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Abstract

We draw attention to a gap between theory and usage of nonce-based symmetric encryption,
under which the way the former treats nonces can result in violation of privacy in the latter.
We bridge the gap with a new treatment of nonce-based symmetric encryption that modifies
the syntax (decryption no longer takes a nonce), upgrades the security goal (asking that not
just messages, but also nonces, be hidden) and gives simple, efficient schemes conforming to
the new definitions. We investigate both basic security (holding when nonces are not reused)
and advanced security (misuse resistance, providing best-possible guarantees when nonces are
reused).
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1 Introduction

This paper revisits nonce-based symmetric encryption, raising some concerns, and then addressing
them, via a new syntax, a new framework of security definitions, and schemes that offer both
usability and security benefits.

Background. As the applications and usage of symmetric encryption have evolved and grown, so
has a theory that seeks to support and guide them. A definition of symmetric encryption (as with
any other primitive) involves a syntax and then, for this syntax, definitions of security. In the first
modern treatment [10], the syntax asked the encryption algorithm to be randomized or stateful.
Security for these syntaxes evolved from asking for various forms of privacy [10] to asking for both
privacy and authenticity [13, 11, 32], inaugurating authenticated encryption (AE). The idea that
encryption be a deterministic algorithm taking as additional input a non-repeating quantity called
a nonce seems to originate in [50] and reached its current form with Rogaway [46, 48].

NBE1 and AE1-security. We refer to the syntax of this current form of nonce-based symmetric
encryption [46, 48] as NBE1. An NBE1 scheme SE1 specifies a deterministic encryption algorithm
SE1.Enc that takes the key K, a nonce N , message M and a header (also called associated data)
H to return what we call a core ciphertext C1. Deterministic decryption algorithm SE1.Dec takes
K,N,C1, H to return either a message or ⊥.

Security asks for privacy of M and integrity of both M and H as long as nonces are unique,
meaning not re-used. Rogaway’s formalization [46] asks that an adversary given oracles for en-
cryption (taking nonce, message and header) and decryption (taking nonce, core ciphertext and
header) be unable to distinguish between the case where they perform their prescribed tasks under
a hidden key, and the case where the former returns random strings and the latter returns ⊥, as
long as the adversary does not repeat a nonce across its encryption queries. We will refer to this
as basic AE1-security.

NBE1 providing basic AE1-security has been the goal of recent schemes, standards and proposed
standards, as witnessed by GCM [40, 21] (used in TLS), OCB [50, 47, 34], CAESAR candidates [16]
and RFC 5116 [39]. The security of NBE1, which we revisit, is thus of some applied interest.

The gap. Our concern is a gap between theory and usage that can result in privacy vulnerabilities
in the latter. Recall that the decryption algorithm SE1.Dec, to be run by the receiver, takes as
input not just the key K, core ciphertext C1 and header H, but also the nonce N . The theory
says that how the receiver gets the nonce is “outside of the model” [46] or that it is assumed to
be communicated “out-of-band” [48]. Usage cannot so dismiss it, and must find a way to convey
the nonce to the receiver. The prevailing understanding, reflected in the following quote from
RBBK [50], is that this is a simple matter— if the receiver does not already have the nonce N , just
send it in the clear along with the core ciphertext C1:

The nonce N is needed both to encrypt and to decrypt. Typically it would be communicated,
in the clear, along with the (core) ciphertext.

RFC 5116 is a draft standard for an interface for authenticated encryption [39]. It also considers
it fine to send the nonce in the clear:

... there is no need to coordinate the details of the nonce format between the encrypter and the
decrypter, as long the entire nonce is sent or stored with the ciphertext and is thus available to
the decrypter ... the nonce MAY be stored or transported with the ciphertext ...

To repeat and summarize, the literature and proposed standards suggest transmitting what we call
the “full” ciphertext, consisting of the nonce and the core ciphertext. Yet, as we now explain, this
can be wrong.
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Nonces can compromise privacy. We point out that communicating a nonce in the clear with
the ciphertext can damage, or even destroy, message privacy. One simple example is a nonce N =
F (M) that is a hash —under some public, collision-resistant hash function F— of a low-entropy
message M , meaning one, like a password, which the attacker knows is likely to fall in some small
set or dictionary D. Given a (full) ciphertext C2 = (N,C1) consisting of the core ciphertext C1

= SE1.Enc(K,N,M,H) together with the nonce N = F (M), the attacker can recover M via “For
M ′ ∈ D do: If F (M ′) = N then return M ′.” To take a more extreme case, consider that the nonce
is some part of the message, or even the entire message, in which case the full ciphertext clearly
reveals information about the message.

The concern that (adversary-visible) nonces compromise privacy, once identified, goes much
further. Nonces are effectively meta-data. Even recommended and innocuous-seeming choices like
counters, device identities, disk-sector numbers or packet headers reveal information about the
system and identity of the sender. For example, the claim that basic-AE1-secure NBE1 provides
anonymity —according to [49, Slide 19/40], this is a dividend of the requirement that core cipher-
texts be indistinguishable from random strings— is moot when the nonce includes sender identity.
Yet the latter is not only possible but explicitly recommended in RFC 5116 [39], which says: “When
there are multiple devices performing encryption ... use a nonce format that contains a field that
is distinct for each one of the devices.” As another concrete example, counters are not a good
choice of nonce from a user privacy perspective, as indicated in the ECRYPT-CSA Challenges in
Authenticated Encryption report [5].

The above issues apply to all NBE1 schemes and do not contradict their (often, proven) AE1-
security. They are not excluded by the unique nonce requirement or by asking for misuse resis-
tance [51], arising in particular for the encryption of a single message with a single corresponding
nonce.

A natural critique is that the privacy losses we have illustrated occur only for “pathological”
choices of nonces, and choices made in practice, such as random numbers or counters, are “fine.”
This fails, first, to recognize the definitional gap that allows the “pathological” choices. With regard
to usage, part of the selling point of NBE1 was exactly that any (non-repeating, unique) nonce is
fine, and neither existing formalisms [46] nor existing standards [39] preclude nonce choices of the
“pathological” type. Also, application designers and users cannot, and should not, carry the burden
of deciding which nonces are “pathological” and which are “fine,” a decision that may not be easy.
(And as discussed above, for example, counters may not be fine.) Finally, Section 8 indicates that
poor choices can in fact arise in practice.

Our perspective is that the above issues reflect a gap between the NBE1 formalism and the
privacy provided by NBE1 in usage. Having pointed out this gap, we will also bridge it.

Contributions in brief. The first contribution of this paper is to suggest that the way NBE1
treats nonces can result (as explained above) in compromise of privacy of messages or users. The
second contribution is to address these concerns. We give a modified syntax for nonce-based
encryption, called NBE2, in which decryption does not get the nonce, a corresponding framework of
security definitions called AE2 that guarantee nonce privacy in addition to authenticity and message
privacy, and simple ways to turn NBE1 AE1-secure schemes into NBE2 AE2-secure schemes.

AE2-secure NBE2 obviates application designers and users from the need to worry about privacy
implications of their nonce choices, simplifying design and usage. With AE2-secure NBE2, one can
use any nonce, even a message-dependent one such as a hash of the message, without compromising
privacy of the message. And the nonces themselves are hidden just as well as messages, so user-
identifying information in nonces doesn’t actually identify users.
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Our NBE2 syntax. In an NBE2 scheme SE2, the inputs to the deterministic encryption algorithm
SE2.Enc continue to be key K, nonce N , message M and header H, the output C2 now called a
ciphertext rather than a core ciphertext. The deterministic decryption algorithm SE2.Dec no longer
gets a nonce, taking just key K, ciphertext C2 and header H to return either a message M or ⊥.

Just as an interface, NBE2 already benefits application designers and users, absolving them
of the burden they had, under NBE1, of figuring out and architecting a way to communicate the
nonce from sender to receiver. The NBE2 receiver, in fact, is nonce-oblivious, not needing to care,
or even know, that something called a nonce was used by the sender. By reducing choice (how to
communicate the nonce), NBE2 reduces error and misuse.

We associate to a given NBE1 scheme SE1 the NBE2 scheme SE2 = TN[SE1] that sets the
ciphertext to the nonce plus the core ciphertext: SE2.Enc(K,N,M,H) = (N, SE1.Enc(K,N,M,
H)) and SE2.Dec(K, (N,C1), H) = SE1.Dec(K,N,C1, H). We refer to TN as the Transmit Nonce
transform. This is worth defining because it will allow us, in Section 4, to formalize the above-
discussed usage weaknesses in NBE1, but SE2 = TN[SE1] is certainly not nonce hiding and will
fail to meet the definitions we discuss next.

Our AE2-security framework. Our AE2 game gives the adversary an encryption oracle Enc
(taking nonceN , messageM and headerH to return a ciphertext C2) and decryption oracle Dec (as
per the NBE2 syntax, taking ciphertext C2 and header H but no nonce, to return either a message
M or ⊥). When the challenge bit is b = 1, these oracles reply as per the encryption algorithm
SE2.Enc and decryption algorithm SE2.Dec of the scheme, respectively, using a key chosen by the
game. When the challenge bit is b = 0, oracle Enc returns a ciphertext that is drawn at random
from a space SE2.CS(|N |, |M |, |H|) that is prescribed by the scheme SE2 and that depends only
on the lengths of the nonce, message and header, which guarantees privacy of both the nonce and
message. (This space may be, but unlike for AE1 need not be, the set of all strings of some length,
because NBE2 ciphertexts, unlike NBE1 core ciphertexts, may have some structure.) In the b = 0
case, decryption oracle Dec returns ⊥ on any non-trivial query. The adversary eventually outputs
a guess b′ as to the value of b, and its advantage is 2 Pr[b = b′]− 1.

We say that SE2 is AE2[A]-secure if practical adversaries in the class A have low advantage.
Let Aae2

u-n be the class of unique-nonce adversaries, meaning ones that do not reuse a nonce across
their Enc queries. We refer to AE2[Aae2

u-n]-security as basic AE2-security. As the nonce-hiding
analogue of basic AE1-security, it will be our first and foremost target.

Before moving to schemes, we make two remarks. First that above, for simplicity, we described
our definitions in the single-user setting, but the definitions and results in the body of the paper are
in the multi-user setting. Second, the framework of a single game with different notions captured
via different adversary classes allows us to unify, and compactly present, many variant definitions,
including basic, advanced (misuse resistance), privacy-only and random-nonce security, and in
Section 3 we give such a framework not just for AE2 but also for AE1.

Our transforms. In the presence of a portfolio of efficient AE1-secure NBE1 schemes supported
by proofs of security with good concrete bounds [50, 40, 16, 34, 30, 54, 44, 25, 24, 17, 29], designing
AE2-secure NBE2 schemes from scratch seems a step backwards. Instead we give simple, cheap ways
to transform AE1-secure NBE1 schemes into AE2-secure NBE2 schemes, obtaining a corresponding
portfolio of AE2-secure NBE2 schemes and also allowing implementors to more easily upgrade
deployed AE1-secure NBE1 to AE2-secure NBE2.

Since NBE2 schemes effectively take care of nonce communication, we expect ciphertext length
to grow by at least SE1.nl, the nonce length of the base NBE1 scheme. The ciphertext overhead is
defined as the difference between the ciphertext length and the sum of plaintext length and SE1.nl.
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NBE2 scheme
AE2-security provided

Basic Advanced

HN1[SE1,F] Yes Yes

HN2[SE1, `,E, Spl] Yes Yes if ` ≥ 128

HN3[SE1,F] Yes No

HN4[SE1, `,F] Yes

HN5[TE, `, `t] Yes

Figure 1: Security attributes of the NBE2 schemes defined by our Hide-Nonce (HN) transforms.
In the table SE1 denotes an NBE1 scheme, F a PRF, E a block cipher, and TE a variable-length
tweakable block cipher. Spl is a splitting function, and `, `t are non-negative integer parameters.
A blank entry in the Basic column means the transform is not for that purpose. Note that HN1’s
advanced security only holds when ciphertexts have sufficiently large (e.g. 128 bits) minimum
length, and HN2’s depends on the length of the stolen ciphertext.

All our transforms have zero ciphertext overhead. One challenge in achieving this is that nonce
lengths like SE1.nl = 96 are widely-used but short of the block length 128 of many blockciphers,
precluding inclusion of an extra blockcipher output in the ciphertext. With regard to computational
overhead, the challenge is that it should be constant, meaning independent of the lengths of the
message and header for encryption, and of the ciphertext and header for decryption. All our
transforms have constant computational overhead. Note that all overhead is in comparison to
transmitting the nonce in the clear (i.e. the TN transform).

The following discussion first considers achieving basic security and then advanced security.
Security attributes of our corresponding “Hide-Nonce (HN)” transforms are summarized in Figure 1.

Basic HN transforms. We prove that all the following transforms turn a basic-AE1-secure
NBE1 scheme SE1 into a basic-AE2-secure NBE2 scheme SE2. (Recall basic means nonces are
unique, never reused across encryption queries.) Pseudocode and pictures for the transforms are in
Figure 4.

Having first produced a core ciphertext C1 under SE1, the idea of scheme SE2 = HN1[SE1,F] is
to use C1 itself as a nonce to encrypt the actual nonce in counter mode under PRF F. A drawback
is that this requires the minimal core-ciphertext length SE1.mccl to be non-trivial, like at least 128,
which is not true for all SE1. Scheme SE2 = HN2[SE1, `,E, Spl] turns to the perhaps more obvious
idea of enciphering the nonce with a PRF-secure blockcipher E. The difficulty is the typicality of
96-bit nonces and 128-bit blockciphers, under which näıve enciphering would add a 32-bit ciphertext
overhead, which we resolve by ciphertext stealing, ` representing the number of stolen bits (32 in
our example) and Spl an ability to choose how the splitting is done. Scheme SE2 = HN3[SE1,F]
uses the result of PRF F on the actual nonce as a derived nonce under which to run SE1. This is
similar to SIV [51, 44]; the difference is to achieve AE2 rather than AE1 and to apply the PRF only
to the nonce (rather than nonce, message and header) to have constant computational overhead.

Advanced HN transforms. Unique nonces are easier to mandate in theory than assure in prac-
tice, where nonces may repeat due to errors, system resets, or replication. In that case (returning
here to NBE1), not only does basic AE1-security give no security guarantees, but also damaging
attacks are possible for schemes including CCM and GCM [31, 53]. Rogaway and Shrimpton’s
misuse resistant NBE1, which we refer to as advanced-AE1-secure NBE1, minimizes the damage
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from reused nonces, retaining AE1-security as long as no nonce, message, header triple is re-
encrypted [51]. This still being for the NBE1 syntax, however, the concerns with adversary-visible
nonces compromising message and user privacy are unchanged. We seek the NBE2 analogue, corre-
spondingly defining and achieving advanced-AE2-secure NBE2 to provide protection against reused
nonces while also hiding them.

With our framework, the definition is easy, calling for no new games; the goal is simply
AE2[Aae2

u-nmh]-security where Aae2
u-nmh is the class of unique-nonce, message, header adversaries,

meaning ones that do not repeat a query to their Enc oracle. The presence of well-analyzed
advanced-AE1-secure NBE1 schemes [51, 27, 25, 24, 17] again motivates transforms rather than
from-scratch designs.

We start by revisiting our basic-security preserving transforms, asking whether they also pre-
serve advanced security, meaning, if the starting NBE1 scheme is advanced-AE1-secure, is the
transformed NBE2 scheme advanced-AE2-secure? We show that for HN1, the answer is YES. We
then show that it is YES also for HN2 as long as the amount ` of stolen ciphertext is large enough.
(In practical terms, at least 128.) For HN3, the answer is NO.

That HN1 and HN2 have these properties is good, but we would like to do better. (Limitations
of the above are that HN1 puts a lower bound on SE1.mccl that is not always met, and setting `
= 128 in HN2 with typical 96-bit nonces will call for a 224-bit blockcipher.) We offer HN4 and
HN5, showing they provide advanced AE2-security. Pseudocode and pictures are in Figure 5.

Scheme SE2 = HN4[SE1, `,F] uses the result of PRF F on the actual nonce, message and header
as a derived nonce for SE1. The difference with SIV [51, 44] is that what is encrypted under SE1
includes the actual nonce in order to hide it. The computational overhead stays constant because
SE1 need provide only privacy, which it can do in one pass. Scheme SE2 = HN5[TE, `, `t] is differ-
ent, using the encode-then-encipher paradigm [13] to set the ciphertext to an enciphering, under
an arbitrary-input-length, tweakable cipher TE, of the nonce, message and `t-bits of redundancy,
with the header as tweak. Instantiating TE via the very fast AEZ tweakable block cipher [27] yields
correspondingly fast, advanced-AE2-secure NBE2.

Dedicated transforms. While our generic transforms are already able, with low overhead,
to immunize GCM [40, 21] —by this we mean turn this basic-AE1-secure NBE1 scheme into a
basic-AE2-secure NBE2 scheme— we ask if a dedicated transform —ones that exploit the structure
of GCM— can do even better. The goal is not just even lower overhead, but minimization of
software changes. We show that simply pre-pending a block of 0s to the message and then GCM-
encrypting provides basic-AE2-security, so neither the key nor the encryption software need be
changed. Decryption software however does need a change, and, unlike with our generic transforms,
we incur 32 bits of ciphertext overhead.

Related Work. As a technical step in achieving security against release of unverified plain-
text (RUP), Ashur, Dunkelman and Luykx (ADL) [4] use a syntax identical to NBE2, and their
techniques bear some similarities with ours that we discuss further in Section 7.

The CAESAR competition’s call for authenticated encryption schemes describes a syntax where
encryption receives, in place of a nonce, a public message number (PMN) and a secret message
number (SMN), decryption taking only the former [18]. The formalization of Namprempre, Rog-
away and Shrimpton (NRS) [43] dubs this “AE5.” In this light, an NBE1 scheme is a AE5 scheme
without a SMN and an NBE2 scheme is an AE5 scheme without a PMN.

Possible future work. The concerns we have raised with regard to a gap between theory and
usage, and privacy vulnerabilities created by adversary-visible nonces in the latter, arise fundamen-
tally from the choice of syntax represented by NBE1, and as such hold also in other contexts where
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an NBE1-style syntax is used. This includes AE secure under release of unverified plaintext [3],
robust AE [27], online AE [22, 28], committing AE [23, 20], indifferentiable AE [6], leakage-resilient
AE [7] and MiniAE [42]. A direction for future work is to treat these with an NBE2-style syntax
(decryption does not get the nonce) to provide nonce hiding.

While our transforms can be applied to promote the advanced-AE1-secure AES-GCM-SIV
NBE1 scheme [24] to an advanced-AE2-secure NBE2 scheme, the bounds we get are inferior to
those of [17]. Bridging this gap to get advanced-AE2-secure NBE2 with security bounds like [17]
is a direction for future work. Similarly, while we have many ways to turn GCM into a basic-
AE2-secure NBE2 scheme with little overhead, one that matches the bounds of [38, 29] would be
desirable.

2 Preliminaries

Notation and terminology. By ε we denote the empty string. By |Z| we denote the length of
a string Z. If Z is a string then Z[i..j] is bits i through j of Z if 1 ≤ i ≤ j ≤ |Z|, and otherwise
is ε. By x‖y we denote the concatenation of strings x, y. If x, y are equal-length strings then x⊕y
denotes their bitwise xor. If i is an integer in the range 0 ≤ i < 2n then 〈i〉n ∈ {0, 1}n denotes the
representation of i as a string of (exactly) n bits. (For example, 〈3〉4 = 0011.) If S is a finite set,
then |S| denotes it size. We say that a set S is length-closed if, for any x ∈ S it is the case that
{0, 1}|x| ⊆ S. (This will be a requirement for message, header and nonce spaces.) If D,R are sets
and f :D → R is a function then its image is Im(f) = { f(x) : x ∈ D } ⊆ R.

If X is a finite set, we let x←$X denote picking an element of X uniformly at random and
assigning it to x. Algorithms may be randomized unless otherwise indicated. If A is an algorithm,
we let y ← AO1,...(x1, . . . ;ω) denote running A on inputs x1, . . . and coins ω, with oracle access
to O1, . . ., and assigning the output to y. By y←$AO1,...(x1, . . .) we denote picking ω at random
and letting y ← AO1,...(x1, . . . ;ω). We let [AO1,...(x1, . . .)] denote the set of all possible outputs
of A when run on inputs x1, . . . and with oracle access to O1, . . .. An adversary is an algorithm.
Running time is worst case, which for an algorithm with access to oracles means across all possible
replies from the oracles. We use ⊥ (bot) as a special symbol to denote rejection, and it is assumed
to not be in {0, 1}∗.

Games. We use the code-based game-playing framework of BR [14]. A game G (see Fig. 2 for
an example) starts with an optional Initialize procedure, followed by a non-negative number of
additional procedures called oracles, and ends with a Finalize procedure. If Finalize is omitted,
it is understood to be the trivial procedure that simply returns (outputs) its input. Execution
of adversary A with game G consists of running A with oracle access to the game procedures,
with the restrictions that A’s first call must be to Initialize (if present), its last call must be
to Finalize, and it can call these procedures at most once. The output of the execution is the
output of Finalize. By Pr[G(A)] we denote the probability that the execution of game G with
adversary A results in this output being the boolean true. In games, integer variables, set variables
boolean variables and string variables are assumed initialized, respectively, to 0, the empty set ∅,
the boolean false and ⊥.

