and
more in general computations, between them. The realization
of this vision, however, poses a number of technical chal-
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lenges, most notably, unlinkability, atomicity, interoperability,
and scalability.

A. Challenges in Blockchain Technologies: a Path Towards
Payment Channel Hubs

Unlinkability. Neither individual users nor companies are
willing to disclose the identity of their financial partners
to the prying eyes of their competitors. Furthermore, the
unlinkability of sender and receiver is an essential requirement
even from an economical point of view: the fungibility of a
currency requires that all coins have the same value. If one can
determine by whom a certain coin has been processed, then
coins could be valued differently by different users (e.g., coins
of unknown provenance could be refused by some users).

The initial perception that Bitcoin provided unlinkability
based on the use of public keys as pseudonyms has been
largely refuted. Many academic efforts [39], [47] and the
blockchain analysis industry [28] have demonstrated that it is
possible to link pseudonyms together as well as to link them
back to their real-world identities with little effort. Recent
empirical analysis point out that deanonymization is an issue
across virtually every cryptocurrency, even those designed with
privacy-by-default principle such as Monero or Zcash [8], [41].

In this state of affairs, a market of tumblers (also known
as mixers or mixing services) has emerged, acting as opt-in
overlays to existing cryptocurrencies that enhance privacy by
mixing the coins from a set of senders to a set of receivers so
that none can determine which sender paid to which receiver
by inspecting the blockchain: for instance, JoinMarket, a mix-
ing service based on the CoinJoin protocol, has been mixing
1M USD in bitcoins per month [40]. More sophisticated
cryptographic protocols allow for the unlinkability of sender
and receiver even against the participants in the mixing itself:
for instance, CashShuffle has been used to mix over 40M USD
in Bitcoin Cash coins since it was launched [50].

Atomicity. Mixers are not necessarily honest and, in partic-
ular, they might steal the money from honest users [10], [53].
A fundamental security property in the context of tumbler-
based payments is thus atomicity, that is, either a payment is
successful or the money goes back to the sender.

Interoperability. Inasmuch as payer and payee could pos-
sess wallets in different cryptocurrencies, payments, and more
in general blockchain transactions, should be possible across



blockchains. In fact, exchange services are an essential com-
ponent of the cryptocurrency ecosystem, with more and more
banks (including PayPal) providing such functionality.

Scalability. The increasing adoption of cryptocurrencies
has raised scalability issues [18] that go beyond the rapidly
growing blockchain size. For instance, the permissionless
nature of the consensus algorithm underlying widely deployed
cryptocurrencies such as Bitcoin and Ethereum strictly limits
their transaction throughput to tens of transactions per second
at best [18], which contrasts with the throughput of centralized
payment networks such as Visa that supports peaks of up to
47,000 transactions per second [52].

Among the several efforts to mitigate these scalability
issues [31], [32], [45], payment channels have emerged as
the most widely deployed solution in practice. The core idea
is to let users deposit a certain amount of coins (called
collateral) in a shared address1 (called channel) controlled
by both, storing the corresponding transaction on-chain. From
that moment on, these two users can pay each other by simply
agreeing on a new distribution of the coins deposited in the
channel: the corresponding transactions are stored locally, that
is, off-chain. When the two users disagree on the current
redistribution or simply terminate their economic relation,
they submit an on-chain transaction that sends back the coins
to their owners according to the last agreed distribution of
coins, thereby closing the channel. Thus, payment channels
require only two on-chain transactions (i.e., open and close
channel), yet supporting arbitrarily many off-chain payments,
which significantly enhances the scalability of the underlying
blockchain.

While appealing, this simple construction forces the sender
to establish a channel with each possible receiver, which is
financially prohibitive, as the sender would have to lock an
amount of coins proportional to the number of receivers.
Furthermore, the coins locked in a channel cannot be used
anywhere else.

Payment channel networks (PCNs) (such as the Lightning
Network [2]) offer a partial solution to this problem, enabling
multi-hop payments along channel paths: if one sees a PCN as
a graph where nodes are users and edges are channels, PCNs
enable payments between any two nodes connected by a path.
However, a PCN payment requires sequential channel updates
from sender to receiver, breaking unlinkability when there is a
single intermediary. Moreover, PCNs raise the issue of finding
paths in a network and maintaining the network topology.

This has led to the design of tumblers supporting off-chain
payments, also called payment channel hubs (PCHs). The
basic idea is that each party opens a channel with a tumbler,
which mediates payments between each pair of sender and
receiver, receiving a fee in compensation.

1Technically, a shared (or 2-of-2 multisig) address, requires both address
owners to agree on the usage of the coins stored therein, which is achieved
by signing the corresponding transaction.

TABLE I: State-of-the-art in mixing services.
Atomicity Unlinkability Interoperability
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n Trusted Gateways # #  
CoinJoin  # # (CoinJoin tx)
Mixing [38], [48], [49]   # (Bitcoin or Ethereum)
Monero, ZCash, ...   # (Dedicated Currency)
Tesseract [7]   # (Trusted Hardware)
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BOLT [26]   # (Zcash)
Perun [20]  # # (Ethereum)
NOCUST [30]  # # (Ethereum)
Teechain [33]   G#2 (Trusted Hardware)
TumbleBit [27]   1 G#3 (HTLC-based currencies)
A2L   1  (Digital signature and timelocks)

1 Payments have fixed amounts; 2 Every user must run a TEE; 3 Not
supported by scriptless cryptocurrencies (e.g., Ripple and Stellar).

B. Problem Statement and Related Work

Enforcing unlinkability, atomicity, and interoperability in
cryptocurrencies in general, and even more so in an off-chain
setting, is an open challenge. In particular, some privacy-
preserving on-chain mixing protocols like CoinJoin [37] as-
sume trusted users, thereby not providing strong unlinka-
bility guarantees, while others like CoinShuffle [48], [49]
or Möbius [38] (among many others) protect even against
malicious users, but require custom scripting language from
the underlying cryptocurrency (e.g., Bitcoin and Ethereum).
Similar reasoning applies to privacy-preserving cryptocurren-
cies, like Monero or ZCash. In the off-chain setting, existing
constructions require either a dedicated scripting language
(e.g., Perun [22] and NOCUST [30] rely on Ethereum scripts,
Tumblebit [27] on Hashed Timelock Contracts (HTLCs), and
Bolt [26] on customized cryptographic primitives) or trusted
hardware (e.g., Teechain [33]). Notice that even seemingly
mild system assumptions like HTLCs hinder interoperability,
as HTLCs are supported only in some cryptocurrencies (e.g.,
Bitcoin and Ethereum) but not by the so-called scriptless ones
(e.g., Ripple and Stellar). Table I summarizes the assumptions
and properties of state-of-the-art PCH constructions.

This state of affairs leads to the following question: is it
possible to design a PCH that provides atomicity, unlinkability,
and interoperability (i.e., it is based on few assumptions that
are fulfilled by virtually all cryptocurrencies)?

This question, besides interesting from a theoretical point
of view, is also of strong practical relevance. Indeed, such a
PCH would enable, for the first time, tumbler-enabled atomic
and unlinkable payments across arbitrary cryptocurrencies.
In addition, realizing powerful blockchain applications with
fewer scripting assumptions is a valuable research direction
on its own. Besides the time required to implement a change
in the consensus protocol and the low likelihood this is actually
accepted, adding functionality to the underlying cryptocur-
rency increases the trusted computing base (i.e., checking that
there are no inconsistencies with other functionalities) which
in general exacerbates the problem of verifying scripts (e.g.,
bugs in Ethereum smart contracts add countless new attack
vectors).



C. Our contributions

We present the first PCH construction that requires only dig-
ital signatures and timelock functionality from the underlying
cryptocurrency. Furthermore, our construction is also the most
efficient one among the Bitcoin compatible ones. Specifically,

• We introduce A2L, a PCH based on a three-party protocol
for conditional transactions, where the intermediary pays the
receiver only if the latter solves a cryptographic challenge
with the help of the sender, which implies that the sender has
paid the intermediary. We provide an instantiation based on
adaptor signatures, which in turn can be securely instantiated
by well-known signature schemes such as Schnorr and
ECDSA [4]. By dispensing from custom scripting func-
tionality (e.g., HTLCs), our instantiations offer the highest
degree of interoperability among the state-of-the-art PCHs:
e.g., Ripple and Stellar support ECDSA and Schnorr but
not HTLCs, whereas Mimblewimble [24] supports Schnorr
but not HTLCs. Moreover, A2L can be used as a classic on-
chain tumbler, leveraging standard techniques to include off-
chain operations as on-chain transactions (e.g., as in [27]).

• We model A2L in the Universal Composability (UC) frame-
work [13], proving the security of our construction. UC is a
popular proof technique for off-chain protocols (e.g., [22],
[35], [36]) as it enables compositional proofs and this is the
first formalization of PCHs in UC: this result allows, e.g., to
lift the security of a PCH to off-chain applications relying
on it as a building block.

• At the core of A2L lies the novel concept of randomizable
puzzle. This primitive supports the encoding of a challenge
into a puzzle, its rerandomization, and its homomorphic
solution (i.e., solving the randomized version of the puzzle
reveals the randomized version for the challenge originally
encoded in the puzzle). We define security and privacy
for randomizable puzzles in the form of cryptographic
games. Finally, we give a concrete construction based on
an additively homomorphic encryption scheme and formally
prove its security and privacy. We find randomizable puzzle
as a contribution of interest on its own and leave the
design of concrete constructions based on cryptographic
primitives other than additively homomorphic encryption as
an interesting future work.

• Our evaluation shows that A2L requires a running time
of ~0.6 seconds. Furthermore, the communication cost is
less than 10KB. When compared to TumbleBit, the most
interoperable PCH prior to this work, A2L has a communi-
cation complexity that is independent of the security param-
eter, whereas TumbleBit’s one is linear. Our experimental
evaluations shows that A2L requires ~33x less bandwidth,
and similar computation costs (or 2x speedup with a pre-
processing technique), despite providing additional security
guarantees, such as protection against griefing attacks. These
results demonstrate that A2L is the most efficient Bitcoin-
compatible PCH. Our construction has been implemented as
proof-of-concept in the COMIT Network (see Section VIII),
an industrial technology for cross-currency payments.

II. BACKGROUND

Following the notation in [4], a PCH can be represented as
a graph, where each vertex represents a party P , and each
edge represents a payment channel ς between two parties
Pi and Pj , for Pi, Pj ∈ P, where P denotes the set of
all parties. We define a payment channel ς as an attribute
tuple (ς.id, ς.users, ς.cash, ς.state), where ς.id ∈ {0, 1}∗ is
the channel identifier, ς.users ∈ P2 defines the identities of
the channel users, and ς.cash : ς.users → R≥0 is a mapping
from channel users to their respective amount of coins in the
channel. Finally, ς.state = (θ1, . . . , θn) is the current state of
the channel, which is composed of a list of deposit distribution
updates θi.

A. PCH functionality

A PCH is defined with respect to a blockchain B and it is
equipped with three operations: OpenChannel, CloseChannel,
and Pay. While OpenChannel and CloseChannel are standard
payment channel operations, Pay is tailored to PCHs as it
involves a sender, a receiver, and a tumbler. We overview
these operations here and refer the reader to Appendix C3 for
the formalization of a PCH in the Universal Composability
framework. In this overview, we denote by B[Pi] the amount
of coins that Pi holds in the blockchain.
OpenChannel(Pi, Pj , βi, βj) : If this operation is authorized

by both users Pi and Pj and the condition B[Pi] ≥
βi ∧ B[Pj ] ≥ βj holds (i.e., users have enough money
on the blockchain), this operation does the following:
(i) creates a payment channel ς with a fresh id ς.id,
ς.users = (Pi, Pj), ς.cash(Pi) = βi, ς.cash(Pj) = βj
and ς.state = ∅; (ii) updates the blockchain as B[Pi] −=
βi and B[Pj ] −= βj ; and (iii) adds ς to the graph
representing the PCH.

CloseChannel(ς, Pi, Pj) : If this operation is authorized by
both users Pi and Pj and ς.users = (Pi, Pj), this
operation does the following: (i) updates the blockchain
as B[Pi] += ς.cash(Pi) and B[Pj ] += ς.cash(Pj); and
(ii) removes ς from the graph representing the PCH.

Pay(Ps, Pt, Pr, β) : Let ς be the channel such that ς.users =
(Ps, Pt) and let ς ′ be the channel such that ς ′.users =
(Pt, Pr). If this operation is authorized by all users Ps,
Pt, Pr and the condition ς.cash(Ps) ≥ β ∧ ς ′.cash(Pt) ≥
β holds (i.e., the sender and the tumbler have enough
money on the respective channels), this operation does the
following: (i) creates a new update θ = (ς.cash(Ps) −=
β, ς.cash(Pt) += β); (ii) creates a new update θ′ =
ς ′.cash(Pt) −= β ς ′.cash(Pr) += β; and (iii) appends
θ to ς.state and θ′ to ς ′.state.

We note that in practice for every successful payment tum-
bler Pt receives certain amount of fees, which incentivizes Pt
to participate as an intermediary. We omit here the fees for the
sake of readability, and discuss them further in Appendix A2.

B. Security and Privacy Goals

We overview the security and privacy goals for PCHs and
refer to Appendix C for the formal security and privacy model.



Authenticity. The PCH should only start a payment proce-
dure if the sender Ps has been successfully registered by the
tumbler Pt. We aim to achieve this property to avoid denial of
service attacks, as we describe in Section III and Section VI-B.

Atomicity. The PCH should not be exploited to print new
money or steal existing money from honest users, even when
parties collude. This property thus aims to ensure balance
security for the honest parties as in [27].

Unlinkability. The tumbler Pt should not learn information
that allows it to associate the sender Ps and the receiver Pr of
a payment. We define unlinkability in terms of an interaction
multi-graph as in [27]. An interaction multi-graph is a mapping
of payments from a set of senders to a set of receivers. For
each successful payment completed upon a query from the
sender P js at epoch e, the graph has an edge, labeled with
e, from the sender P js to some receiver P ir . An interaction
graph is compatible if it explains the view of the tumbler,
that is, the number of edges labeled with e incident to P ir
equals the number of coins received by P ir . Then, unlinkability
requires all compatible interaction graphs to be equally likely.
The anonymity set depends thus on the number of compatible
interaction graphs.

III. SOLUTION OVERVIEW

Inspired from TumbleBit [27], we design A2L in two
phases: puzzle promise and puzzle solver. Intuitively, during
these two phases the update on the channel between Pt and
Pr (i.e., the tumbler Pt paying coins to the receiver Pr) is
established first but its success is conditioned on the successful
update of the channel between Ps and Pt (i.e., the sender Ps
paying coins to the tumbler Pt). In other words, the tumbler
“promises in advance” a payment to the receiver under the
condition that the sender successfully pays to the tumbler.

Authenticity. The aforementioned payment paradigm opens
the door to a so-called griefing attack [46], where the receiver
Pr starts many puzzle promise operations, each of which
requires that the tumbler Pt locks coins, whereas the corre-
sponding puzzle solver interactions are never carried out. As
a consequence, all tumbler’s coins are locked and no longer
available, which results in a form of denial of service attack.
Previous proposals to handle this attack [27] force Pr to pay
for a transaction fee on-chain every time it triggers a puzzle
promise. This approach, however, does not work in the off-
chain setting, which is the focus of this paper. Moreover, the
transaction fee that Pr pays is smaller than the amount of
coins received in the PCH payment, thereby introducing an
amplification factor, which undermines the effectiveness of this
mitigation.

Our approach: We observe that in the considered payment
paradigm Pt is at risk. Our approach is to move the risk from
Pt to the sender Ps by letting the latter lock coins in advance
to prove Pt the willingness to participate in the protocol.
This approach lines up the management of the collateral with
the incentives of each player. First, the additional collateral
(i.e., additional coins locked) is handled by the sender Ps,
who is the party that wants to perform the payment in the

first place. Second, the tumbler Pt may decide not to carry
out the payment, putting however its reputation at stake (and
a possible economic benefit in terms of fees as we discuss
in Appendix A2).

Mitigating the above mentioned DoS attack requires a care-
ful design to maintain the unlinkability of the payments. For
instance, the receiver Pr could indicate to Pt the collateral that
the corresponding Ps has locked for the payment to happen.
This approach, however, would trivially hinder the unlinka-
bility between Pr and Ps. Thus, we require a cryptographic
mechanism that achieves two goals: (i) Pr can convince Pt
that there exists a certain number of coins locked for this
interaction without revealing which Ps locked the coins; and
(ii) Pt should be able to check that the same collateral is not
claimed twice.