Multi-user security. There is growing recognition that security should be considered in the
multi-user (mu) setting [8] rather than the traditional single-user (su) one. Our main definitions
are in the mu setting. The games provide the adversary a New oracle, calling which results in a
new user being initialized, with a fresh key. Other oracles are enhanced (relative to the su setting)
to take an additional argument i indicating the user (key). We assume that adversaries do not
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Game Gprf
F

procedure Initialize

b←$ {0, 1}

procedure New

v ← v + 1

Kv←$ {0, 1}F.kl

procedure Fn(i,X)

If (Y[i,X] = ⊥) then

Y0←$ {0, 1}F.ol
Y1 ← F.Ev(Ki, X)

Y[i,X]← Yb
Return Y[i,X]

procedure Finalize(b′)

Return (b = b′)

Game Gstprp
TE

procedure Initialize

b←$ {0, 1}

procedure New

v ← v + 1 ; Kv←$ {0, 1}TE.kl

procedure Fn(i, T,X)

If (Y[i, T,X] = ⊥) then

Y0←$ {0, 1}|X| \ Yi,T ; Y1 ← TE.Ev(Ki, T,X)

Y[i, T,X]← Yb ; X[i, T, Yb]← X

Xi,T ← Xi,T ∪ {X} ; Yi,T ← Yi,T ∪ {Yb}
Return Y[i, T,X]

procedure FnInv(i, T, Y )

If (X[i, T, Y ] = ⊥) then

X0←$ {0, 1}|Y | \ Xi,T ; X1 ← TE.In(Ki, T, Y )

X[i, T, Y ]← Xb ; Y[i, T,Xb]← Y

Xi,T ← Xi,T ∪ {Xb} ; Yi,T ← Yi,T ∪ {Y }
Return X[i, T, Y ]

procedure Finalize(b′)

Return (b = b′)

Figure 2: Left: Games defining multi-user PRF security for function family F. Right: Game
defining multi-user stPRP security for tweakable cipher TE.

make oracle queries to users (also called sessions) they have not initialized.

Function families. A function family F specifies a deterministic evaluation algorithm F.Ev : {0, 1}F.kl×
F.D→ {0, 1}F.ol that takes a key K and input x to return output F.Ev(K,x), where F.kl is the key
length, F.D is the domain and F.ol is the output length. We say that F is invertible if there is an
inversion algorithm F.In : {0, 1}F.kl × {0, 1}F.ol → F.D∪ {⊥} such that for all K ∈ {0, 1}F.kl we have
(1) F.In(K,F.Ev(K,x)) = x for all x ∈ F.D, and (2) F.In(K, y) = ⊥ for all y 6∈ Im(F.Ev(K, ·)). We
say that F is a permutation family if it is invertible and F.D = {0, 1}F.ol. In that case, we also refer
to F as a block cipher and to F.ol as the block length of F, which we may denote F.bl.

PRF security. We define multi-user PRF security [9] for a function family F and adversary A via

the game Gprf
F (A) in Fig. 2. Here b is the challenge bit and Y[·, ·] is a table, all of whose entries are

assumed to initially be ⊥. It is required that any Fn(i,X) query of A satisfies i ≤ v and X ∈ F.D.

The multi-user PRF advantage of adversary A is Advprf
F (A) = 2 Pr[Gprf

F (A)]− 1.

Tweakable Ciphers. A tweakable cipher TE [36, 27] specifies a deterministic evaluation algo-
rithm TE.Ev : {0, 1}TE.kl×TE.TS×{0, 1}∗ → {0, 1}∗ and a deterministic inversion algorithm TE.In :
{0, 1}TE.kl×TE.TS×{0, 1}∗ → {0, 1}∗. Here, TE.kl is the key length and TE.TS is the tweak space.
We require that for all K ∈ {0, 1}TE.kl, T ∈ TE.TS and X ∈ {0, 1}∗ we have |TE.Ev(K,T,X)| =
|X| and TE.In(K,T,TE.Ev(K,T,X)) = X.

stPRP security. We define multi-user stPRP (strong tweakable PRP) security [37] for tweakable
cipher TE and adversary A via the game Gstprp

TE (A) in Fig. 2. In the game, b is the challenge bit and
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X[·, ·, ·], Y[·, ·, ·] are tables whose entries are assumed initialized to ⊥. In this game, the adversary
has access to an evaluation oracle Fn and an inversion oracle FnInv. When b = 0, they sample
without replacement (within each session) from the set of strings of the same length as the input.
If b = 1 they evaluate TE.Ev and TE.In under game-chosen keys. It is required that any Fn(i, T,X)
or FnInv(i, T, Y ) query of A satisfies i ≤ v, T ∈ TE.TS and X,Y ∈ {0, 1}∗. The multi-user stPRP
advantage of adversary A is Advstprp

TE (A) = 2 Pr[Gstprp
TE (A)]− 1.

3 Two frameworks for nonce-based encryption

We give definitions for both AE1-secure NBE1—current nonce-based encryption [50, 46, 48]— and
AE2-secure NBE2—our new nonce-based encryption. In each case there is a single security game,
different variant definitions then being captured by different adversary classes. This allows a unified
and compact treatment.

NBE1. An NBE1 scheme SE1 specifies several algorithms and related quantities, as follows. De-
terministic encryption algorithm SE1.Enc : SE1.KS × SE1.NS × SE1.MS × SE1.HS → {0, 1}∗ takes
a key K in the (finite) key-space SE1.KS, a nonce N in the nonce-space SE1.NS, a message M
in the message space SE1.MS and a header H in the header space SE1.HS to return what we
call a core ciphertext C1. This is a string of length SE1.ccl(|N |, |M |, |H|), where SE1.ccl is the
core-ciphertext length function. SE1 also specifies a deterministic decryption algorithm SE1.Dec :
SE1.KS× SE1.NS× {0, 1}∗ × SE1.HS→ SE1.MS∪ {⊥} that takes key K, nonce N , core ciphertext
C1 and header H to return an output that is either a message M ∈ SE1.MS, or ⊥. It is required
that SE1.NS,SE1.MS, SE1.HS are length-closed sets as defined in Section 2. Most often nonces are
of a fixed length denoted SE1.nl, meaning SE1.NS = {0, 1}SE1.nl. Decryption correctness requires
that SE1.Dec(K,N,SE1.Enc(K,N,M,H), H) = M for all K ∈ SE1.KS, N ∈ SE1.NS, M ∈ SE1.MS
and H ∈ SE1.HS.

AE1 game and advantage. Let SE1 be an NBE1 scheme and A an adversary. We associate to
them the game Gae1

SE1(A) shown on the top left of Fig. 3. (We use the name “AE1” to associate the
game with the NBE1 syntax). The AE1-advantage of adversary A is Advae1

SE1(A) = 2 Pr[Gae1
SE1(A)]−

1. The game is in the multi-user setting, oracle New allowing the adversary to initialize a new
user with a fresh key. It is required that any Enc(i,N,M,H) query of A satisfy 1 ≤ i ≤ v, N
∈ SE1.NS, M ∈ SE1.MS and H ∈ SE1.HS. When the challenge bit b is 1, the encryption oracle
will return a core ciphertext as stipulated by SE1.Enc, using the key for the indicated user i. In
the b = 0 case, Enc will return a random string of length SE1.ccl(|N |, |M |, |H|). The array M is
assumed to initially be ⊥ everywhere, and holds core ciphertexts returned by Enc. It is required
that any Dec(i,N,C1, H) query of A satisfy 1 ≤ i ≤ v, N ∈ SE1.NS and H ∈ SE1.HS. When the
challenge bit b is 1, the decryption oracle will perform decryption as stipulated by SE1.Dec, using
the key for the indicated user i. In the b = 0 case, Dec will return ⊥ on any core ciphertext not
previously returned by the encryption oracle.

AE1 security metrics. AE1-security is clearly not achievable without restrictions on the adver-
sary. For example, if A repeats a query i,N,M,H to Enc, then, when b = 1 it gets back the same
reply both times, while if b = 0 it likely does not, allowing it to determine b with high probability.
We define different classes of adversaries, summarized by the table at the bottom of Figure 3, with
the superscript “x” here being ae1. We say that NBE1 scheme SE1 is AE1[A]-secure if adversaries
in A have low AE1-advantage. The definition is in the multi-user setting, but restricting attention
to adversaries in the class Aae1

1 allows us to recover the single-user setting. Different security no-
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Game Gae1
SE1

procedure Initialize

b←$ {0, 1}

procedure New

v ← v + 1 ; Kv←$ SE1.KS

procedure Enc(i,N,M,H)

If (b = 1) then

C1 ← SE1.Enc(Ki, N,M,H)

Else C1←$ {0, 1}SE1.ccl(|N |,|M |,|H|)
M[i,N,C1, H]←M ; Return C1

procedure Dec(i,N,C1, H)

If (M[i,N,C1, H] 6= ⊥) then

Return M[i,N,C1, H]

If (b = 0) then M ← ⊥
Else M ← SE1.Dec(Ki, N,C1, H)

Return M

procedure Finalize(b′)

Return (b = b′)

Game Gae2
SE2

procedure Initialize

b←$ {0, 1}

procedure New

v ← v + 1 ; Kv←$ SE2.KS

procedure Enc(i,N,M,H)

If (b = 1) then

C2 ← SE2.Enc(Ki, N,M,H)

Else C2←$ SE2.CS(|N |, |M |, |H|)
M[i, C2, H]←M ; Return C2

procedure Dec(i, C2, H)

If (M[i, C2, H] 6= ⊥) then

Return M[i, C2, H]

If (b = 0) then M ← ⊥
Else M ← SE2.Dec(Ki, C2, H)

Return M

procedure Finalize(b′)

Return (b = b′)

Ax
u-n

Unique nonce adversaries — A ∈ Ax
u-n does not repeat a

user-nonce pair i,N across its Enc queries

Ax
u-nmh

Unique nonce-message-header adversaries — A ∈ Ax
u-nmh

does not repeat a query to Enc

Ax
priv Privacy adversaries — A ∈ Ax

priv makes no Dec queries

Ax
1 Single-user adversaries — A ∈ Ax

1 makes only one New query

Ax
r-n

Random-nonce adversaries — The nonces in the Enc queries
of A ∈ Ax

r-n are distributed uniformly and independently at
random

Figure 3: Top Left: Game defining AE1-security of NBE1 scheme SE1. Top Right: Game
defining AE2-security of NBE2 scheme SE2. Bottom: Some classes of adversaries, leading to
different security notions, where x ∈ {ae1, ae2}.

tions in the literature are then captured as AE1[A]-security for different classes of adversaries A,
as we illustrate below:

• Aae1
u-n is the class of adversaries whose Enc queries never repeat a user-nonce pair. AE1[Aae1

u-n ∩
Aae1

1 ]-security is thus AEAD as defined in [46, 48].

• AE1[Aae1
u-n]-security is the extension of this to the multi-user setting as defined in [15], which we

have referred to as basic AE1-security in Section 1.

• Adversaries in Aae1
u-nmh ⊇ Aae1

u-n are allowed to re-use a user-nonce pair across Enc queries as long
as they never repeat an entire query. AE1[Aae1

u-nmh ∩Aae1
1 ]-security is misuse resistant AE [51].

• AE1[Aae1
u-nmh]-security is the extension of this to the multi-user setting [17], which we have

10



referred to as advanced-AE1-security in Section 1.

• Adversaries in Aae1
r-n pick the nonces in their Enc queries uniformly and independently at random

from SE1.NS. (While the intent here is likely understandable, what precisely it means for an ad-
versary to be in this class does actually need a careful definition, which is given in Appendix A.)
No restriction is placed on how the adversary picks nonces in Dec queries. AE1[Aae1

r-n ∩Aae1
1 ]-

security is thus classical randomized AE [11] for schemes which make encryption randomness
public, which is the norm.

• Sometimes, in the unique-nonce setting, we consider schemes that provide only privacy, not
authenticity, and, rather than giving a separate game, can capture this as AE1[Aae1

priv ∩ Aae1
u-n]-

security. AE1[Aae1
priv ∩Aae1

u-n ∩Aae1
1 ]-security is IND$-CPA security, as defined in [46].

Further adversary classes can be defined to capture limited nonce reuse [17] or other resource
restrictions.

The following says that AE1[Aae1
u-n]-security implies AE1[Aae1

r-n ]-security with a degradation in
advantage corresponding to the probability that a nonce repeats for some user. We will refer to
this later. We omit the (obvious) proof.

Proposition 3.1 Let SE1 be an NBE1 scheme. Given adversary Arn ∈ Aae1
r-n making at most u

New queries and at most q Enc queries per user, we construct adversary Aun ∈ Aae1
u-n such that

Advae1
SE1(Arn) ≤ Advae1

SE1(Aun) +
uq(q − 1)

2SE1.nl
.

Adversary Aun preserves the resources of Arn.

Saying Aun preserves the resources of Arn means that the number of queries to all oracles are the
same for both.

We believe our (above) AE1 framework (single game, many adversary classes) is of independent
interest, as a way to unify, better understand and compactly present existing and new notions of
security for NBE1 schemes. We give a similar framework for AE2 next.

NBE2 Syntax. An NBE2 scheme SE2 specifies several algorithms and related quantities, as
follows. Deterministic encryption algorithm SE2.Enc : SE2.KS × SE2.NS × SE2.MS × SE2.HS →
{0, 1}∗, just like for NBE1, takes a key K in the (finite) key-space SE2.KS, a nonce N in the nonce-
space SE2.NS, a message M in the message space SE2.MS and a header H in the header space
SE2.HS to return a ciphertext C2 that is in the ciphertext space SE2.CS(|N |, |M |, |H|). SE2 also
specifies a deterministic decryption algorithm SE2.Dec : SE2.KS×{0, 1}∗×SE2.HS→ SE2.MS∪{⊥}
that takes key K, ciphertext C2 and header H to return an output that is either a message
M ∈ SE2.MS, or ⊥. (Unlike in NBE1, it does not take a nonce input.) It is required that
SE2.NS,SE2.MS,SE2.HS are length-closed sets as defined in Section 2. Most often nonces are of a
fixed length denoted SE2.nl, meaning SE2.NS = {0, 1}SE2.nl. Decryption correctness requires that
SE2.Dec(K,SE2.Enc(K,N,M,H), H) = M for all K ∈ SE2.KS, N ∈ SE2.NS,M ∈ SE2.MS and
H ∈ SE2.HS.

AE2 game and advantage. Let SE2 be an NBE2 scheme and A an adversary. We associate to
them the game Gae2

SE2(A) shown on the top right of Fig. 3. (We use the name “AE2” to associate the
game with the NBE2 syntax). The AE2-advantage of adversary A is Advae2

SE2(A) = 2 Pr[Gae2
SE2(A)]−

1. The game is in the multi-user setting, oracle New allowing the adversary to initialize a new
user with a fresh key. It is required that any Enc(i,N,M,H) query of A satisfy 1 ≤ i ≤ v, N ∈
SE2.NS, M ∈ SE2.MS and H ∈ SE2.HS. When the challenge bit b is 1, the encryption oracle will
return a ciphertext as stipulated by SE2.Enc, using the key for the indicated user i. In the b = 0

11



case, Enc will return a random element of the ciphertext space SE2.CS(|N |, |M |, |H|). The array
M is assumed to initially be ⊥ everywhere, and holds ciphertexts returned by Enc. It is required
that any Dec(i, C2, H) query of A satisfy 1 ≤ i ≤ v and H ∈ SE2.HS. When the challenge bit b
is 1, the decryption oracle will perform decryption as stipulated by SE2.Dec, using the key for the
indicated user i. In the b = 0 case, Dec will return ⊥ on any ciphertext not previously returned
by the encryption oracle.

AE2 security metrics. As with AE1-security, restrictions must be placed on the adversary to
achieve AE2-security, and we use adversary classes to capture restrictions corresponding to different
notions of interest. The classes are summarized by the table at the bottom of Figure 3, with the
superscript “x” now being ae2. The classes and resulting notions are analogous to those for AE1.
Thus, AE2[Aae2

1 ]-security recovers the single-user setting. Aae2
u-n is the class of adversaries whose

Enc queries never repeat a user-nonce pair, so AE2[Aae2
u-n]-security is what we have referred to as

basic AE2-security in Section 1. Adversaries in Aae2
u-nmh ⊇ Aae2

u-n are allowed to re-use a user-nonce
pair across Enc queries as long as they never repeat an entire query, so AE2[Aae2

u-nmh]-security is
what we have referred to as advanced AE2-security in Section 1. Adversaries in Aae2

r-n pick the nonces
in their Enc queries uniformly and independently at random from SE2.NS. AE2[Aae2

priv]-security is
privacy only.

Discussion. The main (small but important) change in the syntax from NBE1 to NBE2 is that
in the latter, the decryption algorithm no longer gets the nonce as input. It is up to encryption to
ensure that the ciphertext contains everything (beyond key and header) needed to decrypt. Nonces
are thus no longer magically communicated, making the interface, and the task of application
designers, simpler and less error-prone, reducing the possibility of loss of privacy from poor choices
of nonces and opening the door to nonce-hiding security as captured by AE2. Another change
is that, rather than a ciphertext length function, an NBE2 scheme specifies a ciphertext space.
The reason is that a ciphertext might have some structure, like being a pair (C,C ′). Ciphertexts
like this cannot be indistinguishable from random strings, but they can be indistinguishable from
pairs of random strings, which is captured by defining the ciphertext space correspondingly. This
follows [23], in whose committing AE definition the same issue arose.

Nonce-Recovering NBE2. A natural subclass of NBE2 schemes are those which recover the
nonce explicitly during decryption. We provide definitions to capture such schemes. We say that an
NBE2 scheme SE2 is nonce-recovering if there exists a deterministic nonce-plus-message recovery
algorithm SE2.NMR such that for any (K,C2, H) ∈ SE2.KS×{0, 1}∗× SE2.HS, if SE2.NMR(K,C2,
H) 6= ⊥ then it parses as a pair (M,N) ∈ SE2.MS×SE2.NS satisfying SE2.Dec(K,C2, H) = M and
SE2.Enc(K,N,M,H) = C2. Most of our transforms from NBE1 scheme to NBE2 schemes yield
nonce-recovering NBE2 schemes.

4 Usage of NBE1: The Transmit-Nonce transform

With AE1-secure NBE1, the nonce is needed for decryption. But how does the decryptor get it?
This is a question about usage not addressed in the formalism. The understanding, however, is
that the nonce can be communicated in the clear, with the core ciphertext. One might argue this
is fine because, in the AE1-formalism, the adversary picks the nonce, so seeing the nonce again in
the ciphertext cannot give the adversary an advantage.

We have discussed in the introduction why this fails to model cases where the nonce is chosen
by the user, and why, at least in general, nonce transmission may violate message privacy. But
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the claim, so far, was informal. The reason was that transmitting the nonce represents a usage of
NBE1 and we had no definitions to capture this. With AE2-secure NBE2, that gap is filled and we
are in a position to formalize the claim of usage insecurity.

Some readers may see this is unnecessary, belaboring an obvious point. Indeed, the intuition
is clear enough. But formalizing it serves also as an introduction to exercising our framework.
We capture the usage in question as an NBE2 scheme SETN = TN[SE1] built from a given NBE1
scheme SE1 by what we call the transmit-nonce transform TN. We detail the (rather obvious)
claim that SETN fails to meet AE2-security, and discuss how it will also fail to meet other, weaker
privacy goals.

The TN Transform. Our TN (Transmit Nonce) transform takes an NBE1 scheme SE1 and
returns the NBE2 scheme SETN = TN[SE1], that, as the name suggests, transmits the nonce
in the clear, meaning the SETN ciphertext is the nonce together with the SE1 core ciphertext.
In more detail, encryption algorithm SETN.Enc(K,N,M,H) lets C1 ← SE1.Enc(K,N,M,H) and
returns ciphertext C2 ← (N,C1). Decryption algorithm SETN.Dec(K,C2, H) parses C2 as a pair
(N,C1) with N ∈ SE1.NS —we write this as (N,C1) ← C2— returning ⊥ if the parsing fails,
and else returning M ← SE1.Dec(K,N,C1, H). NBE2 scheme SETN has the same key space,
message space and header space as SE1, and we define its ciphertext space via SETN.CS(`n, `m, `h)
= SE1.NS×{0, 1}SE1.ccl(`n,`m,`h) for all `n, `m, `h ≥ 0. Usage of SE1 in which the nonce is sent in the
clear (along with the core ciphertext) can now be formally modeled by asking what formal security
notions for NBE2 schemes are met by SETN = TN[SE1].

Insecurity of TN[SE1]. Let SE1 be any NBE1 scheme. It might, like GCM, be AE1[Aae1
u-n]-

secure, or it might even be AE1[Aae1
u-nmh]-secure. Regardless, we claim that NBE2 scheme SETN =

TN[SE1] fails to be AE2[Aae2
priv ∩Aae2

u-n]-secure, meaning fails to provide privacy even for adversaries
that do not reuse a nonce. This is quite obvious, since the adversary can test whether the nonce
in its Enc query matches the one returned in the ciphertext. In detail:

Adversary A

Initialize
Pick some (N,M,H) ∈ SE1.NS× SE1.MS× SE1.HS with |N | ≥ 1
New // Initialize one user
(N∗, C1)←$ Enc(1, N,M,H) // Ciphertext returned is a pair
If (N∗ = N) then b′ ← 1 else b′ ← 0
Finalize(b′)

This adversary has advantage Advae2
SETN

(A) ≥ 1−1/2 = 1/2, so represents a violation of AE2[Aae2
priv∩

Aae2
u-n]-security.

Discussion. The attack above may be difficult to reconcile with SE1 being AE1[Aae1
u-n]-secure, the

question being that, in the AE1 game, the adversary picks the nonce, and thus already knows it,
so why should seeing it again in the ciphertext give the adversary extra information? The answer
is that in usage the adversary does not know the nonce a priori and seeing may provide additional
information. This is not modeled in AE1 but is modeled in AE2. To be clear, the above violation
of AE2 security does not contradict the assumed AE1-security of SE1.

One might (correctly) argue that AE2 is a strong requirement so failing it does not represent a
concerning violation of security, but it is clear that SETN will fail to meet even much weaker notions
of privacy for NBE2 schemes that one could formalize in natural ways, such as message recovery
security or semantic security. (The nonce could be message dependent, in the extreme equal to the
message.) One might also suggest that the losses of privacy occur for pathological choices of nonces,
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and nonce transmission is just fine if the nonce is a random number or counter, to which there are
two responses. (1) The pitch and promise of AE1[Aae1

u-n]-secure NBE1 is that any (non-repeating)
nonce is fine. For example RBBK [50] says “The entity that encrypts chooses a new nonce for every
message with the only restriction that no nonce is used twice,” and RFC 5116 says “Applications
SHOULD use the nonce formation method defined in Section 3.2, and MAY use any other method
that meets the uniqueness requirement.” It is important to know (both to prevent misuse and for
our understanding) that in usage of NBE1, security requires more than just uniqueness of nonces;
one must be concerned with how they are conveyed to the receiver. (2) A counter nonce can lead
to loss of user privacy, for example revealing identity information, that is resolved by moving to
AE2[Aae2

u-n]-secure NBE2, which is nonce hiding.

5 Basic transforms

We have explained that AE2-secure NBE2 offers valuable security and usability benefits over current
encryption. So we now turn to achieving it. We follow the development path of NBE1, first, in this
section, targeting basic AE2-security —no user reuses a nonce, which in our framework corresponds
to adversaries in the class Aae2

u-n— and then, in Section 6, targeting advanced AE2-security —misuse
resistance, where nonce-reuse is allowed, which in our framework corresponds to adversaries in the
class Aae2

u-nmh.

Significant effort has gone into the design and analysis of basic-AE1-secure NBE1 schemes. We
want to leverage rather than discard this. Accordingly, rather than from-scratch designs, we seek
transforms of basic-AE1-secure NBE1 schemes into basic-AE2-secure NBE2 ones. This section
gives three transforms that are simple and efficient and minimize quantitative security loss.

Preliminaries. We assume for simplicity that the NBE1 schemes provided as input to our trans-
forms have nonces of a fixed length, meaning that SE1.NS = {0, 1}SE1.nl. This holds for most
real-world AE1-secure NBE1 schemes. All our transforms can be adapted to allow variable-length
nonces.

Core ciphertexts in practical NBE1 schemes tend to be no shorter than a certain minimal
value, for example 96 bits for typical usage of GCM with AES [21]. We refer to this value as
the minimal core-ciphertext length of the scheme SE1, formally defining SE1.mccl = minN,M,H

{SE1.ccl(|N |, |M |, |H|)} where the minimum is over all (N,M,H) ∈ SE1.NS × SE1.MS × SE1.HS.
This is relevant because some of our transforms need SE1.mccl to be non-trivial to provide security.

All transforms here use two keys, meaning the key for the constructed NBE2 scheme SE2 is a
pair consisting of a key for a PRF and a key for SE1. An implementation can, starting from a single
overlying key, derive these sub-keys and store them, so that neither key size nor computational cost
increase. This is well understood and is done as part of OCB, GCM and many other designs.

The ciphertext overhead is the bandwidth cost of the transform. We now discuss how to measure
it. In the NBE2 scheme SE2 constructed by any of our transforms from an NBE1 scheme SE1, the
ciphertext space is the set of strings of some length, SE2.CS(`n, `m, `h) = {0, 1}SE2.cl(`n,`m,`h). Since
NBE1 decryption gets the nonce for free while NBE2 decryption must, effectively, communicate it
via the ciphertext, the “fair” definition of the ciphertext overhead of the transform is the maximum,
over all possible choices of `n, `m, `h, of

SE2.cl(`n, `m, `h)− SE2.ccl(`n, `m, `h)− SE1.nl .

Another way to put it is that the ciphertext overhead is how much longer ciphertexts are in SE2
than in TN[SE1]. All our transforms have ciphertext overhead zero, meaning are optimal in terms
of bandwidth usage.
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The HN1 Transform. The idea of our first transform is that a piece of the core ciphertext
may be used as a nonce under which to encrypt the actual nonce. Let SE1 be an NBE1 scheme
and F a function family with F.ol = SE1.nl, so that outputs of F.Ev can be used to mask nonces
for SE1. Assume SE1.mccl ≥ F.il, so that an F.il-bit prefix of a core ciphertext can be used as an
input to F.Ev. Invertibility of F is not required, so it can, but need not, be a blockcipher. Our
HN1 transform defines NBE2 scheme SEHN1 = HN1[SE1,F] whose encryption and decryption
algorithms are shown in Figure 4. A key (KF,K1) for SEHN1 is a pair consisting of a key KF for F
and a key K1 for SE1, so that the key space is SEHN1.KS = {0, 1}F.kl×SE1.KS. The message, header
and nonce spaces are unchanged. The parsing Y ‖C1 ← C2 in the second line of the decryption
algorithm SEHN1 is such that |Y | = SE1.nl. The ciphertext overhead is zero. The computational
overhead is one call to F.Ev for each of encryption or decryption. The following says that if the
starting NBE1 scheme SE1 is basic-AE1-secure and F is a PRF then the NBE2 scheme SEHN1

returned by the transform is basic-AE2-secure. The proof is in Appendix B.

Theorem 5.1 Let SEHN1 = HN1[SE1,F] be obtained as above. Then, given adversary A2 ∈ Aae2
u-n,

making qn queries to its New oracle, qe queries per user to its Enc oracle, and qd queries per user
to its Dec oracle, we construct adversaries A1 ∈ Aae1

u-n and B such that

Advae2
SEHN1

(A2) ≤ Advae1
SE1(A1) + Advprf

F (B) +
qn(qe + qd)(qe + qd − 1)

2F.il+1
.

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its New oracle and
qe + qd queries per user to its Fn oracle. Adversary B has about the same running time as A2.

Splitting. Our next transform employs ciphertext stealing [41] to get zero ciphertext overhead.
There are many choices with regard to how to implement stealing, for example whether one steals
from the first part of the core ciphertext or the last, and implementations may have different
preferences. Accordingly, we do not pin down a choice but instead parameterize the transform by a
splitting algorithm responsible for splitting a given string X (the core ciphertext) into segments x
(the stolen part, of a prescribed length `) and y (the rest). Formally, splitting scheme Spl specifies
a deterministic algorithm Spl.Ev that takes an integer ` ≥ 0 and a string X with |X| ≥ `, and
returns a pair of strings (x, y)← Spl.Ev(`,X) with |x| = `. If (x, y) ∈ Im(Spl.Ev(|x|, ·)) —the image
of a function was defined in Section 2— then X ← Spl.In(x, y) recovers the unique X such that
Spl.Ev(|x|, X) = (x, y), and otherwise returns X = ⊥.

This isn’t enough because for security we want that if X is random then so are x, y. A simple
way to ensure this is to require that the split sets x to some bit positions of X and y to the
rest, with the choice of positions depending only on |X|. Formally, we require that there is a
(deterministic) function Spl.St that given integers `, n with n ≥ ` ≥ 0 returns a starting index
s = Spl.St(`, n) in the range 1 ≤ s ≤ n − ` + 1, and Spl.Ev(`,X) returns x = X[s..(s + ` − 1)]
and y = X[1..(s − 1)]‖X[(s + `)..|X|] for s = Spl.St(`, |X|). The most common choices are that
Spl.St(`, n) = 1, so that x = X[1..`] is the `-bit prefix of X and y = X[(` + 1)..|X|] is the rest
(corresponding to stealing from the first part of X), or Spl.St(`, n) = n − ` + 1, so that x =
X[(|X| − ` + 1)..|X|] is the `-bit suffix of X and y = X[1..(|X| − `)] is the rest (corresponding to
stealing from the last part of X), but other choices are possible.

The HN2 Transform. The starting idea of this transform is that our NBE2 scheme can encrypt
under the given NBE1 scheme and then also include in the ciphertext an enciphering, under a
blockcipher E, of the nonce. We enhance this to encipher, along with the nonce, ` bits stolen from
the core ciphertext. The stealing has two dividends. First, nonces are often shorter than the block
length of E —for example SE1.nl = 96 and E.bl = 128 for AES-GCM and OCB [50, 34]— so in the
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SEHN1.Enc((KF,K1), N,M,H)

C1 ← SE1.Enc(K1, N,M,H)

x← C1[1..F.il] ; P ← F(KF, x)

Y ← P⊕N ; C2 ← Y ‖C1

Return C2

SEHN1.Dec((KF,K1), C2, H)

If (|C2| < SE1.nl + F.il) then return ⊥
Y ‖C1 ← C2 ; x← C1[1..F.il] ; P ← F(KF, x)

N ← P⊕Y ; M ← SE1.Dec(K1, N,C1, H)

Return M

SEHN2.Enc((KE,K1), N,M,H)

C1 ← SE1.Enc(K1, N,M,H)

(x, y)← Spl.Ev(`, C1)

C2,1 ← E.Ev(KE, N‖x)

C2 ← C2,1‖y ; Return C2

SEHN2.Dec((KE,K1), C2, H)

If (|C2| < E.bl) then return ⊥
N‖x← E.In(KE, C2[1..E.bl])

y ← C2[E.bl + 1..|C2|] ; C1 ← Spl.In(x, y)

If (C1 = ⊥) then return ⊥
M ← SE1.Dec(K1, N,C1, H) ; Return M

SEHN3.Enc((KF,K1), N,M,H)

N1 ← F.Ev(KF, N)

C1 ← SE1.Enc(K1, N1,M,H)

C2 ← N1‖C1 ; Return C2

SEHN3.Dec((KF,K1), C2, H)

If (|C2| < F.ol) then return ⊥
N1‖C1 ← C2 ; M ← SE1.Dec(K1, N1, C1, H)

Return M

HN1[SE1,F] HN2[SE1, `,E,Spl] HN3[SE1,F]

Figure 4: Top: Encryption and decryption algorithms of the NBE2 schemes constructed by our
basic transforms. From top to bottom: SEHN1 = HN1[SE1,F], SEHN2 = HN2[SE1, `,E,Spl] and
SEHN3 = HN3[SE1,F]. Bottom: Diagrams illustrating the encryption algorithms of the constructed
schemes.

absence of stealing, the nonce would be padded before enciphering, leading to ciphertext overhead.
Second, while we show here (Theorem 5.2) that the scheme preserves basic security regardless of
the amount ` stolen, we show later (Theorem 6.2) that it preserves even advanced security if ` is
non-trivial (128 bits or more). We now proceed to the full description.

Let SE1 be an NBE1 scheme, Spl a splitting scheme and ` ≥ 0 the prescribed length of the
stolen segment of the core ciphertext. We assume the minimal core-ciphertext length of SE1 satisfies
SE1.mccl ≥ `, which ensures that core ciphertexts are long enough to allow the desired splitting. Let
E be a blockcipher with block length E.bl = SE1.nl + `. Our HN2 transform defines NBE2 scheme
SEHN2 = HN2[SE1, `,E, Spl] whose encryption and decryption algorithms are shown in Figure 4.
The parsing in the second line of the decryption algorithm SEHN2 is such that |N | = SE1.nl. A key
(KE,K1) for SEHN2 is a pair consisting of a keyKE for E and a keyK1 for SE1, so that the key space is
SEHN2.KS = {0, 1}E.kl×SE1.KS. The nonce, message and header spaces are unchanged. The length
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of ciphertext C2 is E.bl + |C1| − ` = |C1| + SE1.nl, so the ciphertext space is SEHN2.CS(`n, `m, `h)
= {0, 1}SE1.nl+SE1.ccl(`n,`m,`h). The ciphertext overhead is zero. The computational overhead is an
extra blockcipher call for encryption and a blockcipher inverse for decryption.

A typical instantiation for basic security is E = AES, so that E.bl = 128. Nonces would have
length SE1.nl = 96. We then set ` = 32 and Spl.St(`, n) = 1 for all n. This means SE1.mccl must
be at least 32, which is true for all real-world schemes we know. This reduction in the required
value of SE1.mccl for security is the benefit that HN2 offers over HN1. Recall the latter needs
F.il ≥ SE1.mccl, and hence by Theorem 5.1 needs SE1.mccl ≥ 128, for the same security that HN2
can offer with SE1.mccl ≥ 32.

The following says that if the starting NBE1 scheme SE1 is basic-AE1-secure and E is a PRF,
then the NBE2 scheme SEHN2 returned by the transform is basic-AE2-secure. This holds regardless
of the value of `. The proof is in Appendix C.

Theorem 5.2 Let SEHN2 = HN2[SE1, `,E, Spl] be obtained as above. Then, given adversary A2 ∈
Aae2

u-n, making qn queries to its New oracle, qe queries per user to its Enc oracle, and qd queries
per user to its Dec oracle, we construct adversaries A1 ∈ Aae1

u-n and B such that

Advae2
SEHN2

(A2) ≤ Advae1
SE1(A1) + Advprf

E (B) . (1)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its New oracle and
qe queries per user to its Fn oracle. Adversary B has about the same running time as A2.

The HN3 Transform. Our third transform uses what we call nonce-based nonce-derivation, in
which encryption is performed under SE1 using as nonce the result N1 = F(KF, N) of a PRF F on
the actual nonce N . The idea comes from SIV [51] but differences include that: (1) SIV constructs
an AE1-secure NBE1 scheme while we construct an AE2-secure NBE2 scheme. (2) SIV decryption
needs to have the original nonce. (3) Our synthetic nonce N1 is a function only of the actual nonce
while the one in SIV is also a function of the message and header.

Proceeding to the details, let SE1 be an NBE1 scheme. Let F be a function family with
F.ol = SE1.nl, meaning outputs of F.Ev can be used as nonces for SE1. Invertibility of F is not
required, so it can, but need not, be a blockcipher. Our HN3 transform defines NBE2 scheme
SEHN3 = HN3[SE1,F] whose encryption and decryption algorithms are shown in Figure 4. A key
(KF,K1) for SEHN3 is a pair consisting of a key KF for F and a key K1 for SE1, so that the key
space is SEHN3.KS = {0, 1}F.kl × SE1.KS. The message and header spaces are unchanged, and the
nonce space is SEHN3.NS = {0, 1}F.il, meaning inputs to F are nonces for SE2. The parsing in the
second line of the decryption algorithm SEHN3 of Figure 4 is such that |N1| = SE1.nl. Note that
the decryption algorithm does not use F or KF.

As with HN1 and HN2, the HN3 transform has zero ciphertext overhead. The computational
overhead for encryption is one invocation of F. Advantages emerge with decryption, where there
is now no computational overhead. Indeed decryption in SEHN3 is effectively the same as in SE1.
In particular, in the typical case that F is a blockcipher on which SE1 is itself based, decryption
(unlike with HN2) no longer needs to implement its inverse, which can be a benefit in hardware
and for reducing code size.

It is natural and convenient here to assume SE1 is AE1[Aae1
r-n ]-secure. (Recall this is AE1-security

for the class of adversaries that pick the nonce at random.) By Proposition 3.1 this is implied by
its being AE1[Aae1

u-n]-secure (that is, basic-AE1-secure). Assuming additionally that F is a PRF,
the following says that HN3[SE1,F] is AE2[Aae2

u-n]-secure (that is, basic-AE2-secure). The proof is
in Appendix D.
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SEHN4.Enc((KF,K1), N,M,H)

N1 ← F.Ev(KF, (N,M,H))

C1 ← SE1.Enc(K1, N1, N‖M,H)

C2 ← N1‖C1

Return C2

SEHN4.Dec((KF,K1), C2, H)

If (|C2| < F.ol) then return ⊥
N1‖C1 ← C2 ; X ← SE1.Dec(K1, N1, C1, H)

If (X = ⊥) then return ⊥
N‖M ← X ; T ← F.Ev(KF, (N,M,H))

If (T = N1) then return M else return ⊥

SEHN5.Enc(KTE, N,M,H)

C2 ← TE.Ev(KTE, H, 0
`t‖N‖M)

Return C2

SEHN5.Dec(KTE, C2, H)

X ← TE.In(KTE, H,C2)

If X[1..`t] 6= 0`t then return ⊥
N‖M ← X[(`t + 1)..|X|] ; Return M

HN4[SE1, `,F] HN5[TE, `, `t]

Figure 5: Top: Encryption and decryption algorithms of the NBE2 schemes constructed by our
advanced transforms. From top to bottom: SEHN4 = HN4[SE1, `,F] and SEHN5 = HN5[TE, `, `t].
Bottom: Diagrams illustrating the encryption algorithms of the constructed schemes.

Theorem 5.3 Let SEHN3 = HN3[SE1,F] be obtained as above. Then, given adversary A2 ∈ Aae2
u-n

that makes qn queries to its New oracle, qe queries to its Enc oracle, and qd queries to its Dec
oracle, we construct adversaries A1 ∈ Aae1

r-n and B such that

Advae2
SE2(A2) ≤ Advae1

SE1(A1) + Advprf
F (B) .

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its New oracle and
qe queries to its Fn oracle, respectively. Adversary B has about the same running time as A2.

6 Advanced transforms

We now turn to achieving AE2-security in the nonce-misuse setting, which we formalized as
AE2[Aae2

u-nmh]-security. We discuss various transforms for this purpose.

Advanced security of HN1. We showed in Theorem 5.1 that HN1 preserves basic security.
It turns out that it also preserves advanced security. The following says that if the starting NBE1
scheme SE1 is advanced-AE1-secure and F is a PRF then the NBE2 scheme SEHN1 returned by the
transform is advanced-AE2-secure. The proof is in Appendix B.
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Theorem 6.1 Let SEHN1 = HN1[SE1,F] be obtained as above. Then, given adversary A2 ∈
Aae2

u-nmh, making qn queries to its New oracle, qe queries per user to its Enc oracle, and qd queries
per user to its Dec oracle, we construct adversaries A1 ∈ Aae1

u-nmh and B such that

Advae2
SEHN2

(A2) ≤ Advae1
SE1(A1) + Advprf

F (B) +
qn(qe + qd)(qe + qd − 1)

2F.il+1
. (2)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its New oracle and
qe + qd queries per user to its Fn oracle. Adversary B has about the same running time as A2.

Advanced security of HN2. We showed in Theorem 5.2 that HN2 preserves basic security
regardless of the amount ` of stolen core-ciphertext—even if ` = 0. For small `, HN2 may, however,
leak information about the nonce in the advanced (misuse resistance) setting. The transformation
does therefore not provide AE2[Aae2

u-nmh]-security. This is easy to see when ` = 0, in which case if
two different message-header pairs are encrypted with the same nonce, then the first part of the
ciphertext is the same, leading to an Aae2

u-nmh-adversary with advantage 1− 2−E.bl. The advantage
of this attack however decreases (exponentially) as ` increases. The following theorem says that
once ` is non-trivial (say, 128 bits or more), the transform actually preserves advanced security as
well. In Appendix E, we prove this theorem and describe the attack alluded to above in detail,
showing that the bound in Theorem 6.2 is tight.

Theorem 6.2 Let SEHN2 = HN2[SE1, `,E, Spl] be obtained as above. Then, given adversary A2

∈ Aae2
u-nmh, making qn queries to its New oracle and qe queries per user to its Enc oracle, we

construct adversaries A1 ∈ Aae1
u-nmh and B such that

Advae2
SEHN2

(A2) ≤ Advae1
SE1(A1) + Advprf

E (B) +
qnqe(qe − 1)

2`+1
. (3)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its New oracle and
qe queries per user to its Fn oracle. Adversary B has about the same running time as A2.

This however is not ideal because security would need ` = 128, which requires SE1.mccl ≥ 128 (not
always true) and also, assuming 96-bit nonces, would require that the blockcipher E have block
length 128+96=224, which precludes AES. We now give further transforms that do better.