We implement this functionality based on a lightweight
variant of anonymous credentials, which in turn we base on a
(blinded) randomizable signature scheme and non-interactive
zero-knowledge proof. Intuitively, Ps locks coins into an
address controlled by both Ps and Pt in such a manner that
those coins are returned back to Ps after a certain time (i.e.,
the time to execute the rest of the protocol). Once Pt has
verified that, it issues a credential to Ps, which randomizes
the credential and forwards it to Pr. Finally, Pr forwards this
randomized credential to Pt. At this point Pt can verify that
there has been indeed a registration for such request, while
the randomization intuitively hides the link between Pr and
Ps of a given payment. This corresponds to the registration
phase in Fig. 1.

Atomicity. As mentioned earlier, our payment paradigm
relies on the fact that the tumbler “promises in advance” a
payment to the receiver under the condition that the sender
successfully pays to the tumbler. Atomicity thus relies on
such conditional payments to ensure that either both payments
are performed (i.e., both channels are updated) or none goes
through.

Our approach: The technical challenge here resides on how
to perform the aforementioned conditional payment. For that,
we design cryptographic puzzles, a cryptographic scheme that
encodes an instance of a cryptographic hard problem (e.g.,
find a valid pre-image of a given hash value). With that tool
in place, our approach for atomicity is to redesign the channel
update and tie it together with the puzzle in such a manner
that we achieve the following two properties: (i) the channel
update is enabled (i.e., added to the channel state) only if a
solution to the puzzle is found; and (ii) a valid channel update
can be used to extract the solution to the puzzle.

Intuitively, our approach ensures the atomicity of the pay-
ment between Ps and Pr as follows. During the puzzle promise
phase, Pt creates a fresh cryptographic puzzle Z to which it
already knows the solution. Then, Pt updates the channel with
Pr conditioned on the puzzle Z. Note that at this point, Pr
does not know the solution to Z, and thus, cannot release the
coins. Instead, Pr could simply forward this puzzle Z to Ps,
triggering thus the puzzle solver phase. In this phase, Ps pays
Pt conditioned on Pt solving the puzzle Z. Since Pt has the
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Fig. 1: Overview of our solution. Sender (left user) pays
receiver (right user) via tumbler (middle user). The protocol
is divided in three phases: (i) registration, (ii) puzzle promise,
and (iii) puzzle solver. CRand denotes the randomization of
the certificate. PGen, PRand and PSolve denote the generation,
randomization and solving of a randomizable cryptographic
puzzle. Pay denotes the update of a between two users. Derand
denotes the derandomization of the solution for a puzzle and
Release denotes the claim of the coins given a puzzle and its
corresponding solution.

solution (as Pt was the one that generated the puzzle), Pt can
solve the puzzle and update the channel. As mentioned earlier,
when Pt updates the channel with Ps, our protocol makes sure
that Ps can extract the solution of Z from such a valid channel
update. Finally, Ps can forward the solution to Pr who can in
turn use it to solve the puzzle at its side and release the coins
promised by Pt at the beginning of the promise phase.

Unlinkability. While the previous approach provides atom-
icity, it does not guarantee the unlinkability of the payments.
Note that the same puzzle Z is used by both Ps and Pr, a
common identifier that even an honest but curious Pt can use
to link who is paying to whom.

Our approach: We overcome this challenge by designing
cryptographic randomizable puzzles, a novel cryptographic
scheme that extends the notion of cryptographic puzzle with
two intuitive functionalities: (i) given a certain puzzle Z, it is
possible to randomize it into a puzzle Z ′ using a randomness r;
(ii) the solution to the puzzle Z ′ corresponds to the randomized
version (using randomness r) of the solution to the puzzle Z.

With cryptographic randomizable puzzles in place, our final
solution which achieves authenticity, atomicity, and unlinka-
bility works as depicted in Fig. 1. During the puzzle promise
phase, Pt generates (using PGen) a puzzle Z (i.e., the blue safe
box), which gets randomized by Pr (using PRand) to obtain
the randomized puzzle Z ′ (i.e., the green safe box). The puzzle

promise phase ends when Pr sends Z ′ to Ps. During the puzzle
solver phase, Ps pays to Pt attaching Z ′ as the condition
for Pt to accept the payment. After Pt accepts the payment
by solving the randomized puzzle Z ′ (using PSolve), Ps can
extract the randomized solution (using Release) and forward it
(i.e., the green key) to Pr, who in turn can derandomize this
solution (using Derand) to obtain a solution to the original
puzzle (i.e., the blue key), and use it solve the puzzle Z.

We devise an instantiation of randomizable puzzle that
is based on the discrete logarithm problem and additively
homomorphic encryption scheme. Moreover, we redesign the
channel update so that it can be made valid only if the solution
to the randomizable puzzle is found. For that, we use adaptor
signatures, an extension of standard digital signatures that
tie together the creation of a digital signature (and thus the
authorization of a channel update) and the leakage of a secret
value. In a nutshell, one can first generate a pre-signature with
respect to the statement (i.e., in our case the randomizable
puzzle), which can be converted to a valid signature only by
knowing the secret (i.e., in our case the solution to the puzzle).
Second, if the pre-signature is converted to a valid signature,
one can extract the secret from the pair (pre-signature, valid
signature).

We point out that for the sake of readability, throughout
this section we have omitted the case where one of the users
simply does not respond. For instance, it can be the case that
Pt performs the conditional payment to Pr, and afterwards, no
longer answers (e.g., it crashes). In order to handle this case,
each conditional payment contains an expiration time after
which the originator of the conditional payment can claim
the coins back unconditionally. For instance, in the previous
example, after the expiration time Pt could update the channel
into a state where it no longer promises to pay coins to Pr

IV. PRELIMINARIES

We denote by 1λ, for λ ∈ N, the security parameter. We
assume that the security parameter is given as an implicit input
to every function, and all our algorithms run in polynomial
time in λ. We denote by x←$X the uniform sampling of the
variable x from the set X . We write x← A(y) to denote that
a probabilistic polynomial time (PPT) algorithm A on input
y, outputs x. We use the same notation also for the assignment
of the computational results, for example, s ← s1 + s2.
If A is a deterministic polynomial time (DPT) algorithm,
we use the notation x := A(y). We use the same notation
for expanding the entries of tuples, for example, we write
σ := (σ1, σ2) for a tuple σ composed of two elements. A
function negl : N → R is negligible in n if for every k ∈ N,
there exists n0 ∈ N, such that for every n ≥ n0 it holds
that |negl(n) | ≤ 1/nk. Throughout the paper we implicitly
assume that negligible functions are negligible in the security
parameter (i.e., negl(λ)).

A. Cryptographic Primitives

Next, we review here the cryptographic primitives used in
our protocols.



Commitment scheme. A commitment scheme COM con-
sists of two algorithms COM = (PCOM,VCOM), where PCOM

is the commitment algorithm, such that (com, decom) ←
PCOM(m), and VCOM is the verification algorithm, such that
{0, 1} := VCOM(com, decom,m). A COM scheme allows a
prover to commit to a message m without revealing it, and
convince a verifier, using commitment com and decommitment
information decom, that the message m was committed. The
security of COM is modeled by the ideal functionality FCOM

[13], as described in Appendix F2. In our protocols we use the
Pedersen commitment scheme [43], which is an information-
theoretically (i.e., unconditionally) hiding and computationally
binding commitment scheme.

Non-interactive zero-knowledge. Let R be an NP relation,
and let L be a set of positive instances corresponding to the
relation R (i.e., L = {x | ∃w s.t. R(x,w) = 1}). We say R is
a hard relation if R is poly-time decidable, there exists a PPT
instant sampling function GenR and for all PPT adversaries
A, the probability of A producing the witness w given only the
statement x, such that R(x,w) = 1, is bounded by a negligible
function. This is more formally defined in Appendix D. A non-
interactive zero-knowledge proof scheme NIZK [9] consists of
two algorithms NIZK = (PNIZK,VNIZK), where PNIZK is the
prover algorithm, such that π ← PNIZK(x,w), and VNIZK is
the verification algorithm, such that {0, 1} := VNIZK(x, π). A
NIZK scheme allows a prover to convince a verifier, using a
proof π, about the existence of a witness w for a statement x
without revealing any information apart from the fact that it
knows the witness w. We model the security of a NIZK scheme
using the ideal functionality FNIZK, defined in Appendix F2.

Homomorphic encryption scheme. A public key en-
cryption scheme Ψ with a message space M is composed
of three algorithms Ψ = (KGen,Enc,Dec), such that for
every m ∈ M, it holds that Pr[Dec(sk,Enc(pk,m)) =
m | (sk, pk) ← KGen(1λ)] = 1, for a secret/public key
pair (sk, pk). We say that Ψ is additively homomorphic if it
supports homomorphic operations over the ciphertexts. More
precisely, for every m1,m2 ∈ M and public key pk, we
have that Enc(pk,m1) · Enc(pk,m2) = Enc(pk,m1 + m2).
Furthermore, we assume that the operation Enc(pk,m1)m2

is well-defined, and yields Enc(pk,m1 · m2). Homomorphic
encryption schemes need to satisfy the security notion of
indistinguishability under chosen plaintext attack (IND-CPA),
which at a high level guarantees that a PPT adversary A is
not able to distinguish the encryption of two messages of its
choice. In our construction we use the additively homomor-
phic encryption scheme by Castagnos-Laguillaumie (CL) [17]
(more precisely, HSM-CL described in [15]), whereM = Zq .
The reason for this is that we can instantiate CL to work with
any Zq , for a prime q, that is compatible with the underlying
signature scheme that we make use of. For more information
regarding this we refer the reader to Appendix E. Additionally,
we assume existence of a function RandCtx, which given
as input a ciphertext c, returns the ciphertext c′ randomized
through multiplication operation, and the randomization factor
r used in the process. More precisely, given c← Enc(pk,m),

the randomization process produces (c′, r) ← RandCtx(c),
where r is the randomization factor, and c′ encrypts m · r.

Digital signature scheme. A digital signature scheme Σ
with a message space M is composed of three algorithms
Σ = (KGen,Sig,Vf), such that for every m ∈M, it holds that
Pr[Vf(pk,Sig(sk,m),m) = 1 | (sk, pk) ← KGen(1λ)] = 1,
for a secret/public key pair (sk, pk). The most common secu-
rity requirement of a signature scheme is existential unforge-
ability under chosen message attack (EUF-CMA). At a high
level, it ensures that a PPT adversary A, that does not know
the secret key sk, cannot produce a valid signature σ on a
message m even if it sees polynomially many valid signatures
on messages of its choice (but different from m).

Adaptor signature scheme. An adaptor signature scheme
is defined with respect to a hard relation R and a signa-
ture scheme Σ and consists of four algorithms ΞR,Σ =
(PreSig,PreVf,Adapt,Ext). For every statement/witness pair
(Y, y) ∈ R, secret/public key pair (sk, pk)← Σ.KGen(1λ) and
a message m ∈ M, we have that σ̂ ← PreSig(sk,m, Y ) is a
pre-signature and σ := Adapt(σ̂, y) is a valid signature, and
(pre-)verification holds under pk for σ̂ and σ, respectively. Fur-
thermore, it holds that y := Ext(σ, σ̂, Y ). Adaptor signatures
were formally defined in [4], where the authors also defined
the security notion called the existential unforgeability under
chosen message attack for adaptor signature (aEUF-CMA).
Apart from aEUF-CMA security, an adaptor signature should
also provide pre-signature correctness, pre-signature adaptabil-
ity and witness extractability. Roughly speaking, pre-signature
correctness ensures that an honestly generated pre-signature
σ̂ w.r.t a statement Y is a valid pre-signature and can be
completed into a valid signature σ, from which a witness of Y
can be extracted. On the other hand, pre-signature adaptability
means that the pre-signature σ̂ can be adapted into a valid
signature σ using the witness y. Lastly, witness extractability
guarantees that a valid signature/pre-signature pair (σ, σ̂) can
be used to extract the corresponding witness y of Y . We refer
the reader to Appendix D for a more formal and detailed
treatment of adaptor signatures. Lastly, we point out that
provably secure Schnorr- and ECDSA-based instantiations of
adaptor signatures exist [4].

(Blinded) Randomizable signature scheme. Furthermore,
we need a signature scheme which can be randomized, and
that enables the issuance of a signature on a committed value,
which can be seen as a type of a blinded signature. More
precisely, we call here a signature scheme Σ̃ a blinded random-
izable signature scheme, if it provides three additional algo-
rithms, namely, BlindSig,UnblindSig and RandSig, in addition
to the ones provided by a regular signature scheme Σ. Given
a commitment com to a message m, the signer can generate
a blinded signature σ∗ ← BlindSig(sk, com). Then, the party
holding the decommitment information decom, can unblind
σ∗ to produce a valid signature σ := UnblindSig(decom, σ∗).
Lastly, given a valid signature σ, one can generate a random-
ized signature as σ′ ← RandSig(σ). A signature scheme that
provides these features, and which we use in our construction,
is Pointcheval-Sanders (PS) [44] signature scheme.



V. RANDOMIZABLE PUZZLES

In order to ease the exposition we define a primitive called
randomizable puzzle, which we later use to construct A2L, and
that also captures the puzzle used in TumbleBit [27].

A. Definitions

Definition 1 (Randomizable Puzzle). A randomizable puzzle
scheme RP = (PSetup,PGen,PSolve,PRand) with a solution
space S (and a function φ acting on S) consists of four
algorithms defined as:

(pp, td)← PSetup(1λ): is a PPT algorithm that on input
security parameter 1λ, outputs public parameters pp and
a trapdoor td.

Z ← PGen(pp, ζ): is a PPT algorithm that on input public
parameters pp and a puzzle solution ζ, outputs a puzzle
Z.

ζ := PSolve(td, Z): is a DPT algorithm that on input a
trapdoor td and puzzle Z, outputs a puzzle solution ζ.

(Z ′, r)← PRand(pp, Z): is a PPT algorithm that on input
public parameters pp and a puzzle Z (which has a
solution ζ), outputs a randomization factor r and a
randomized puzzle Z ′ (which has a solution φ(ζ, r)).

We assume that the solution space S has an algebraic
structure, such that it is easy to (de-)randomize a solution
in a way that it stays within S. More precisely, we assume
existence of a deterministic function φ(·, ·), such that for a
puzzle Z with the solution ζ and its randomized version Z ′

with the randomization factor r, we have that φ(ζ, r) ∈ S is
a solution to Z ′. For example, in our construction described
in Section V-B, the solution space S is the field Zq and φ is
the multiplication operation, i.e., φ(a, b) := a · b mod q.

Furthermore, note that we do not impose any restrictions
on the input puzzle Z to the randomization algorithm PRand.
Hence, the input can be a freshly generated puzzle, or a puzzle
that was previously randomized. This allows us to capture
multiple randomizations of a puzzle.

We require that a randomizable puzzle (RP) satisfies cor-
rectness, security and privacy properties. Correctness property
ensures that using the trapdoor we can always recover the
correct solution to the puzzle (where a randomized puzzle’s
solution depends on the randomization factor).

Definition 2 (Correctness). For all λ ∈ N, n = poly(λ), pair
(pp, td) ← PSetup(1λ), for every ζ(1) ∈ S and 1 ≤ i ≤ n,
we have that

Pr[PSolve(td, Z(i)) = ζ(i)] = 1,

where Z(1) ← PGen(pp, ζ(1)), and for 2 ≤ i ≤ n,
(Z(i), r(i))← PRand(pp, Z(i−1)) and ζ(i) := φ(ζ(i−1), r(i)).

We say that a RP scheme is secure if it is infeasible for an
adversary that has access only to the puzzle and the public
parameters to obtain the underlying solution.

Definition 3 (Security). A randomizable puzzle scheme RP is
secure, if there exists a negligible function negl, such that

Pr

[
ζ ← A(pp, Z)

∣∣∣∣ (pp, td)← PSetup(1λ)
ζ ←$S, Z ← PGen(pp, ζ)

]
≤ negl(λ) .

Although, we defined here security with respect to freshly
generated puzzles, we assume that it also holds for the
randomized puzzles.

Lastly, we define the privacy property using a cryptographic
game between the challenger and adversary. The adversary
provides two puzzles that are correctly formed, then the
challenger randomizes one of the puzzles and returns it to the
adversary. The goal of the adversary is to find which one of
the two puzzles was randomized. We say that a RP scheme is
private if the adversary cannot do any better than guessing even
when it has access to the trapdoor. Although, this definition
seems rather strong, what it actually ensures is that the privacy
is retained as long as the randomization factor used during
the randomization procedure stays hidden, which is a natural
requirement.