The HN4 Transform. The HN3 transform clearly does not provide advanced-AE2-security
because, if a nonce is repeated, the resulting ciphertexts have the same synthetic nonce, and hence
the same first parts, which an adversary can notice. The starting idea for HN4 is to obtain the
synthetic nonce N1 by applying the PRF F, not just to the actual nonce N as in HN3, but, as in
SIV [51], to (N,M,H). If we now encrypt with N1 under an NBE1 scheme SE1, we can indeed
show that AE2[Aae2

u-nmh]-security is achieved, assuming SE1 is AE1[Aae1
u-nmh]-secure. The latter

assumption, however, is not satisfactory here because AE1[Aae1
u-nmh]-security (typically achieved via

SIV itself) already requires two passes through the entire input, so our computation of N1 adds
another entire pass, resulting in significant (non-constant) computational overhead. To avoid this
we ask whether it would be enough for SE1 to provide only privacy, meaning be AE1[Aae1

r-n ∩Aae1
priv]-

secure, because this can be achieved in one pass. Indeed, this is what SIV assumes, but the
difficulty is that SIV decryption makes crucial use of the original nonce N to provide authenticity,
recomputing it and checking that it matches the one in the ciphertext. But to be nonce hiding, we
cannot transmit N . We resolve this by including N as part of the message encrypted under SE1.

Proceeding to the details, let SE1 be an NBE1 scheme. Let F be a function family with
F.ol = SE1.nl, meaning outputs of F.Ev can be used as nonces for SE1, and also with SE1.NS ×
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SE1.MS × SE1.HS ⊆ F.D, meaning triples (N,M,H) can be used as inputs to F. Let ` ≥ 1 be
an integer prescribing the nonce length of the constructed scheme. Our HN4 transform defines
NBE2 scheme SEHN4 = HN4[SE1, `,F] whose encryption and decryption algorithms are shown
in Figure 5. A key (KF,K1) for SEHN4 is a pair consisting of a key KF for F and a key K1 for
SE1, so that the key space is SEHN4.KS = {0, 1}F.kl × SE1.KS. The message and header spaces
are unchanged, and the nonce space is SEHN4.NS = {0, 1}`. The parsing in the second line of the
decryption algorithm SEHN4 of Figure 4 is such that |N1| = SE1.nl. The ciphertext overhead is zero,
and if SE1 is a standard one-pass privacy only scheme like counter-mode, then the computational
overhead is constant.

Security, as with SIV, requires that SE1 satisfies tidiness [44]. Formally, for all K,N,C1, H, if
SE1.Dec(K,N,C1, H) = M 6= ⊥ then SE1.Enc(K,N,M,H) = C1. We capture the assumption that
SE1 provides only privacy in the nonce respecting setting, and it continues to be convenient for this
to be for adversaries that pick the nonce at random, so our assumption for SE1 is AE1[Aae1

r-n∩Aae1
priv]-

security. By Proposition 3.1 this is implied by its being AE1[Aae1
u-n ∩ Aae1

priv]-secure. Assuming

additionally that F is a PRF, the following says that HN4[SE1, `,F] is AE2[Aae2
u-nmh]-secure. The

proof is in Appendix F.

Theorem 6.3 Let SEHN4 = HN4[SE1, `,F] be obtained as above, and let SE1 satisfy tidiness.
Then, given adversary A2 ∈ Aae2

u-nmh making qn queries to its New oracle and qe, qd encryption and
decryption queries for each user, respectively, we construct adversaries A1 ∈ Aae1

r-n ∩ Aae1
priv and B

such that

Advae2
SE2(A2) ≤ Advae1

SE1(A1) + Advprf
F (B) +

qnqd
2SE1.nl

.

Adversary A1 makes qn queries to its New oracle, qe queries to its Enc oracle per user, and no
queries to its Dec oracle. B makes qn queries to its New oracle, and qe + qd queries to its Fn
oracle per user. Adversaries A1 and B both have about the same running time as A2.

Our final transform HN5 is different. It does not start from an NBE1 scheme but rather from
a (arbitrary-input-length) tweakable cipher, extending the encode-then-encipher paradigm [13] to
provide advanced-AE2-security. Instantiation via a fast tweakable cipher like AEZ [27] results in
correspondingly fast advanced-AE2-secure NBE2.

The HN5 Transform. We encipher the nonce, message and some redundancy, using the header
as the tweak. The change from [27] is to move the nonce from tweak to an input so as to hide it,
which we will show is enough to confer AE2-security.

Proceeding to the details, let TE be a tweakable cipher as defined in Section 2. Let ` ≥ 1 be
an integer prescribing the nonce length of the constructed scheme. Let `t ≥ 0 be the number of
bits of redundancy we introduce to provide authenticity [13]. Our transform defines NBE2 scheme
SEHN5 = HN5[TE, `, `t] whose encryption and decryption algorithms are shown in Figure 5. The
key space of SEHN5 is the key space of TE. The message space is {0, 1}∗. The header space SEHN5.HS
is set to the tweak space TE.TS of TE. The nonce space is SEHN5.NS = {0, 1}`. The length
of ciphertext SEHN5.Enc(K,N,M,H) is `t + |N | + |M |, so SEHN5.CS(`n, `m, `h) = {0, 1}`t+`+`m .
Ciphertext overhead, in this case, is not relative to an underlying NBE1 scheme, since there isn’t
any, but we see that ciphertexts are longer than message plus nonce by just `t bits, which is
effectively optimal [27].

The following theorem shows that SEHN5 is advanced-AE2-secure if tweakable cipher TE is an
stPRP (as defined in Section 2) and `t is sufficiently large.
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Theorem 6.4 Let SEHN5 = HN5[TE, `, `t] be obtained as above. Let A ∈ Aae2
u-nmh be an adversary

making qn queries to its New oracle, qe queries per user to its Enc oracle with minimum message
length `1, and qd queries with minimum ciphertext length `2 ≥ `t per user to its Dec oracle. We
construct adversary B such that

Advae2
SEHN5

(A) ≤ Advstprp
TE (B) +

qnqe(qe + 1)

2`t+`+`1+1
+
qnqd(qd + 1)

2`2+1
+
qnqd
2`t

.

Adversary B makes qn queries to its New oracle, qe queries per user to its Fn oracle, and qd
queries per user to its FnInv oracle.

7 Dedicated transform for GCM

We have shown that our generic transforms allow us to immunize NBE1 schemes with low overhead.
We now present a transform specific to a real-world NBE1 scheme: GCM. Our transform takes
advantage of the underlying structure of GCM to further minimize overhead. Crucially, we also
minimize changes to the scheme so that existing hardware and software can easily adapt.

Generalizing GCM to CAU1. Following BT [15], we generalize GCM via a transform CAU1.
(We add the “1” to indicate that it is an NBE1 scheme.)

Let E be a block cipher, H be a function family and ` ≥ 1 be an integer indicating the de-
sired nonce-length. Then CAU1 = CAU1[E,H, `] is an NBE1 scheme. E.bl(2E.bl−` − 2) is the
maximum message length for CAU1 so we require that 1 ≤ ` < E.bl. We recall the algorithms
CAU1.Enc,CAU1.Dec given by BT in Appendix H. Core ciphertexts returned by CAU1.Enc take the
form τ‖C, where τ is a tag of length E.bl. CAU1’s keys are keys to its underlying block cipher E,
meaning that CAU1.kl = E.kl. We use function family H to compute the tag τ . H takes input of the
form (C,H) and returns an output of length E.bl. It uses a key which is generated by enciphering
0E.bl using E. This means that we require that H.D = {0, 1}∗ × CAU1.HS and H.ol = H.kl = E.bl.

AES-GCM, as proposed by MV [40] and standardized by NIST [21], is obtained by instantiating
E = AES (so E.bl = 128), H = GHASH and ` = 96. It is widely used in practice and achieves basic
AE1-security (i.e. AE1[Aae2

u-n]-security). CAU1 has a fixed-length nonce, reflecting the standardized
version of GCM, but a variant with variable-length nonces can be obtained by pre-processing the
nonce, as discussed in [40].

AE2-secure CAU2. We exploit a feature of GCM, that the nonce can be derived from the au-
thentication tag τ . In particular, if τ‖C ← CAU1.Enc(K,N,M,H), then τ = H.Ev(E.Ev(K, 0E.bl),
(C,H))⊕E.Ev(K,N‖〈1〉E.bl−`). (Recall that, as defined in Section 2, 〈i〉n is the n-bit representation
of integer i.) Therefore, in constructing our NBE2 variant of GCM, CAU2, we make use of the fact
that the sender does not need to communicate the nonce – the receiver uses the tag to recover it.
In other words, we exploit the “parsimoniousness” of TN[CAU1] [12].

Unfortunately, the recovery procedure will succeed for any given ciphertext with probability
2−E.bl+`, since this is the probability that some nonce with suffix 〈1〉E.bl−` is recovered. This would
be unacceptable in GCM since an adversary would be able to forge valid tags with probability 2−32.

So in order to make the scheme work, we add redundancy to the scheme by prepending the
message with 0`. CAU2 decryption will check that the message returned by CAU1.Dec indeed starts
with such a string; this check works because a decryption with a “wrong” nonce leads to a random
ciphertext. (For this reason, the maximum message length of CAU2 is ` bits shorter than CAU1.) A
similar technique is used by ADL [4] in their scheme, GCM-RUP, but for a slight different variant
of GCM.
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CAU2.Enc(K,N,M,H)

C2 ← CAU1.Enc(K,N, 0`‖M,H)

Return C2

CAU2.Dec(K,C2, H)

τ‖C ← C2 ; h← H.Ev(E.Ev(K, 0E.bl), (C,H))

y ← E.In(K, τ⊕h) ; N ← y[1..`]

If (y[(`+ 1)..E.bl] 6= 〈1〉E.bl−`) then return ⊥
M∗ ← CAU1.Dec(K,N,C2, H)

If (M∗ = ⊥) then return ⊥
x‖M ←M∗

If (x 6= 0`) then return ⊥ else return M

Figure 6: Encryption and decryption algorithms of NBE2 scheme CAU2 = CAU2[E,H, `], a special
case of which is an AE2[Aae2

u-n]-secure variant of GCM.

More formally, the transform CAU2 defines an NBE2 scheme CAU2 = CAU2[E,H, `] whose
encryption and decryption algorithms are shown in Fig. 6. The parsing in the first and sixth line
of CAU2.Dec is such that |τ | = E.bl and |x| = `. If either parsing fails, CAU2.Dec will return ⊥.

The theorem below demonstrates that CAU2 achieves basic security assuming that E is an sPRP
and H is an (ε1, ε2)-AXU function family (as defined in [35, 15, 33, 2] and others). We recall the
these two notions of security in Appendix H.

Theorem 7.1 Let CAU2 = CAU2[E,H, `] be the NBE2 scheme defined above where H is an (ε1, ε2)-
AXU function family. Let A ∈ Aae2

u-n be an adversary making qn calls to its New oracle, qe calls to
its Enc oracle per session and qd calls to its Dec oracle per session. The total number of message
blocks passed to the encryption oracle by A for any single session does not exceed Q′ and the lengths
of C2, H passed to the decryption oracle by A do not exceed `′1, `2, respectively. Let Q = Q′ + qe
and `1 = `′1 + E.bl. Then we can construct adversary B such that:

Advae2
CAU2(A) ≤2Advsprp

E (B) + qn(qeqd + q2d) · ε1(`1, `2) + qn(q2d − qd) · ε2(`1, `2)

+ qn

(
2Q2 + 2Q+ q2d + 4qdQ+ 3qd + 2

2E.bl+1
+
q2d + qd + 2qeqd

2`+1

)
B makes qn queries to its New oracle, no more than Q+ 1 queries to its Fn oracle for each user
and no more than qd queries to its Dec oracle for each user.

The proof of the theorem is in Appendix H. Future work can apply the techniques used in recent
work to improve upon this bound [15, 38, 29].

CAU2 has some advantages over the schemes obtained through our basic transforms described
in Section 5. CAU2 only makes use of the same keys and (often extensively optimized) primitives
already existing in CAU1. This allows for code reuse, making it easy for existing hardware and
software to adapt. In contrast to the generic transforms, CAU2 has a (E.bl − `)-bit ciphertext
overhead (for reference, in AES-GCM this is 32-bits), but lower or comparable computational
overhead—a single block cipher call in both encryption and decryption.

8 A real-world perspective

In addition to bridging the gap between theory and usage, our framework allows us to formalize
some weaknesses of real-world schemes which communicate nonces in the clear.
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First, it allows us to formalize an intuitive fact: pathologically chosen nonces cannot be com-
municated in the clear. It may seem obvious that message or key-dependent nonces violate security
but such pathological nonce choices have occurred in the wild. For instance, CakePHP, a web
framework, used the key as the nonce [1] when encrypting data. The use of a hash of a message
has also been proposed, and subsequently argued as insecure, in an Internet forum [45].

Second, it disallows metadata leakage through the nonce. Implicit nonces with a device specific
field, such as those recommended in RFC 5116 [39] enable an adversary to distinguish between
different user sessions. Even the “standard” nonce choices are not safe against these adversaries. A
counter will allow an adversary distinguish between sessions with high traffic and low traffic, and
a randomly chosen nonce can detect devices with poor entropy (RSA public keys were used to a
similar end by HDWH [26]).

Finally, we note that our framework can capture more subtle attacks as well. The recent Juniper
DualEC incident showed how small implementation choices coupled with surfaced nonces can render
a complete system vulnerable. CMGFCG [19] showed how random nonces in the TLS handshake
protocol can be used to reconstruct the internal state of a PRNG, leading to key recovery. While
this concrete attack was unrelated to authenticated encryption, one can imagine a similar attack
on symmetric encryption where the way a nonce is enciphered or embedded in the ciphertext
enables an attack on other parts of the encryption scheme. Since AE2-security encompasses the
communication of the nonce in-band, it will flag these schemes as insecure.
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A Adversary class Ax
r-n

Informally, an adversary A is in class Ax
r-n, where x ∈ {ae1, ae2} if the nonces in its queries to Enc

are picked uniformly at random, from the (assumed finite) nonce space of the underlying scheme,
and independently of each other. (No restriction is placed on the nonces that the adversary submits
in Dec queries.) More formally, let A be an adversary attacking scheme SE, where the latter is
an NBE1 scheme if x = ae1 and an NBE2 scheme if x = ae2. Then A ∈ Ax

r-n if there is another
adversary A, called the random-nonce adversary associated to A, such that A is defined in terms
of A as follows:

Adversary ANew,Enc,Dec

Initialize ; b′←$A
New,Enc∗,Dec

; Finalize(b′)

procedure Enc∗(i,M,H)

N ←$ SE.NS ; C ← Enc(i,N,M,H) ; Return (N,C)

As the above indicates, adversary A has oracles New,Enc∗,Dec where New, Dec are as in game
Gx

SE, but Enc∗, differently from Enc, takes only i,M,H (no nonce) and returns both a nonce and
a ciphertext. (The latter means the random nonces are not “hidden” from A.)

B Proofs of Theorems 5.1 and 6.1

We prove the following which implies both theorems.
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Lemma B.1 Let y ∈ {u-n, u-nmh}. Let HN1[SE1,F] = SEHN1, be obtained as in Section 5. Then,
given adversary A2 ∈ Ay

ae2, making qn queries to its New oracle and qe queries per user to its Enc
oracle, and qd queries per user to its Dec oracle, we construct adversaries A1 ∈ Ay

ae1 and B such
that

Advae2
SEHN1

(A2) ≤ Advae1
SE1(A1) + Advprf

F (B) +
qn(qe + qd)(qe + qd − 1)

2F.il+1
. (4)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its New oracle and
qe + qd queries per user to its Fn oracle. Adversary B has about the same running time as A2.

Proof: We define the games G0,G1,G2,G3,G4,G5, and G6 as specified in Fig. 7 and Fig. 7. Let
b1 be the challenge bit in Gae2

SEHN1
(A2), and b′1 be the bit returned by A2. Then, by the definition

of Gae2
SEHN1

(A2) and since SEHN1.CS(`n, `m, `h) = {0, 1}SE1.nl+SE1.ccl(`n,`m,`h), we have that Pr[b′1 =
1|b1 = 1] = Pr[G0(A2)] and Pr[b′1 = 1|b1 = 0] = Pr[G6(A2)]. Therefore, we have Pr[G0(A2)] −
Pr[G6(A2)] = Advae2

SEHN1
(A2).

Now we define adversaries A1 and B as described in Fig. 9, and show below that that the following
equations hold:

Pr[G0(A2)]− Pr[G1(A2)] = Advae1
SE1(A1) , (5)

Pr[G1(A2)]− Pr[G2(A2)] = Advprf
F (B) , (6)

Pr[G2(A2)] = Pr[G3(A2)] , (7)∣∣Pr[G3(A2)]− Pr[G4(A2)]
∣∣ ≤ qnqe(qe − 1)

2F.il+1
, (8)

Pr[G4(A2)] = Pr[G5(A2)] = Pr[G6(A2)] . (9)

From here, the theorem statement immediately follows. What remains is to prove equations (5),
(6), (7), (8), and (9). We will do this one by one.

The strategy of A1 is to run A2 with simulated oracles. These oracles follow the description of the
algorithms SEHN1.Enc and SEHN1.Dec. Adversary A1 simulates the enciphering of x, then relies
on the oracles Enca and Deca provided to it to perform the SE1 encryption and decryption. Let
b2 be the challenge bit in Gae1

SE1(A1) and b′2 be the bit returned by A1. When b2 = 1, encryption
and decryption will be performed with SE1.Enc and SE1.Dec. Therefore, Pr[b′2 = 1|b2 = 1] =
Pr[G0(A2)]. When b2 = 0, encryption will return a random string and decryption will return ⊥
unless C1 was returned by some call to Enca for the same user and nonce (henceforth, we will refer
to this as a “trivial decryption query”). Therefore, Pr[b′2 = 1|b2 = 0] = Pr[G1(A2)]. This gives us
equation (5). Notice that the nonces A2 tries to encrypt with are also the nonces A1 will use in its
Enca calls. Therefore, if A2 ∈ Aae2

u-n, then A1 ∈ Aae1
u-n.

The strategy of B is also to run A2 with simulated oracles. It simulates SE1 encryption by selecting
random strings and decryption by returning ⊥ on all non-trivial queries. Adversary B enciphers
x using its Fnb oracle. Let b∗ be the challenge bit in Gprf

F (B) and b′∗ be the bit returned by B.
When b∗ = 1, enciphering occurs using F.Ev. This means that Pr[b′∗ = 1|b∗ = 1] = Pr[G1(A2)].
When b∗ = 0, encipherment will behave like a random mapping from F.D to {0, 1}F.ol. This means
that Pr[b′∗ = 1|b∗ = 0] = Pr[G2(A2)]. This gives us equation (6). We also observe that adversary
B makes one Fnb call during each simulated encryption and each simulated decryption, for a total
of qe + qd queries to Fnb.
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procedure Initialize // For all games

Return

procedure Finalize(b′) // For all games

Return (b′ = 1)

Game G0

procedure New0

v ← v + 1 ; Kv ← SEHN1.KS

procedure Enc0(i,N,M,H)

C2 ← SEHN1.Enc(Ki, N,M,H)

Return C2

procedure Dec0(i, C2, H)

M ← SEHN1.Dec(Ki, C2, H)

Return M

Game G1

procedure New1

v ← v + 1 ; KE,v ← {0, 1}E.kl

procedure Enc1(i,N,M,H)

C1←$ {0, 1}SE1.ccl(|N |,|M |,|H|)
M[i,N,C1, H]←M ; x← C1[1..F.il]

P ← F.Ev(KF, x) ; Y ← P⊕N
C2 ← Y ‖C1 ; Return C2

procedure Dec1(i, C2, H)

If (|C2| < SE1.nl + F.il) then return ⊥
Y ‖C1 ← C2 ; x← C1[1..F.il]

P ← F.Ev(KF, x) ; N ← P⊕Y
M ←M[i,N,C1, H] ; Return M

Game G2

procedure New2

Return

procedure Enc2(i,N,M,H)

C1←$ {0, 1}SE1.ccl(|N |,|M |,|H|) ; x← C1[1..F.il]

M[i,N,C1, H]←M ; P ←$ {0, 1}F.ol
If (P[i, x] 6= ⊥) then P ← P[i, x]

Else P[i, x]← P

Y ← P⊕N ; C2 ← Y ‖C1 ; Return C2

procedure Dec2(i, C2, H)

If (|C2| < SE1.nl + F.il) then return ⊥
Y ‖C1 ← C2 ; x← C1[1..F.il] ; P ←$ {0, 1}F.ol
If (P[i, x] 6= ⊥) then P ← P[i, x]

Else P[i, x]← P

N ← P⊕Y ; M ←M[i,N,C1, H] ; Return M

Games G3 ,G4

procedure New3

Return

procedure Enc3(i,N,M,H)

C1←$ {0, 1}SE1.ccl(|N |,|M |,|H|)
x← C1[1..F.il] ; P ←$ {0, 1}F.ol
If (P[i, x] 6= ⊥) then bad← true ; P ← P[i, x]

Else P[i, x]← P

Y ← P⊕N ; C2 ← Y ‖C1

N[i, C2, H]←M ; Return C2

procedure Dec3(i, C2, H)

Return N[i, C2, H]

Figure 7: Games G0,G1,G2,G3,G4 used in Lemma B.1. Initialize,Finalize are common to all
games.