Definition 4 (Privacy). A randomizable puzzle scheme RP is
private if for every PPT adversary A there exists a negligible
function negl such that: Pr[RPRandSecA,RP(λ) = 1] ≤ 1/2+
negl(λ), where the experiment RPRandSecA,RP is defined as
follows:

RPRandSecA,RP(λ)

1 : (pp, td)← PSetup(1λ)

2 : ((Z0, ζ0), (Z1, ζ1))← A(pp, td)

3 : b←$ {0, 1}
4 : (Z′0, r0)← PRand(pp, Z0)

5 : (Z′1, r1)← PRand(pp, Z1)

6 : b′ ← A(pp, td, Z′b)

7 : return PSolve(td, Z0) = ζ0 ∧ PSolve(td, Z1) = ζ1

8 : ∧ b = b′

Discussion. We note that our RP primitive also captures
the puzzle construction of TumbleBit [27]. More concretely,
in case of TumbleBit we have that S = ZN , for a composite
N = pq (i.e., a strong RSA integer). A puzzle Z is defined as
the RSA encryption of the solution ζ, and randomization of
a puzzle is defined by blinding the encrypted solution with a
random value using the homomorphic properties of RSA. Both
the RP from TumbleBit [27] and ours from Section V-B rely
on an encryption scheme with homomorphic properties. This
can be seen as a rather generic way to construct a RP scheme.
We leave it as an open problem to devise a RP scheme that
relies on other cryptographic primitives.

B. Randomizable Puzzle Construction

Next, we describe a construction of a RP scheme. Our
construction can be generically instantiated over a group G
where the discrete logarithm (DLOG) problem is assumed
to be hard, and with an additively homomorphic encryption
scheme Ψ. In this work we set the group G to be an elliptic



curve group of order q, and set the encryption scheme Ψ
to Castagnos-Laguillaumie (CL) [17] encryption scheme with
the message space M = Zq (as described in Section IV-A).
Hence, this instantiation has a solution space S = Zq . Our
construction can be seen in Construction 1. In our construction
the puzzle includes a group element, however, that element is
not used at all during the solution of the puzzle (i.e., in PSolve
algorithm). We note that this is specific to our scenario, more
precisely, to how we use RP in our protocols in Section VI,
as we need it to link the puzzle to our conditional payment,
which uses adaptor signature over the same group G.

Construction 1. We assume existence of group description
parameters gp = (G, g, q).
PSetup(1λ): sample a key pair (skΨ, pkΨ)← KGen(1λ), set

pp := (gp, pkΨ) and td := skΨ, and return (pp, td).
PGen(pp, ζ): parse pp as (gp, pkΨ), compute A = gζ and

c← Enc(pkΨ, ζ), and return Z := (A, c).
PSolve(td, Z): parse td as skΨ and Z as (A, c), compute

ζ ← Dec(skΨ, c), and return ζ.
PRand(pp, Z): parse Z as (A, ζ), sample r←$S, compute

A′ = Ar and c′ = cr, set Z ′ := (A′, c′), and return
(Z ′, r).

The security of our construction is established with the
following theorem, for which we provide a proof sketch in
Appendix F1.

Theorem 1. Let G be a DLOG-hard group, and Ψ be an
IND-CPA secure encryption scheme, then Construction 1 is
a correct, secure and private randomizable puzzle scheme.

VI. OUR PROTOCOLS

System assumptions. We assume a constant amount of
coins (i.e., amt) for every payment, as otherwise it becomes
trivial to link Ps and Pr in a payment. Moreover, as in
TumbleBit [27], we assume that the protocols are run in phases
and epochs. Each epoch is composed of three phases for us: (i)
registration phase (see Section VI-B) (i) puzzle promise phase
(escrow phase in TumbleBit), and (iii) puzzle solver phase
(payment phase in TumbleBit). In each epoch, instances of
our protocols are executed in their corresponding phases (e.g.,
puzzle promise protocol is executed during the puzzle promise
phase), optimizing thereby the anonymity set within an epoch.

Here we further assume that both the sender Ps and the
receiver Pr have already carried out the key generation proce-
dure and have set up the payment channels with the tumbler
Pt. We finally assume that communication between honest Ps
and Pr is unnoticed by Pt, which is a common assumption
in other privacy-preserving PCH constructions [27]. We stress
that we only need this anonymous communication between the
sender and receiver when exchanging the randomizable puzzle
and its solution.

A. Anonymous Atomic Locks (A2L)

In this section, we describe the puzzle promise and puzzle
solver phases. These phases are independent on the registration
phase, which we describe later in Section VI-B.

Puzzle promise. The puzzle promise protocol (and subse-
quently, the puzzle solver protocol) relies on a randomizable
puzzle scheme RP and an adaptor signature scheme ΞR,Σ for
a hard relation R and a signature scheme Σ. The protocol
starts with Pr sending to Pt its own valid signature σ′r on a
previously agreed message m′, which is the agreed transaction
(lines 2-3 in Fig. 2).

Next in the protocol, Pt samples a statement/witness pair
(A,α), for a statement A := gα (i.e., DLOG), generates the
randomizable puzzle Z := (A := gα, cα) using the PGen
algorithm, and produces a NIZK proof πα proving that α is a
valid solution to puzzle Z (lines 6-7 in Fig. 2). The proof πα
in our instantiation of randomizable puzzles (see Section V-B)
can be interpreted as πα ← PNIZK({∃α | cα = Enc(pkΨ

t , α) ∧
A = gα}, α). Additionally, Pt generates an adaptor signature
σ̂′t over the previously agreed message (transaction) m′, where
the secret adaptor is α, and shares the puzzle Z along with
the adaptor signature σ̂′t with Pr (lines 8-9 in Fig. 2). At this
point Pr cannot claim the coins, because the signature σ̂′t is
not valid, however, Pr can pre-verify it using the pre-signature
correctness property of the adaptor signature (line 11 in Fig. 2).

Once Pr is convinced of the validity of σ̂′t, it randomizes the
puzzle Z using the PRand algorithm to obtain the puzzle Z ′,
which it shares with Ps (lines 12-13 in Fig. 2). This finalizes
the puzzle promise protocol, and allows Ps to start the puzzle
solver protocol with Pt, as shown in Fig. 3.

We note that the blue parts in Fig. 2 correspond to the
additional operations needed to protect against the griefing
attack described in Section VI-B. Roughly speaking, Pr pro-
vides Pt with a token (which it previously obtains from Ps),
and Pt verifies the validity and freshness of the token before
starting the puzzle promise protocol. We refer the reader to
Section VI-B for further details.

Puzzle solver. In the puzzle solver protocol, Ps also ran-
domizes the puzzle Z ′, that it receives from Pr, into Z ′′ (line
2 in Fig. 3) to preserve its own anonymity and thwart attacks
involving collusion of Pt and Pr (see Appendix A1). Then,
Ps gives an adaptor signature σ̂s to Pt (lines 3-4 in Fig. 3),
which is adapted with the newly randomized puzzle Z ′′. Since
Pt has the trapdoor td of the randomizable puzzle scheme,
it can solve the puzzle Z ′′ to obtain the doubly randomized
version of the value α (i.e., the secret value required by Pr to
complete the adaptor signature σ̂′t from puzzle promise). As
α′′ is randomized, Pt cannot link it to Pr and yet can use it
to convert σ̂s into a valid signature σs by adapting it with α′′.

All that remains for Pt in order to get paid is to compute
its own signature σt on a previously agreed upon message
(transaction) m, and update the channel with the signature pair
(σs, σt) (lines 6-8 in Fig. 3). Once Pt provides Ps with this
signature and gets paid, Ps can extract α′′ using the adaptor
signature σ̂s and the valid signature σs. Then, Ps gets rid of
one layer of the randomization to obtain α′, which it shares
with Pr (lines 10-12 in Fig. 3). Finally, Pr removes its part of
the randomness from α′, and thereby gets the original value
α, which it uses to adapt the “almost valid” signature σ̂′t into
a fully valid one σ′t, as shown in the Open algorithm (Fig. 4).



Public parameters: group description (G, g, q), message m′

1 : PuzzlePromisePt((sk
Σ
t , pk

Σ
t ), (pp, td), pkΣ

r , pk
Σ̃
t ) PuzzlePromisePr ((skΣ

r , pk
Σ
r ), pkΣ

t , pp, (tid, σ
′
tid))

2 : σ′r ← Sig(skΣ
r ,m

′)
3 : (tid, σ′tid),σ

′
r

4 : If tid ∈ T ∨ Vf(pkΣ̃
t , tid, σ

′
tid) 6= 1 then abort

5 : Else add tid into T
6 : (A,α)← GenR(1λ); Z ← PGen(pp, α)
7 : πα ← PNIZK({∃α | PSolve(td, Z) = α}, α)

8 : σ̂′t ← PreSig(skΣ
t ,m

′, A)
9 : Z := (A, cα), πα, σ̂

′
t

10 : If VNIZK(πα, Z) 6= 1 then abort
11 : If PreVf(pkΣ

t ,m
′, A, σ̂′t) 6= 1 then abort

12 : (Z′, β)← PRand(pp, Z)

13 : Send Z′ := (A′, c′α) to Ps
14 : Set Π := (β, (pkΣ

t , pk
Σ
r ),m′, (σ̂′t, σ

′
r))

15 : return (Adapt(σ̂′t, α), σr) return (Π, (Z,Z′))

Fig. 2: Puzzle promise protocol of A2L. Blue parts are related to the griefing protection (see Section VI-B).

Public parameters: group description (G, g, q), message m

1 : PuzzleSolverPs((skΣ
s , pk

Σ
s ), pp, Z′ := (A′, c′α)) PuzzleSolverPt((sk

Σ
t , pk

Σ
t ), (pp, td), pkΣ

s )
2 : (Z′′ := (A′′, c′′α), τ)← PRand(pp, Z′)

3 : σ̂s ← PreSig(skΣ
s ,m,A

′′)
4 : Z′′, σ̂s

5 : α′′ := PSolve(td, Z′′); σs := Adapt(σ̂s, α
′′)

6 : σt ← Sig(skΣ
t ,m)

7 : If Vf(pkΣ
s ,m, σs) 6= 1 then abort

8 : Else publish (σs, σt)
9 : σs

10 : α′′ := Ext(σs, σ̂s, A
′′)

11 : If α′′ = ⊥ then abort
12 : Else α′ ← α′′ · τ−1 and send α′ to Pr
13 : return α′ return >

Fig. 3: Puzzle solver protocol of A2L.

Open(Π, α′)

Parse Π as (β, (pkΣ
t , pk

Σ
r ),m′, (σ̂′t, σ

′
r))

α← α′ · β−1

σ′t := Adapt(σ̂′t, α)
return (σ′t, σ

′
r)

Verify(Π, σ)

Parse Π as (β, (pkΣ
1 , pk

Σ
2 ),m′, (σ′1, σ

′
2))

Parse σ as (σ1, σ2)

return Vf(pkΣ
1 ,m

′, σ1) ∧ Vf(pkΣ
2 ,m

′, σ2)

Fig. 4: Open and verify algorithms of A2L.

1) Discussion: Our protocol achieves interoperability with
virtually all current cryptocurrencies due to the minimal
cryptographic requirements of our construction from the un-
derlying cryptocurrency. In fact, we only require a digital
signature that can be turned into an adaptor signature, and
a timelock mechanism from the underlying cryptocurrency,
two functionalities provided by virtually all cryptocurrencies
today. Moreover, we can also adapt our approach to cryptocur-

rencies that totally lack a scripting language support for 2-of-
2 multisignatures, such as Ripple, Stellar or Mimblewimble
following the threshold version of adaptor signatures [36].
We describe in Appendix G how to use A2L with threshold
signatures where the output of our protocols will result in
accepting a channel update with a single signature (instead of
a 2-of-2 multisignature) verifiable by a single public key.

Furthermore, our protocol allows to mediate payments in
different cryptocurrencies, by running the puzzle promise
and puzzle solver protocols in different cryptocurrencies. For
example, one can instantiate our construction with adaptor
signatures that work over the same group, and using one
signature scheme for the puzzle promise phase, and another
one for the puzzle solver phase [36], thereby enabling cross-
chain applications like exchanges. Moreover, even when the
groups are not the same we can still use this technique, assum-
ing there exists an efficiently computable bijection between
the two groups, and utilizing the proof for discrete logarithm
equality across groups as described in [42]. We discuss further
deployment aspects for cross-chain payments in Appendix A.



B. Extension: Registration Protocol

We describe a protocol called registration protocol, which
is used to defend against the griefing attack described in
Section III. Although, our registration protocol is an extension
of A2L, it is rather generic, and can be used with other
constructions that require protection against similar type of
griefing attack (e.g., TumbleBit [27]). The registration protocol
is executed between the sender Ps and the tumbler Pt, and
assumes that Ps has locked coins with Pt in 2-of-2 escrow
output (oid) before the start of the protocol. The registration
protocol can be seen in Fig. 5.

Our protocol is inspired from anonymous credentials [11],
however, contrary to the anonymous credentials where the
issued credentials can be used multiple times, we need to
ensure that the issued credential (token) is used only once.
Furthermore, the party issuing and authenticating the tokens
in our case is the same party, i.e., the tumbler Pt, whereas
in anonymous credentials the issuance and authentication of
the credentials might be done by different parties. Hence,
instead of anonymous credentials we have opted for a simpler
and more efficient protocol that is backwards compatible with
current cryptocurrencies.

Our registration protocol makes use of a (blinded) ran-
domizable signature scheme Σ̃ as described in Section IV-A,
which we instantiate with Pointcheval-Sanders (PS) [44], a
commitment scheme, for which we use Pedersen commitment
[43], and a NIZK proof of knowledge (PoK) for opening of a
Pedersen commitment.

At the beginning of the protocol Ps generates a random
token identifier tid and a commitment com to tid using
Pedersen commitment, along with a NIZK proof π for the
opening of the commitment, and sends the pair (π, com) and
the escrow output oid to Pt (lines 2-5 in Fig. 5). Pt verifies
the proof π, and then (blindly) generates a signature σ∗ on
the token tid using the commitment com, and sends σ∗ to Ps
(lines 6-8 in Fig. 5). Here, it is important that tid is hidden
(i.e., inside a commitment), otherwise, Pt can trivially link the
sender Ps and the corresponding receiver Pr. The reason for
this is that the puzzle promise protocol (see Fig. 2) starts with
the receiver Pr sharing this tid in the clear with the tumbler
Pt as a form of validation (i.e., that there already exists a
payment promised to Pt). This is also the reason why we
require a signature scheme that allows to (blindly) sign a value
hidden inside a commitment (such as Pointcheval-Sanders [44]
signature scheme).

Next, Ps unblinds σ∗ using the decommitment information
decom to obtain a valid signature σtid on the token tid (line
9 in Fig. 5). Lastly, Ps randomizes σtid to obtain σ′tid and
sends the pair (tid, σ′tid) to the receiver Pr (lines 11-12 in
Fig. 5), which finalizes the registration protocol. We note that
PS signature scheme is composed of two group elements, and
unblinding operation only affects the second component of the
signature, hence, we have that the first components of both σ∗

and σtid are the same. Therefore, if Pr gives σtid to Pt at the
beginning of the puzzle promise protocol for validation, then

Pt can trivially link Ps and Pt. This is the reason why we
randomize σtid and only share the randomized signature σ′tid
with Pt. This randomization can be done either by Ps or Pr
before the start of the puzzle promise protocol (in Fig. 5 it is
randomized by Ps as part of the registration protocol).

Although, this concludes the registration procedure, as
previously mentioned, the token/signature pair needs to be
presented to Pt at the start of the puzzle promise protocol (see
Fig. 2). Pt checks that the token tid has not been previously
used, in order to be protected against replay attacks (i.e., Pr
tries to claim the same collateral locked by Ps more than
once). For this reason Pt has to keep a list T with all the
previously seen token identifiers. We note that since we expect
our protocols to run in epochs (see Section VI) we can reduce
the storage requirement of Pt by letting it generate a new key
pair, publish the new pkΣ̃

t so that it is available to others, and
then reset the list T at the beginning of each epoch. Hence,
from that point onward every token signed with the secret key
of the previous epoch becomes invalid for Pt.

C. Our PCH Instantiation

We realize a PCH by setting channel updates and timelock
mechanism for the payment agnostic A2L. In particular:

1) Collateral setup: Before the registration phase of A2L
starts, Ps updates its channel with Pt to create an escrow for
the duration of the rest of the protocol between Ps and Pt,
represented by oid. This escrow locks amt coins from the
balance of Ps into oid. It plays two roles: (i) since Ps does
not authorize the spending of oid, Ps ensures that she can
recover the amt coins locked there after the timeout expires;
and (ii) since Pt does not authorize the spending of oid either,
Pt ensures that the amt coins locked there cannot be reused
before the timeout, effectively serving as a proof of collateral
for the rest of the PCH protocol.

2) Payment channel update proposals: Before the puzzle
promise phase of A2L starts, Pt updates its channel with Pr to
propose a payment where amt coins are transferred from the
balance of Pt to the balance of Pr. The authorization of this
channel update is then handled by A2L. A similar payment for
amt coins is proposed in the channel between Ps and Pt before
the puzzle solver phase of A2L is initiated. We note that both
payments have associated an expiration time so that if A2L is
not successful (e.g., one of the parties does not collaborate),
the payments are deemed invalid and the coins return to the
original owners.