We argue that A2 cannot distinguish interacting with Enc2 and Dec2 from Enc3 and Dec3.
1

(Here, Enc3 includes the boxed code.) Suppose A2 makes an encryption query. Notice that
Enc2 and Enc3 differ only in whether it maintains M or N (and the setting of the flag bad in
Enc3, which does not affect the game at all). Since neither encryption algorithm reads from their
respective table, their outputs are indistinguishable. Suppose the adversary makes a decryption
query Dec3(i, C2, H) and receives the output M 6= ⊥. This means that if we let Y ‖C1 ← C2, there
was some call Enc3(i,N,M,H) such that C1 was the randomly selected string and Y is the output of
masking the enciphered C1[1..F.il] with N . Recall that the encipherment is a random mapping from
F.D to {0, 1}F.ol, as discussed above. This means that, if the adversary had instead been interacting

1In fact, the games make exactly the same random choices, and for the same randomness they always return the
same result.
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Game G5

procedure New5

Return

procedure Enc5(i,N,M,H)

C1←$ {0, 1}SE1.ccl(|N |,|M |,|H|)
x← C1[1..F.il] ; Y ←$ {0, 1}F.ol
C2 ← Y ‖C1 ; N[i, C2, H]←M ; Return C2

procedure Dec5(i, C2, H)

Return N[i, C2, H]

Game G6

procedure New6

Return

procedure Enc6(i,N,M,H)

C2←$ {0, 1}SE1.nl+SE1.ccl(|N |,|M |,|H|)

N[i, C2, H]←M ; Return C2

procedure Dec6(i, C2, H)

Return N[i, C2, H]

Figure 8: Games G5,G6 used in Lemma B.1. Initialize,Finalize are as in Fig. 7.

Adversary ANewa,Enca,Deca

1

Initialize ; b′←$A
New∗

a,Enc
∗
a,Dec∗

a
2

Finalize(b′)

procedure New∗a
v ← v + 1 ; kv←$ {0, 1}F.kl ; Newb

procedure Enc∗a(i,N,M,H)

C1←$ Enca(i,N,M,H)

x← C1[1..F.il] ; Y ← N⊕F.Ev(ki, x)

C2 ← Y ‖C1 ; Return C2

procedure Dec∗a(i, C2, H)

If (|C2| < SE1.nl + F.il) then return ⊥
Y ‖C1 ← C2 ; x← C1[1..F.il]

N ← Y⊕F.Ev(ki, x)

M ← Deca(i,N,C1, H) ; Return M

Adversary BNewb,Fnb

Initialize ; b′←$A
Newb,Enc

∗
b ,Dec∗

b
2

Finalize(b′)

procedure Enc∗b(i,N,M,H)

C1←$ {0, 1}SE1.ccl(|N |,|M |,|H|)
M[i,N,C1, H]←M ; x← C1[1..F.il]

P ←$ Fnb(i, x) ; Y ← P⊕N
C2 ← Y ‖C1 ; Return C2

procedure Dec∗b(i, C2, H)

If (|C2| < SE1.nl + F.il) then return ⊥
Y ‖C1 ← C2 ; x← C1[1..F.il]

P ←$ Fnb(i, x) ; N ← P⊕Y
Return M[i,N,C1, H]

Figure 9: Adversaries A1, B used in proving Lemma B.1.

with Enc2, M[i,N,C1, H] was initialized with M and M ← Dec2(i, C2, H). Now consider that
there was a call Dec3(i, C2, H) which returned ⊥. This means that no call to Enc3 resulted in
N[i, C2, H] being initialized. This means that if we unmasked Y using the encipherment of C1[1..F.il]
to get N , there would be no equivalent call to Enc2(i,N,M,H) resulting in M[i,N,C1, H] being
initialized. Therefore, Dec2(i, C2, H) would also have returned ⊥. From this, we obtain (7).

Notice that G3 and G4 are identical-until-bad. Using the fundamental lemma of game playing [14],
we have

∣∣Pr[G3(A2)]−Pr[G4(A2)]
∣∣ ≤ Pr[G3(A2) sets bad]. Since x is a substring of C1, which is a

uniformly random string, x is also uniformly random and we use the collision probability and the
union bound to arrive at (8).

Now we look at Enc3 in G4 (which does not include the boxed code) and note that P is al-
ways a randomly selected element of {0, 1}F.ol. This value of P is used to mask Y . This is
therefore indistinguishable from randomly selecting Y from {0, 1}F.ol directly. This means that
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procedure Initialize // For all games

Return

procedure Finalize(b′) // For all games

Return (b′ = 1)

Game G0

procedure New0

v ← v + 1 ; Kv ← SEHN2.KS

procedure Enc0(i,N,M,H)

C2 ← SEHN2.Enc(Ki, N,M,H) ; Return C2

procedure Dec0(i, C2, H)

M ← SEHN2.Dec(Ki, C2, H) ; Return M

Game G1

procedure New1

v ← v + 1 ; KE,v ← {0, 1}E.kl

procedure Enc1(i,N,M,H)

C1←$ {0, 1}SE1.ccl(|N |,|M |,|H|)
(x, y)← Spl.Ev(`, C1) ; C2,1 ← E.Ev(KE,i, N‖x)

C2 ← C2,1‖y ; M[i, C2, H]←M ; Return C2

procedure Dec1(i, C2, H)

Return M[i, C2, H]

Game G2

procedure New2

Return

procedure Enc2(i,N,M,H)

C1←$ {0, 1}SE1.ccl(|N |,|M |,|H|)
(x, y)← Spl.Ev(`, C1)

C2,1←$ {0, 1}E.bl ; C2 ← C2,1‖y
M[i, C2, H]←M

Return C2

procedure Dec2(i, C2, H)

Return M[i, C2, H]

Game G3

procedure New3

Return

procedure Enc3(i,N,M,H)

C2←$ {0, 1}SE1.nl+SE1.ccl(|N |,|M |,|H|)−`

M[i, C2, H]←M

Return C2

procedure Dec3(i, C2, H)

Return M[i, C2, H]

Figure 10: Games G0,G1,G2, and G3 used in proving Theorem 5.2. Initialize and Finalize are
common to all games.

Pr[G4(A2)] = Pr[G5(A2)]. Finally, since Enc5 sets Y,C1 to be random strings of lengths SE1.nl
and SE1.ccl(|N |, |M |, |H|), respectively, this is equivalent to picking C2 to be a random string of
their combined length. This is what happens in Enc6. Therefore, Pr[G5(A)] = Pr[G6(A)]. This
gives (9) and concludes the proof.

C Proof of Theorem 5.2

Theorem 5.2. Let SEHN2 = HN2[SE1, `,E, Spl] be obtained as in Section 5. Then, given adversary
A2 ∈ Aae2

u-n, making qn queries to its New oracle, qe queries per user to its Enc oracle, and qd
queries per user to its Dec oracle, we construct adversaries A1 ∈ Aae1

u-n and B such that

Advae2
SEHN2

(A2)≤Advae1
SE1(A1) + Advprf

E (B) . (10)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its New oracle and
qe queries per user to its Fn oracle. Adversary B has about the same running time as A2.

Proof:

We define games G0,G1,G2, and G3 as in Fig. 10. Let b1 be the challenge bit in the game
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Adversary ANewa,Enca,Deca

1

Initialize ; b′←$A
New∗

a,Enc
∗
a,Dec∗

a
2 ; Finalize(b′)

procedure New∗a
v ← v + 1 ; kv←$ {0, 1}E.kl ; Newa

procedure Enc∗a(i,N,M,H)

C∗1 ←$ Enca(i,N,M,H) ; (x, y)← Spl.Ev(`, C1)

C2,1 ← E.Ev(ki, N‖x) ; C2 ← C2,1‖y ; Return C2

procedure Dec∗a(i, C2, H)

If (|C2| < E.bl) then return ⊥
N‖x← E.In(ki, C2[1..E.bl]) ; y ← C2[(E.bl + 1)..|C2|]
C1 ← Spl.In(x, y) ; If (C1 = ⊥) then return ⊥
M ← Deca(i,N,C1, H) ; Return M

Adversary BNewb,Fnb

Initialize

b′←$A
Newb,Enc

∗
b ,Dec∗

b
2

Finalize(b′)

procedure Enc∗b(i,N,M,H)

C1←$ {0, 1}SE1.ccl(|N |,|M |,|H|)
(x, y)← Spl.Ev(`, C1)

C2,1 ← Fnb(i,N‖x)

C2 ← C2,1‖y
M[i, C2, H]←M ; Return C2

procedure Dec∗b(i, C2, H)

Return M[i, C2, H]

Figure 11: Adversaries A1, B used in proving Theorem 5.2.

Gae2
SEHN2

(A2) and b′1 be the bit returned by A2. Then, by the definition of Gae2
SEHN2

(A2) and since

SEHN2.CS(`n, `m, `h) = {0, 1}SE1.nl+SE1.ccl(`n,`m,`h), we have that Advae2
SEHN2

(A2) = Pr[b′1 = 1|b1 =
1]− Pr[b′1 = 1|b1 = 0] = Pr[G0(A2)]− Pr[G3(A2)].

Now we define adversaries A1, B as specified in Fig. 11. This is such that the following equations
hold:

Pr[G0(A2)]− Pr[G1(A2)] = Advae1
SE1(A1) , (11)

Pr[G1(A2)]− Pr[G2(A2)] = Advprf
E (B) , (12)

Pr[G2(A2)] = Pr[G3(A2)] . (13)

From here, we can immediately derive the theorem statement. What remains to be shown is to
derive equations (11), (12), and (13). We will do this in the following, one by one.

The general strategy of A1 is to run A2 with simulated oracles. Intuitively, the adversary performs
all the computation associated to splitting, ciphertext stealing and nonce enciphering (using E), but
uses its Enca and Deca oracles to simulate SE1 encryption and decryption. Let b2 be the challenge
bit in Gae1

SE1(A1) and b′2 be the bit returned by A1. When b2 = 0, the encryption oracle will return
random strings of the appropriate length and the decryption oracle will return ⊥ except on trivial
queries (i.e. when the adversary decrypts a ciphertext returned by the encryption oracle, using the
same header and nonce, if any). This means that the outputs of Enc0,Enc1 returned to A2 are the
same in games G0,G1 and in the cases where b2 = 0, 1 in Gae1

SE1(A1). Notice that if M[i, C2, H] in
G1(A2) is initialized with some value M , then M[i,N,C1, H] in Gae1

SE1 will be set to M . Therefore,
Dec1 is equivalent to Dec∗a when b2 = 0 and Pr[b′2 = 1|b2 = 0] = Pr[G1(A2)]. By the definition of
SEHN2.Enc and SEHN2.Dec, we have that Pr[b′2 = 1|b2 = 1] = Pr[G0(A2)]. Subtracting yields (11).

Note that if A2 does not repeat a nonce within a session, then A1 will not repeat a nonce either.
Therefore, we know that A1 ∈ Aae1

u-n. In addition, since each call to a simulated oracle (e.g.
Enc∗a,Dec∗a) requires a single call to the respective oracle provided to A1 (e.g. Enca,Deca), we
know that A1 preserves the resources of A2.

B also runs A2, but simulates oracles via a different strategy: It performs all computation associated
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to splitting and ciphertext stealing as before, using the Fnb oracle provided to encipher nonces, and
picks SE1 core ciphertexts at random. Decryption always returns ⊥ unless the ciphertext provided
was returned by the Enc∗b oracle. Let b∗ be the challenge bit in Gprf

E (B) and b′∗ be the bit returned by
B. Then, when b∗ = 1, the enciphering is done using E and Pr[b′∗ = 1|b∗ = 1] = Pr[G1(A2)]. When
b∗ = 0, the Fnb oracle will return random elements of {0, 1}E.bl and Pr[b′∗ = 1|b∗ = 0] = Pr[G2(A2)].
Subtracting yields (12). Note that the Newb oracle is provided to A2, and that each call to Enc∗b
requires a single call to Fnb. In this way, B makes qn queries to its New oracle and qe queries per
user to its Fn oracle.

Finally, we want to show that G2 and G3 return true with equal probability. In Enc2, we set
C2,1 to be a random string of length E.bl. In addition, by the definition of Spl, we have that
y = C2[1..s− 1]‖C1[(s+ `)..|C1|], meaning that y is a random string of length |C1| − `. Therefore,
in Enc2, C2 is a random string of length |C1|+ SE1.nl. This is exactly how C2 is selected in Enc3.
From this, we have (13).

D Proof of Theorem 5.3

Theorem 5.3. Let SEHN3 = HN3[SE1,F] be obtained as in Section 5. Then, given adversary
A2 ∈ Aae2

u-n that makes qn queries to its New oracle, qe queries to its Enc oracle, and qd queries to
its Dec oracle, we construct adversaries A1 ∈ Aae1

r-n and B such that

Advae2
SEHN3

(A2) ≤ Advae1
SE1(A1) + Advprf

F (B) .

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its New oracle and
qe queries to its Fn oracle, respectively. Adversary B has about the same running time as A2.

Proof: We define the games G0,G1, and G2 as in Fig. 12. All games share the same Initialize and
Finalize procedures, listed at the top right of Fig. 12. Let b1 be the challenge bit in Gae2

SEHN3
(A2)

and b′1 be the bit returned by A2. Then, by the definition of the game Gae2
SEHN3

(A2) and since

SEHN3.CS(`n, `m, `h) = {0, 1}SE1.nl+SE1.ccl(`n,`m,`h), we have that Advae2
SEHN3

(A2) = Pr[b′1 = 1|b1 =
1]− Pr[b′1 = 1|b1 = 0] = Pr[G0(A2)]− Pr[G2(A2)].

We define adversaries A2 and B as specified in Fig. 12. Recall that A1 ∈ Aae1
r-n can be expressed

as in Fig. ??, discussed in Appendix A, with random nonce adversary A2 and NBE1 scheme SE1.
This is such that the following equations hold:

Pr[G0(A2)]− Pr[G1(A2)] = Advae1
SE1(A1) , (14)

Pr[G1(A2)]− Pr[G2(A2)] = Advprf
F (B) . (15)

From here, we can immediately derive the theorem statement. What remains to be done is to
derive equations (14) and (15). We will do this one by one.

The general strategy of B is to run A2 with simulated oracles. Intuitively, the adversary uses the
Fnb oracle to get a “derived nonce” then encrypts and decrypts as stipulated in SE1’s algorithms.
Let b∗ be the challenge bit in Gprf

F (B) and b′∗ be the bit returned by B. When b∗ = 1, encryption will
proceed with a nonce derived using F.Ev, and when b∗ = 0, it will proceed with a randomly chosen
nonce. Therefore, we have that Pr[b′∗ = 1|b∗ = 1] = Pr[G0(A2)] and Pr[b′∗ = 1|b∗ = 0] = Pr[G1(A2)].
Subtracting yields (14).

A2 is a random nonce adversary since it does not provide a nonce to the encryption oracle. This
means that A1 ∈ Aae1

r-n . It will also run A2 with simulated oracles. For encryption, it ignores the
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procedure Initialize // For all games

Return

procedure Finalize(b′) // For all games

Return (b′ = 1)

Game G0

procedure New0

v ← v + 1

Kv←$ SEHN3.KS

procedure Enc0(i,N,M,H)

C2 ← SEHN3.Enc(Ki, N,M,H)

Return C2

procedure Dec0(i, C2, H)

M ← SEHN3.Dec(Ki, C2, H)

Return M

Game G1

procedure New1

v ← v + 1 ; Kv←$ SE1.KS

procedure Enc1(i,N,M,H)

N1←$ {0, 1}SE1.nl
C1 ← SE1.Enc(Ki, N1,M,H) ; Return N1‖C1

procedure Dec1(i, C2, H)

N1‖C1 ← C2 ; M ← SE1.Dec(Ki, N1, C1, H)

Return M

Game G2

procedure New2

Return

procedure Enc2(i,N,M,H)

C2←$ {0, 1}SE1.nl+SE1.ccl(`n,`m,`h)

M[i, C2, H]←M ; Return C2

procedure Dec2(i, C2, H)

Return M[i, C2, H]

Adversary A
Newa,Enca,Deca

2

Initialize ; b′←$A
Newa,Enc

∗
a,Dec∗

a
2

Finalize(b′)

procedure Enc∗a(i,N,M,H)

(N1, C1)←$ Enca(i,M,H)

C2 ← N1‖C1 ; Return C2

procedure Dec∗a(i, C2, H)

N1‖C1 ← C2

M ← Decb(i,N1, C1, H)

Return M

Adversary BNewb,Fnb

Initialize ; b′←$A
New∗

b ,Enc
∗
b ,Dec∗

b
2 ; Finalize(b′)

procedure New∗b
v ← v + 1 ; New ; Kv←$ SE1.KS

procedure Enc∗b(i,N,M,H)

N1 ← Fnb(i,N) ; C1 ← SE1.Enc(Ki, N1,M,H)

C2 ← N1‖C1 ; Return C2

procedure Dec∗b(i, C2, H)

N1‖C1 ← C2 ; M ← SE1.Dec(Ki, N1, C1, H)

Return M

Figure 12: Top: Games used in proving Theorem 5.3. Initialize,Finalize are common to all
games. Bottom: Adversaries used in proving Theorem 5.3.

nonce provided by A2 and passes the remaining arguments to Enca, the encryption oracle provided
to the random nonce adversary. For decryption, it parses the ciphertext into core ciphertext C1

and nonce N1, and passes them to Deca (along with i and H). Let b2 be the challenge bit in
Gae1

SE1(A1) and b′2 be the bit returned by A1. When b2 = 1, encryption will use the encryption
algorithm SE1.Enc and randomly chosen nonces. When b2 = 0, both N1 and the core ciphertext C1

will be random selected from {0, 1}SE1.nl and {0, 1}SE1.ccl(|N |,|M |,|H|), respectively. This means that
Pr[b′2 = 1|b2 = 1] = Pr[G1(A2)] and Pr[b′2 = 1|b2 = 0] = Pr[G2(A2)]. Subtracting yields (15).
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E Theorem 6.2 is tight

Let SE1 be an NBE1 scheme, Spl be a splitting scheme and ` ∈ N be such that ` ≤ SE1.mccl. Let
`m, `h be such that {0, 1}`m ⊂ SE1.MS and {0, 1}`h ⊂ SE1.HS. (Note that we know that some `m, `h
must exist since we assumed SE1.MS,SE1.HS were length-closed.) We define collision probability
CPSE1(`m, `h, q), for all k, q where 1 < k ≤ |SE1.KS| and 0 < q < 2`m , as the probability that the
following returns true.

For i = 1, 2 . . . k do
K←$ SE1.KS
For j = 1, 2 . . . q do
C1 ← SE1.Enc(K, 0SE1.nl, 〈j〉`m , 0`h) ; (x, y)← Spl.Ev(`, C1)
If (x ∈ Si) then return true else Si ← Si ∪ {x}

Return false

We discussed briefly in Section 6 that the HN2 transform does not, in general, provide advanced
security. We formalize this statement by providing a nonce-misusing adversary, then show that it
achieves a high advantage when ` is small. This attack generalizes the attack provided by RWZ on
CTR-mode with Meyer-Matyas ciphertext stealing [52].

Proposition E.1 Let SEHN2 = HN2[SE1, `,E, Spl] be obtained as in Section 5. Let `m, `h be as
described above. Then, we can construct an adversary A`m,`h ∈ Aae2

u-nmh such that:

Advae2
SEHN2

(A`m,`h) ≥ CPSE1(`m, `h, qn, qe)−
qnqe(qe − 1)

2E.bl+1

A`m,`h is a very-low-resource adversary making qn queries to its New oracle, qe queries per user to
its Enc oracle and no Dec queries.

Adversary ANew,Enc,Dec
`m,`h

Initialize
For i = 1, 2 . . . qn do
New
For j = 1, 2 . . . q do
Ci,j ← Enc(i, 0SE1.nl, 〈j〉`m , 0h) ; zi,j ← Ci,j [1..E.bl]
If (zi,j ∈ Si) then b′ ← 1 else Si ← Si ∪ {zi,j}

Finalize(b′)

Proof: A`m,`h will return 1 when xi,j = xi,j′ for some i, j, j′. Let b be the challenge bit and b′

be the bit returned in Gae2
SEHN2

(A`m,`h). When b = 1, this means that the output of the block
cipher call in SEHN2.Enc during the encryption of Mi,j and Mi,j′ were the same. This, in turn,
means that the first elements of the outputs of the splitting function was the same. Therefore,
Pr[b′ = 1|b = 1] = CPSE1(`m, `h, qn, qe). When b = 0, all the Ci,j will be random strings. Using the

birthday collision probability and the union bound, this means that Pr[b′ = 1|b = 0] ≤ qnqe(qe−1)
2E.bl+1 .

Therefore, Advae2
SEHN2

(A`m,`h) ≥ CPSE1(`m, `h, qn, qe)− qnqe(qe−1)
2E.bl+1

Next, we show that if SE1 is AE1[Aae1
u-nmh]-secure, then the collision probability can only be

high if ` is small.
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Proposition E.2 Let SE1, `m, `h, ` be as defined above. We can construct an adversary A1 such
that:

Advae1
SE1(A1) ≥ CPSE1(`m, `h, qn, qe)−

qnqe(qe − 1)

2`+1

A is a very-low-resource adversary making qn queries to its New oracle and qe queries per user to
its Enc oracle, . A1 makes no Dec queries.