3) Payment channel update resolutions: After both puzzle
promise and puzzle solver have finished, the channel updates
proposed in the previous step are finalized. There could be two
outcomes. On the one hand, if both puzzle promise and puzzle
solver are successful, the PCH first updates the channel be-
tween Ps and Pt. Afterwards, Pr can finalize the authorization
of the update of its channel with Pt and accordingly reflect
the payment. On the other hand, if either puzzle promise or
puzzle solver fails, then both payment proposals are expired,
leaving balances at both channels as before the start of the
execution of the payment.



Public parameters: bilinear groups description (q, e,G1,G2,GT , g1, g2, gT )

1 : RegistrationPs
(pkΣ̃

t , oid) RegistrationPt
((skΣ̃

t , pk
Σ̃
t ))

2 : Sample a token tid←$Zq
3 : (com, decom := (tid, r))← PCOM(tid)
4 : π ← PNIZK({∃decom | VCOM(com, decom, tid) = 1}, decom)

5 : (π, com), oid

6 : If VNIZK(π, com) 6= 1 then abort
7 : σ∗ ← BlindSig(skΣ̃

t , com)
8 : σ∗

9 : σtid := UnblindSig(decom, σ∗)

10 : If Vf(pkΣ̃
t , tid, σtid) 6= 1 then abort

11 : σ′tid ← RandSig(σtid)

12 : Send (tid, σ′tid) to Pr
13 : return (tid, σ′tid) return >

Fig. 5: Registration protocol for griefing protection. Blue part is related to the payment (i.e., non-cryptographic operation).

4) Collateral release: At the end of the protocol, indepen-
dently of the outcome of the previous phases, the coins locked
by Ps in oid at the beginning of the payment are released and
sent back to Ps.

For a full description of our PCH construction we refer the
reader to Appendix B.

VII. SECURITY ANALYSIS

We formalize the security and privacy of A2L and our PCH
construction in the universal composability (UC) framework
[13]. We rely on the synchronous version of global UC
framework (GUC) [14]. We prove the security in the UC
framework because unlike the standalone simulation-based or
game-based proofs, it allows for a concurrent composition of
protocols. This imples that a protocol remains secure when
many instances are executed concurrently (with arbitrary other
protocols), possibly on related inputs.

Here we describe the high level ideas of our security analy-
sis in the UC framework, and refer the reader to Appendix C
for more details about our security model. First, we define
an ideal functionality FA2L capturing the ideal behavior of
our A2L construction. FA2L specifies the input/output behavior
of A2L protocols, and the possible influence of an adversary
on the execution. Next, we show that our A2L construction
emulates FA2L. Roughly speaking, this means that our con-
struction is at least as secure as FA2L itself, and any attack
that is possible on our protocols can be simulated on FA2L.

The description of our ideal functionality FA2L (along with
its hybrid ideal functionalities) can be found in Appendix C.
In Appendix F2, we formally prove the following theorem.

Theorem 2. Let COM be a secure commitment scheme,
NIZK be a non-interactive zero-knowledge scheme, Σ, Σ̃ be
EUF-CMA secure signature schemes, R be a hard relation,
ΞR,Σ be a secure adaptor signature scheme, and RP be
a secure and private randomizable puzzle scheme, then the
construction in Figs. 2 to 5 UC-realizes the ideal functionality
FA2L in the (FGDC,Fsmt,Fanon)-hybrid model.

Moreover, we define an ideal functionality FPCH describing
the ideal behavior of our PCH construction. Similar to the
proof of emulation of FA2L, we prove indistinguishability
between the real and ideal world. More precisely, for FPCH

described in Appendix C, we prove the following theorem in
Appendix F3.

Theorem 3. The protocol in Fig. 6, UC-realizes FPCH in the
(FGDC,FGC,Fclock,FA2L)-hybrid model.

A. Informal Analysis

Authenticity. Authenticity ensures that only authentic pay-
ment requests which are previously backed up by some locked
coins are processed by the tumbler Pt during the payment
procedure. In our construction this is enforced by Pt giving a
blindly signed token to the sender Ps during the registration
protocol (see Fig. 5), which then during the puzzle promise
protocol (see Fig. 2) is presented to Pt, by the receiver
Pr, where Pt authenticates the validity of the token and
starts the payment procedure. The security of this depends on
the unforgeability of the underlying (blinded) randomizable
signature scheme Σ̃. More precisely, if an adversary can make
the tumbler start the payment procedure (i.e., execute the
puzzle promise protocol) before previously obtaining a valid
token (i.e., via the registration protocol), then we can construct
an adversary against the unforgeability of the randomizable
signature scheme.

Atomicity. Atomicity guarantees that no malicious party
can print new money and no honest party loses money,
which ensures balance security for the involved parties. This
property is only related to the puzzle promise and puzzle
solver protocols, and it relies on the security of the underlying
adaptor signature scheme ΞR,Σ, (see Appendix D) hardness of
the relation R (which is implied by the security of the adaptor
signature scheme), and the security of the randomizable puzzle
scheme RP.

We observe that the tumbler Pt loses money if it pays to the
receiver Pr without previously getting paid by the sender Ps.
This can only happen if Pr receives a valid signature signed



by Pt before the execution of the puzzle solver protocol.
Note that Pt only shares with Pr a pre-signature σ̂′t over
the statement A and a randomizable puzzle Z, which also
includes the statement A. Hence, the only ways that Pr can
have a valid signature signed by Pt before an execution of
the puzzle solver protocol are the following: (i) generate a
signature on behalf of Pt; or (ii) obtain the solution to the
randomizable puzzle Z. If the first approach succeeds, then
we create an adversary that can use the generated signature in
order to win the unforgeability game of the adaptor signature
scheme. If the second approach succeeds, then using the puzzle
solution we obtain an adversary that wins the security of the
randomizable puzzle scheme. However, from our randomiz-
able puzzle construction from Section V-B this implies that
we can either break the discrete logarithm (DLOG) problem,
which is believed to be a hard problem over certain groups,
or construct an adversary against the indistinguishability of
the homomorphic encryption scheme, which implies protection
even against partial information leakage about the plaintext.

On the other hand, Ps loses money if at the end of the puzzle
solver protocol Pt receives money, but Pr does not get paid.
This can only happen if Pt provides a valid signature signed
by Ps which either does not reveal the (randomized) solution
that Pr needs to get paid or it reveals an invalid solution that
is useless to Pr. However, the latter implies that the adversary
can win the witness indistinguishability game of the adaptor
signature scheme, and the former implies that the adversary
can break the pre-signature adaptability property. We refer the
reader to Appendix D for the formal definitions of witness
indistinguishability and pre-signature adaptability of adaptor
signatures.

Unlinkability. Unlinkability is defined in terms of inter-
action multi-graphs (see Section II-B) and must hold against
a malicious tumbler Pt which does not collude with other
parties. For that we have to show that all possible interaction
multi-graphs compatible with Pt’s view are equally likely.

First of all, since we are using payments of a common
denomination (of amount amt as described in Section VI),
Pt cannot correlate the transaction values to learn any non-
trivial information. Next, in Section VI we also assumed that
all protocols are coordinated in phases and epochs. All regis-
tration, puzzle promise and puzzle solver protocol executions
happen during their corresponding registration, puzzle promise
and puzzle solver epochs, respectively. This rules out the
timing attacks where Pt intentionally delays or speeds up
its interactions with another party. Looking at the protocol
transcripts, we see that during the registration protocol Pt only
signs a committed value, hence, due to the hiding property of
the commitment scheme COM, we have that Pt does not learn
the signed token, and cannot use the token with the signature it
receives at the start of the puzzle promise protocol to link the
sender Ps and the receiver Pr. Furthermore, the transcripts of
the puzzle promise and puzzle solver protocols are unlinkable
due to the privacy property of RP. More precisely, for our
construction of a randomizable puzzle from Section V-B, we
have that this is information-theoretically unlinkable. This is

due to the fact that the randomized puzzles Z ′ and Z ′′ are
equally likely to be randomizations of any puzzle Z produced
by Pt during the puzzle promise phase. Lastly, in Section VI
we assumed that Ps and Pr communicate through a secure and
anonymous communication channel, so Pt cannot eavesdrop
and use the network information to link Ps and Pr.

VIII. PERFORMANCE ANALYSIS

Implementation details. The implementation is written in
C, and it relies on the RELIC library [3] for the cryptographic
operations (with GMP [25] as the underlying arithmetic
library), and on the PARI library [51] for the arithmetic
operations in class groups. We implemented two instantiations
of the adaptor signature scheme ΞR,Σ with the underlying
signature scheme being either Schnorr or ECDSA, and the
hard relation R being DLOG in both instantiations. Both
instantiations are over the the elliptic curve secp256k1, which
is also used in Bitcoin. In order to ease the implementation
we instantiated the (blinded) randomizable signature scheme
Σ̃ using Pointcheval-Sanders (PS) [44] signature scheme over
the curve BN256, which analogous to secp256k1 uses a 256-
bit prime, however, unlike secp256k1 it is pairing-friendly.
We note that BN256 provides around 100-bit of security [5],
but one can easily switch to a curve such as BN384 in order
to match the security level of secp256k1. Furthermore, using
a different curve than the underlying cryptocurrency (e.g.,
secp256k1 in Bitcoin) is not an issue as this is used solely
in the registration protocol to sign information that is kept
only off-chain. The homomorphic encryption scheme Ψ has
been instantiated with HSM-CL encryption scheme [15], [17]
for 128-bit security level as described in [15, Section 4]. Zero-
knowledge proofs (and arguments) of knowledge for discrete
logarithm, CL discrete logarithm (CLDL) and Diffie-Hellman
(DH) tuple have been implemented using Σ-protocols [19]
and made non-interactive using the Fiat-Shamir heuristic [23].
Lastly, we have instantiated the commitment scheme COM
for the registration protocol (see Fig. 5) using the Pedersen
commitment scheme [43].

We replaced the key generation procedure by randomly as-
signing keys to every party, since key generation is a one-time
operation at setup (e.g., when opening a payment channel).
The source code is available at https://github.com/etairi/a2l.

Testbed. We used three EC2 instances from Amazon AWS,
where the tumbler Pt was a m5a.2xlarge instance (2.50GHz
AMD EPYC 7571 processor with 8 cores, 32GB RAM)
located in Frankfurt, while the sender Ps and the receiver
Pr were m5a.large instances (2.50GHz AMD EPYC 7571
processor with 2 cores, 8GB RAM) located in Oregon and
Singapore, respectively. In order to show that network latency
is the biggest bottleneck in running times, we also measured
performance in a LAN network. The benchmarks for a LAN
network were taken on a machine with 2.80GHz Intel Xeon
E3-1505M v5 processor with 8 cores, 32GB RAM. All the
machines were running Ubuntu 18.04 LTS. We measured
the average runtimes over 100 runs each. The results of our
performance evaluation are reported in Table II.

https://github.com/etairi/a2l


Computation time. All our protocols complete in ~3
seconds, where the running time is dominated by network
latency. The impact of network latency is obvious when we
look at the running time for the LAN setting. We can observe
that both Schnorr- and ECDSA-based constructions require
about the same computation time, with ECDSA being slightly
more expensive due to the inversion operations required when
computing the signature, and the additional DH tuple NIZK
proof needed during the adaptor signature computation as
described in [4].

Next, we compare our constructions with the state-of-the-
art payment hub TumbleBit [27]. In order to have more
precise results, we performed the comparison in a LAN setting
without any network latency. TumbleBit requires ~0.6 second
to complete, hence, our Schnorr-based construction is slightly
faster, whereas our ECDSA-based construction requires about
the same time without any pre-processing. However, if we
apply the pre-processing described in the Discussion paragraph
below, we get about 2x speed-up in comparison to TumbleBit.

Communication overhead. We measured the communica-
tion overhead as the amount of information that parties need
to exchange during the execution of the protocols. Hence, the
bandwidth column in our table corresponds to the combined
total amount of messages exchanged for the specific protocol.
The ECDSA-based construction has a slightly higher commu-
nication overhead in the puzzle promise protocol compared
to the Schnorr-based construction as it requires an additional
ZK proof during adaptor signature computation as specified
in [4]. TumbleBit requires 326KB of bandwidth, thus, our
ECDSA- and Schnorr-based constructions incur ~33x less
communication overhead.

Discussion. We highlight four points. First, our construction
provides ~33x reduction in the communication complexity
while retaining a computation time comparable to TumbleBit
(or providing 2x speedup with a preprocessing technique dis-
cussed below). Interestingly, the results for TumbleBit [27] do
not include any protection against the griefing attack explained
in Section VI-B, whereas we have the registration protocol that
provides protection for such attacks. Thus, our construction is
more efficient even when providing a better security.

Second, the reduction in communication overhead is not
due to a more efficient implementation, but because A2L is
asymptotically more efficient. In a bit more detail, TumbleBit
relies on the cut-and-choose technique, which implies that the
security is bounded by

(
m+n
m

)
and the parties need to compute

TABLE II: Performance of A2L. Time is shown in seconds.

Registration Promise Solver Total
WAN1 Schnorr 0.722 1.221 1.071 3.014

ECDSA 0.726 1.251 1.076 3.053
LAN Schnorr 0.008 0.464 0.116 0.588

ECDSA 0.008 0.475 0.118 0.601
LAN Schnorr 0.008 0.183 0.118 0.307
(preprocessing) ECDSA 0.008 0.194 0.118 0.320
Bandwidth (KB) Schnorr 0.30 7.18 2.31 9.79

ECDSA 0.30 7.31 2.31 9.92
1Payment Hub (Oregon-Frankfurt-Singapore)

and exchange messages composed of m+ n elements, where
m and n are the parameters for the cut-and-choose game. For
instance, authors of TumbleBit used m = 15 and n = 285 in
puzzle solver and m = n = 42 in puzzle promise protocol to
achieve 80 bits of security, whereas A2L only computes and
exchanges messages with a constant number of elements.

Third, we point that the main bottleneck with respect
to computation and communication in our constructions is
CL encryption [17] and CLDL zero-knowledge argument of
knowledge (AoK) [16] (denoted as πα in our construction),
which comes from our randomizable puzzle instantiation (see
Section V). In our implementation a single CL ciphertext
has size of 2.15KB and takes ~140ms to encrypt and ~80ms
to decrypt, while a CLDL proof has size of 2.50KB and
takes ~140ms for both proving and verification operations. A
possible optimization is for the tumbler to pre-compute many
random α values, along with their corresponding ciphertext cα
and proof πα during its idle time. We call this preprocessing,
and it results in nearly 50% saving in the overall computation
time (even though it only affects the puzzle promise phase) as
shown in Table II.

Lastly, we note that our A2L construction has already
attracted the attention of current blockchain deployments, such
as the COMIT Network, whose business focuses on cross-
currency payments. In particular, they have provided an open-
source proof-of-concept implementation in Rust [1].

IX. CONCLUSION

We presented A2L a novel three-party protocol to synchro-
nize the updates between the payment channels involved in a
PCH, and using which we build a secure, privacy-preserving,
interoperable, and scalable PCH. Our construction relies on
an adaptor signature scheme, which can be instantiated from
Schnorr or ECDSA signatures.

We defined and proved security and privacy of A2L and
our PCH construction in the UC framework. We further
demonstrated that our PCH is the most efficient Bitcoin-
compatible PCH, showing that our construction requires ~33x
less bandwidth than the state-of-the-art PCH TumbleBit, while
retaining the computational cost (or providing 2x speedup
with a preprocessing technique). Moreover, our PCH provides
backwards compatibility with virtually all cryptocurrencies
today.
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APPENDIX

A. Discussion

We discuss here further aspects of our PCH regarding both
limitations of unlinkability and practical deployment.

1) Limitations of Unlinkability: In this section, we discuss
the unlinkability limitations inherent to the PCH setting, and
thus also affecting our construction. We remark that these
limitations are inherent to any tumbler protocol, as shown
for instance in TumbleBit [27]. Furthermore, even with these
limitations, our construction augments the privacy guarantees
for the users of a PCH service.

Epoch anonymity. Assume that Pt executes the puzzle
promise protocol with k parties during a phase of an epoch. If
within the next phase, k payments successfully complete, then
the anonymity set is of size k since there exist k compatible
interaction graphs, as defined in Section II-B.
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It is however not always the case that k is equal to
the total number of parties. The exact anonymity level can
be established only at the end of the epoch depending on
the number of successful puzzle promise and puzzle solver
protocols. For instance, anonymity is reduced by 1 if Pt aborts
a payment made by a party Ps. The payment between Ps and
Pr would be the only one failing, thereby showing that Pr
was the expected receiver. It is important to note that Ps does
not lose coins as Pt obtains a valid channel update only if it
cooperates in solving the puzzle.

Tumbler/receiver collusion. The tumbler Pt and the re-
ceiver Pr can collude to learn the identity of the sender
Ps. Intuitively, this type of attack is only useful if Pr can
be paid by Ps without learning its true identity (e.g., in
anonymous donations). We partially address this collusion
in our constructions by letting Ps randomize the puzzle it
receives from Pr. However, Pr can still send a maliciously
constructed puzzle (more precisely, an invalid puzzle or a non-
randomized puzzle) to Ps, which can cause an abort or leak
information to Pt during the execution of the puzzle solver
protocol between Ps and Pt. This in turn can allow Pt to link
that Ps was the party that intended to pay Pr. One possible
mitigation to this is to force Pr to give a zero-knowledge proof
to Ps that the puzzle it sends is a valid randomized puzzle.

Intersection attack. The aforementioned k-anonymity no-
tion is broadly used in mixing protocols with an intermediate
Pt. However, Pt can further reduce the anonymity set. At
any epoch, Pt can record the set of senders and receivers
that participate in the puzzle solver and puzzle promise pro-
tocols, respectively. Then, Pt can correlate this information
across phases and epochs to de-anonymize users (e.g., using
frequency analysis).

Ceiling attack. The amount of payments that a certain Pr
can receive during a certain epoch is limited by the balance at
the channel ς between Pt and Pr. If the channel is exhausted
(i.e., ς.cash(Pt) = 0), Pt can deterministically derive the fact
that Pr is not a potential receiver within the current epoch.

Attacks with auxiliary information. Our notion of unlink-
ability does not consider auxiliary information available to Pt.
Assume that Pt knows that a certain Pr has an online shop
selling a product for a value 2·amt. Further assume that during
an epoch, Pt executes the puzzle promise protocol only once
on every channel except with Pr, for which the puzzle promise
protocol is executed twice. Similarly, Pt could observe that
there exists a single Ps executing twice the puzzle solver
protocol, allowing Pt to link the pair Ps, Pr. As indicated
in [27], this type of attacks (called Potato attack in [27]) could
be mitigated by aggregating payments or adding noise à la
differential privacy.

2) Practical Deployment: In this section, we discuss the
practical considerations for real-life deployment of our PCH.

Hub vs tumbler functionality. Our PCH, as described in
this work, provides a tumbler functionality, that is, allows
payments between Ps and Pr while ensuring atomicity and
unlinkability. Providing these guarantees comes at the cost
of communication and computation overhead when compared

to payment hubs that simply forward payments from Ps to
Pr through Pt. Yet, our evaluation results show that our
construction is the most efficient PCH among those tumbler
protocols with emphasis on privacy.

Variable payment amounts and fees. Our PCH sacrifices
the support of arbitrary payment amounts in favor of achieving
unlinkability. For ease of exposition, we have described our
PCH working with a single fixed payment amount amt, this
limitation can be somewhat mitigated in practice by having
a set of fixed denominations (e.g., amt, 10 · amt, 100 · amt,
etc.). This thereby provides a tradeoff between more practical
functionality at the expense of reducing the anonymity set
(and thus unlinkability) to those payments with the same
denomination. Similarly, our PCH can be extended to let the
tumbler Pt charge a fee for each puzzle promise/solver pair
that it processes. In particular, the PCH could be setup such
that each Ps pays amt + fee while Pt pays only amt to each
Pr. As before, the unlinkability property requires that fee is
the same for all payments within the anonymity set.

Cross-currency payments. In principle, the cryptographic
protocols in A2L (and thus our PCH construction) support the
authorization of transactions across different cryptocurrencies.
However, deploying our construction as full-fledge cross-
currency PCH requires to consider several practical aspects.
In the following, we describe (a possibly incomplete list of)
them. First, one would require to fix exchange rate between
the cryptocurrencies being exchanged to ensure unlinkability
of payments (similar to the aforementioned argument for the
fees). In practice, one could fix an exchange rate for a period
of time (say one day) and let the PCH use it during that period.
Then, the tumbler Pt could account for the fluctuations on the
exchange rate during that period by (possibly over approxi-
mating) the fee charged to each payment. Second, one would
require to fix a timeout for each phase independently of the
cryptocurrencies being exchanged (which may have different
block creation times) in order to maintain unlinkability.

Communication between Ps and Pr. As discussed in Sec-
tion VI, we assumed that Pt does not notice the communi-
cation between Ps and Pr (e.g., the sending of the puzzle
and its randomized solution), as otherwise it trivially breaks
unlinkability. We note that this a standard assumption in
payment protocols providing privacy guarantees [6], [27]. In
practice, Ps and Pt could communicate via an anonymous
communication channel (e.g., Tor).

Implementing phases and epochs. We expect our construc-
tion to run in phases and epochs as described in Section VI. An
epoch constitutes a single run of our complete construction,
whereas phases are disjoint timeslots inside an epoch, which
correspond to our individual protocol runs (e.g., all instances
of the registration protocol run during the registration phase).
In practice one can simply set a system specific duration for
an epoch (e.g., one day), and then divide the epoch duration
into four equal timeslots (e.g., 6 hours per slot), one for each
of our four phases: registration phase, puzzle promise phase,
puzzle solver phase, and open phase. Making sure that the
timeslots within an epoch are equal, and more importantly,



disjoint reduces the possible information leakage that can be
obtained from the timing attacks.

B. Description of our PCH

In our PCH, we combine A2L with a blockchain B in order
to realize a fully-fledged PCH. We denote the channel between
Ps and Pt as ς , and the channel between Pt and Pr as ς ′.
A payment of amt coins between Ps and Pr through Pt is
realized by updating both channels, such that Pt gets amt coins
in ς if and only if Pr gets amt coin in ς ′. In order to ensure
this invariant, our PCH relies on two contracts built upon A2L.
More precisely, first Pt and Pr execute the PuzzlePromise
protocol from A2L to get the input required to establish the
A2L-Promise(Pt, Pr,Π, amt, ς ′, t′) contract:

1) If Pr produces a valid signature σ, so that Verify(Π, σ) =
1 before time t′ expires, then ς ′ is updated as
(ς ′.cash(Pt) −= amt, ς ′.cash(Pr) += amt) (i.e., tumbler
pays the receiver amt coins).

2) If timeout t′ expires, ς ′ remains unchanged (i.e., tumbler
regains control over amt coins).

Here, Π comes from the output of the PuzzlePromise
protocol in A2L, and t′ is an expiration time (validity period)
of the promise, which is properly set to give Pr the time it
needs to reveal the final valid signature σ. In case this does
not happen, then Pt gets back the money, thereby avoiding
an indefinite locking of money in the channel. Notice that
we require the blockchain B to support the Verify algorithm
and time management in its scripting language. This is the
case in practice as Verify is implemented as the unmodified
verification algorithm of the digital signature scheme, and
virtually all cryptocurrencies natively implement a timelock
mechanism where time is measured as the number of blocks
in the blockchain.

Second, Pr sends the randomized puzzle Z ′ (as output by
the PuzzlePromise protocol) to Ps. Then, Ps and Pt execute
the PuzzleSolver protocol to get the input required to establish
the A2L-Solve(Ps, Pt, Z ′, amt, ς, t) contract:

1) If before t, Pt sends Ps the solution α′ to the cryptographic
challenge encoded in Z ′, ς is updated as (ς.cash(Ps) −=
amt, ς.cash(Pt) += amt) (i.e., the sender pays tumbler amt
coins).
2) Otherwise, ς remains unchanged (i.e., the sender regains
control over amt coins).

Lastly, Ps gets the solution α′ to the challenge encoded in
the puzzle Z ′, and sends α′ to Pr who can complete the A2L-
Promise contract with the signature σ := Open(Π, α′). Our
PCH construction can be seen in Fig. 6.

C. Security and Privacy Model

1) Preliminaries: We define our security and privacy model
modularly by leveraging the Universal Composability (UC)
framework from Canetti [13]. More precisely, we rely on
the synchronous version of global UC framework (GUC)
[14]. We first describe the ideal functionality FA2L for A2L,

which captures the expected behavior as well as the security
and privacy properties of the interaction among the sender
Ps, receiver Pr and tumbler Pt, for which we provided an
implementation in Section VI-A, along with its extension for
handling griefing attack in Section VI-B. Then, we describe
payment channel hub (PCH) ideal functionality FPCH covering
the security and privacy notions for a PCH, which relies on
FA2L, and for which we already presented an implementation
in Appendix B. The security proofs for A2L and our PCH are
given in Appendix F2 and Appendix F3, respectively.

Attacker model. We model the parties as interactive Tur-
ing machines (ITMs), which communicate with a trusted
functionality F via secure and authenticated communication
channels. We model the adversary S as a PPT machine that
has access to an interface corrupt(·), which takes as input a
party identifier P and provides the attacker with the internal
state of P . From that point onward, all subsequent incoming
and outgoing communication of P is routed through S. As
commonly done in the literature [27], [35], [36], we consider
the static corruption model, that is, the adversary commits to
the identifiers of the parties it corrupts ahead of time.

Communication model. We consider a synchronous com-
munication network, where communication proceeds in dis-
crete rounds. We follow [21] (which in turn follows [29]), and
formalizes the notion of rounds via a global ideal functionality
Fclock, which represents the clock. The ideal functionality
requires all honest parties to indicate that they are ready to
proceed to the next round before the clock is ticked. Similar
to [21], we treat the clock functionality as a global ideal
functionality defined in the GUC model [14]. This implies
that all parties are aware of the given round.

We assume that the parties are connected via authenticated
communication channels with guaranteed delivery of exactly
one round (as in [4]). The adversary can change the order
of messages that were sent in the same round, but it cannot
delay or drop messages sent between parties, or it cannot insert
a new message. For simplicity, we assume that computation
is instantaneous. These assumptions on the communication
channels are formalized as an ideal functionality FGDC, as
defined in [21].

Additionally, we use the secure transmission functionality
Fsmt, as defined in [13], which ensures that the adversary
cannot read or change the content of the messages. Lastly, we
assume the existence of an anonymous communication channel
as defined in [12], which we denote here as Fanon, and which
is only needed for communication between the sender Ps and
the receiver Pr.

Payment channels. We make use of the global ideal func-
tionality FGC [4], which defines generalized channels, which
can be seen as a generalization of payment channels. The ideal
functionality provides all the backbone necessary for handling
payment channels, such as the following interfaces: Create and
Close are used for opening and closing a payment channel,
respectively, and Update is used to update the balances of the
parties involved in the payment channel.

(Global) Universal composability. We briefly overview the



Public parameters: constant amount amt, validity period υ of a promise, current time ∆

Ps(ς) Pt(ς, ς
′) Pr(ς

′)
Create escrow output oid
(tid, σ′tid)← 〈RegistrationPs

(oid),RegistrationPt
()〉

(tid, σ′tid)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
If ς ′.cash(Pt) < amt then abort
〈PuzzlePromisePt(),PuzzlePromisePr (tid, σ′tid)〉 → (Π, (Z,Z′))

If Π = ⊥ or Z = ⊥ or Z′ = ⊥ then abort
Set t′ := ∆ + υ

A2L−Promise(Pt,Pr,Π,amt,ς′,t′)←−−−−−−−−−−−−−−−−−−→
Z′

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
If ς.cash(Ps) < amt or t′ < ∆ then abort

A2L−Solve(Ps,Pt,Z
′,amt,ς,t)←−−−−−−−−−−−−−−−−→

α′ ← 〈PuzzleSolverPs(Z′),PuzzleSolverPt()〉
If α′ = ⊥ then abort α′

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
σ := Open(Π, α′)
Check Verify(Π, σ)

Fig. 6: Our PCH construction (cryptographic keys are removed as inputs to subprotocols for readability).

Ideal Functionality FA2L

Registration: On input (Registration, Pr) from Ps, FA2L proceeds
as follows:

- Send (registration−req, Ps) to Pt and S.
- Receive (register−res, b) from Pt.
- If b = ⊥ then abort.
- Sample tid←$ {0, 1}λ and add tid into T .
- Send (registered, tid) to Ps, Pr and S.

Puzzle Promise: On input (PuzzlePromise, Ps, tid) from Pr , FA2L

proceeds as follows:
- If tid 6∈ T then abort.
- Else remove tid from T .
- Send (promise−req, Pr, tid) to Pt and S.
- Receive (promise−res, b) from Pt.
- If b = ⊥ then abort.
- Sample pid, pid′ ←$ {0, 1}λ.
- Store the tuple (pid, pid′,⊥) into P .
- Send (promise, (pid, pid′)) to Pr , (promise, pid) to Pt,

(promise, pid′) to Ps, and inform S.
Puzzle Solver: On input (PuzzleSolver, Pr, pid

′) from Ps, FA2L

proceeds as follows:
- If 6 ∃(·, pid′, ·) ∈ P then abort.
- Send (solve−req, Ps, pid′) to Pt and S.
- Receive (solve−res, b) from Pt.
- If b = ⊥ then abort.
- Update entry to (·, pid′,>) in P .
- Send (solved, pid′,>) to Ps, Pr and S.

Open: On input (Open, pid) from Pr , FA2L proceeds as follows:
- If 6 ∃(pid, ·, b) ∈ P or b = ⊥ then send (open, pid,⊥) to Pr

and abort. Else send (open, pid,>) to Pr .

Fig. 7: Ideal functionality FA2L.

notion of secure realization in the UC framework [13], and its
variant called global UC (GUC) framework [14]. Intuitively,
a protocol realizes an ideal functionality if any distinguisher

(the environment) has no way of distinguishing between a real
run of the protocol and a simulated interaction with the ideal
functionality.

For our FPCH ideal functionality we rely on the global
channel functionalities FGC and global clock functionality
Fclock. Hence, we need to define the UC-realization with
respect to these global functionalities. More precisely, let π
be a protocol with access to the global channel FGC and the
global clock Fclock. Let EXECπ,A,E denote the ensemble of
the outputs of the environment E when interacting with the
adversary A and users running protocol π. Then, we can define
the UC-realization with respect to the global functionalities as:

Definition 5 (Global Universal Composability). A protocol π
UC-realizes an ideal functionality F with respect to a global
channel FGC and global clock Fclock, if for any PPT adversary
A, there exists a simulator S, such that for any environment
E , the ensembles EXECFGC,Fclock

π,A,E and EXECFGC,Fclock

F,S,E are com-
putationally indistinguishable.

2) Anonymous Atomic Lock (A2L): Here, we formalize the
notion of anonymous atomic locks (A2L).

Ideal functionality. We illustrate the ideal functionality
FA2L for A2L in Fig. 7, where it implicitly uses FGDC, Fsmt

and Fanon, thus, FA2L is defined in the (FGDC,Fsmt,Fanon)-
hybrid model.

Furthermore, FA2L manages a list P (initially set to P := ∅),
to keep track of the cryptographic puzzles. The entries in the
list P have the format (pid, pid′, b), where pid is the puzzle,
pid′ is the randomized version of the puzzle and b is a bit
specifying whether the puzzle has been solved. Additionally,
it managed as list T , which keeps track of the valid (i.e., active
and unused) tokens.
FA2L provides three interfaces, which are depicted in Fig. 7.

The Registration interface allows a party to obtain a token,



which is used for authentication purposes. The PuzzlePromise
interface given as input a valid token provides a puzzle. The
PuzzleSolver interface allows a party to acquire a solution to
a puzzle. Lastly, the Open interface allows a party to check
the validity of the puzzle solution.

Discussion. We introduced the security and privacy notions
of interest for our system in Section II-B. Here, we paraphrase
them regarding A2L and explain why FA2L achieves these
notions.

Authenticity: Authenticity ensures that puzzle promise can
only be executed if a valid token has been acquired and
that each token can only be used once. This is enforced by
FA2L as it checks the validity of the input token tid to the
PuzzlePromise interface, before continuing with its execution.
If the token is invalid it aborts the execution, and otherwise,
it removes the token from the list T and continues with the
execution of PuzzlePromise.

Atomicity: Loosely speaking, atomicity for A2L means that
a puzzle can only be solved, if there has been a corresponding
execution of puzzle solver for that puzzle. This is enforced by
FA2L because it keeps track of the puzzles in the list P , and
checks whether the puzzle given as input to the Open interface
corresponds to one of the existing entries in the list P that has
already been solved. Since the puzzles are only solved inside
the PuzzleSolver interface and FA2L is trusted, this ensures
that PuzzleSolver must be called before Open in order for it
to succeed.

Unlinkability: Intuitively, unlinkability means that the tum-
bler Pt does not learn information that allows it to associate
the sender Ps and the receiver Pr of a payment (i.e, cannot link
the calls of PuzzlePromise and PuzzleSolver). This property
is enforced by FA2L since for each call to the PuzzlePromise
interface, FA2L samples both a puzzle pid and its randomized
version pid′, and stores them as part of the same entry in P .
Then, only the randomized puzzle pid′ is given to Pt inside
the PuzzleSolver interface.