Adversary ANew,Enc,Dec
1

Initialize
For i = 1, 2 . . . qn do
New
For j = 1, 2 . . . q do
Ci,j ← Enc(i, 0SE1.nl, 〈j〉`m , 0h) ; (xi,j , y)← Spl(`, Ci,j)
If (xi,j ∈ Si) then ’

¯
← 1 else Si ← Si ∪ {xi,j}

Finalize(b′)

Proof: As with A`m,`h , adversary A1 will return 1 only if xi,j = xi,j′ for some i, j, j′. Let b be
the challenge bit and b′ be the bit returned in Gae1

SE1(A1). When b = 1, the probability that b′ = 1
is exactly the collision probability. This is because A`m,`h keeps the nonce constant and zi,j is
derived from the nonce and xi,j . So a collision in the xi,j terms occurs if and only if there is a
collision in the zi,j terms. Therefore, Pr[b′ = 1|b = 1] = CPSE1(`m, `h, qn, qe). Recall that xi,j is
a substring of length ` of Ci,j . Therefore, when b = 0, this is a random string. Therefore, using

a birthday collision probability and the union bound, Pr[b′ = 1|b = 0] ≤ qnqe(qe−1)
2`+1 . From this, we

have CPSE1(`m, `h, qn, qe)− qnqe(qe−1)
2`+1 ≤ Advae1

SE1(A1).

Collectively, these two propositions show us that if SE1 is AE1[Aae2
u-nmh]-secure and E.bl is non-

trivial, then CPSE1(`m, `h, qn, qe) ≈ qnqe(qe−1)
2`+1 will be the dominant term in Advae2

SEHN2
(A`m,`h),

meaning that SEHN2 does not achieve AE2-security in the nonce-misuse setting if ` is small.

Now we turn to proving Theorem 6.2. Notice that the last term in the bound in Theorem 6.2 is
equal to the dominant term in Advae2

SEHN2
(A`m,`h) (under the assumptions discussed above). This

means that the bound below is tight.

Theorem 6.2. Let SEHN2 = HN2[SE1, `,E, Spl] be obtained as above. Then, given adversary A2

∈ Aae2
u-nmh, making qn queries to its New oracle and qe queries per user to its Enc oracle, we

construct adversaries A1 ∈ Aae1
u-nmh and B such that

Advae2
SEHN2

(A2) ≤ Advae1
SE1(A1) + Advprf

F (B) +
qnqe(qe − 1)

2`+1
. (16)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to its New oracle and
qe queries per user to its Fn oracle. Adversary B has about the same running time as A2.

Proof: Our proof is uses some of the same logic as the proof of Theorem 5.2. We define the games
G0,G1,G2,G3, and G4 as in Fig. 13. Games G0 and G4 are identical, respectively, to games G0

and G3 in Fig. 10 used in the proof of Theorem 5.2. As such, we have that Advae2
SEHN2

(A2) =
Pr[Gae2

SEHN2
(A2)|b1 = 1]− Pr[Gae2

SEHN2
(A2)|b1 = 0] = Pr[G0(A2)]− Pr[G4(A2)].

Additionally, the adversaries A1, B are exactly the same as those used in the proof of Theorem 5.2
(Fig. 11) and G1,G3,G4 from Fig. 13 are equivalent, respectively, to G1,G2,G3 used in the proof
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of Theorem 5.2 (see Fig. 10). Therefore, by similar logic as was presented in Theorem 5.2,

Pr[G0(A2)]− Pr[G1(A2)] = Advae1
SE1(A1)

and

Pr[G3(A2)] = Pr[G4(A2)].

Notice that if A2 never repeats a nonce-message-header triple to any one user, then neither does
A1. Therefore, since A2 ∈ Aae2

u-nmh we know A1 ∈ Aae1
u-nmh.

Now we reach the point where the proofs differ. We will show the following statements:

Pr[G1(A2)]− Pr[G2(A2)] = Advprf
E (B) , (17)∣∣Pr[G2(A2)]− Pr[G3(A2)]

∣∣ ≤ qnqe(qe − 1)

2`+1
, (18)

which together with the above equations complete the proof.

Let b∗ be the challenge bit in the game Gprf
E (B) and b′∗ be the bit returned by B. Now that we allow

the adversary to repeat nonces, we are no longer guaranteed that, within each user, the calls to Fnb

will all have unique values of N‖x. Therefore, in G2, we maintain a table Y which detects when
a single user makes two calls to Fnb with the same N‖x, and returns the appropriate value if so.
From this, we have Pr[b′∗ = 1|b∗ = 0] = Pr[G2(A2)]. When b∗ = 1, as in the proof of Theorem 5.2,
we have that Pr[b′∗ = 1|b∗ = 1] = Pr[G1(A2)]. Subtracting, we have (17).

Then, notice that G2,G3 are identical-until-bad. Therefore, we can use the fundamental lemma of
game playing [14]. This yields

∣∣Pr[G2(A2)] − Pr[G3(A2)]
∣∣ ≤ Pr[G2(A2) sets bad]. Then, we can

upper bound the probability that G2(A2) sets bad by the probability that there is a collision on x
for any two queries to Enc2 by the same user. Since x in Enc2 is a substring of C1, by a birthday
collision argument, this yields (18).

F Proof of Theorem 6.3

Theorem 6.3. Let SEHN4 = HN4[SE1, `,F] be obtained as in Section 6, and let SE1 satisfy tidiness.
Then, given adversary A2 ∈ Aae2

u-nmh making qn queries to its New oracle and qe, qd encryption and
decryption queries for each user, respectively, we construct adversaries A1 ∈ Aae1

r-n ∩ Aae1
priv and B

such that

Advae2
SE2(A2)≤Advae1

SE1(A1) + Advprf
F (B) +

qnqd
2SE1.nl

.

Adversary A1 makes qn queries to its New oracle, qe queries to its Enc oracle per user, and no
queries to its Dec oracle. B makes qn queries to its New oracle, and qe + qd queries to its Fn
oracle per user. Adversaries A1 and B both have about the same running time as A2.

Proof: We define the games G0,G1,G2,G3, and G4 as specified in Fig. 15. Let b1 be the challenge
bit in Gae2

SEHN4
(A2) and b′1 be the bit returned by A2. Then, by the definition of game Gae2

SEHN4
(A2)

and since SEHN4.CS(`n, `m, `h) = {0, 1}SE1.nl+SE1.ccl(SE1.nl,`+`m,`h), we have that Pr[b′1 = 1|b1 =
1] = Pr[G0(A2)] and Pr[b′1 = 1|b1 = 0] = Pr[G4(A2)]. Therefore, Pr[G0(A2)] − Pr[G4(A2)] =
Advae2

SEHN4
(A2).

We define adversaries A2 and B as specified in Fig. 14. We define A1 ∈ Aae1
r-n to be as expressed in

Fig. ??, with random nonce adversary A2 and NBE1 scheme SE1. This is such that the following
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procedure Initialize // For all games

Return

procedure Finalize(b′) // For all games

Return (b′ = 1)

Game G0

procedure New0

v ← v + 1 ; Kv ← SEHN2.KS

procedure Enc0(i,N,M,H)

C2 ← SEHN2.Enc(Ki, N,M,H) ; Return C2

procedure Dec0(i, C2, H)

M ← SEHN2.Dec(Ki, C2, H) ; Return M

Game G1

procedure New1

v ← v + 1 ; KE,v ← {0, 1}E.kl

procedure Enc1(i,N,M,H)

C1←$ {0, 1}SE1.ccl(|N |,|M |,|H|)
(x, y)← Spl.Ev(`, C1) ; C1,1 ← E.Ev(KE,i, N‖x)

C2 ← C1,1‖y ; M[i, C2, H]←M ; Return C2

procedure Dec1(i, C2, H)

Return M[i, C2, H]

Games G2 ,G3

procedure New2

Return

procedure Enc2(i,N,M,H)

C1←$ {0, 1}SE1.ccl(|N |,|M |,|H|)
(x, y)← Spl.Ev(`, C1)

C1,1←$ {0, 1}E.bl
If (Y[i,N‖x] 6= ⊥) then

bad← true ; C1,1 ← Y[i,N‖x]

Else Y[i,N‖x]← C1,1

C2 ← C1,1‖y ; M[i, C2, H]←M

Return C2

procedure Dec2(i, C1, H)

Return M[i, C1, H]

Game G4

procedure New4

Return

procedure Enc4(i,N,M,H)

C2←$ {0, 1}SE1.nl+SE1.ccl(|N |,|M |,|H|)−`

M[i, C1, H]←M ; Return C2

procedure Dec4(i, C1, H)

Return M[i, C1, H]

Figure 13: Games used in the proof of Theorem 6.2. Initialize,Finalize are common to all
games.

equations hold:

Pr[G0(A2)]− Pr[G1(A2)] = Advprf
F (B) , (19)∣∣Pr[G1(A2)]− Pr[G2(A2)]

∣∣ ≤ qnqd
2SE1.nl

, (20)

Pr[G2(A2)]− Pr[G3(A2)] = Advae1
SE1(A1) , (21)

Pr[G3(A2)] = Pr[G4(A2)] . (22)

Together with the above arguments, these equations immediately imply the theorem statement.
What remains is to derive the equations (19), (20), (21), and (22). We will do this one by one.

The general strategy of B is to run A2 with simulated oracles. These oracles follow the description of
the scheme algorithms SEHN4.Enc and SEHN4.Dec. They simulate the SE1 encryption and decryption
in their entirety, and adversary B uses its Fnb oracle to generate the synthetic nonces N1 (in

encryption) and tags T (in decryption). Let b∗ be the challenge bit in Gprf
F (B) and b′∗ be the

bit returned by B. When b∗ = 1, then N1 and T are generated using F.Ev. This means that
Pr[b′∗ = 1|b∗ = 1] = Pr[G0(A2)]. When b∗ = 0, N1 and T will be generated using a random mapping
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Adversary A
Newa,Enca,Deca

2

Initialize ; b′←$A
Newa,Enc

∗
a,Dec∗

a
2

Finalize(b′)

procedure Enc∗a(i,N,M,H)

(N1, C1)←$ Enca(i,N‖M,H)

M[i,N1, C1, H]← N‖M
Y[i, (N,M,H)]← N1

C2 ← N1‖C1 ; Return C2

procedure Dec∗a(i, C2, H)

N1‖C1 ← C2 ; X ←M[i,N1, C1, H]

If (X = ⊥) then return ⊥
N‖M ← X ; T ← Y[i, (N,M,H)]

If (N1 = T ) then return M

Else return ⊥

Adversary BNewb,Fnb

Initialize ; b′←$A
New∗

b ,Enc
∗
b ,Dec∗

b
2

Finalize(b′)

procedure New∗b
v ← v + 1 ; New ; Kv←$ SE1.KS

procedure Enc∗b(i,N,M,H)

N1 ← Fnb(i, (N,M,H))

C1 ← SE1.Enc(Ki, N1, N‖M,H)

C2 ← N1‖C1 ; Return C2

procedure Dec∗b(i, C2, H)

N1‖C1 ← C2 ; X ← SE1.Dec(Ki, N1, C1, H)

If (X = ⊥) then return ⊥
N‖M ← X ; T ← Fnb(i, (N,M,H))

If (N1 = T ) then return M else return ⊥

Figure 14: Adversaries A2, B used in proving Theorem 6.3.

from SE1.NS × SE1.MS × SE1.HS to {0, 1}F.ol. This means that Pr[b′∗ = 1|b∗ = 0] = Pr[G1(A2)],
which gives us (19).

Games G1 and G2 differ in how they derive X in their decryption oracles. Dec1 uses SE1.Dec while
Dec2 will return ⊥ except on trivial queries. (Recall that a trivial query is when the adversary
decrypts a ciphertext returned by the encryption oracle, using the same header and nonce.) They
also differ in how they derive synthetic nonce N1 and tag T . In G1, this is a random mapping as
described above, but in G2, it generates synthetic nonce N1 by picking random elements of {0, 1}F.ol
and sets tag T to be ⊥ unless a synthetic nonce (for the same N,M,H) has been generated by
Enc2. Notice that this is equivalent to using a random mapping because the adversary never
repeats a message-nonce-header triple for the same user. Therefore, to bound A2’s advantage in
distinguishing G1 from G2, we need only look at when the output of Dec1 is different from Dec2.
To do this, we are only concerned with the case when Dec1 does not return ⊥, but Dec2 does,
since they behave the same in every other case by the correctness of the encryption scheme. If Dec1

does not return ⊥, then (X 6= ⊥) ∧ (N1 = T ). Now we distinguish two cases: either (1) Y[i, y] is
already initialized, or (2) it is not. Assuming (1), the tidiness of the encryption scheme and the
fact that the same y = (N,M,H) have occurred before implies that the same core ciphertext also
occurred before. As the query is non-trivial, this means that the nonce N1 is incorrect and the
Dec returns ⊥, in contradiction to our previous assumption. So we are in case (2), where Y[i, y]
is not initialized. Therefore, Pr[N1 = T ] ≤ 1

|{0,1}SE1.nl| . If A2 makes qd decryption queries for each

user, by the union bound, we obtain (20).

A1 also runs A2 with simulated oracles. It simulates SE1 encryption using Enca and SE1 decryption
by returning ⊥ on all non-trivial queries. It selects N1 randomly and sets T to be ⊥ unless a
synthetic nonce (for the same N,M,H) has been generated by Enca. Let b2 be the challenge
bit in Gae1

SE1(A1) and b′2 be the bit returned by A1. When b2 = 1, Enca performs encryption
using SE1.Enc and when b2 = 0, it performs encryption by selecting random strings. Therefore,
Pr[b′2 = 1|b2 = 1] = Pr[G2(A2)] and Pr[b′2 = 1|b2 = 0] = Pr[G3(A2)]. Subtracting yields (21).
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procedure Initialize // For all games

Return

procedure Finalize(b′) // For all games

Return (b′ = 1)

Game G0

procedure New0

v ← v + 1 ; Kv←$ SEHN4.KS

procedure Enc0(i,N,M,H)

C2 ← SEHN4.Enc(Ki, N,M,H)

Return C2

procedure Dec0(i, C2, H)

M ← SEHN4.Dec(Ki, C2, H)

Return M

Game G1

procedure New1

v ← v + 1 ; Kv←$ SE1.KS

procedure Enc1(i,N,M,H)

N1←$ {0, 1}SE1.nl ; y ← (N,M,H)

If (Y[i, y] 6= ⊥) then N1 ← Y[i, y]

Else Y[i, y]← N1

C1 ← SE1.Enc(Ki, N1, N‖M,H)

Return N1‖C1

procedure Dec1(i, C2, H)

N1‖C1 ← C2

X ← SE1.Dec(Ki, N1, C1, H)

If (X = ⊥) then return ⊥
N‖M ← X ; T ←$ {0, 1}SE1.nl
y ← (N,M,H)

If (Y[i, y] 6= ⊥) then T ← Y[i, y]

Else Y[i, y]← T

If (N1 = T ) then return M else return ⊥

Game G2

procedure New2

v ← v + 1 ; Kv←$ SE1.KS

procedure Enc2(i,N,M,H)

N1←$ {0, 1}SE1.nl ; Y[i, (N,M,H)]← N1

C1 ← SE1.Enc(Ki, N1, N‖M,H)

M[i,N1, C1, H]← N‖M ; Return N1‖C1

procedure Dec2(i, C2, H)

N1‖C1 ← C2 ; X ←M[i,N1, C1, H]

If (X = ⊥) then return ⊥
N‖M ← X ; T ← Y[i, (N,M,H)]

If (N1 = T ) then return M else return ⊥

Game G3

procedure New3

v ← v + 1 ; Kv←$ SE1.KS

procedure Enc3(i,N,M,H)

N1←$ {0, 1}SE1.nl ; Y[i, (N,M,H)]← N1

C1←$ {0, 1}SE1.ccl(|N1|,|N |+|M |,|H|)

M[i,N1, C1, H]← N‖M ; Return N1‖C1

procedure Dec3(i, C2, H)

N1‖C1 ← C2 ; X ←M[i,N1, C1, H]

If (X = ⊥) then return ⊥
N‖M ← X ; T ← Y[i, (N,M,H)]

If (N1 = T ) then return M else return ⊥

Game G4

procedure New4 // This oracle does nothing

procedure Enc4(i,N,M,H)

C2←$ SEHN4.CS(|N |, |M |, |H|)
M[i, C2, H]←M ; Return C2

procedure Dec4(i, C2, H)

Return M[i, C2, H]

Figure 15: Games G0,G1,G2,G3,G4 used in proving Theorem 6.3. Initialize and Finalize are
common to all games.

We note that A1 does not make use of its decryption oracle, and, as discussed before, has random-
nonce-adversary A2. Therefore, A1 ∈ Aae1

r-n ∩Aae1
priv.

Finally, notice that in Enc3, the synthetic nonce and SE1 ciphertext are both randomly selected.
This is equivalent to Enc4 since SEHN4.CS(`n, `m, `h) = {0, 1}SE1.nl+SE1.ccl(SE1.nl,`+`m,`h). Also, since
C2 = N1‖C1, M in G3 and G4 are functionally equivalent. As discussed earlier Y[i, (N,M,H)] 6= ⊥
if and only if M[i,N1, C1, H] 6= ⊥ since they would have been defined in the same call to Enc3.
Therefore, we can simplify the decryption oracle to that which is in Dec4. From this, we have (8),
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Adversary BNewa,Fna,FnInva

Initialize ; b′←$ANewa,Enc
∗
a,Dec4 ; Finalize(b′)

procedure Enc∗a(i,N,M,H)

C2 ← Fn(i,H, 0`t‖N‖M) ; Return C2

procedure Dec4(i, C2, H)

X ← FnInv(i,H,C2) ; If X[1..`t] 6= 0`t then return ⊥
N‖M ← X[(`t + 1)..|X|] ; Return M

Figure 16: Adversary B used in the proof of Theorem 6.4.

which concludes the proof.

G Proof of Theorem 6.4

Theorem 6.4. Let SEHN5 = HN5[TE, `, `t] be obtained as in Section 6. Let A ∈ Aae2
u-nmh be an

adversary making qn queries to its New oracle, qe queries per user to its Enc oracle with minimum
message length `1, and qd queries with minimum ciphertext length `2 ≥ `t per user to its Dec oracle.
We construct adversary B such that

Advae2
SEHN5

(A) ≤ Advstprp
TE (B) +

qnqe(qe + 1)

2`t+`+`1+1
+
qnqd(qd + 1)

2`2+1
+
qnqd
2`t

.

Adversary B makes qn queries to its New oracle, qe queries per user to its Fn oracle, and qd
queries per user to its FnInv oracle.

Proof: We define the games G0,G1,G2, and G3 as specified in Fig. 17, and games G4,G5,G6,G7,
and G8 as specified in Fig. 18. Let b1 be the challenge bit in Gae2

SEHN5
(A) and b′1 be the bit returned by

A. Then, by the definition of the game Gae2
SEHN5

(A) and since SEHN5.CS(`n, `m, `h) = {0, 1}`t+`+`m ,
we have that Pr[b′1 = 1|b1 = 1] = Pr[G0(A)] and Pr[b′1 = 1|b1 = 0] = Pr[G8(A)]. Therefore,
Pr[G0(A)]− Pr[G8(A)] = Advae2

SEHN5
(A).

We define adversaries A2 and B as specified in Fig. 14. This is such that the following equations
hold:

Pr[G0(A)]− Pr[G1(A)] = Advstprp
TE (B) , (23)

Pr[G1(A)] = Pr[G2(A)] , (24)

|Pr[G2(A)]− Pr[G3(A)]| ≤ qnqe(qe − 1)

2`t+`+`1+1
+
qnqd
2`2

, (25)

Pr[G3(A)] = Pr[G4(A)] , (26)

|Pr[G4(A)]− Pr[G5(A)]| ≤ qnqe
2`t+`+`1

+
qnqd(qd − 1)

2`2+1
, (27)

Pr[G5(A)] = Pr[G6(A)] , (28)

|Pr[G6(A)]− Pr[G7(A)]| ≤ qnqd
2`t

, (29)

Pr[G7(A)] = Pr[G8(A)] . (30)
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Together with the above arguments, these equations can be combined to derive the theorem state-
ment:

Advae2
SEHN5

(A)

= Pr[G0(A)]− Pr[G8(A)]

≤ Advstprp
TE (B) +

qnqe(qe − 1)

2`t+`+`1+1
+
qnqd
2`2

+
qnqe

2`t+`+`1
+
qnqd(qd − 1)

2`2+1
+
qnqd
2`t

= Advstprp
TE (B) +

qnqe(qe − 1) + 2qnqe
2`t+`+`1+1

+
qnqd(qd − 1) + 2qnqd

2`2+1
+
qnqd
2`t

= Advstprp
TE (B) +

qnqe(qe + 1)

2`t+`+`1+1
+
qnqd(qd + 1)

2`2+1
+
qnqd
2`t

.

What remains is to derive the equations (23), (24), (25), (26), (27), (28), (29), and (30). We will
do this one by one.