Additionally, since we assumed existence of a secure and
anonymous communication channel between Ps and Pt (see
Section VI), which can be realized with Fanon [12] ideal func-
tionality, Pt cannot use the network information to correlate
Ps and Pr. We remark that this assumption is indispensable
for unlinkability and is commonly adopted in the PCH-related
literature, such as in [26], [27].

3) Payment Channel Hub (PCH): Here, we formalize the
notion of a PCH by relying on A2L. We use the notation
described in Section II for payment channels.

Ideal functionality. FPCH ideal functionality makes use of
FGDC,FGC,Fclock, and FA2L ideal functionalities, hence, it is
defined in (FGDC,FGC,Fclock,FA2L)-hybrid model. FPCH is
shown in Fig. 8.
FPCH manages a list C (initially set to C := ∅), which

stores the currently open channels. In our model, we expect
that every participating party has a channel with the central
designated tumbler Pt, and that every payment transfers a
fixed amount amt of coins, which we assume is globally
available to all parties. Additionally, we assume that there

Ideal Functionality FPCH

Open Channel: On input (OpenChannel, ς, txidP ) from a party P ,
FPCH proceeds as follows:

- Send (Create, ς, txidP ) to S.
- Receive b from S.
- If b = ⊥, then abort.
- Add ς into C.
- Send (created, ς.cid) to ς.users.

Close Channel: On input (CloseChannel, ς) from a party P , FPCH

proceeds as follows:
- Send (Close, ς.cid) to S.
- Receive b from S.
- If b = ⊥, then abort.
- Remove ς from C.
- Send (closed, ς.cid) to ς.users.

Pay: On input (Pay, Pr) from Ps, FPCH proceeds as follows:
- Retrieve ς and ς ′ from C, where ς.users = {Ps, Pt} and
ς ′.users = {Pt, Pr}.

- If ς = ⊥ or ς ′ = ⊥ then abort.
- Send (Registration, Pr) to S.
- Receive tid from S.
- If tid = ⊥ then abort.
- Set t′ = ∆ + 2v and propose ς ′.TLP(θ′ := (ς ′.cash(Pt)
−= amt, ς ′.cash(Ps) += amt), t′) to Pt and Pr .

- Send (PuzzlePromise, Ps, tid) to S.
- Receive (pid, pid′) from S.
- If pid′ = ⊥ then abort.
- Set t = ∆ + v and propose ς.TLP(θ := (ς.cash(Ps) −=
amt, ς.cash(Pt) += amt), t) to Ps and Pt.

- Send (PuzzleSolver, Pr, pid
′) to S.

- Receive b from S.
- If b = ⊥ then abort.
- Send (Open, pid) to S.
- Receive b from S.
- If b = ⊥ or t < ∆ then send ⊥ to Ps.
- Send the update (Update, ς.cid, θ := (ς.cash(Ps) −= amt,
ς.cash(Pt) += amt)) to S.

- Send the update (Update, ς ′.cid, θ′ := (ς ′.cash(Pt) −=
amt,ς ′.cash(Pr) += amt)) to S.

Fig. 8: Ideal functionality FPCH.

is a constant validity period v for payments, and we denote
the current time by ∆. In order to simplify the model we
do not include any transaction fees, but we note that our
protocol retains its security and privacy properties even in
the presence of constant transaction fees. FPCH provides three
interfaces, where OpenChannel and CloseChannel operations
are the standard channel opening/closing operations [2], [35],
which in our case are handled via simulator calls to the FGC

ideal functionality defined in [4]. Lastly, Pay handles the
payment operation from the sender Ps to the receiver Pr via
the tumbler Pt by making use of FA2L.

Discussion. We discuss here how the ideal functionality
captures the security and privacy notions of interest for pay-
ment channel hubs as defined in Section II-B.

Authenticity: This property ensures that only authenticated
payments should go through. Since FPCH is defined in hybrid
model with FA2L, it automatically inherits the authenticity
guarantees of FA2L.

Atomicity: The system should not be exploited to print new



money or steal existing money, even when parties collude.
FPCH achieves atomicity as the only place where the balances
are updated is at the end of the Pay interface, where the ideal
functionality makes sure that all the previous operations related
to A2L have been successfully finished. This implies that FPCH

inherits the atomicity guarantees of FA2L.
Unlinkability: The intermediary should not learn informa-

tion that allows it to associate the sender and the receiver of a
payment. In Appendix C2 it was argued that FA2L provides
such an unlinkability guarantee. Since, FPCH is defined in
hybrid model with FA2L, it inherits the unlinkability guarantees
on FA2L. However, FPCH also handles the payments, hence,
we need to ensure that the actual payments do not leak any
information that can be used to link the sender/receiver pair.
Though, we note that FPCH uses constant amount amt for all
payments and fixed time intervals, therefore, the amounts and
timing information do not help in differing the payments.

D. Adaptor Signatures

Here we give a more detailed and formal description of
an adaptor signature and its properties. The definitions and
security experiments are taken from [4] with minor changes
to fit our notation. Adaptor signatures have been introduced by
the cryptocurrency community to tie together the authorization
of a transaction with leakage of a secret value. Due to its
utility, adaptor signatures have been used in previous works
for various applications like atomic swaps or payment channel
networks [36]. An adaptor signature scheme is essentially a
two-step signing algorithm bound to a secret: first a partial
signature is generated such that it can be completed only by
a party that knows a certain secret, where the completion of
the signature reveals the underlying secret.

More precisely, we define an adaptor signature scheme with
respect to a standard signature scheme Σ and a hard relation
R. Before moving on with the formal definition of an adaptor
signature, we first recall the definition of a hard relation.

Definition 6 (Hard Relation). Let R be a relation with
statement/witness pairs (Y, y). Let us denote LR the associated
language defined as LR := {Y | ∃y s.t. (Y, y) ∈ R}. We say
that R is a hard relation if the following holds:
• There exists a PPT sampling algorithm GenR(1λ) that

on input the security parameter λ outputs a state-
ment/witness pair (Y, y) ∈ R.

• The relation is poly-time decidable.
• For all ppt adversaries A there exists a negligible func-

tion negl, such that:

Pr

[
(Y, y∗) ∈ R

∣∣∣∣ (Y, y)← GenR(1λ),
y∗ ← A(Y )

]
≤ negl(λ) ,

where the probability is taken over the randomness of
GenR and A.

In an adaptor signature scheme, for any statement Y ∈ LR,
a signer holding a secret key is able to produce a pre-signature
w.r.t. Y on any message m. Such pre-signature can be adapted
into a full valid signature on m if and only if the adaptor

knows a witness for Y . Moreover, if such a valid signature is
produced, it must be possible to extract the witness for Y given
the pre-signature and the adapted signature. This is formalized
as follows, where we take the message spaceM to be {0, 1}∗.

Definition 7 (Adaptor Signature Scheme). An adaptor signa-
ture scheme w.r.t. a hard relation R and a signature scheme
Σ = (KGen,Sig,Vf) consists of four algorithms ΞR,Σ =
(PreSig,Adapt,PreVf,Ext) defined as:

PreSig(sk,m, Y ): is a PPT algorithm that on input a secret
key sk, message m ∈ {0, 1}∗ and statement Y ∈ LR,
outputs a pre-signature σ̂.

PreVf(pk,m, Y, σ̂): is a DPT algorithm that on input a public
key pk, message m ∈ {0, 1}∗, statement Y ∈ LR and
pre-signature σ̂, outputs a bit b.

Adapt(σ̂, y): is a DPT algorithm that on input a pre-
signature σ̂ and witness y, outputs a signature σ.

Ext(σ, σ̂, Y ): is a DPT algorithm that on input a signature σ,
pre-signature σ̂ and statement Y ∈ LR, outputs a witness
y such that (Y, y) ∈ R, or ⊥.

In addition to the standard signature correctness, an adaptor
signature scheme has to satisfy pre-signature correctness. In-
formally, an honestly generated pre-signature w.r.t. a statement
Y ∈ LR is a valid pre-signature and can be adapted into a valid
signature from which a witness for Y can be extracted.

Definition 8 (Pre-signature Correctness). An adaptor signa-
ture scheme ΞR,Σ satisfies pre-signature correctness if for
every λ ∈ N, every message m ∈ {0, 1}∗ and every state-
ment/witness pair (Y, y) ∈ R, the following holds:

Pr


PreVf(pk,m, Y, σ̂) = 1

∧
Vf(pk,m, σ) = 1

∧
(Y, y′) ∈ R

∣∣∣∣∣∣∣∣∣∣
(sk, pk)← KGen(1λ)
σ̂ ← PreSig(sk,m, Y )
σ := Adapt(σ̂, y)
y′ := Ext(σ, σ̂, Y )

 = 1.

Next, we define the security properties of an adaptor sig-
nature scheme. We start with the notion of unforgeability,
which is similar to existential unforgeability under chosen
message attacks (EUF-CMA) but additionally requires that
producing a forgery σ for some message m is hard even
given a pre-signature on m w.r.t. a random statement Y ∈ LR.
We note that allowing the adversary to learn a pre-signature
on the forgery message m is crucial as for our applications
unforgeability needs to hold even in case the adversary learns a
pre-signature for m without knowing a witness for Y . We now
formally define the existential unforgeability under chosen
message attack for adaptor signature (aEUF-CMA).

Definition 9 (aEUF-CMA Security). An adaptor signature
scheme ΞR,Σ is aEUF-CMA secure if for every PPT ad-
versary A there exists a negligible function negl such that:
Pr[aSigForgeA,ΞR,Σ

(λ) = 1] ≤ negl(λ), where the experi-
ment aSigForgeA,ΞR,Σ

is defined as follows:



aSigForgeA,ΞR,Σ
(λ)

1 : Q := ∅
2 : (sk, pk)← KGen(1λ)

3 : m← AOS(·),OpS(·,·)(pk)

4 : (Y, y)← GenR(1λ)

5 : σ̂ ← PreSig(sk,m, Y )

6 : σ ← AOS(·),OpS(·,·)(σ̂, Y )

7 : return (m 6∈ Q ∧ Vf(pk,m, σ))

OS(m)

1 : σ ← Sig(sk,m)

2 : Q := Q∪ {m}
3 : return σ

OpS(m,Y )

1 : σ̂ ← PreSig(sk,m, Y )

2 : Q := Q∪ {m}
3 : return σ̂

An additional property that we require from adaptor sig-
natures is pre-signature adaptability, which states that any
valid pre-signature w.r.t. Y (possibly produced by a malicious
signer) can be adapted into a valid signature using the witness
y with (Y, y) ∈ R. We note that this property is stronger
than the pre-signature correctness property from Definition 8,
since we require that even maliciously produced pre-signatures
can always be completed into valid signatures. The following
definition formalizes this property.

Definition 10 (Pre-signature Adaptability). An adaptor sig-
nature scheme ΞR,Σ satisfies pre-signature adaptability if for
any λ ∈ N, any message m ∈ {0, 1}∗, any statement/witness
pair (Y, y) ∈ R, any key pair (sk, pk) ← KGen(1λ) and any
pre-signature σ̂ ← {0, 1}∗ with PreVf(pk,m, Y, σ̂) = 1, we
have: Pr[Vf(pk,m,Adapt(σ̂, y)) = 1] = 1.

The last property that we are interested in is witness ex-
tractability. Informally, it guarantees that a valid signature/pre-
signatue pair (σ, σ̂) for a message/statement pair (m,Y ) can
be used to extract the corresponding witness y of Y .

Definition 11 (Witness Extractability). An adaptor signature
scheme ΞR,Σ is witness extractable if for every PPT adversary
A, there exists a negligible function negl such that the follow-
ing holds: Pr[aWitExtA,ΞR,Σ

(λ) = 1] ≤ negl(λ), where the
experiment aWitExtA,ΞR,Σ

is defined as follows

aWitExtA,ΞR,Σ
(λ)

1 : Q := ∅
2 : (sk, pk)← KGen(1λ)

3 : (m,Y )← AOS(·),OpS(·,·)(pk)

4 : σ̂ ← PreSig(sk,m, Y )

5 : σ ← AOS(·),OpS(·,·)(σ̂)

6 : y′ := Ext(pk, σ, σ̂, Y )

7 : return (m 6∈ Q ∧ (Y, y′) 6∈ R
8 : ∧ Vf(pk,m, σ))

OS(m)

1 : σ ← Sig(sk,m)

2 : Q := Q∪ {m}
3 : return σ

OpS(m,Y )

1 : σ̂ ← PreSig(sk,m, Y )

2 : Q := Q∪ {m}
3 : return σ̂

Although, the witness extractability experiment aWitExt
looks similar to the experiment aSigForge, there is one impor-
tant difference, namely, the adversary is allowed to choose the
forgery statement Y . Hence, we can assume that the adversary
knows a witness for Y , and therefore, can generate a valid
signature on the forgery message m. However, this is not
sufficient to win the experiment. The adversary wins only if

the valid signature does not reveal a witness for Y .
Combining the three properties described above, we can

define a secure adaptor signature scheme as follows.

Definition 12 (Secure Adaptor Signature Scheme). An adaptor
signature scheme ΞR,Σ is secure, if it is aEUF-CMA secure,
pre-signature adaptable and witness extractable.

E. Castagnos-Laguillaumie Encryption Scheme

The main reason for using the Castagnos-Laguillaumie (CL)
[15], [17] encryption scheme as opposed to any other linearly
homomorphic encryption scheme is that it can be instantiated
to work over Zq , for a q that is the same as the order
of the elliptic curve group used in Schnorr and ECDSA
signature schemes. If one uses an encryption scheme with
a plaintext space larger than the group order q, then several
problems appear. For example, two-party ECDSA construction
of Lindell [34] uses Paillier, which has a plaintext space
ZN , for a composite N much larger than q. In that case
to enforce correctness and security of the protocol the value
of N needs to be chosen large enough, so that no wrap
around occurs, and one needs to prove in zero-knowledge
that the encrypted value is within the right range, which
requires an expensive range proof. We can avoid these issues
by using the CL encryption scheme instantiated with the
plaintext space Zq . Another advantage of CL is that in the
security proofs challenger’s access to the secret key does not
compromise the indistinguishability of ciphertexts, as it relies
on a computational assumption and a statistical argument. For
more information about the problems arising from using an
encryption scheme with a larger modulus than the elliptic
curve group order, and how these problems are addressed by
the CL encryption scheme we refer the reader to [15].

F. Full Security Analysis

1) Security Analysis of Randomizable Puzzle: We recall the
theorem stated in Section V-B, for which we provide a proof
sketch here.

Theorem 1. Let G be a DLOG-hard group, and Ψ be an
IND-CPA secure encryption scheme, then Construction 1 is
a correct, secure and private randomizable puzzle scheme.

Proof (sketch). Correctness follows straightforwardly from the
correctness of the encryption scheme Ψ. For security, we
first replace Enc(pkΨ, ζ) with Enc(pkΨ, 0) in PGen. This
is indistinguishable due to IND-CPA security of Ψ. Next,
what remains is to argue that one cannot retrieve the discrete
logarithm of A, which is implied by the hardness of DLOG in
G. Regarding privacy, we can observe that for a puzzle Z with
a solution ζ, our PRand algorithm will produce a randomized
puzzle Z ′ with a solution ζ · r, for a random r ∈ S. Note that
in our case S = Zq is a field, hence, we have that ζ · r ∈ S.
Moreover, the randomness r completely masks the solution
ζ. Hence, a randomized puzzle Z ′ is equally likely to be the
randomized version of any puzzle Z, which implies that Z
and Z ′ are information-theoretically unlinkable.



2) Security Analysis of A2L : Throughout this section
we denote by poly (λ) any function that is bounded by a
polynomial in λ, where λ ∈ N is the security parameter. We
denote any function that is negligible in the security parameter
by negl(λ). We say an algorithm is PPT if it is modeled as a
probabilistic Turing machine whose running time is bounded
by some function poly(λ).

We prove security according to the UC framework [13],
and in the presence of malicious adversaries with static
corruptions. We recall the theorem stated in Section VII,
which we prove here.

Theorem 2. Let COM be a secure commitment scheme,
NIZK be a non-interactive zero-knowledge scheme, Σ, Σ̃ be
EUF-CMA secure signature schemes, R be a hard relation,
ΞR,Σ be a secure adaptor signature scheme, and RP be
a secure and private randomizable puzzle scheme, then the
construction in Figs. 2 to 5 UC-realizes the ideal functionality
FA2L in the (FGDC,Fsmt,Fanon)-hybrid model.

Proof. Throughout the following proof, we implicitly assume
that all messages of the adversary are well-formed and
we treat the malformed messages as aborts. The proof is
composed of a series of hybrids, where we gradually modify
the initial experiment.

Hybrid H0: This corresponds to the original construction
(as described in Section VI-A).

Hybrid H1: All calls to the commitment scheme COM are
replaced with calls to the ideal functionality FCOM.