The general strategy of B is simply to run A with simulated oracles. It does this by using the
Fn and FnInv oracles to perform the tweakable cipher evaluation and inversion. Let b∗ be the
challenge bit in the game Gstprp

TE (A) and b′∗ be the bit returned by B. When b∗ = 0, evaluation
and inversion occurs according to a length-preserving random permutation from {0, 1}∗ → {0, 1}∗.
This is captured in G1, where we sample from the domain and range at random. The sets Xi,H ,Yi,H
ensure that we achieve a bijection (i.e. we sample without replacement) and the tables X,Y will
ensure that repeated queries or trivial encryption/ decryption queries (recall that this is when we
take the output of the encryption oracle and give it to the decryption oracle, or vice versa) will
give consistent results. Hence, Pr[b′∗ = 1|b∗ = 0] = Pr[G1(A)]. When b∗ = 1, the Fn and FnInv
oracles will use TE for the evaluation and inversion. This is captured in G0 so Pr[b′∗ = 1|b∗ = 1] =
Pr[G0(A)]. Subtracting yields (23).

G1 and G2 differ only in their encryption functions. In G1, we select C2 from
(
{0, 1}|M∗|

)
\ Yi,H ,

the set of all strings of the correct length which have not selected as a ciphertext yet (within that
session). In G2, we select C2 from {0, 1}|M∗| and only if there is a collision between C2 and a
previously selected ciphertext within the same session do we reselect C2 from the former set. From
here, we see that the outputs of Enc1 and Enc2 (which includes the boxed code) are complete
indistinguishable. This gives us (24).

Now notice that G2,G3 are identical-until-bad. Note that G2 sets bad if some C2 selected within
the encryption oracle collides with an element in Yi,H . We begin by computing the probability of
this within a single session. Notice that a string C ′2 ends up in Yi,H one of two ways. The first way
is that some call was made to Dec2 with second argument C ′2. At most qd different values of C ′2
are passed to Dec2 so to bound the probability that an encryption query leads to a collision with
one of these, we conservatively assume all the ciphertexts are of the same minimal length of `2.
This probability bound is qd

2`2
. The second way is that some prior call to Enc2 randomly selected

the string C ′2. To bound the probability of this, we conservatively assume that all the M∗ selected
are of the same minimal length (i.e. |M∗| = `t + ` + `1) and use a birthday collision bound. This

bound is qe(qe−1)
2`t+`+`1+1 . Using the union bound to accommodate all sessions, we get (25).

Next, notice that G4 simplifies the encryption function of G3. As above, encryption will always
pick random strings (now with replacement). We remove the set Yi,H since it is no longer used. For
decryption, Dec2 and Dec3 (with the boxed code) are completely indistinguishable in an analogous
way to how Enc1 and Enc2 (with the boxed code) are. We omit formally showing this for brevity.
From here, we get (26)
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Game G0

procedure New0

v ← v + 1 ; Kv←$ {0, 1}TE.kl

procedure Enc0(i,N,M,H)

C2 ← TE.Ev(KTE, H, 0
`t‖N‖M)

Return C2

procedure Dec0(i, C2, H)

T‖N‖M ← TE.In(i,H,C2)

If (T 6= 0`t) then return ⊥ else return M

Game G1

procedure New1

Return

procedure Enc1(i,N,M,H)

M∗ ← 0`t‖N‖M
If (Y[i,H,M∗] = ⊥) then

C2←$

(
{0, 1}|M∗|) \ Yi,H

X[i,H,C2]←M∗ ; Y[i,H,M∗]← C2

Xi,H ← Xi,H ∪{M∗} ; Yi,H ← Yi,H ∪{C2}
Return Y[i,H,M∗]

procedure Dec1(i, C2, H)

If (X[i,H,C2] = ⊥) then

M∗←$

(
{0, 1}|C2|

)
\ Xi,H

X[i,H,C2]←M∗ ; Y[i,H,M∗]← C2

Xi,H ← Xi,H ∪{M∗} ; Yi,H ← Yi,H ∪{C2}
T‖N‖M ← X[i,H,C2]

If (T 6= 0`t) then return ⊥ return M

procedure Initialize // For all games

Return

procedure Finalize(b′) // For all games

Return (b′ = 1)

Games G2 ,G3

procedure New2

Return

procedure Enc2(i,N,M,H)

M∗ ← 0`t‖iv‖M
If (Y[i,H,M∗] = ⊥) then

C2←$ {0, 1}|M∗|

If C2 ∈ Yi,H then

bad← true

C2←$

(
{0, 1}|M∗|) \ Yi,H

X[i,H,C2]←M∗ ; Y[i,H,M∗]← C2

Xi,H ← Xi,H ∪ {M∗}
Yi,H ← Yi,H ∪ {C2}

Return Y[i,H,M∗]

procedure Dec2(i, C2, H)

If (X[i,H,C2] = ⊥) then

M∗←$

(
{0, 1}|C2|

)
\ Xi,H

X[i,H,C2]←M∗ ; Y[i,H,M∗]← C2

Xi,H ← Xi,H ∪ {M∗}
Yi,H ← Yi,H ∪ {C2}

T‖N‖M ← X[i,H,C2]

If (T 6= 0`t) then return ⊥
Return M

Figure 17: Games G0,G1,G2,G3 used in proving Theorem 6.4. Initialize,Finalize are common
to all games.

G4,G5 are also identical-until-bad. Computing Pr[G4(A) sets bad] follows similar logic to comput-
ing Pr[G2(A) sets bad]. G4 sets bad if some M∗ selected within Dec4 collides with an element in
Xi,H . This element is either equal to 0`t‖N‖M for some prior query Enc4(i,N,M,H) or a random
string returned in another query to Dec4. Via an analogous argument to the one used above, we
get that Pr[G4(A) sets bad] ≤ qnqe

2`t+`+`1
+ qnqd(qd−1)

2`2+1 , which is (27)

Going from G5 to G6, we remove the set Xi,H , which is never used, and set a bad flag, which has
no consequence to the outcome of the game since G6 does not include the boxed code. This is (28).

G6,G7 are our final pair of identical-until-bad games. Notice that G6 sets bad if T = 0`t in some
decryption query. Since T is a substring of the random string M∗, and a user generates at most qd
values of M∗, we can use the union bound to get Pr[G6(A) sets bad] ≤ qnqd

2`t
, giving us (29).
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Games G4, G5

procedure New4

Return

procedure Enc4(i,N,M,H)

M∗ ← 0`t‖N‖M
If (Y[i,H,M∗] = ⊥) then

C2←$ {0, 1}|M∗|

X[i,H,C2]←M∗

Y[i,H,M∗]← C2

Xi,H ← Xi,H ∪ {M∗}
Return Y[i,H,M∗]

procedure Dec4(i, C2, H)

If (X[i,H,C2] = ⊥) then

M∗←$ {0, 1}|C2|

If M∗ ∈ Xi,H then

bad← true

M∗←$

(
{0, 1}|C2|

)
\ Xi,H

X[i,H,C2]←M∗

Y[i,H,M∗]← C2

Xi,H ← Xi,H ∪ {M∗}
T‖N‖M ← X[i,H,C2]

If (T 6= 0`t) then return ⊥
Return M

Games G6, G7

procedure New6

Return

procedure Enc6(i,N,M,H)

M∗ ← 0`t‖N‖M
If (Y[i,H,M∗] = ⊥) then

C2←$ {0, 1}|M∗|

X[i,H,C2]←M∗ ; Y[i,H,M∗]← C2

Return Y[i,H,M∗]

procedure Dec6(i, C2, H)

If (X[i,H,C2 6= ⊥) then return X[i,H,C2]

M∗←$ {0, 1}|C2| ; X[i,H,C2]←M∗

Y[i,H,M∗]← C2 ; T‖N‖M ← X[i,H,C2]

If (T 6= 0`t) then return ⊥ else bad← true ; Return ⊥
Return M

Game G8

procedure New8

Return

procedure Enc8(i,N,M,H)

C2←$ {0, 1}`t+|N |+|M | ; M[i, C2, H]←M ; Return C2

procedure Dec0(i, C2, H)

If (M[i, C2, H] 6= ⊥) then return M[i, C2, H] ; Return ⊥

Figure 18: Games G4,G5,G6,G7,G8 used in proving Theorem 6.4. Initialize,Finalize are as in
Fig. 17.

Finally, notice that in G7, if the decryption query made is non-trivial we will always return ⊥. We
have no need for Y anymore. Also, X in G6 serves the same purpose as M in the game Gae2

SEHN5

when b1 = 0. Therefore, G7 can be simplified to G8, giving us (30).

H Details of CAU1 and Proof of Theorem 7.1

Let CAU1 = CAU1[E,H, `] be the NBE1 scheme discussed in Section 7. We begin by recalling the
definition of CAU1.Enc, CAU1.Dec, as they were given in [15]. Note that when M,C1 are being
parsed into blocks of the form τ,Mi, C1,i, this is such that all blocks except the last one are of
length E.bl. (i.e. |τ | = |Mi| = |C1,i| = E.bl for i < m and |Mm| = |C1,m| ≤ E.bl.) As before,
parsing in CAU2.Dec is such that |x| = `. If any parsing fails, or if M,C1 are too long (meaning
〈m + 1〉E.bl−` is not defined), we return ⊥. Recall that, as defined in Section 2, 〈i〉n is the n-bit
representation of integer i.

Our proof requires that F is an sPRP and H is an (ε1, ε2)-almost-XOR-universal (AXU) function
family (as defined in [35, 15, 33, 2] and others). We begin by recalling these definitions.
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CAU1.Enc(K,N,M,H)

M1‖M2‖...‖Mm ←M

For i = 1, 2, ..(m− 1)

C1,i ←Mi⊕E.Ev(K,N‖〈i+ 1〉E.bl−`)
P ← E.Ev(K,N‖〈m+ 1〉E.bl−`)
C1,m ←Mm⊕P [1..|Mm|]
h← H.Ev(E.Ev(K, 0E.bl), (C1,1‖..‖C1,m, H))

τ ← h⊕E.Ev(K,N‖〈1〉E.bl−`)
C1 ← τ‖C1,1‖..‖C1,m ; Return C1

CAU1.Dec(K,N,C1, H)

τ‖C1,1‖C1,2‖...‖C1,m ← C1

h← H.Ev(E.Ev(K, 0E.bl), (C1,1‖..‖C1,m, H))

τ ′ ← h⊕E.Ev(K,N‖〈1〉E.bl−`)
If (τ 6= τ ′) then return ⊥
For i = 1, 2, ..(m− 1)

Mi ← C1,i⊕E.Ev(K,N‖〈i+ 1〉E.bl−`)
P ← E.Ev(K,N‖〈m+ 1〉E.bl−`)
Mm ← C1,m⊕P [1..|C1,m|]
Return M1‖M2‖...‖Mm

CAU2.Enc(K,N,M,H)

M1‖M2‖...‖Mm ← 0`‖M
For i = 1, 2, ..(m− 1)

C1,i ←Mi⊕E.Ev(K,N‖〈i+ 1〉E.bl−`)
P ← E.Ev(K,N‖〈m+ 1〉E.bl−`)
C1,m ←Mm⊕P [1..|Mm|]
h← H.Ev(E.Ev(K, 0E.bl), (C1,1‖..‖C1,m, H))

τ ← h⊕E.Ev(K,N‖〈1〉E.bl−`)
Return τ‖C1,1‖..‖C1,m

CAU2.Dec(K,C2, H)

τ‖C1,1‖C1,2‖...‖C1,m ← C2

h← H.Ev(E.Ev(K, 0E.bl), (C1,1‖...‖C1,m, H))

y ← E.In(K, τ⊕h) ; N ← y[1..`]

If (y[(`+ 1)..E.bl] 6= 〈1〉E.bl−`) then

Return ⊥
For i = 1, 2, ..(m− 1) do

Mi ← C1,i⊕E.Ev(K,N‖〈i+ 1〉E.bl−`)
P ← E.Ev(K,N‖〈m+ 1〉E.bl−`)
Mm ← C1,m⊕P [1..|C1,m|]
x‖M ′1 ←M1 ; If (x 6= 0`) then return ⊥
Return M ′1‖M2‖...‖Mm

Figure 19: Top: Encryption and decryption algorithms of NBE1 scheme CAU1 = CAU1[E,H, `],
a special case of which is GCM. Bottom: Encryption and decryption algorithms of NBE2 scheme
CAU2 = CAU2[E,H, `].

Definition H.1 Let H be a function family with H.D = C×H for some length-closed C,H ⊂ {0, 1}∗.
Let εi : N × N → [0, 1] be functions such that εi(C, ·) and εi(·, H) are monotonically increasing for
all C ∈ C, H ∈ H for i = {1, 2}. We say that H is an (ε1, ε2)-AXU function family if

(1) For all (M,H) ∈ H.D and all y ∈ {0, 1}H.ol, we have

Pr[H(K, (M,H)) = y : K←$ {0, 1}H.kl] ≤ ε1(|M |, |H|)

(2) For all distinct (M,H), (M ′, H ′) ∈ H.D and all y ∈ {0, 1}H.ol, we have

Pr[H(K, (M,H))⊕H(K, (M ′, H ′)) = y : K←$ {0, 1}H.kl] ≤

ε2(max(|M |, |M ′|),max(|H|, |H ′|)).

We define a multi-user variant of sPRP (strong PRP) security for invertible function family F
and adversary A via the Gsprp

F (A) in Fig. 20. In the game, b is the challenge bit and X[·, ·], Y[·, ·] are
tables whose entries are assumed initialized to ⊥. In the b = 0 case, the Fn,FnInv oracles samples
the range and domain respectively, without replacement. This is assured by maintaining the sets
Xi,Yi. It is required that any Fn(i,X) or FnInv(i, Y ) query of A satisfies i ≤ v, X ∈ F.D and
Y ∈ {0, 1}F.ol. The multi-user sPRP advantage of adversary A is Advsprp

F (A) = 2 Pr[Gsprp
F (A)]−1.

We now wish to prove Theorem 7.1 from Section 7, which confirms the security of CAU2 against
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Game Gsprp
E

procedure Initialize

b←$ {0, 1}

procedure New

v ← v + 1 ; Kv←$ {0, 1}F.kl

procedure Fn(i,X)

If (Y[i,X] = ⊥) then

Y0←$

(
{0, 1}F.ol

)
\ Yi ; Y1 ← F.Ev(Ki, X)

Y[i,X]← Yb ; X[i, Yb]← X

Xi ← Xi ∪ {X} ; Yi ← Yi ∪ {Yb}
Return Y[i,X]

procedure FnInv(i, Y )

If (X[i, Y ] = ⊥) then

X0←$ F.D \ Xi ; X1 ← F.In(Ki, Y )

Y[i,X]← Yb ; X[i, Yb]← X

Xi ← Xi ∪ {Xb} ; Yi ← Yi ∪ {Y }
Return X[i, Y ]

procedure Finalize(b′)

Return (b = b′)

Game Gauth1
SE2

procedure Initialize

Return

procedure New

v ← v + 1 ; Kv←$ SE2.KS

procedure Enc(i,N,M,H)

C2 ← SE2.Enc(Ki, N,M,H)

Return C2

procedure Vf(i, C2, H)

M ← SE2.Dec(Ki, C2, H)

If (M 6= ⊥) then win← true

Return (M = ⊥)

procedure Finalize

Return win

Figure 20: Left: Game defining multi-user sPRP security for function family F. Right: Game
defining authenticity of NBE2 scheme SE2.

nonce-respecting adversaries. We restate the encryption and decryption algorithms of CAU2 in full
in Fig. 19. For clarity, we removed the step from CAU1.Dec which recomputes and checks the tag.
Since we recovered the nonce from the tag, the check will always return true (i.e. τ = τ ′) since this
is a tautology.

The proof of Theorem 7 can be greatly simplified by considering the privacy and authenticity of
the scheme separately. To this end, recall that AE2[Aae2

priv ∩Aae2
u-n]-security (that is, NBE2 schemes

secure against adversaries who do not make a decryption query nor repeat a nonce) captures a
security notion that is privacy only. We define an authenticity-only game, Gauth1

SE2 for NBE2 scheme
SE2, as depicted in Fig. 20. In this game, there is no challenge bit. The adversary gets three oracles:
(1) New, to generate new sessions, (2) Enc, an encryption oracle which performs encryption using
SE2.Enc, and (3) Vf, a verification oracle which returns a boolean value indicating if decryption
of the provided ciphertext C2 returns ⊥. The adversary wins if it can get Vf to return true for
any non-trivial query. We make the same assumptions about the adversary’s queries to Enc,Vf
that we made of the adversary’s queries to Enc,Dec in the AE2-security game. We say that
this authenticity advantage of an adversary A is Advauth1

SE2 (A) = Pr[Gauth1
SE2 ]. This game adapts

the notion of AUTH-security as defined by Rogaway in [46], but for NBE2 and in the multi-user
setting.

We now prove that a scheme that achieves both privacy and authenticity as defined above will
also be AE2[Aae2

u-n]-secure. We do this in Lemma H.2.

Lemma H.2 Let SE2 be an NBE2 scheme. Let A ∈ Aae2
u-n be an adversary making qn calls to its

New oracle, qe, qd calls to its Enc,Dec oracles, respectively, per user. Then, we can construct
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Adversary BNewb,Encb,Decb

Initialize ; b′←$ANewb,Encb,Dec∗
b

Finalize(b′)

procedure Dec∗b(i, C2, H)

Return ⊥

Adversary CNewc,Encc,Vfc

Initialize ; b′←$ANewc,Enc
∗
c ,Dec∗

c

Finalize

procedure Dec∗c(i, C2, H)

Vfc(i, C2, H) ; Return ⊥

Game G0

procedure Initialize

Return

procedure New0

v ← v + 1 ; Kv←$ SE2.KS

procedure Enc0(i,N,M,H)

C2←$ SE2.Enc(Ki, N,M,H)

Return C2

procedure Dec0(i, C2, H)

M ←$ SE2.Dec(Ki, N,M,H)

Return M

procedure Finalize(b′)

Return (b′ = 1)

Game G1

procedure Initialize

Return

procedure New1

v ← v + 1 ; Kv←$ SE2.KS

procedure Enc1(i,N,M,H)

C2←$ SE2.Enc(Ki, N,M,H)

Return C2

procedure Dec1(i, C2, H)

Return ⊥

procedure Finalize(b′)

Return (b′ = 1)

Game G2

procedure Initialize

Return

procedure New2

Return

procedure Enc2(i,N,M,H)

C2←$ SE2.CS(|N |, |M |, |H|)
Return C2

procedure Dec2(i, C2, H)

Return ⊥

procedure Finalize(b′)

Return (b′ = 1)

Figure 21: Top: Adversaries B,C used in the proof of Lemma H.2. Bottom: Games G0,G1,G2

used in proving Lemma H.2.

adversaries B ∈ Aae2
priv ∩Aae2

u-n and C ∈ Aae2
u-n such that:

Advae2
SE2(A) ≤ Adv1

SE2(B) + Advauth1
SE2 (C)

Here, B makes qn queries to its New oracle and qe queries to its Enc oracle per user. C makes
qn queries to its New oracle and qe, qd queries to its Enc,Vf oracles, respectively, per user.

Proof: We define adversaries B,C and games G0,G1,G2 as in Fig. 21. As before, we assume that
A makes no repeat queries or trivial decryption queries.

Let b1 be the challenge bit in Gae2
SE2(A) and b′1 be the challenge bit returned by A. When b1 = 1,

encryption and decryption are done using SE2.Enc, SE2.Dec. This is exactly G0(A). When b1 = 0,
encryption returns a random string and decryption will always return ⊥ (since we assumed that
no trivial queries will be made). This is what happens in G2(A). From this, we have that

Advae2
SE2(A) = Pr[b′1 = 1|b1 = 1]− Pr[b′1 = 1|b1 = 0] = Pr[G0(A)]− Pr[G2(A)].

The general strategy of C is to run A and simulate a decryption oracle. The decryption oracle first
calls the verification oracle on the inputs it was passed, then returns ⊥. Let E denote the event
that, in G0(A), some query to Dec0 returns M 6= ⊥. This means that the corresponding query
in Gauth1

SE2 (C) will set win to true. Therefore, Pr[G0(A)|E] ≤ Pr[Gauth1
SE2 (C)]. If this event does not

occur, Dec0 will return ⊥ on all decryption queries. This is no different from interacting with
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decryption oracle Dec1. Therefore, Pr[G0(A)|¬E] = Pr[G1(A)]. Combining these statements, we
have

Pr[G0(A)]−Pr[G1(A)]

≤ Pr[Gauth1
SE2 (C)] + Pr[G0(A)|¬E]− Pr[G1(A)] ≤ Advauth1

SE2 (C).

B also runs A with a simulated decryption oracle which just returns ⊥ on all inputs. Let b2 be the
challenge bit in Gae2

SE2(B) and b′2 the bit returned by B. Note that since A does not repeat a nonce,
neither does B. Since simulated decryption does not call any decryption oracle, B ∈ Aae2

priv ∩Aae2
u-n.

When b2 = 1, the encryption oracle uses SE2.Enc and when b2 = 0, the encryption oracle will just
pick random strings. This corresponds to what happens in G1(A),G2(A) respectively. Therefore,

Advae2
SE2(A) = Pr[b′2 = 1|b2 = 1]− Pr[b′2 = 1|b2 = 0] = Pr[G1(A)]− Pr[G2(A)].

Combining the above equations will give us the desired result.

We now show that CAU2 = CAU2[E,H, `] achieves AE2[Aae2
priv ∩Aae2

u-n]-security and authentic-
ity as defined above. Privacy is relatively straightforward. The desired theorem is presented in
Theorem H.3 along with a proof sketch. Authenticity is a bit more involved, and we tackle this in
Theorem H.4.

Theorem H.3 Let CAU2 = CAU2[E,H, `] be the NBE2 scheme defined above. Then, let A ∈
Aae2

priv ∩ Aae2
u-n be an adversary making qn queries to its New oracle and qe queries to its Enc per

session. The total number of message blocks passed to the encryption oracle by A for any single
session does not exceed Q′. Then we can construct adversary B such that:

Advae2
CAU2(A) ≤ Advprf

E (B).

B makes qn queries to its New oracle, and makes no more than qe +Q′+1 queries to its Fn oracle
for each user.

Proof: (Sketch) We define B as in Fig. 22.B runs A with a simulated encryption oracle (there is no
decryption oracle because A is privacy-only). This encryption oracle will run CAU2, but substitute
all block cipher evaluations E.Ev with calls to the Fn oracle instead. Let b be the challenge bit in
Gprf

E (B). When b = 1, encryption proceeds as in CAU2. Since A ∈ Aae2
u-n, for each i, no two calls

to Fn(i, ·) have the same input. This means that when b = 0 every call to Fn returns a random
element of {0, 1}E.bl. So all the Pi and z are random strings masking the message blocks and tag
respectively. This makes the output indistinguishable from a random string of length |M |+E.bl+`.
From this, we get the main statement in the theorem.

Theorem H.4 Let CAU2 = CAU2[E,H, `] be the NBE2 scheme defined above where H is an
(ε1, ε2)-AXU function family. Let A ∈ Aae2

u-n be an adversary making qn calls to its New oracle, qe
calls to its Enc oracle per session and qd calls to its Dec oracle per session. The total number of
message blocks passed to the encryption oracle by A for any single session does not exceed Q′ and
the lengths of C2, H passed to the decryption oracle by A do not exceed `′1, `2, respectively. Then let
Q = Q′ + qe + 1 and `1 = `′1 + E.bl. Then we can construct adversary C such that:

Advauth1
CAU2(A) ≤ Advsprp

E (C) + qn

(
Q2 +Q+ q2d + 4qdQ+ 3qd +Q2−`

2E.bl+1

)
+ qn(qeqd + q2d + qd2−`) · ε1(`1, `2) + qn(q2d − qd) · ε2(`1, `2)
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Adversary BNewb,Fnb

Initialize

b′←$ANew∗
b ,Enc

∗
b

Finalize(b′)

procedure New∗b
Newb

v ← v + 1

kv←$ Fnb(v, 0
E.bl)

procedure Enc∗b(i,N,M,H)

M1‖M2‖...‖Mm ← 0`‖M
For i = 1, 2, ..(m− 1)

Pi←$ Fnb(i,N‖〈i+ 1〉E.bl−`)
C1,i ←Mi⊕Pi

Pm←$ Fnb(i,N‖〈m+ 1〉E.bl−`)
C1,m ←Mm⊕Pm[1..|Mm|]
z←$ Fnb(i,N‖〈1〉E.bl−`)
τ ← H.Ev(ki, (C1,1‖..‖C1,m, H))⊕z
Return τ‖C1,1‖..‖C1,m

Adversary CNewc,Fnc,FnInvc

Initialize ; ANew∗
c ,Enc

∗
c ,Vf∗c

If win then b′ ← 1 else b′ ← 0 ; Finalize(b′)

procedure New∗c
Newc ; v ← v + 1 ; kv←$ Fnc(v, 0

E.bl)

procedure Enc∗c(i,N,M,H)

M1‖M2‖...‖Mm ← 0`‖M
For i = 1, 2, ..(m− 1)

Pi←$ Fnc(i,N‖〈i+ 1〉E.bl−`) ; C1,i ←Mi⊕Pi

Pm←$ Fnc(i,N‖〈m+ 1〉E.bl−`)
C1,m ←Mm⊕Pm[1..|Mm|]
z←$ Fnc(i,N‖〈1〉E.bl−`)
τ ← H.Ev(ki, (C1,1‖..‖C1,m, H))⊕z
Return τ‖C1,1‖..‖C1,m

procedure Vf∗c(i, C2, H)

τ‖C1,1‖C1,2‖...‖C1,m ← C2

h← H.Ev(ki, (C1,1‖C1,2‖...‖C1,m, H))

y←$ FnInvc(K, τ⊕h) ; N ← y[1..`]

P ←$ Fnc(i,N‖〈2〉E.bl−`) ; M1 ← P [1..|C1,1|]⊕C1,1

If (M1[1..`] 6= 0`) ∨ (y[(`+ 1)..E.bl] 6= 〈1〉E.bl−`) then

Return false

win← true ; Return true

Figure 22: Left: Adversary B used in the proof of Theorem H.3. Right: Adversary C used in the
proof of Theorem H.4.

C makes qn queries to its New oracle, no more than Q queries to its Fn oracle for each user and
no more than qd queries to its Dec oracle for each user.

Proof: We define games G0,G1,G2,G3 as in Fig. 23, games G3,G4 as in Fig. 24 and games G5,G6

as in Fig. 25. Note that Initialize,Finalize are the same for all these games, and they are as
depicted in Fig. 23. As before, we will assume that A makes no trivial verification queries. This
means that A will not query Vf(i, C2, H) when C2 was returned in a prior call to Enc(i,N,M,H)
for some N,M . We will also assume that all decryption queries feature ciphertexts of length at
least E.bl.

In G0, we partially decrypt C2 using CAU2.Dec, so that we can check if the deciphered nonce has
the correct suffix and the message has the correct prefix. This is exactly the two conditions which
will decide if CAU2.Dec will return ⊥ or not. By the definition of Gauth1

CAU2 above, we have that
Advauth1

CAU2(A) = Pr[G0(A)].

From here, we define the adversary C as in Fig. 22. This is such that the following equations hold:

Pr[G0(A)]− Pr[G1(A)] = Advsprp
E (C) , (31)∣∣Pr[G1(A)]− Pr[G2(A)]

∣∣ ≤ qnQ(Q+ 1)

2E.bl+1
+
qnqd(qd + 1)

2E.bl+1
+

2qnQqd
2E.bl

, (32)
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procedure Initialize // For all games

Return

procedure Finalize // For all games

Return win

Game G0

procedure New0

v ← v + 1 ; Kv←$ SE2.KS

procedure Enc0(i,N,M,H)

C2←$ SE2.Enc(Ki, N,M,H)

Return C2

procedure Vf0(i, C2, H)

M ←$ SE2.Dec(Ki, C2, H)

If (M 6= ⊥) then win← true

Return (M 6= ⊥)

Games G1 ,G2

procedure New1

v ← v + 1 ; kv←$ Ev∗1(v, 0E.bl)

procedure Enc1(i,N,M,H)

M1‖M1‖...‖Mm ← 0`‖M
For i = 1, 2, ..(m− 1) do

Pi←$ Ev∗1(i,N‖〈i+ 1〉E.bl−`) ; C1,i ←Mi⊕Pi

Pm←$ Ev∗1(i,N‖〈m+ 1〉E.bl−`)
C1,m ←Mm⊕Pm[1..|Mm|] ; z←$ Ev∗1(i,N‖〈1〉E.bl−`)
τ ← H.Ev(ki, (C1,1‖..‖C1,m, H))⊕z ; Return

τ‖C1,1‖..‖C1,m

procedure Vf1(i, C2, H)

τ‖C1,1‖C1,2‖...‖C1,m ← C2

h← H.Ev(ki, (C1,1‖C1,2‖...‖C1,m, H))

y←$ In∗1(K, τ⊕h) ; N ← y[1..`]

P ←$ Ev∗1(i,N‖〈2〉E.bl−`) ; M1 ← P [1..|C1,1|]⊕C1,1

If (M1[1..`] 6= 0`) ∨ (y[(`+ 1)..E.bl] 6= 〈1〉E.bl−`) then

Return false

win← true ; Return true

procedure Ev∗1(i,X)

If (Y[i,X] = ⊥) then

Y ←$ {0, 1}E.bl
If Y ∈ Yi then bad← true ; Y ←$

(
{0, 1}E.bl

)
\ Yi

Y[i,X]← Y ; X[i, Y ]← X

Return Y[i,X]

procedure In∗1(i, Y )

If (X[i, Y ] = ⊥) then

X ←$ {0, 1}E.bl
If X ∈ Xi then bad← true ; X ←$

(
{0, 1}E.bl

)
\ Xi

X[i, Y ]← X ; Y[i,X]← Y

Return X[i, Y ]

Figure 23: Games G0,G1,G2,G3,G4 used in the proof of Theorem H.4. Initialize,Finalize are
common to all games in this proof.

Pr[G2(A)] = Pr[G3(A)] , (33)∣∣Pr[G3(A)]− Pr[G4(A)]
∣∣ ≤ qnqeqd · ε1(`1, `2) + qnqd(qd − 1) · ε2(`1, `2) , (34)

Pr[G4(A)] = Pr[G5(A)] , (35)∣∣Pr[G5(A)]− Pr[G6(A)]
∣∣ ≤ qnQ

2E.bl+`
+
qnqd
2`

ε1(`1, `2) , (36)

Pr[G6(A)] ≤ qnqd
2E.bl

, (37)

We can combine these equations to derive the theorem statement. Now we derive equations
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Games G3 ,G4

procedure New3

v ← v + 1 ; kv←$ Ev∗3(v, 0E.bl)

procedure Enc3(i,N,M,H)

M1‖M2‖...‖Mm ← 0`‖M
For i = 1, 2, ..(m− 1)
Pi←$ Ev∗3(i,N‖〈i+ 1〉E.bl−`) ; C1,i ←Mi⊕Pi

Pm←$ Ev∗3(i,N‖〈m+ 1〉E.bl−`) ; C1,m ←Mm⊕Pm[1..|Mm|]
z←$ Ev∗3(i,N‖〈1〉E.bl−`) ; τ ← H.Ev(ki, (C1,1‖..‖C1,m, H))⊕z
Return τ‖C1,1‖..‖C1,m

procedure Vf3(i, C2, H)

τ‖C1,1‖C1,2‖...‖C1,m ← C2

h← H.Ev(ki, (C1,1‖C1,2‖...‖C1,m, H)) ; y←$ {0, 1}E.bl
If (X[i, τ⊕h] 6= ⊥) then
X ← X[i, τ⊕h]
If (X[(`+ 1)..E.bl] 6= 〈1〉E.bl−`) then return ⊥ else bad← true ; y ← X

X[i, τ⊕h]← y ; Y[i, y]← τ⊕h ; N ← y[1..`]
P ←$ Ev∗3(i,N‖〈2〉E.bl−`) ; M1 ← P [1..|C1,1|]⊕C1,1

If (M1[1..`] 6= 0`) ∨ (y[(`+ 1)..E.bl] 6= 〈1〉E.bl−`) then return false
win← true ; Return true

procedure Ev∗3(i,X)

If (Y[i,X] = ⊥) then Y ←$ {0, 1}E.bl ; Y[i,X]← Y ; X[i, Y ]← X
Return Y[i,X]

Figure 24: Games G3,G4 used in the proof of Theorem H.4. Initialize,Finalize are as in Fig. 23.

(31),(32),(33),(34),(35),(36),(37) one by one.

Adversary C will run A with simulated encryption and verification oracles. These oracles perform
encryption as in CAU1.Enc and the partial decryption discussed above, respectively, but use the
oracles provided to C to perform block cipher enciphering and deciphering. The advantage of C is
exactly the difference between the success of A when the block cipher operations are done using E
and when the block cipher operations are a random bijection. Note that the random bijection is
captured in Ev∗1, In

∗
1 in G1 (with the boxed code). Here, we sample elements of {0, 1}E.bl without

replacement. We do this by first selecting an element randomly from {0, 1}E.bl. If this collides with
a previously chosen element of the domain or range, we will select another value such that this
won’t happen. This gives us (31).

Next, G1,G2 are identical-until-bad. Our goal here is to model the block cipher using a random
mapping instead of a random permutation. The bad flag is set in Ev∗1 when, within the same
session, there is a collision between values of Y . Values of Y are added to Yi in two locations,
they are randomly selected in the Q calls to Ev∗1 and they are given as input in the qd calls to In∗1.
There are three ways a collision between values of Y could have occurred: (1) between two calls to
Ev∗1, (2) between two calls to In∗1 and (3) between one call to Ev∗1 and a call to In∗1. We bound the
probability of each of case separately. Note that at most Q distinct calls to Ev∗1(i, ·) were made,
and at most qd distinct calls to In∗1(i, ·) were made. The probability of the first two events can
be bounded using a birthday collision bound, giving us the first two terms of (32). Then, suppose
Ev∗1(i,X) sets bad in case (3). This means that the value of Y selected at random collided with
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Games G5 ,G6

procedure New5

v ← v + 1 ; kv←$ Ev∗5(v, 0E.bl)

procedure Enc5(i,N,M,H)

M1‖M2‖...‖Mm ← 0`‖M
For i = 1, 2, ..(m− 1) do Pi←$ Ev∗5(i,N‖〈i+ 1〉E.bl−`) ; C1,i ←Mi⊕Pi

Pm←$ Ev∗5(i,N‖〈m+ 1〉E.bl−`) ; C1,m ←Mm⊕Pm[1..|Mm|]
z←$ Ev∗5(i,N‖〈1〉E.bl−`) ; τ ← H.Ev(ki, (C1,1‖..‖C1,m, H))⊕z
Return τ‖C1,1‖..‖C1,m

procedure Vf5(i, C2, H)

τ‖C1,1‖C1,2‖...‖C1,m ← C2 ; h← H.Ev(ki, (C1,1‖C1,2‖...‖C1,m, H))
y←$ {0, 1}E.bl ; Y[i, y]← τ⊕h ; N ← y[1..`] ; N1 ← N‖〈1〉E.bl−` ; P ←$ {0, 1}E.bl
If (Y[i,N1] 6= ⊥) then
Y ← Y[i,N1] ; M ′ ← Y [1..|C1,1|]⊕C1,1

If (M ′[1..`] 6= 0`) then return ⊥ else bad← true ; P ←$ Y[i,N1]
Y[i,N1]← P ; M1 ← P [1..|C1,1|]⊕C1,1

If (M1[1..`] = 0`) ∧ (y[(`+ 1)..E.bl] = 〈1〉E.bl−`) then win← true ; Return true
Return false

procedure Ev∗5(i,X)

If (Y[i,X] = ⊥) then Y[i,X]←$ {0, 1}E.bl
Return Y[i,X]

Figure 25: Games G5,G6 used in the proof of Theorem H.4. Initialize,Finalize are as in Fig. 23.

the input to a prior call to In∗1(i, ·). Since at most qd such calls could have occured, the probability
of any one call to Ev∗ setting bad in case (3) is bounded by qd

2E.bl
. Via a similar argument, the

probability of any one call to In∗1(i, ·) sets bad can be bounded by Q
2E.bl

. Using the union bound, we
can combine these to get the last term in (32)

In G3, we replace the call to In∗1 (without the boxed code) in G2 with pseudocode that first selects
y at random from {0, 1}E.bl before checking if X[i, τ⊕h] has been initialized before. If it has, we
check if the suffix of this entry is 〈1〉E.bl−` and set y to this value if so. We return ⊥ otherwise.
Since the same check is also performed in G2, the games stay equivalent so we have (33).

Games G3,G4 are identical-until-bad. There are two ways that the game G3 can set bad. Let
τ, h, C1,i be as defined in the pseudocode of Vf3(i, C2, H). Then, the first way to set bad is if τ⊕h
was returned during some call to Ev∗3. Since we only set bad to true if the suffix of X[i, τ⊕h] is
〈1〉E.bl−`, we need only consider the last call to Ev∗3 from each prior call to Enc3. There are at
most qe of these calls. Let z′ be the output of this call to Ev∗3. Therefore, z′ = τ⊕h meaning
that z′⊕τ = H.Ev(ki, (C1,1‖C1,2‖...‖C1,m, H)). Because we assumed the adversary does not make
trivial verification queries, we are assured that at least one of τ or C1,1‖...‖C1,m returned by the
encryption query will be different from the ones passed into the decryption query. Therefore, the
probability that z′ = τ⊕h for each pair of encryption and decryption queries can be bounded
by ε1(`1, `2). The other way G3 sets bad is if two calls to the verification oracle have colliding
values of τ⊕h. Let τ, h, C1,i, H be the variables defined in G3 during the first of these calls. Let
τ ′, h′, C ′1,i, H

′ be the analogous values for the second call. This means that τ⊕h = τ ′⊕h. So
τ⊕τ ′ = H.Ev(ki, (C1,1‖C1,2‖...‖C1,m, H))⊕H.Ev(ki, (C

′
1,1‖C ′1,2‖...‖C ′1,m, H ′)). Since we assumed an
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adversary that does not make repeated decryption queries, these queries are distinct and we can
bound the probability of this is bounded by ε2(`1, `2). Using the union bound over the sessions and
over all choices of pairs of queries, we get (34).

To get G5, we remove all references to X since it is no longer used. Then we do a similar thing
to P as we did to y when transitioning from G2 to G3: we first pick P at random from {0, 1}E.bl,
then, if Y[i,N1] has been initialized before, we set P to that value. Also like in G2,G3, we add
an additional check that the message will be prefixed with 0` in the case where Y[i,N1] (which
is the block which will mask the value of M1) has already been initialized. Finally, we invert the
conditional at the end of Vf5 to return true when the conditional is met and false otherwise. All
these changes maintain the equivalence of G4 and G5, giving us (35).

Games G5,G6 are identical-until-bad. We set bad to true when Y[i,N1] has been initialized before.
We can split the ways in which it can be initialized into two groups. First, suppose it was initialized
in one of the Q calls to Ev∗5. At most Q entries in table Y were initialized in such a way. For
each entry Y[i, Y ], the probability that N1 = Y is 2−E.bl. Additionally, the probability that
Y[i,X] = C1,1 (so that M ′[1..`] = 0`) is 2−`. So we can bound the probability that bad is set in a

call to Ev∗5 by qnQ
2E.bl+` . The other way we set bad is if, during some call to Vf5(i, τ‖C1,1‖..‖C1,m, H)

where we initialize Y[i, y] to Y = τ⊕H.Ev(ki, C1,1‖..‖C1,m, H), we have that y = N1. To set bad,
we need Y [1..`] = C1,1[1..`]. This describes 2−` of the possible choices of such a Y . For each of
these, the probability that Y = τ⊕H.Ev(ki, C1,1‖..‖C1,m, H) can be bound using the fact that H is
an (ε1, ε2)-AXU function family. We use the union bound over all sessions and all qd decryption
queries to give the second term in (36).

In G6, both N and P are now being selected at random. This means that we can bound the
probability that any one call to Vf5 (without the boxed code) will set win to true. In each call to
Vf5, the two conditions under which win will be set to true are independent. We multiply their
probabilities to get 2−`2−E.bl+` = 2−E.bl. Using the union bound, we get (37).

We now recall the theorem stated in Section 7, showing that CAU2 is secure if H is an (ε1, ε2)-
AXU function family and E is an sPRP. This follows from Lemma H.2 quite naturally. We sketch
the proof below.

Theorem 7.1. Let CAU2 = CAU2[E,H, `] be the NBE2 scheme defined above where H is an
(ε1, ε2)-AXU function family. Let A ∈ Aae2

u-n be an adversary making qn calls to its New oracle, qe
calls to its Enc oracle per session and qd calls to its Dec oracle per session. The total number of
message blocks passed to the encryption oracle by A for any single session does not exceed Q′ and
the lengths of C2, H passed to the decryption oracle by A do not exceed `′1, `2, respectively. Then let
Q = Q′ + qe + 1 and `1 = `′1 + E.bl. Then we can construct adversary B such that:

Advae2
CAU2(A) ≤2Advsprp

E (B) + qn

(
Q2 +Q+ q2d + 4qdQ+ 3qd +Q2−`

2E.bl+1

)
+ qn(qeqd + q2d + qd2−`) · ε1(`1, `2) + qn(q2d − qd) · ε2(`1, `2)

B makes qn queries to its New oracle, no more than Q queries to its Fn oracle for each user and
no more than qd queries to its Dec oracle for each user.

Proof: (Sketch) Let B,C be the adversaries defined in Theorem H.3 and Theorem H.4 respectively.
Combining the results of these theorems with Lemma H.2, we get the following bound:

Advae2
CAU2(A) ≤Advprf

E (B) + Advsprp
E (C)
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+ qn

(
Q2 +Q+ q2d + 4qdQ+ 3qd +Q2−`

2E.bl+1

)
+ qn(qeqd + q2d + qd2−`) · ε1(`1, `2) + qn(q2d − qd) · ε2(`1, `2)

Notice that adversary B can also play that sPRP game – it just ignores the FnInv oracle. The
only difference between the two games is whether Fn, in the “ideal” case, will sample randomly
from {0, 1}E.bl with replacement or without. We can bound this using a birthday collision bound.
This gives us:

Advprf
E (B) ≤ Advsprp

E (B) +
qnQ(Q+ 1)

2E.bl+1

The adversary B randomly picks one of B,C to run so Advsprp
E (B) = 1

2

(
Advsprp

E (B)+Advsprp
E (C)

)
.

From here, we can derive the theorem statement.
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