Ideal Functionality FCOM

Commit: On input (commit, sid, x) from party Pi, where i ∈
{1, 2}, if some (commit, sid, ·) is already recorded, then ignore
the message. Else, record (sid, i, x) and send (receipt, sid) to party
P3−i.
Decommit: On input (decommit, sid) from party Pi, where i ∈
{1, 2}, if (sid, i, x) is recorded, then send (decommit, sid, x) to
party P3−i.

Hybrid H2: All calls to the non-interactive zero-knowledge
scheme NIZK are replaced with calls to the ideal functionality
FNIZK, which works with a relation R.

Ideal Functionality FNIZK

On input (prove, sid, x, w) from party Pi, where i ∈ {1, 2}, if
(x,w) 6∈ R or sid has been previously used, then ignore the
message. Otherwise, send (proof, sid, x) to P3−i.

Hybrid H3: For an honest tumbler Pt and sender Ps,
a corrupted receiver Pr, check if Pr returns some pair
(tid, σtid), before an execution of the registration protocol
(between Pt and Pr), such that it does not cause the honest
Pt to abort during the promise protocol. If this is the case,
abort the experiment and output fail.

Hybrid H4: For an honest tumbler Pt and sender Ps,
a corrupted receiver Pr and a promise Π output from the
puzzle promise protocol, if Pr returns some σ := (σt, σr),
such that Verify(Π, σ) = 1, before a solution α′ is output
from an execution of the puzzle solver protocol, such that
Verify(Π,Open(Π, α′)) = 1, then the experiment aborts.

Hybrid H5: For an honest sender Ps and receiver Pr, a
promise Π output from the puzzle promise protocol and a
solution α′ output from the puzzle solver protocol, if the
parties do not abort and Verify(Π,Open(Π, α′)) 6= 1, then
the experiment aborts.

Simulator S: The simulator S simulates the honest parties
as in the previous hybrid, except that its actions are dictated
by the interaction with the ideal functionality FA2L. More
concretely, we define our simulator S as follows.

Simulator for registration

Case Ps is honest and Pt is corrupted
Upon Ps sending (Registration, Pr) to FA2L, proceed as follows:

- Sample a token tid←$Zq and output oid←$ {0, 1}∗, commit to
the token and prove knowledge of the opening,

(com, decom := (tid, r))← PCOM(tid),

π ← PNIZK({∃decom | VCOM(com, decom, tid) = 1}, decom},

and send (registration−req, ((π, com), oid)) to Pt.
- Upon (registered, σ∗) from A (on behalf of Pt), unblind the sig-

nature, σtid := UnblindSig(decom, σ∗). If Vf(pkΣ̃
t , tid, σtid) 6=

1, then simulate Ps aborting. Otherwise, randomize the signature,
σ′tid ← RandSig(σtid), store a copy of (tid, σ′tid) and send it to
Pr .

Case Pt is honest and Ps is corrupted

Upon Ps sending (registration−req, ((π, com), oid)) to Pt, pro-
ceed as follows:
- If VNIZK(π, com) 6= 1, then simulate Pt aborting. Otherwise, if
Pt sends (registration−res,>) to FA2L, then compute σ∗ ←
BlindSig(skΣ̃

t , com), and send (registered, σ∗) to Ps. Else stop.

Simulator for puzzle promise

Case Pr is honest and Pt is corrupted
Upon Pr sending (PuzzlePromise, Ps, tid) to FA2L, proceed as

follows:
- Extract (tid, σ′tid) that was previously stored, sign the

message (transaction), σ′r ← Sig(skΣ
r ,m

′), and send
(promise−req, ((tid, σ′tid), σ′r)) to Pt.

- Upon (promise, (Z := (A, cα), πα, σ̂
′
t)) from A (on behalf of

Pt), check if VNIZK(πα, Z) 6= 1 or PreVf(pkΣ
t ,m

′, A, σ̂′t) 6=
1. If this is the case, then simulate Pr aborting. Otherwise,
randomize the puzzle (Z′, β) ← PRand(pp, Z), store Π :=
(β, (pkΣ

t , pk
Σ
r ),m′, (σ̂′t, σ

′
r)), Z := (A, cα) and Z′ := (A′, c′α),

and send Z′ to Ps.

Case Pt is honest and Pr is corrupted

Upon Pr sending (promise−req, ((tid, σ′tid), σ′r)) to Pt, proceed as
follows:



- If tid ∈ T or Vf(pkΣ̃
t , tid, σ

′
tid) 6= 1, then simulate Pt aborting.

Otherwise, if Pt sends (promise−res,>) to FA2L, then add
tid into T , generate new statement/witness pair (A,α) ←
GenR(1λ), generate a new puzzle using α as the solution and
prove its correctness,

Z ← PGen(pp, α),

πα ← PNIZK({∃α | PSolve(td, Z) = α}, α),

pre-sign the message (transaction) σ̂′t ← PreSig(skΣ
t ,m

′, A), and
send (promise, (Z := (A, cα), πα, σ̂

′
t)) to Ps. Else stop.

Simulator for puzzle solver

Case Ps is honest and Pt is corrupted
Upon Pr sending (PuzzleSolver, Pr, pid) to FA2L, proceed as

follows:
- Extract Z′ := (A′, c′α) that was previously stored, randomize the

puzzle (Z′′, τ) ← PRand(pp, Z′), such that Z′′ := (A′′, c′′α),
pre-sign the message (transaction), σ̂s ← PreSig(skΣ

s ,m,A
′′).

Send (solve−req, (Z′′, σ̂s)) to Pt.
- Upon (solve, σs) from A (on behalf of Pt), extract the witness,
α′′ ← Ext(σs, σ̂s, A

′′), and if α′′ = ⊥, then simulate Ps
aborting. Otherwise, compute α′ ← α′′ · τ−1 and send α′ to
Pr .

Case Pt is honest and Ps is corrupted

Upon Ps sending (solve−req, (Z′′, σ̂s)) to Pt, proceed as follows:
- Solve the puzzle, adapt the input pre-signature, and sign the

message (transaction),

α′′ := PSolve(td, Z′′)

σs := Adapt(σ̂s, α
′′),

σt ← Sig(skΣ
t ,m).

If Vf(pkΣ
s ,m, σs) 6= 1, then simulate Pt aborting. Otherwise, if

Pt sends (solve−res,>) to FA2L, then send σs to Ps. Else stop.

Next, we proceed to proving the indistinguishability of the
neighboring experiments for the environment E .

Lemma 1. For all PPT distinguishers E it holds that

EXECH0,A,E ≈ EXECH1,A,E .

Proof. The proof follows directly from the security of the
commitment scheme COM.

Lemma 2. For all PPT distinguishers E it holds that

EXECH1,A,E ≈ EXECH2,A,E .

Proof. The proof follows directly from the security of the non-
interactive zero-knowledge scheme NIZK.

Lemma 3. For all PPT distinguishers E it holds that

EXECH2,A,E ≈ EXECH3,A,E .

Proof. We note that the two hybrids differ if the experiment
outputs fail, hence, it suffices to bound the probability that such
an event occurs. Observe that the event fail happens in the case
that an honest tumbler Pt does not abort the puzzle promise
protocol when executed with a token not obtained from the
registration protocol. We can bound the probability that this

happens by a reduction against the existential unforgeability of
the randomizable signature scheme Σ̃. Assume towards contra-
diction that Pr[fail | H2] ≥ 1

poly(λ) , then we can construct the
following reduction. The reduction receives as input a public
key pk, and samples an index j ∈ [1, q], where q ∈ poly(λ)
is a bound on the total number of interactions. The reduction
sets the public key pkΣ̃

t generated in the j-th interaction to the
challenge pk. All calls to the signing algorithm are redirected
to the signing oracle. If the registration procedure is called,
then the reduction aborts. If the event fail happens, then the
reductions returns the corresponding (tid∗, σ∗tid), otherwise it
aborts.

The reduction is clearly efficient, and whenever j is guessed
correctly, the reduction does not abort. Since fail happens
it means that the registration protocol is not executed, and
puzzle promise protocol is called with (tid∗, σ∗tid) as input,
and furthermore, we have that Vf(pkΣ

t , tid
∗, σ∗tid) = 1 and

tid∗ 6∈ T , which implies that Pt does not abort the execution
of the puzzle promise. As the size of T is poly(λ) bounded
and the token space is Zq (for a prime q at least λ bits), we
have that Pr[tid∗ 6∈ T | tid∗←$Zq] = 1 − |T |

|Zq| , which is
overwhelming. However, as every message (token identifier)
uniquely identifies a session, we have that (tid∗, σ∗tid) is a
valid forgery. By assumption this happens with probability
at least 1

q·poly(λ) , which is a contradiction and proves that
Pr[fail | H2] ≤ negl(λ).

Lemma 4. For all PPT distinguishers E it holds that

EXECH3,A,E ≈ EXECH4,A,E .

Proof. Let fail be the event that triggers an abort in H4 but
not in H3. In the following we are going to show that the
probability that such an event happens can be bounded by a
negligible function in the security parameter. Assume towards
contradiction that Pr[fail | H3] ≥ 1

poly(λ) . To show that the
the probability of fail happening in H3 cannot be inverse
polynomial we need to reduce it to the security of the RP
scheme, hardness of the relation R and unforgeability of the
adaptor signature scheme ΞR,Σ. In Section V-B we already
proved the security of our RP construction, which relied on the
indistinguihsability of the homomorphic encryption scheme Ψ
and hardness of DLOG, which also corresponds to our hard
relation R. Hence, we know that the adversary’s advantage
in breaking the security of the RP is negl(λ). Moreover, the
security of RP and the unforgeability of the adaptor signature
also implies the hardness of the relation R, therefore, all that
remains for us is to show that the probability of fail happening
in H3 cannot be inverse polynomial via a reduction to the
unforgeability of the adaptor signature scheme ΞR,Σ. The
reduction receives as input a public key pk, pre-signature σ̂
and a statement Y , and samples an index j ∈ [1, q], where
q ∈ poly(λ) is a bound on the total number of interactions.
The reduction replaces σ̂′t with σ̂ and A with Y in the puzzle
promise, and sets the public key pkΣ

t generated in the j-th
interaction to pk. All calls to the pre-signing and signing
algorithm are redirected to the pre-signing and signing oracles,



respectively. If the puzzle solver procedure is called, then the
reduction aborts. If the event fail happens, then the reduction
returns the corresponding σ∗ := (σ∗t , σ

∗
r ), otherwise it aborts.

The reduction is clearly efficient, and whenever j is guessed
correctly, the reduction does not abort. Since fail happens we
have that Verify(Π, σ∗) = 1 and the puzzle solver protocol
is not executed. Recall that Pr is corrupted, and hence, σ∗r is
computed honestly with skΣ

r as in the protocol, which implies
that σr = σ∗r . Therefore, what remains to show is that σ∗t is
a valid forgery under pkΣ

t , which follows from the fact that
every message uniquely identifies a session (so the message
is not queried before). However, by assumption this happens
with probability at least 1

q·poly(λ) , which is a contradiction and
proves that Pr[fail | H∗3] ≤ negl(λ).

Lemma 5. For all PPT distinguishers E it holds that

EXECH4,A,E ≈ EXECH5,A,E .

Proof. Let fail be the event that triggers an abort in H5 but not
inH4. We note that such an event can happen in two scenarios.
First, if a corrupted Pt comes up with a pre-signature σ̂′t during
the puzzle promise protocol, which succeeds in pre-verification
under the key pkΣ

t , but then adapting this pre-signature inside
Open produces an invalid signature. Second, if a corrupted
Pt produces a valid signature σs during the puzzle solver
protocol, which when extracted outputs an invalid witness.
However, if the former happens, then we have an adversary
against the pre-signature adaptability, and if the latter happens,
then we have an adversary against the witness extractability
of the adaptor signature scheme ΞR,Σ. In the following we
are going to show that the probability that such an event
happens can be bounded by a negligible function in the
security parameter. Assume towards contradiction that Pr[fail |
H5] ≥ 1

poly(λ) , and consider the following intermediate hybrid.
• Hybrid H∗4: The pre-signature in the puzzle promise

protocol is set to σ̂′t←$ {0, 1}∗, such that pre-verification
of σ̂′t succeeds under the public key pkΣ

t .
By the pre-signature adaptability property of the adaptor

signature scheme ΞR,Σ we have that

Pr[fail | H∗4] = Pr[fail | H4].

At this point all that remains is to show that the proba-
bility of fail happening in H∗4 cannot be inverse polynomial.
This is done via the following reduction against the witness
extractability of the adaptor signature scheme ΞR,Σ. Assume
towards contradiction that Pr[fail | H∗4] ≥ 1

poly(λ) , then we can
construct the following reduction. The reduction receives as
input a public key pk and a pre-signature σ̂. It samples an index
j ∈ [1, q], where q ∈ poly(λ) is bound on the total number
of interactions. The reduction replaces the pre-signature σ̂s
from the puzzle solver protocol with σ̂ and sets the public key
pkΣ
s generated in the j-th interaction to pk. All the calls to

the pre-signing and signing algorithms are redirected to the
pre-signing and signing oracles, respectively. If the event fail
happens, then the reductions returns the signature σs of Ps,
and otherwise it aborts.

The reduction is clearly efficient, and whenever j
is guessed correctly, the reduction does not abort.
Since fail happens we have that no party aborted,
but Verify(Π,Open(Π, α′)) 6= 1. Recall that the open
algorithm parses Π as (β, (pkΣ

t , pk
Σ
r ),m′, (σ̂′t, σ

′
r)), computes

σ′t := Adapt(σ̂′t, α), for α = α′ · β−1, and returns
σ := (σ′t, σ

′
r). Since Pr is honest we have that σr is honestly

generated and its verification succeeds. Hence, it remains to
show that the computed σ′t is invalid. From the intermediate
hybrid H∗4 and the pre-siganture adaptability property of
the adaptor signature scheme ΞR,Σ, we know that the adapt
algorithm works as expected. This implies that the only way
we can have an invalid σ′t is if the computed α is not a valid
witness the statement A. We have that α = α′′ · τ−1 · β−1,
and since Ps and Pr are honest, this implies that the extracted
α′′ is invalid (i.e., is not a witness of A′′). Hence, σt is
a valid signature that does not reveal a witness for A′′.
However, by assumption this happens with probability at
least 1

q·poly(λ) , which is a contradiction and proves that
Pr[fail | H∗4] ≤ negl(λ).

Lemma 6. For all PPT distinguishers E it holds that

EXECH5,A,E ≈ EXECFA2L,S,E .

Proof. The two experiments are identical, and the change here
is only syntactical. Hence, indistinguishability follows.

This concludes the proof of Theorem 2.

3) Security Analysis of PCH: Here we prove the following
theorem about our PCH construction, which was previously
stated in Section VII

Theorem 3. The protocol in Fig. 6, UC-realizes FPCH in the
(FGDC,FGC,Fclock,FA2L)-hybrid model.
Proof. The proof consists of the observation that the ideal
functionality FA2L enforces authenticity, atomicity and unlink-
ability properties of a PCH (that are defined in Section II-B
and discussed in Appendix C3). Authenticity guarantees that
only payments that were previously backed up by some locked
coins are processed. Atomicity guarantees that either all the
balances are updated or none of them, which ensures that
no party loses or gains more than it should. Both of these
properties are satisfied by FA2L as was proven in Appendix F2.
Furthermore, as was discussed in Appendix C2, FA2L also
satisfies the unlinkability property, hence, the same argument
for unlinkability applies here too, with the exception of the
operations of FPCH that are outside FA2L. However, we note
that the only information that is sent outside of FA2L consists
of amounts and timeouts, and since we use constant amounts
along with synchronized phases and epochs, this information
by itself does not break our unlinkability notion. Moreover,
here the job of the simulator S consists of interacting with
FA2L and FGC ideal functionalities on behalf of FPCH, which
is trivial to realize.



G. Threshold Variants

We present here variants of our construction that are based
on 2-of-2 threshold signatures. Hence, at the end of the
protocols the parties obtain a single signature. We note that
our registration protocol does not depend on the underlying
signature scheme used, therefore, it remains unchanged from
Fig. 5.

1) Schnorr-based Construction: Let G be an elliptic curve
group of prime order q with a generator g, and let H :
{0, 1}∗ → Zq be a collision resistant hash function. Addition-
ally, let COM and NIZK and be a commitment scheme and
a non-interactive zero-knowledge scheme, respectively. The
Schnorr-based puzzle promise and puzzle solver protocols are
shown in Fig. 9 and Fig. 10, respectively.

The construction requires that the parties have generated
shared Schnorr public keys (i.e., pktr between Pt and Pr to
be used during puzzle promise, and pkst between Ps and Pt
to be used during puzzle solver). This shared key generation
can be done as explained in [36].

The puzzle promise protocol is run between the tumbler
Pt and the receiver Pr as before. They initially agree on a
message encoding a transaction that transfers coins from Pt
to Pr. Additionally, Pt chooses a secret value α, generates the
puzzle Z using α and sends it to Pr (lines 5-11 in Fig. 9).
Here we require a zero-knowledge proof (denoted by πα in the
puzzle promise protocol) proving that the puzzle has a correct
solution (i.e., ciphertext cα encrypts the discrete logarithm of
A for our randomizable puzzle construction from Section V-B)
(line 8 in Fig. 9). If we do not have such a proof, then Pt
can perform the following attack to link a potential honest
payer and payee. At a particular epoch, Pt chooses a payee
P ∗r it wants to attack, and when performing the puzzle promise
protocol with this party it replaces the value A from the puzzle
Z with a random group element. Then, during the puzzle
solver protocol, when a payer P ∗s performs the protocol with
Pt, the check A′′ = gα

′′
(line 12 in Fig. 10) will fail, and

P ∗t will cause an abort. Although, in this case (due to our
atomicity property) no payment will go through, Pt can still
link a payee P ∗r of its choice with its corresponding potential
payer P ∗s in a given epoch.

Next, the parties execute a coin tossing protocol to agree
on a randomness R′ = k′1 + k′2 + α, where α is unknown to
Pr. The randomness here is composed additively due to the
linear structure of Schnorr. The randomness R′ is computed
by parties exchanging gk

′
1 and gk

′
2 , and additionally making

use of the value A. The computation of R′ together with the
corresponding consistency proof is piggybacked in the coin
tossing (lines 5-13 in Fig. 9). At this point, Pt computes its
side of the two-party Schnorr signature, but does not include
the secret α into the signature (line 14 in Fig. 9). Now,
Pr is able to validate this partial signature that it receives
from Pt, and also to compute an “almost valid” signature by
performing its part of the two-party signature. This means that
Pr computes a tuple (e′, s′ := k′1 + k′2 − e′ · (x′1 + x′2)), and
that the complete signature is of the form (e′, s′ + α) (lines

18-21 in Fig. 9). However, Pr does not have α, so it cannot
complete the signature. Nevertheless, Pr receives the puzzle
Z := (A, cα) from Pt at the beginning of the puzzle promise
protocol, and at the end of the protocol Pr randomizes Z
as (Z ′, β) ← PRand(pp, Z). The puzzle promise protocol
finishes with Pr sending these randomized puzzle Z ′ to Ps
(lines 25 and 27 in Fig. 9).

The puzzle solver protocol is executed between the sender
Ps and the tumbler Pt. At the beginning of the protocol, Ps
randomizes the puzzle Z ′ it received from Pr, as (Z ′′, τ) ←
PRand(pp, Z ′) (line 8 in Fig. 10). Once this is done, Ps and Pt
perform a coin tossing protocol similar to the one performed
between Pr and Pt in the puzzle promise protocol, but
additionally Ps sends the randomized puzzle Z ′′ to Pt (lines
2-9 in Fig. 10). At this point, Pt solves the randomized puzzle
Z ′′ using its trapdoor td to obtain the value α′′ := α·β ·τ (line
11 in Fig. 10). The rest of the protocol continues similar to the
puzzle promise protocol, where Pt and Ps compute a common
randomness, and then perform a two-party Schnorr signature.
However, this time Pt incorporates the decrypted value α′′ as
part of the randomness. After the two-party Schnorr signature
completes and Pt publishes it (allowing Pt to receive the
payment from Ps), Ps is able to extract the value α′′ from
the published signature (lines 25-26 in Fig. 10). It removes
her part of the randomization from α′′ as α′ ← α′′ · τ−1,
and sends this value to Pr (lines 27-28 in Fig. 10), who can
also remove its part of the randomization and obtain the initial
α← α′ ·β−1. Once Pr obtains α, it can complete the “almost
valid” signature that it computed at the end of the puzzle
promise protocol, as seen in Fig. 11, which allows it to claim
the coins that were promised by Pt.

2) ECDSA-based Construction: The ECDSA signature
does not have a linear structure as Schnorr, which makes the
design of our protocol more challenging.

Let G be an elliptic curve group of order q with a generator
g, and let H : {0, 1}∗ → Zq be a collision resistant hash
function. Additionally, let COM,NIZK, and Ψ be a commit-
ment scheme, a non-interactive zero-knowledge scheme, and a
homomorphic encryption scheme, respectively. The ECDSA-
based puzzle promise and puzzle solver protocols are shown
in Fig. 13 and Fig. 14, respectively.

Our ECDSA-based instantiation shares similar ideas with
our Schnorr-based instantiation. The parties again need to have
a shared public keys. However, in order to compute two-party
ECDSA signature (as described in [15], [34]), one of the
parties need to have in an encrypted form the secret key of
the other party. For example, during the puzzle solver protocol
we assume that the tumbler Pt has as input a ciphertext cskΣ

s
,

which is an encryption of the secret key skΣ
s of the sender Ps

and that forms the part of the joint public key pkΣ
st computed

between Ps and Pt.
The puzzle promise protocol runs similar to the Schnorr-

based puzzle promise protocol, except that the randomness
is composed multiplicatively due to the structure of ECDSA.
More precisely, the parties agree on a randomness R′ = k′1 ·k′2 ·
α, where α is unknown to Pr (lines 5-14 in Fig. 13). Once the



Public parameters: group description (G, g, q), message m′

1 : PuzzlePromisePt((sk
Σ
t , pk

Σ
tr), (pp, td), pkΣ̃

t ) PuzzlePromisePr ((skΣ
r , pk

Σ
tr), (tid, σ

′
tid))

2 : (tid, σ′tid)

3 : If tid ∈ T ∨ Vf(pkΣ̃
t , tid, σ

′
tid) 6= 1 then abort

4 : Else add tid into T
5 : α, k′2 ←$Zq
6 : R′2 ← gk

′
2 ; Z := (A, cα)← PGen(pp, α)

7 : πα ← PNIZK({∃α | PSolve(td, Z) = α}, α)

8 : π′2 ← PNIZK({∃k′2 | R′2 = gk
′
2}, k′2)

9 : (com, decom)← PCOM((R′2, π
′
2))

10 : com, Z := (A, cα), πα

11 : If VNIZK(πα, Z) 6= 1 then abort

12 : k′1 ←$Zq;R′1 ← gk
′
1

13 : π′1 ← PNIZK({∃k′1 | R′1 = gk
′
1}, k′1)

14 : R′1, π
′
1

15 : If VNIZK(π′1, R
′
1) 6= 1 then abort

16 : R′ ← R′1 ·R′2 ·A; e′ := H(R′‖pkΣ
tr‖m

′)

17 : s′2 ← k′2 − skΣ
t · e

′ mod q

18 : (decom, R′2, π
′
2), s′2

19 : If VCOM(com, decom, (R′2, π
′
2)) 6= 1 then abort

20 : If VNIZK(π′2, R
′
2) 6= 1 then abort

21 : R′ ← R′1 ·R′2 ·A; e′ := H(R′‖pkΣ
tr‖m

′)

22 : If gs
′
2 6= R′2 · (Q′/gsk

Σ
r )−e

′
then abort

23 : s′1 ← k′1 − skΣ
r · e

′ mod q

24 : s′ ← s′1 + s′2 mod q

25 : (Z′, β)← PRand(pp, Z)

26 : s′

27 : Send Z′ := (A′, c′α) to Ps
28 : If gs

′
6= R′1 ·R′2 · (pkΣ

tr)
−e′ then abort Set Π := (β, (pkΣ

tr,m
′, σ′ := (R′, s′)))

29 : return σ := (R′, s′ + α) return (Π, (Z,Z′))

Fig. 9: Puzzle promise protocol of Schnorr-based construction. Blue parts are related to the griefing protection (see Section VI-B)

randomness is computed, Pt performs its side of the two-party
ECDSA signature using cΣtr (the encryption of skΣ

r ) and the
homomorphic properties of CL encryption scheme. However,
Pt does not embed the inverse of α into the signature (lines
19-22 in Fig. 13). Now, Pr is able to compute an “almost
valid” signature by decrypting the ciphertext that it received
from Pt and performing his part of the signature. This means
that Pr computes a tuple (r′, s′ :=

r′·x′1·x
′
2+H(m′)
k′1·k′2

), and that
the complete signature is of the form (r′, s′ · α−1) (lines 27-
30 in Fig. 13). Since Pr does not have α, he cannot complete
the signature. Exactly as in the Schnorr-based construction, Pr
receives a randomizable puzzle Z from Pt at the beginning of
the puzzle promise protocol, and at the end of the protocol Pr
randomizes it to obtain the Z ′. The puzzle promise protocol
finishes with Pr sending the randomized puzzle Z ′ to Ps (lines

25-26 and 28 in Fig. 13).
The puzzle solver protocol is similar to Schnorr-based

puzzle solver protocol, with the sole difference that Ps and
Pt compute a two-party ECDSA signature instead of a two-
party Schnorr signature.



Public parameters: group description (G, g, q), message m

1 : PuzzleSolverPs((skΣ
s , pk

Σ
st), pp, Z

′ := (A′, c′α)) PuzzleSolverPt((sk
Σ
t , pk

Σ
st), (pp, td))

2 : k2 ←$Zq;R2 ← gk2

3 : π2 ← PNIZK({∃k2 | R2 = gk2}, k2)
4 : (com, decom)← PCOM((R2, π2))

5 : com

6 : k1 ←$Zq;R1 ← gk1

7 : π1 ← PNIZK({∃k1 | R1 = gk1}, k1)
8 : (Z′′ := (A′′, c′′α), τ)← PRand(pp, Z′)

9 : Z′′ := (A′′, c′′α), R1, π1

10 : If VNIZK(π1, R1) 6= 1 then abort
11 : α′′ := PSolve(td, Z′′)

12 : If A′′ 6= gα
′′

then abort
13 : R← R1 ·R2 ·A′′; e := H(R‖pkΣ

st‖m)

14 : s2 ← k2 − skΣ
t · e mod q

15 : (decom, R2, π2), s2

16 : If VCOM(com, decom, (R2, π2)) 6= 1 then abort
17 : If VNIZK(π2, R2) 6= 1 then abort
18 : R← R1 ·R2 ·A′′; e := H(R‖pkΣ

st‖m)

19 : If gs2 6= R2 · (pkΣ
st/g

skΣt )−e then abort
20 : s1 ← k1 − skΣ

s · e mod q
21 : s̄← s1 + s2 mod q

22 : s̄

23 : s← s̄+ α′′

24 : If verification of (e, s) fails then abort
25 : Else publish signature (e, s)

26 : α′′ ← s− s̄
27 : α′ ← α′′ · τ−1

28 : Send α′ to Pr
29 : return α′ return >

Fig. 10: Puzzle solver protocol of Schnorr-based construction.

Open(Π, α′)

Parse Π as (β, (pkΣ
tr,m

′, σ′ := (R′, s′)))
Set α← α′ · β−1

Set s← s′ + α
return (R′, s)

Verify(Π, σ)

Parse Π as (β, (pkΣ
tr,m

′, σ′))

return VfSchnorr(pk
Σ
tr,m

′, σ)

Fig. 11: Open and verify algorithms of Schnorr-based con-
struction.

Open(Π, α′)

Parse Π as (β, (pkΣ
tr,m

′, σ′ := (r′, s′)))
Set α← α′ · β−1

Set s← s′ · α−1

return (r′, s)

Verify(Π, σ)

Parse Π as (β, (pkΣ
tr,m

′, σ′))

return VfECDSA(pkΣ
tr,m

′, σ)

Fig. 12: Open and verify algorithms of ECDSA-based con-
struction.



Public parameters: group description (G, g, q), message m′

1 : PuzzlePromisePt((sk
Σ
t , pk

Σ
tr), (pp, td), pkΣ̃

t , pk
Ψ
r , cskΣr ) PuzzlePromisePr ((skΣ

r , pk
Σ
tr), (sk

Ψ
r , pk

Ψ
r ), (tid, σ′tid))

2 : (tid, σ′tid)

3 : If tid ∈ T ∨ Vf(pkΣ̃
t , tid, σ

′
tid) 6= 1 then abort

4 : Else add tid into T
5 : α, k′2 ←$Zq
6 : A← gα;R′2 ← gk

′
2

7 : Z := (A, cα)← PGen(pp, α)
8 : πα ← PNIZK({∃α | PSolve(td, Z) = α}, α)

9 : π′2 ← PNIZK({∃k′2 | R′2 = gk
′
2}, k′2)

10 : (com, decom)← PCOM((R′2, π
′
2))

11 : com, Z := (A, cα), πα

12 : If VNIZK(πα, (cα, A)) 6= 1 then abort

13 : k′1 ← Zq;R′1 ← gk
′
1

14 : π′1 ← PNIZK({∃k′1 | R′1 = gk
′
1}, k′1)

15 : R′1, π
′
1

16 : If VNIZK(π′1, R
′
1) 6= 1 then abort

17 : R′c ← (R′2)α

18 : π′a ← PNIZK({∃α | A = gα ∧Rc = (R′2)α}, α)

19 : R′ ← (R′1)k
′
2·α;R′ := (r′x, r

′
y); r′ ← r′x mod q

20 : c1 ← Enc(pkΨ
r , (k

′
2)−1 ·H(m′))

21 : c2 ← (cskΣr )(k′2)−1·r′·skΣ
t

22 : c′ ← c1 · c2

23 : (decom, R′2, π
′
2), c′, R′c, π

′
a

24 : If VCOM(com, decom, (R′2, π
′
2)) 6= 1 then abort

25 : If VNIZK(π′2, R
′
2) 6= 1 then abort

26 : If VNIZK(π′a, (A,R
′
c)) 6= 1 then abort

27 : R′ ← (R′c)
k′1 ;R′ := (r′x, r

′
y); r′ ← r′x mod q

28 : s′2 ← Dec(skΨ
r , c
′)

29 : If (R′2)s
′
2 mod q 6= (pkΣ

tr)
r′ · gH(m′) then abort

30 : s′ ← s′2 · (k′1)−1 mod q

31 : (Z′, β)← PRand(pp, Z)

32 : s′

33 : Send Z′ := (A′, c′α) to Pr
34 : If (R′1)k

′
2·s
′
6= (pkΣ

tr)
r′ · gH(m′) then abort Π := (β, (pkΣ

tr,m
′, σ′ := (r′, s′)))

35 : return σ := (r′, s′ · α−1) return (Π, (Z,Z′))

Fig. 13: Puzzle promise protocol of ECDSA-based construction. Blue parts are related to the griefing protection (see
Section VI-B)



Public parameters: group description (G, g, q), message m

1 : PuzzleSolverPs((skΣ
s , sk

Σ
st), (sk

Ψ
s , pk

Ψ
s ), pp, Z′ := (A′, c′α)) PuzzleSolverPt((sk

Σ
t , sk

Σ
st), (pp, td), pkΨ

s , cskΣs )
2 : k2 ←$Zq;R2 ← gk2

3 : π2 ← PNIZK({∃k2 | R2 = gk2}, k2)
4 : (com, decom)← PCOM((R2, π2))

5 : com

6 : k1 ←$Zq; R1 ← gk1

7 : π1 ← PNIZK({∃k1 | R1 = gk1}, k1)
8 : (Z′′ := (A′′, c′′α), τ)← PRand(pp, Z′)

9 : Z′′ := (A′′, c′′α), R1, π1

10 : If VNIZK(π1, R1) 6= 1 then abort

11 : α′′ ← PSolve(td, Z′′);Rc ← (R2)α
′′

12 : If A′′ 6= gα
′′

then abort

13 : πα′′ ← PNIZK({∃α′′ | A′′ = gα
′′
∧

14 : Rc = (R2)α
′′
}, α′′)

15 : R← (R1)k2·α′′ ;R := (rx, ry); r ← rx mod q

16 : c1 ← Enc(pkΨ
s , (k2)−1 ·H(m))

17 : c2 ← (cskΣs )(k2)−1·r·H(m)

18 : c← c1 · c2

19 : (decom, R2, π2), c, Rc, πα′′

20 : If VCOM(com, decom, (R2, π2)) 6= 1 then abort
21 : If VNIZK(π2, R2) 6= 1 then abort
22 : If VNIZK(πα′′ , (A

′′, Rc)) 6= 1 then abort
23 : R← (Rc)

k1 ;R := (rx, ry); r ← rx mod q

24 : s2 ← Dec(skΨ
s , c)

25 : If (R2)s2 mod q 6= (pkΣ
st)

r · gH(m) then abort
26 : s̄← s2 · (k1)−1 mod q

27 : s̄

28 : s← (α′′)−1 · s̄
29 : If verification of (r, s) fails then abort
30 : Else publish signature (r, s)

31 : α′′ ← (s · (s̄)−1)−1

32 : α′ ← α′′ · τ−1

33 : Send α′ to Pr
34 : return α′ return >

Fig. 14: Puzzle solver protocol of ECDSA-based construction.
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